1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9#include <linux/clk.h>
10#include <linux/clk-provider.h>
11#include <linux/clk/clk-conf.h>
12#include <linux/module.h>
13#include <linux/mutex.h>
14#include <linux/spinlock.h>
15#include <linux/err.h>
16#include <linux/list.h>
17#include <linux/slab.h>
18#include <linux/of.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/pm_runtime.h>
22#include <linux/sched.h>
23#include <linux/clkdev.h>
24
25#include "clk.h"
26
27static DEFINE_SPINLOCK(enable_lock);
28static DEFINE_MUTEX(prepare_lock);
29
30static struct task_struct *prepare_owner;
31static struct task_struct *enable_owner;
32
33static int prepare_refcnt;
34static int enable_refcnt;
35
36static HLIST_HEAD(clk_root_list);
37static HLIST_HEAD(clk_orphan_list);
38static LIST_HEAD(clk_notifier_list);
39
40/* List of registered clks that use runtime PM */
41static HLIST_HEAD(clk_rpm_list);
42static DEFINE_MUTEX(clk_rpm_list_lock);
43
44static const struct hlist_head *all_lists[] = {
45 &clk_root_list,
46 &clk_orphan_list,
47 NULL,
48};
49
50/*** private data structures ***/
51
52struct clk_parent_map {
53 const struct clk_hw *hw;
54 struct clk_core *core;
55 const char *fw_name;
56 const char *name;
57 int index;
58};
59
60struct clk_core {
61 const char *name;
62 const struct clk_ops *ops;
63 struct clk_hw *hw;
64 struct module *owner;
65 struct device *dev;
66 struct hlist_node rpm_node;
67 struct device_node *of_node;
68 struct clk_core *parent;
69 struct clk_parent_map *parents;
70 u8 num_parents;
71 u8 new_parent_index;
72 unsigned long rate;
73 unsigned long req_rate;
74 unsigned long new_rate;
75 struct clk_core *new_parent;
76 struct clk_core *new_child;
77 unsigned long flags;
78 bool orphan;
79 bool rpm_enabled;
80 unsigned int enable_count;
81 unsigned int prepare_count;
82 unsigned int protect_count;
83 unsigned long min_rate;
84 unsigned long max_rate;
85 unsigned long accuracy;
86 int phase;
87 struct clk_duty duty;
88 struct hlist_head children;
89 struct hlist_node child_node;
90 struct hlist_head clks;
91 unsigned int notifier_count;
92#ifdef CONFIG_DEBUG_FS
93 struct dentry *dentry;
94 struct hlist_node debug_node;
95#endif
96 struct kref ref;
97};
98
99#define CREATE_TRACE_POINTS
100#include <trace/events/clk.h>
101
102struct clk {
103 struct clk_core *core;
104 struct device *dev;
105 const char *dev_id;
106 const char *con_id;
107 unsigned long min_rate;
108 unsigned long max_rate;
109 unsigned int exclusive_count;
110 struct hlist_node clks_node;
111};
112
113/*** runtime pm ***/
114static int clk_pm_runtime_get(struct clk_core *core)
115{
116 if (!core->rpm_enabled)
117 return 0;
118
119 return pm_runtime_resume_and_get(dev: core->dev);
120}
121
122static void clk_pm_runtime_put(struct clk_core *core)
123{
124 if (!core->rpm_enabled)
125 return;
126
127 pm_runtime_put_sync(dev: core->dev);
128}
129
130/**
131 * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
132 *
133 * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
134 * that disabling unused clks avoids a deadlock where a device is runtime PM
135 * resuming/suspending and the runtime PM callback is trying to grab the
136 * prepare_lock for something like clk_prepare_enable() while
137 * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
138 * PM resume/suspend the device as well.
139 *
140 * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
141 * success. Otherwise the lock is released on failure.
142 *
143 * Return: 0 on success, negative errno otherwise.
144 */
145static int clk_pm_runtime_get_all(void)
146{
147 int ret;
148 struct clk_core *core, *failed;
149
150 /*
151 * Grab the list lock to prevent any new clks from being registered
152 * or unregistered until clk_pm_runtime_put_all().
153 */
154 mutex_lock(&clk_rpm_list_lock);
155
156 /*
157 * Runtime PM "get" all the devices that are needed for the clks
158 * currently registered. Do this without holding the prepare_lock, to
159 * avoid the deadlock.
160 */
161 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
162 ret = clk_pm_runtime_get(core);
163 if (ret) {
164 failed = core;
165 pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
166 dev_name(failed->dev), failed->name);
167 goto err;
168 }
169 }
170
171 return 0;
172
173err:
174 hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
175 if (core == failed)
176 break;
177
178 clk_pm_runtime_put(core);
179 }
180 mutex_unlock(lock: &clk_rpm_list_lock);
181
182 return ret;
183}
184
185/**
186 * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
187 *
188 * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
189 * the 'clk_rpm_list_lock'.
190 */
191static void clk_pm_runtime_put_all(void)
192{
193 struct clk_core *core;
194
195 hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
196 clk_pm_runtime_put(core);
197 mutex_unlock(lock: &clk_rpm_list_lock);
198}
199
200static void clk_pm_runtime_init(struct clk_core *core)
201{
202 struct device *dev = core->dev;
203
204 if (dev && pm_runtime_enabled(dev)) {
205 core->rpm_enabled = true;
206
207 mutex_lock(&clk_rpm_list_lock);
208 hlist_add_head(n: &core->rpm_node, h: &clk_rpm_list);
209 mutex_unlock(lock: &clk_rpm_list_lock);
210 }
211}
212
213/*** locking ***/
214static void clk_prepare_lock(void)
215{
216 if (!mutex_trylock(lock: &prepare_lock)) {
217 if (prepare_owner == current) {
218 prepare_refcnt++;
219 return;
220 }
221 mutex_lock(&prepare_lock);
222 }
223 WARN_ON_ONCE(prepare_owner != NULL);
224 WARN_ON_ONCE(prepare_refcnt != 0);
225 prepare_owner = current;
226 prepare_refcnt = 1;
227}
228
229static void clk_prepare_unlock(void)
230{
231 WARN_ON_ONCE(prepare_owner != current);
232 WARN_ON_ONCE(prepare_refcnt == 0);
233
234 if (--prepare_refcnt)
235 return;
236 prepare_owner = NULL;
237 mutex_unlock(lock: &prepare_lock);
238}
239
240static unsigned long clk_enable_lock(void)
241 __acquires(enable_lock)
242{
243 unsigned long flags;
244
245 /*
246 * On UP systems, spin_trylock_irqsave() always returns true, even if
247 * we already hold the lock. So, in that case, we rely only on
248 * reference counting.
249 */
250 if (!IS_ENABLED(CONFIG_SMP) ||
251 !spin_trylock_irqsave(&enable_lock, flags)) {
252 if (enable_owner == current) {
253 enable_refcnt++;
254 __acquire(enable_lock);
255 if (!IS_ENABLED(CONFIG_SMP))
256 local_save_flags(flags);
257 return flags;
258 }
259 spin_lock_irqsave(&enable_lock, flags);
260 }
261 WARN_ON_ONCE(enable_owner != NULL);
262 WARN_ON_ONCE(enable_refcnt != 0);
263 enable_owner = current;
264 enable_refcnt = 1;
265 return flags;
266}
267
268static void clk_enable_unlock(unsigned long flags)
269 __releases(enable_lock)
270{
271 WARN_ON_ONCE(enable_owner != current);
272 WARN_ON_ONCE(enable_refcnt == 0);
273
274 if (--enable_refcnt) {
275 __release(enable_lock);
276 return;
277 }
278 enable_owner = NULL;
279 spin_unlock_irqrestore(lock: &enable_lock, flags);
280}
281
282static bool clk_core_rate_is_protected(struct clk_core *core)
283{
284 return core->protect_count;
285}
286
287static bool clk_core_is_prepared(struct clk_core *core)
288{
289 bool ret = false;
290
291 /*
292 * .is_prepared is optional for clocks that can prepare
293 * fall back to software usage counter if it is missing
294 */
295 if (!core->ops->is_prepared)
296 return core->prepare_count;
297
298 if (!clk_pm_runtime_get(core)) {
299 ret = core->ops->is_prepared(core->hw);
300 clk_pm_runtime_put(core);
301 }
302
303 return ret;
304}
305
306static bool clk_core_is_enabled(struct clk_core *core)
307{
308 bool ret = false;
309
310 /*
311 * .is_enabled is only mandatory for clocks that gate
312 * fall back to software usage counter if .is_enabled is missing
313 */
314 if (!core->ops->is_enabled)
315 return core->enable_count;
316
317 /*
318 * Check if clock controller's device is runtime active before
319 * calling .is_enabled callback. If not, assume that clock is
320 * disabled, because we might be called from atomic context, from
321 * which pm_runtime_get() is not allowed.
322 * This function is called mainly from clk_disable_unused_subtree,
323 * which ensures proper runtime pm activation of controller before
324 * taking enable spinlock, but the below check is needed if one tries
325 * to call it from other places.
326 */
327 if (core->rpm_enabled) {
328 pm_runtime_get_noresume(dev: core->dev);
329 if (!pm_runtime_active(dev: core->dev)) {
330 ret = false;
331 goto done;
332 }
333 }
334
335 /*
336 * This could be called with the enable lock held, or from atomic
337 * context. If the parent isn't enabled already, we can't do
338 * anything here. We can also assume this clock isn't enabled.
339 */
340 if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
341 if (!clk_core_is_enabled(core: core->parent)) {
342 ret = false;
343 goto done;
344 }
345
346 ret = core->ops->is_enabled(core->hw);
347done:
348 if (core->rpm_enabled)
349 pm_runtime_put(dev: core->dev);
350
351 return ret;
352}
353
354/*** helper functions ***/
355
356const char *__clk_get_name(const struct clk *clk)
357{
358 return !clk ? NULL : clk->core->name;
359}
360EXPORT_SYMBOL_GPL(__clk_get_name);
361
362const char *clk_hw_get_name(const struct clk_hw *hw)
363{
364 return hw->core->name;
365}
366EXPORT_SYMBOL_GPL(clk_hw_get_name);
367
368struct clk_hw *__clk_get_hw(struct clk *clk)
369{
370 return !clk ? NULL : clk->core->hw;
371}
372EXPORT_SYMBOL_GPL(__clk_get_hw);
373
374unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
375{
376 return hw->core->num_parents;
377}
378EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
379
380struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
381{
382 return hw->core->parent ? hw->core->parent->hw : NULL;
383}
384EXPORT_SYMBOL_GPL(clk_hw_get_parent);
385
386static struct clk_core *__clk_lookup_subtree(const char *name,
387 struct clk_core *core)
388{
389 struct clk_core *child;
390 struct clk_core *ret;
391
392 if (!strcmp(core->name, name))
393 return core;
394
395 hlist_for_each_entry(child, &core->children, child_node) {
396 ret = __clk_lookup_subtree(name, core: child);
397 if (ret)
398 return ret;
399 }
400
401 return NULL;
402}
403
404static struct clk_core *clk_core_lookup(const char *name)
405{
406 struct clk_core *root_clk;
407 struct clk_core *ret;
408
409 if (!name)
410 return NULL;
411
412 /* search the 'proper' clk tree first */
413 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
414 ret = __clk_lookup_subtree(name, core: root_clk);
415 if (ret)
416 return ret;
417 }
418
419 /* if not found, then search the orphan tree */
420 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
421 ret = __clk_lookup_subtree(name, core: root_clk);
422 if (ret)
423 return ret;
424 }
425
426 return NULL;
427}
428
429#ifdef CONFIG_OF
430static int of_parse_clkspec(const struct device_node *np, int index,
431 const char *name, struct of_phandle_args *out_args);
432static struct clk_hw *
433of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
434#else
435static inline int of_parse_clkspec(const struct device_node *np, int index,
436 const char *name,
437 struct of_phandle_args *out_args)
438{
439 return -ENOENT;
440}
441static inline struct clk_hw *
442of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
443{
444 return ERR_PTR(-ENOENT);
445}
446#endif
447
448/**
449 * clk_core_get - Find the clk_core parent of a clk
450 * @core: clk to find parent of
451 * @p_index: parent index to search for
452 *
453 * This is the preferred method for clk providers to find the parent of a
454 * clk when that parent is external to the clk controller. The parent_names
455 * array is indexed and treated as a local name matching a string in the device
456 * node's 'clock-names' property or as the 'con_id' matching the device's
457 * dev_name() in a clk_lookup. This allows clk providers to use their own
458 * namespace instead of looking for a globally unique parent string.
459 *
460 * For example the following DT snippet would allow a clock registered by the
461 * clock-controller@c001 that has a clk_init_data::parent_data array
462 * with 'xtal' in the 'name' member to find the clock provided by the
463 * clock-controller@f00abcd without needing to get the globally unique name of
464 * the xtal clk.
465 *
466 * parent: clock-controller@f00abcd {
467 * reg = <0xf00abcd 0xabcd>;
468 * #clock-cells = <0>;
469 * };
470 *
471 * clock-controller@c001 {
472 * reg = <0xc001 0xf00d>;
473 * clocks = <&parent>;
474 * clock-names = "xtal";
475 * #clock-cells = <1>;
476 * };
477 *
478 * Returns: -ENOENT when the provider can't be found or the clk doesn't
479 * exist in the provider or the name can't be found in the DT node or
480 * in a clkdev lookup. NULL when the provider knows about the clk but it
481 * isn't provided on this system.
482 * A valid clk_core pointer when the clk can be found in the provider.
483 */
484static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
485{
486 const char *name = core->parents[p_index].fw_name;
487 int index = core->parents[p_index].index;
488 struct clk_hw *hw = ERR_PTR(error: -ENOENT);
489 struct device *dev = core->dev;
490 const char *dev_id = dev ? dev_name(dev) : NULL;
491 struct device_node *np = core->of_node;
492 struct of_phandle_args clkspec;
493
494 if (np && (name || index >= 0) &&
495 !of_parse_clkspec(np, index, name, out_args: &clkspec)) {
496 hw = of_clk_get_hw_from_clkspec(clkspec: &clkspec);
497 of_node_put(node: clkspec.np);
498 } else if (name) {
499 /*
500 * If the DT search above couldn't find the provider fallback to
501 * looking up via clkdev based clk_lookups.
502 */
503 hw = clk_find_hw(dev_id, con_id: name);
504 }
505
506 if (IS_ERR(ptr: hw))
507 return ERR_CAST(ptr: hw);
508
509 if (!hw)
510 return NULL;
511
512 return hw->core;
513}
514
515static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
516{
517 struct clk_parent_map *entry = &core->parents[index];
518 struct clk_core *parent;
519
520 if (entry->hw) {
521 parent = entry->hw->core;
522 } else {
523 parent = clk_core_get(core, p_index: index);
524 if (PTR_ERR(ptr: parent) == -ENOENT && entry->name)
525 parent = clk_core_lookup(name: entry->name);
526 }
527
528 /*
529 * We have a direct reference but it isn't registered yet?
530 * Orphan it and let clk_reparent() update the orphan status
531 * when the parent is registered.
532 */
533 if (!parent)
534 parent = ERR_PTR(error: -EPROBE_DEFER);
535
536 /* Only cache it if it's not an error */
537 if (!IS_ERR(ptr: parent))
538 entry->core = parent;
539}
540
541static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
542 u8 index)
543{
544 if (!core || index >= core->num_parents || !core->parents)
545 return NULL;
546
547 if (!core->parents[index].core)
548 clk_core_fill_parent_index(core, index);
549
550 return core->parents[index].core;
551}
552
553struct clk_hw *
554clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
555{
556 struct clk_core *parent;
557
558 parent = clk_core_get_parent_by_index(core: hw->core, index);
559
560 return !parent ? NULL : parent->hw;
561}
562EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
563
564unsigned int __clk_get_enable_count(struct clk *clk)
565{
566 return !clk ? 0 : clk->core->enable_count;
567}
568
569static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
570{
571 if (!core)
572 return 0;
573
574 if (!core->num_parents || core->parent)
575 return core->rate;
576
577 /*
578 * Clk must have a parent because num_parents > 0 but the parent isn't
579 * known yet. Best to return 0 as the rate of this clk until we can
580 * properly recalc the rate based on the parent's rate.
581 */
582 return 0;
583}
584
585unsigned long clk_hw_get_rate(const struct clk_hw *hw)
586{
587 return clk_core_get_rate_nolock(core: hw->core);
588}
589EXPORT_SYMBOL_GPL(clk_hw_get_rate);
590
591static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
592{
593 if (!core)
594 return 0;
595
596 return core->accuracy;
597}
598
599unsigned long clk_hw_get_flags(const struct clk_hw *hw)
600{
601 return hw->core->flags;
602}
603EXPORT_SYMBOL_GPL(clk_hw_get_flags);
604
605bool clk_hw_is_prepared(const struct clk_hw *hw)
606{
607 return clk_core_is_prepared(core: hw->core);
608}
609EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
610
611bool clk_hw_rate_is_protected(const struct clk_hw *hw)
612{
613 return clk_core_rate_is_protected(core: hw->core);
614}
615EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
616
617bool clk_hw_is_enabled(const struct clk_hw *hw)
618{
619 return clk_core_is_enabled(core: hw->core);
620}
621EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
622
623bool __clk_is_enabled(struct clk *clk)
624{
625 if (!clk)
626 return false;
627
628 return clk_core_is_enabled(core: clk->core);
629}
630EXPORT_SYMBOL_GPL(__clk_is_enabled);
631
632static bool mux_is_better_rate(unsigned long rate, unsigned long now,
633 unsigned long best, unsigned long flags)
634{
635 if (flags & CLK_MUX_ROUND_CLOSEST)
636 return abs(now - rate) < abs(best - rate);
637
638 return now <= rate && now > best;
639}
640
641static void clk_core_init_rate_req(struct clk_core * const core,
642 struct clk_rate_request *req,
643 unsigned long rate);
644
645static int clk_core_round_rate_nolock(struct clk_core *core,
646 struct clk_rate_request *req);
647
648static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
649{
650 struct clk_core *tmp;
651 unsigned int i;
652
653 /* Optimize for the case where the parent is already the parent. */
654 if (core->parent == parent)
655 return true;
656
657 for (i = 0; i < core->num_parents; i++) {
658 tmp = clk_core_get_parent_by_index(core, index: i);
659 if (!tmp)
660 continue;
661
662 if (tmp == parent)
663 return true;
664 }
665
666 return false;
667}
668
669static void
670clk_core_forward_rate_req(struct clk_core *core,
671 const struct clk_rate_request *old_req,
672 struct clk_core *parent,
673 struct clk_rate_request *req,
674 unsigned long parent_rate)
675{
676 if (WARN_ON(!clk_core_has_parent(core, parent)))
677 return;
678
679 clk_core_init_rate_req(core: parent, req, rate: parent_rate);
680
681 if (req->min_rate < old_req->min_rate)
682 req->min_rate = old_req->min_rate;
683
684 if (req->max_rate > old_req->max_rate)
685 req->max_rate = old_req->max_rate;
686}
687
688static int
689clk_core_determine_rate_no_reparent(struct clk_hw *hw,
690 struct clk_rate_request *req)
691{
692 struct clk_core *core = hw->core;
693 struct clk_core *parent = core->parent;
694 unsigned long best;
695 int ret;
696
697 if (core->flags & CLK_SET_RATE_PARENT) {
698 struct clk_rate_request parent_req;
699
700 if (!parent) {
701 req->rate = 0;
702 return 0;
703 }
704
705 clk_core_forward_rate_req(core, old_req: req, parent, req: &parent_req,
706 parent_rate: req->rate);
707
708 trace_clk_rate_request_start(req: &parent_req);
709
710 ret = clk_core_round_rate_nolock(core: parent, req: &parent_req);
711 if (ret)
712 return ret;
713
714 trace_clk_rate_request_done(req: &parent_req);
715
716 best = parent_req.rate;
717 } else if (parent) {
718 best = clk_core_get_rate_nolock(core: parent);
719 } else {
720 best = clk_core_get_rate_nolock(core);
721 }
722
723 req->best_parent_rate = best;
724 req->rate = best;
725
726 return 0;
727}
728
729int clk_mux_determine_rate_flags(struct clk_hw *hw,
730 struct clk_rate_request *req,
731 unsigned long flags)
732{
733 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
734 int i, num_parents, ret;
735 unsigned long best = 0;
736
737 /* if NO_REPARENT flag set, pass through to current parent */
738 if (core->flags & CLK_SET_RATE_NO_REPARENT)
739 return clk_core_determine_rate_no_reparent(hw, req);
740
741 /* find the parent that can provide the fastest rate <= rate */
742 num_parents = core->num_parents;
743 for (i = 0; i < num_parents; i++) {
744 unsigned long parent_rate;
745
746 parent = clk_core_get_parent_by_index(core, index: i);
747 if (!parent)
748 continue;
749
750 if (core->flags & CLK_SET_RATE_PARENT) {
751 struct clk_rate_request parent_req;
752
753 clk_core_forward_rate_req(core, old_req: req, parent, req: &parent_req, parent_rate: req->rate);
754
755 trace_clk_rate_request_start(req: &parent_req);
756
757 ret = clk_core_round_rate_nolock(core: parent, req: &parent_req);
758 if (ret)
759 continue;
760
761 trace_clk_rate_request_done(req: &parent_req);
762
763 parent_rate = parent_req.rate;
764 } else {
765 parent_rate = clk_core_get_rate_nolock(core: parent);
766 }
767
768 if (mux_is_better_rate(rate: req->rate, now: parent_rate,
769 best, flags)) {
770 best_parent = parent;
771 best = parent_rate;
772 }
773 }
774
775 if (!best_parent)
776 return -EINVAL;
777
778 req->best_parent_hw = best_parent->hw;
779 req->best_parent_rate = best;
780 req->rate = best;
781
782 return 0;
783}
784EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
785
786struct clk *__clk_lookup(const char *name)
787{
788 struct clk_core *core = clk_core_lookup(name);
789
790 return !core ? NULL : core->hw->clk;
791}
792
793static void clk_core_get_boundaries(struct clk_core *core,
794 unsigned long *min_rate,
795 unsigned long *max_rate)
796{
797 struct clk *clk_user;
798
799 lockdep_assert_held(&prepare_lock);
800
801 *min_rate = core->min_rate;
802 *max_rate = core->max_rate;
803
804 hlist_for_each_entry(clk_user, &core->clks, clks_node)
805 *min_rate = max(*min_rate, clk_user->min_rate);
806
807 hlist_for_each_entry(clk_user, &core->clks, clks_node)
808 *max_rate = min(*max_rate, clk_user->max_rate);
809}
810
811/*
812 * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
813 * @hw: the hw clk we want to get the range from
814 * @min_rate: pointer to the variable that will hold the minimum
815 * @max_rate: pointer to the variable that will hold the maximum
816 *
817 * Fills the @min_rate and @max_rate variables with the minimum and
818 * maximum that clock can reach.
819 */
820void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
821 unsigned long *max_rate)
822{
823 clk_core_get_boundaries(core: hw->core, min_rate, max_rate);
824}
825EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
826
827static bool clk_core_check_boundaries(struct clk_core *core,
828 unsigned long min_rate,
829 unsigned long max_rate)
830{
831 struct clk *user;
832
833 lockdep_assert_held(&prepare_lock);
834
835 if (min_rate > core->max_rate || max_rate < core->min_rate)
836 return false;
837
838 hlist_for_each_entry(user, &core->clks, clks_node)
839 if (min_rate > user->max_rate || max_rate < user->min_rate)
840 return false;
841
842 return true;
843}
844
845void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
846 unsigned long max_rate)
847{
848 hw->core->min_rate = min_rate;
849 hw->core->max_rate = max_rate;
850}
851EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
852
853/*
854 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
855 * @hw: mux type clk to determine rate on
856 * @req: rate request, also used to return preferred parent and frequencies
857 *
858 * Helper for finding best parent to provide a given frequency. This can be used
859 * directly as a determine_rate callback (e.g. for a mux), or from a more
860 * complex clock that may combine a mux with other operations.
861 *
862 * Returns: 0 on success, -EERROR value on error
863 */
864int __clk_mux_determine_rate(struct clk_hw *hw,
865 struct clk_rate_request *req)
866{
867 return clk_mux_determine_rate_flags(hw, req, 0);
868}
869EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
870
871int __clk_mux_determine_rate_closest(struct clk_hw *hw,
872 struct clk_rate_request *req)
873{
874 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
875}
876EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
877
878/*
879 * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
880 * @hw: mux type clk to determine rate on
881 * @req: rate request, also used to return preferred frequency
882 *
883 * Helper for finding best parent rate to provide a given frequency.
884 * This can be used directly as a determine_rate callback (e.g. for a
885 * mux), or from a more complex clock that may combine a mux with other
886 * operations.
887 *
888 * Returns: 0 on success, -EERROR value on error
889 */
890int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
891 struct clk_rate_request *req)
892{
893 return clk_core_determine_rate_no_reparent(hw, req);
894}
895EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
896
897/*** clk api ***/
898
899static void clk_core_rate_unprotect(struct clk_core *core)
900{
901 lockdep_assert_held(&prepare_lock);
902
903 if (!core)
904 return;
905
906 if (WARN(core->protect_count == 0,
907 "%s already unprotected\n", core->name))
908 return;
909
910 if (--core->protect_count > 0)
911 return;
912
913 clk_core_rate_unprotect(core: core->parent);
914}
915
916static int clk_core_rate_nuke_protect(struct clk_core *core)
917{
918 int ret;
919
920 lockdep_assert_held(&prepare_lock);
921
922 if (!core)
923 return -EINVAL;
924
925 if (core->protect_count == 0)
926 return 0;
927
928 ret = core->protect_count;
929 core->protect_count = 1;
930 clk_core_rate_unprotect(core);
931
932 return ret;
933}
934
935/**
936 * clk_rate_exclusive_put - release exclusivity over clock rate control
937 * @clk: the clk over which the exclusivity is released
938 *
939 * clk_rate_exclusive_put() completes a critical section during which a clock
940 * consumer cannot tolerate any other consumer making any operation on the
941 * clock which could result in a rate change or rate glitch. Exclusive clocks
942 * cannot have their rate changed, either directly or indirectly due to changes
943 * further up the parent chain of clocks. As a result, clocks up parent chain
944 * also get under exclusive control of the calling consumer.
945 *
946 * If exlusivity is claimed more than once on clock, even by the same consumer,
947 * the rate effectively gets locked as exclusivity can't be preempted.
948 *
949 * Calls to clk_rate_exclusive_put() must be balanced with calls to
950 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
951 * error status.
952 */
953void clk_rate_exclusive_put(struct clk *clk)
954{
955 if (!clk)
956 return;
957
958 clk_prepare_lock();
959
960 /*
961 * if there is something wrong with this consumer protect count, stop
962 * here before messing with the provider
963 */
964 if (WARN_ON(clk->exclusive_count <= 0))
965 goto out;
966
967 clk_core_rate_unprotect(core: clk->core);
968 clk->exclusive_count--;
969out:
970 clk_prepare_unlock();
971}
972EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
973
974static void clk_core_rate_protect(struct clk_core *core)
975{
976 lockdep_assert_held(&prepare_lock);
977
978 if (!core)
979 return;
980
981 if (core->protect_count == 0)
982 clk_core_rate_protect(core: core->parent);
983
984 core->protect_count++;
985}
986
987static void clk_core_rate_restore_protect(struct clk_core *core, int count)
988{
989 lockdep_assert_held(&prepare_lock);
990
991 if (!core)
992 return;
993
994 if (count == 0)
995 return;
996
997 clk_core_rate_protect(core);
998 core->protect_count = count;
999}
1000
1001/**
1002 * clk_rate_exclusive_get - get exclusivity over the clk rate control
1003 * @clk: the clk over which the exclusity of rate control is requested
1004 *
1005 * clk_rate_exclusive_get() begins a critical section during which a clock
1006 * consumer cannot tolerate any other consumer making any operation on the
1007 * clock which could result in a rate change or rate glitch. Exclusive clocks
1008 * cannot have their rate changed, either directly or indirectly due to changes
1009 * further up the parent chain of clocks. As a result, clocks up parent chain
1010 * also get under exclusive control of the calling consumer.
1011 *
1012 * If exlusivity is claimed more than once on clock, even by the same consumer,
1013 * the rate effectively gets locked as exclusivity can't be preempted.
1014 *
1015 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1016 * clk_rate_exclusive_put(). Calls to this function may sleep.
1017 * Returns 0 on success, -EERROR otherwise
1018 */
1019int clk_rate_exclusive_get(struct clk *clk)
1020{
1021 if (!clk)
1022 return 0;
1023
1024 clk_prepare_lock();
1025 clk_core_rate_protect(core: clk->core);
1026 clk->exclusive_count++;
1027 clk_prepare_unlock();
1028
1029 return 0;
1030}
1031EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1032
1033static void devm_clk_rate_exclusive_put(void *data)
1034{
1035 struct clk *clk = data;
1036
1037 clk_rate_exclusive_put(clk);
1038}
1039
1040int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
1041{
1042 int ret;
1043
1044 ret = clk_rate_exclusive_get(clk);
1045 if (ret)
1046 return ret;
1047
1048 return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
1049}
1050EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
1051
1052static void clk_core_unprepare(struct clk_core *core)
1053{
1054 lockdep_assert_held(&prepare_lock);
1055
1056 if (!core)
1057 return;
1058
1059 if (WARN(core->prepare_count == 0,
1060 "%s already unprepared\n", core->name))
1061 return;
1062
1063 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1064 "Unpreparing critical %s\n", core->name))
1065 return;
1066
1067 if (core->flags & CLK_SET_RATE_GATE)
1068 clk_core_rate_unprotect(core);
1069
1070 if (--core->prepare_count > 0)
1071 return;
1072
1073 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1074
1075 trace_clk_unprepare(core);
1076
1077 if (core->ops->unprepare)
1078 core->ops->unprepare(core->hw);
1079
1080 trace_clk_unprepare_complete(core);
1081 clk_core_unprepare(core: core->parent);
1082 clk_pm_runtime_put(core);
1083}
1084
1085static void clk_core_unprepare_lock(struct clk_core *core)
1086{
1087 clk_prepare_lock();
1088 clk_core_unprepare(core);
1089 clk_prepare_unlock();
1090}
1091
1092/**
1093 * clk_unprepare - undo preparation of a clock source
1094 * @clk: the clk being unprepared
1095 *
1096 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
1097 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1098 * if the operation may sleep. One example is a clk which is accessed over
1099 * I2c. In the complex case a clk gate operation may require a fast and a slow
1100 * part. It is this reason that clk_unprepare and clk_disable are not mutually
1101 * exclusive. In fact clk_disable must be called before clk_unprepare.
1102 */
1103void clk_unprepare(struct clk *clk)
1104{
1105 if (IS_ERR_OR_NULL(ptr: clk))
1106 return;
1107
1108 clk_core_unprepare_lock(core: clk->core);
1109}
1110EXPORT_SYMBOL_GPL(clk_unprepare);
1111
1112static int clk_core_prepare(struct clk_core *core)
1113{
1114 int ret = 0;
1115
1116 lockdep_assert_held(&prepare_lock);
1117
1118 if (!core)
1119 return 0;
1120
1121 if (core->prepare_count == 0) {
1122 ret = clk_pm_runtime_get(core);
1123 if (ret)
1124 return ret;
1125
1126 ret = clk_core_prepare(core: core->parent);
1127 if (ret)
1128 goto runtime_put;
1129
1130 trace_clk_prepare(core);
1131
1132 if (core->ops->prepare)
1133 ret = core->ops->prepare(core->hw);
1134
1135 trace_clk_prepare_complete(core);
1136
1137 if (ret)
1138 goto unprepare;
1139 }
1140
1141 core->prepare_count++;
1142
1143 /*
1144 * CLK_SET_RATE_GATE is a special case of clock protection
1145 * Instead of a consumer claiming exclusive rate control, it is
1146 * actually the provider which prevents any consumer from making any
1147 * operation which could result in a rate change or rate glitch while
1148 * the clock is prepared.
1149 */
1150 if (core->flags & CLK_SET_RATE_GATE)
1151 clk_core_rate_protect(core);
1152
1153 return 0;
1154unprepare:
1155 clk_core_unprepare(core: core->parent);
1156runtime_put:
1157 clk_pm_runtime_put(core);
1158 return ret;
1159}
1160
1161static int clk_core_prepare_lock(struct clk_core *core)
1162{
1163 int ret;
1164
1165 clk_prepare_lock();
1166 ret = clk_core_prepare(core);
1167 clk_prepare_unlock();
1168
1169 return ret;
1170}
1171
1172/**
1173 * clk_prepare - prepare a clock source
1174 * @clk: the clk being prepared
1175 *
1176 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
1177 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1178 * operation may sleep. One example is a clk which is accessed over I2c. In
1179 * the complex case a clk ungate operation may require a fast and a slow part.
1180 * It is this reason that clk_prepare and clk_enable are not mutually
1181 * exclusive. In fact clk_prepare must be called before clk_enable.
1182 * Returns 0 on success, -EERROR otherwise.
1183 */
1184int clk_prepare(struct clk *clk)
1185{
1186 if (!clk)
1187 return 0;
1188
1189 return clk_core_prepare_lock(core: clk->core);
1190}
1191EXPORT_SYMBOL_GPL(clk_prepare);
1192
1193static void clk_core_disable(struct clk_core *core)
1194{
1195 lockdep_assert_held(&enable_lock);
1196
1197 if (!core)
1198 return;
1199
1200 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1201 return;
1202
1203 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1204 "Disabling critical %s\n", core->name))
1205 return;
1206
1207 if (--core->enable_count > 0)
1208 return;
1209
1210 trace_clk_disable(core);
1211
1212 if (core->ops->disable)
1213 core->ops->disable(core->hw);
1214
1215 trace_clk_disable_complete(core);
1216
1217 clk_core_disable(core: core->parent);
1218}
1219
1220static void clk_core_disable_lock(struct clk_core *core)
1221{
1222 unsigned long flags;
1223
1224 flags = clk_enable_lock();
1225 clk_core_disable(core);
1226 clk_enable_unlock(flags);
1227}
1228
1229/**
1230 * clk_disable - gate a clock
1231 * @clk: the clk being gated
1232 *
1233 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1234 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1235 * clk if the operation is fast and will never sleep. One example is a
1236 * SoC-internal clk which is controlled via simple register writes. In the
1237 * complex case a clk gate operation may require a fast and a slow part. It is
1238 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1239 * In fact clk_disable must be called before clk_unprepare.
1240 */
1241void clk_disable(struct clk *clk)
1242{
1243 if (IS_ERR_OR_NULL(ptr: clk))
1244 return;
1245
1246 clk_core_disable_lock(core: clk->core);
1247}
1248EXPORT_SYMBOL_GPL(clk_disable);
1249
1250static int clk_core_enable(struct clk_core *core)
1251{
1252 int ret = 0;
1253
1254 lockdep_assert_held(&enable_lock);
1255
1256 if (!core)
1257 return 0;
1258
1259 if (WARN(core->prepare_count == 0,
1260 "Enabling unprepared %s\n", core->name))
1261 return -ESHUTDOWN;
1262
1263 if (core->enable_count == 0) {
1264 ret = clk_core_enable(core: core->parent);
1265
1266 if (ret)
1267 return ret;
1268
1269 trace_clk_enable(core);
1270
1271 if (core->ops->enable)
1272 ret = core->ops->enable(core->hw);
1273
1274 trace_clk_enable_complete(core);
1275
1276 if (ret) {
1277 clk_core_disable(core: core->parent);
1278 return ret;
1279 }
1280 }
1281
1282 core->enable_count++;
1283 return 0;
1284}
1285
1286static int clk_core_enable_lock(struct clk_core *core)
1287{
1288 unsigned long flags;
1289 int ret;
1290
1291 flags = clk_enable_lock();
1292 ret = clk_core_enable(core);
1293 clk_enable_unlock(flags);
1294
1295 return ret;
1296}
1297
1298/**
1299 * clk_gate_restore_context - restore context for poweroff
1300 * @hw: the clk_hw pointer of clock whose state is to be restored
1301 *
1302 * The clock gate restore context function enables or disables
1303 * the gate clocks based on the enable_count. This is done in cases
1304 * where the clock context is lost and based on the enable_count
1305 * the clock either needs to be enabled/disabled. This
1306 * helps restore the state of gate clocks.
1307 */
1308void clk_gate_restore_context(struct clk_hw *hw)
1309{
1310 struct clk_core *core = hw->core;
1311
1312 if (core->enable_count)
1313 core->ops->enable(hw);
1314 else
1315 core->ops->disable(hw);
1316}
1317EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1318
1319static int clk_core_save_context(struct clk_core *core)
1320{
1321 struct clk_core *child;
1322 int ret = 0;
1323
1324 hlist_for_each_entry(child, &core->children, child_node) {
1325 ret = clk_core_save_context(core: child);
1326 if (ret < 0)
1327 return ret;
1328 }
1329
1330 if (core->ops && core->ops->save_context)
1331 ret = core->ops->save_context(core->hw);
1332
1333 return ret;
1334}
1335
1336static void clk_core_restore_context(struct clk_core *core)
1337{
1338 struct clk_core *child;
1339
1340 if (core->ops && core->ops->restore_context)
1341 core->ops->restore_context(core->hw);
1342
1343 hlist_for_each_entry(child, &core->children, child_node)
1344 clk_core_restore_context(core: child);
1345}
1346
1347/**
1348 * clk_save_context - save clock context for poweroff
1349 *
1350 * Saves the context of the clock register for powerstates in which the
1351 * contents of the registers will be lost. Occurs deep within the suspend
1352 * code. Returns 0 on success.
1353 */
1354int clk_save_context(void)
1355{
1356 struct clk_core *clk;
1357 int ret;
1358
1359 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1360 ret = clk_core_save_context(core: clk);
1361 if (ret < 0)
1362 return ret;
1363 }
1364
1365 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1366 ret = clk_core_save_context(core: clk);
1367 if (ret < 0)
1368 return ret;
1369 }
1370
1371 return 0;
1372}
1373EXPORT_SYMBOL_GPL(clk_save_context);
1374
1375/**
1376 * clk_restore_context - restore clock context after poweroff
1377 *
1378 * Restore the saved clock context upon resume.
1379 *
1380 */
1381void clk_restore_context(void)
1382{
1383 struct clk_core *core;
1384
1385 hlist_for_each_entry(core, &clk_root_list, child_node)
1386 clk_core_restore_context(core);
1387
1388 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1389 clk_core_restore_context(core);
1390}
1391EXPORT_SYMBOL_GPL(clk_restore_context);
1392
1393/**
1394 * clk_enable - ungate a clock
1395 * @clk: the clk being ungated
1396 *
1397 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1398 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1399 * if the operation will never sleep. One example is a SoC-internal clk which
1400 * is controlled via simple register writes. In the complex case a clk ungate
1401 * operation may require a fast and a slow part. It is this reason that
1402 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1403 * must be called before clk_enable. Returns 0 on success, -EERROR
1404 * otherwise.
1405 */
1406int clk_enable(struct clk *clk)
1407{
1408 if (!clk)
1409 return 0;
1410
1411 return clk_core_enable_lock(core: clk->core);
1412}
1413EXPORT_SYMBOL_GPL(clk_enable);
1414
1415/**
1416 * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1417 * @clk: clock source
1418 *
1419 * Returns true if clk_prepare() implicitly enables the clock, effectively
1420 * making clk_enable()/clk_disable() no-ops, false otherwise.
1421 *
1422 * This is of interest mainly to power management code where actually
1423 * disabling the clock also requires unpreparing it to have any material
1424 * effect.
1425 *
1426 * Regardless of the value returned here, the caller must always invoke
1427 * clk_enable() or clk_prepare_enable() and counterparts for usage counts
1428 * to be right.
1429 */
1430bool clk_is_enabled_when_prepared(struct clk *clk)
1431{
1432 return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1433}
1434EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1435
1436static int clk_core_prepare_enable(struct clk_core *core)
1437{
1438 int ret;
1439
1440 ret = clk_core_prepare_lock(core);
1441 if (ret)
1442 return ret;
1443
1444 ret = clk_core_enable_lock(core);
1445 if (ret)
1446 clk_core_unprepare_lock(core);
1447
1448 return ret;
1449}
1450
1451static void clk_core_disable_unprepare(struct clk_core *core)
1452{
1453 clk_core_disable_lock(core);
1454 clk_core_unprepare_lock(core);
1455}
1456
1457static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1458{
1459 struct clk_core *child;
1460
1461 lockdep_assert_held(&prepare_lock);
1462
1463 hlist_for_each_entry(child, &core->children, child_node)
1464 clk_unprepare_unused_subtree(core: child);
1465
1466 if (core->prepare_count)
1467 return;
1468
1469 if (core->flags & CLK_IGNORE_UNUSED)
1470 return;
1471
1472 if (clk_core_is_prepared(core)) {
1473 trace_clk_unprepare(core);
1474 if (core->ops->unprepare_unused)
1475 core->ops->unprepare_unused(core->hw);
1476 else if (core->ops->unprepare)
1477 core->ops->unprepare(core->hw);
1478 trace_clk_unprepare_complete(core);
1479 }
1480}
1481
1482static void __init clk_disable_unused_subtree(struct clk_core *core)
1483{
1484 struct clk_core *child;
1485 unsigned long flags;
1486
1487 lockdep_assert_held(&prepare_lock);
1488
1489 hlist_for_each_entry(child, &core->children, child_node)
1490 clk_disable_unused_subtree(core: child);
1491
1492 if (core->flags & CLK_OPS_PARENT_ENABLE)
1493 clk_core_prepare_enable(core: core->parent);
1494
1495 flags = clk_enable_lock();
1496
1497 if (core->enable_count)
1498 goto unlock_out;
1499
1500 if (core->flags & CLK_IGNORE_UNUSED)
1501 goto unlock_out;
1502
1503 /*
1504 * some gate clocks have special needs during the disable-unused
1505 * sequence. call .disable_unused if available, otherwise fall
1506 * back to .disable
1507 */
1508 if (clk_core_is_enabled(core)) {
1509 trace_clk_disable(core);
1510 if (core->ops->disable_unused)
1511 core->ops->disable_unused(core->hw);
1512 else if (core->ops->disable)
1513 core->ops->disable(core->hw);
1514 trace_clk_disable_complete(core);
1515 }
1516
1517unlock_out:
1518 clk_enable_unlock(flags);
1519 if (core->flags & CLK_OPS_PARENT_ENABLE)
1520 clk_core_disable_unprepare(core: core->parent);
1521}
1522
1523static bool clk_ignore_unused __initdata;
1524static int __init clk_ignore_unused_setup(char *__unused)
1525{
1526 clk_ignore_unused = true;
1527 return 1;
1528}
1529__setup("clk_ignore_unused", clk_ignore_unused_setup);
1530
1531static int __init clk_disable_unused(void)
1532{
1533 struct clk_core *core;
1534 int ret;
1535
1536 if (clk_ignore_unused) {
1537 pr_warn("clk: Not disabling unused clocks\n");
1538 return 0;
1539 }
1540
1541 pr_info("clk: Disabling unused clocks\n");
1542
1543 ret = clk_pm_runtime_get_all();
1544 if (ret)
1545 return ret;
1546 /*
1547 * Grab the prepare lock to keep the clk topology stable while iterating
1548 * over clks.
1549 */
1550 clk_prepare_lock();
1551
1552 hlist_for_each_entry(core, &clk_root_list, child_node)
1553 clk_disable_unused_subtree(core);
1554
1555 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1556 clk_disable_unused_subtree(core);
1557
1558 hlist_for_each_entry(core, &clk_root_list, child_node)
1559 clk_unprepare_unused_subtree(core);
1560
1561 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1562 clk_unprepare_unused_subtree(core);
1563
1564 clk_prepare_unlock();
1565
1566 clk_pm_runtime_put_all();
1567
1568 return 0;
1569}
1570late_initcall_sync(clk_disable_unused);
1571
1572static int clk_core_determine_round_nolock(struct clk_core *core,
1573 struct clk_rate_request *req)
1574{
1575 long rate;
1576
1577 lockdep_assert_held(&prepare_lock);
1578
1579 if (!core)
1580 return 0;
1581
1582 /*
1583 * Some clock providers hand-craft their clk_rate_requests and
1584 * might not fill min_rate and max_rate.
1585 *
1586 * If it's the case, clamping the rate is equivalent to setting
1587 * the rate to 0 which is bad. Skip the clamping but complain so
1588 * that it gets fixed, hopefully.
1589 */
1590 if (!req->min_rate && !req->max_rate)
1591 pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1592 __func__, core->name);
1593 else
1594 req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1595
1596 /*
1597 * At this point, core protection will be disabled
1598 * - if the provider is not protected at all
1599 * - if the calling consumer is the only one which has exclusivity
1600 * over the provider
1601 */
1602 if (clk_core_rate_is_protected(core)) {
1603 req->rate = core->rate;
1604 } else if (core->ops->determine_rate) {
1605 return core->ops->determine_rate(core->hw, req);
1606 } else if (core->ops->round_rate) {
1607 rate = core->ops->round_rate(core->hw, req->rate,
1608 &req->best_parent_rate);
1609 if (rate < 0)
1610 return rate;
1611
1612 req->rate = rate;
1613 } else {
1614 return -EINVAL;
1615 }
1616
1617 return 0;
1618}
1619
1620static void clk_core_init_rate_req(struct clk_core * const core,
1621 struct clk_rate_request *req,
1622 unsigned long rate)
1623{
1624 struct clk_core *parent;
1625
1626 if (WARN_ON(!req))
1627 return;
1628
1629 memset(req, 0, sizeof(*req));
1630 req->max_rate = ULONG_MAX;
1631
1632 if (!core)
1633 return;
1634
1635 req->core = core;
1636 req->rate = rate;
1637 clk_core_get_boundaries(core, min_rate: &req->min_rate, max_rate: &req->max_rate);
1638
1639 parent = core->parent;
1640 if (parent) {
1641 req->best_parent_hw = parent->hw;
1642 req->best_parent_rate = parent->rate;
1643 } else {
1644 req->best_parent_hw = NULL;
1645 req->best_parent_rate = 0;
1646 }
1647}
1648
1649/**
1650 * clk_hw_init_rate_request - Initializes a clk_rate_request
1651 * @hw: the clk for which we want to submit a rate request
1652 * @req: the clk_rate_request structure we want to initialise
1653 * @rate: the rate which is to be requested
1654 *
1655 * Initializes a clk_rate_request structure to submit to
1656 * __clk_determine_rate() or similar functions.
1657 */
1658void clk_hw_init_rate_request(const struct clk_hw *hw,
1659 struct clk_rate_request *req,
1660 unsigned long rate)
1661{
1662 if (WARN_ON(!hw || !req))
1663 return;
1664
1665 clk_core_init_rate_req(core: hw->core, req, rate);
1666}
1667EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1668
1669/**
1670 * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1671 * @hw: the original clock that got the rate request
1672 * @old_req: the original clk_rate_request structure we want to forward
1673 * @parent: the clk we want to forward @old_req to
1674 * @req: the clk_rate_request structure we want to initialise
1675 * @parent_rate: The rate which is to be requested to @parent
1676 *
1677 * Initializes a clk_rate_request structure to submit to a clock parent
1678 * in __clk_determine_rate() or similar functions.
1679 */
1680void clk_hw_forward_rate_request(const struct clk_hw *hw,
1681 const struct clk_rate_request *old_req,
1682 const struct clk_hw *parent,
1683 struct clk_rate_request *req,
1684 unsigned long parent_rate)
1685{
1686 if (WARN_ON(!hw || !old_req || !parent || !req))
1687 return;
1688
1689 clk_core_forward_rate_req(core: hw->core, old_req,
1690 parent: parent->core, req,
1691 parent_rate);
1692}
1693EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1694
1695static bool clk_core_can_round(struct clk_core * const core)
1696{
1697 return core->ops->determine_rate || core->ops->round_rate;
1698}
1699
1700static int clk_core_round_rate_nolock(struct clk_core *core,
1701 struct clk_rate_request *req)
1702{
1703 int ret;
1704
1705 lockdep_assert_held(&prepare_lock);
1706
1707 if (!core) {
1708 req->rate = 0;
1709 return 0;
1710 }
1711
1712 if (clk_core_can_round(core))
1713 return clk_core_determine_round_nolock(core, req);
1714
1715 if (core->flags & CLK_SET_RATE_PARENT) {
1716 struct clk_rate_request parent_req;
1717
1718 clk_core_forward_rate_req(core, old_req: req, parent: core->parent, req: &parent_req, parent_rate: req->rate);
1719
1720 trace_clk_rate_request_start(req: &parent_req);
1721
1722 ret = clk_core_round_rate_nolock(core: core->parent, req: &parent_req);
1723 if (ret)
1724 return ret;
1725
1726 trace_clk_rate_request_done(req: &parent_req);
1727
1728 req->best_parent_rate = parent_req.rate;
1729 req->rate = parent_req.rate;
1730
1731 return 0;
1732 }
1733
1734 req->rate = core->rate;
1735 return 0;
1736}
1737
1738/**
1739 * __clk_determine_rate - get the closest rate actually supported by a clock
1740 * @hw: determine the rate of this clock
1741 * @req: target rate request
1742 *
1743 * Useful for clk_ops such as .set_rate and .determine_rate.
1744 */
1745int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1746{
1747 if (!hw) {
1748 req->rate = 0;
1749 return 0;
1750 }
1751
1752 return clk_core_round_rate_nolock(core: hw->core, req);
1753}
1754EXPORT_SYMBOL_GPL(__clk_determine_rate);
1755
1756/**
1757 * clk_hw_round_rate() - round the given rate for a hw clk
1758 * @hw: the hw clk for which we are rounding a rate
1759 * @rate: the rate which is to be rounded
1760 *
1761 * Takes in a rate as input and rounds it to a rate that the clk can actually
1762 * use.
1763 *
1764 * Context: prepare_lock must be held.
1765 * For clk providers to call from within clk_ops such as .round_rate,
1766 * .determine_rate.
1767 *
1768 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1769 * else returns the parent rate.
1770 */
1771unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1772{
1773 int ret;
1774 struct clk_rate_request req;
1775
1776 clk_core_init_rate_req(core: hw->core, req: &req, rate);
1777
1778 trace_clk_rate_request_start(req: &req);
1779
1780 ret = clk_core_round_rate_nolock(core: hw->core, req: &req);
1781 if (ret)
1782 return 0;
1783
1784 trace_clk_rate_request_done(req: &req);
1785
1786 return req.rate;
1787}
1788EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1789
1790/**
1791 * clk_round_rate - round the given rate for a clk
1792 * @clk: the clk for which we are rounding a rate
1793 * @rate: the rate which is to be rounded
1794 *
1795 * Takes in a rate as input and rounds it to a rate that the clk can actually
1796 * use which is then returned. If clk doesn't support round_rate operation
1797 * then the parent rate is returned.
1798 */
1799long clk_round_rate(struct clk *clk, unsigned long rate)
1800{
1801 struct clk_rate_request req;
1802 int ret;
1803
1804 if (!clk)
1805 return 0;
1806
1807 clk_prepare_lock();
1808
1809 if (clk->exclusive_count)
1810 clk_core_rate_unprotect(core: clk->core);
1811
1812 clk_core_init_rate_req(core: clk->core, req: &req, rate);
1813
1814 trace_clk_rate_request_start(req: &req);
1815
1816 ret = clk_core_round_rate_nolock(core: clk->core, req: &req);
1817
1818 trace_clk_rate_request_done(req: &req);
1819
1820 if (clk->exclusive_count)
1821 clk_core_rate_protect(core: clk->core);
1822
1823 clk_prepare_unlock();
1824
1825 if (ret)
1826 return ret;
1827
1828 return req.rate;
1829}
1830EXPORT_SYMBOL_GPL(clk_round_rate);
1831
1832/**
1833 * __clk_notify - call clk notifier chain
1834 * @core: clk that is changing rate
1835 * @msg: clk notifier type (see include/linux/clk.h)
1836 * @old_rate: old clk rate
1837 * @new_rate: new clk rate
1838 *
1839 * Triggers a notifier call chain on the clk rate-change notification
1840 * for 'clk'. Passes a pointer to the struct clk and the previous
1841 * and current rates to the notifier callback. Intended to be called by
1842 * internal clock code only. Returns NOTIFY_DONE from the last driver
1843 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1844 * a driver returns that.
1845 */
1846static int __clk_notify(struct clk_core *core, unsigned long msg,
1847 unsigned long old_rate, unsigned long new_rate)
1848{
1849 struct clk_notifier *cn;
1850 struct clk_notifier_data cnd;
1851 int ret = NOTIFY_DONE;
1852
1853 cnd.old_rate = old_rate;
1854 cnd.new_rate = new_rate;
1855
1856 list_for_each_entry(cn, &clk_notifier_list, node) {
1857 if (cn->clk->core == core) {
1858 cnd.clk = cn->clk;
1859 ret = srcu_notifier_call_chain(nh: &cn->notifier_head, val: msg,
1860 v: &cnd);
1861 if (ret & NOTIFY_STOP_MASK)
1862 return ret;
1863 }
1864 }
1865
1866 return ret;
1867}
1868
1869/**
1870 * __clk_recalc_accuracies
1871 * @core: first clk in the subtree
1872 *
1873 * Walks the subtree of clks starting with clk and recalculates accuracies as
1874 * it goes. Note that if a clk does not implement the .recalc_accuracy
1875 * callback then it is assumed that the clock will take on the accuracy of its
1876 * parent.
1877 */
1878static void __clk_recalc_accuracies(struct clk_core *core)
1879{
1880 unsigned long parent_accuracy = 0;
1881 struct clk_core *child;
1882
1883 lockdep_assert_held(&prepare_lock);
1884
1885 if (core->parent)
1886 parent_accuracy = core->parent->accuracy;
1887
1888 if (core->ops->recalc_accuracy)
1889 core->accuracy = core->ops->recalc_accuracy(core->hw,
1890 parent_accuracy);
1891 else
1892 core->accuracy = parent_accuracy;
1893
1894 hlist_for_each_entry(child, &core->children, child_node)
1895 __clk_recalc_accuracies(core: child);
1896}
1897
1898static long clk_core_get_accuracy_recalc(struct clk_core *core)
1899{
1900 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1901 __clk_recalc_accuracies(core);
1902
1903 return clk_core_get_accuracy_no_lock(core);
1904}
1905
1906/**
1907 * clk_get_accuracy - return the accuracy of clk
1908 * @clk: the clk whose accuracy is being returned
1909 *
1910 * Simply returns the cached accuracy of the clk, unless
1911 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1912 * issued.
1913 * If clk is NULL then returns 0.
1914 */
1915long clk_get_accuracy(struct clk *clk)
1916{
1917 long accuracy;
1918
1919 if (!clk)
1920 return 0;
1921
1922 clk_prepare_lock();
1923 accuracy = clk_core_get_accuracy_recalc(core: clk->core);
1924 clk_prepare_unlock();
1925
1926 return accuracy;
1927}
1928EXPORT_SYMBOL_GPL(clk_get_accuracy);
1929
1930static unsigned long clk_recalc(struct clk_core *core,
1931 unsigned long parent_rate)
1932{
1933 unsigned long rate = parent_rate;
1934
1935 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1936 rate = core->ops->recalc_rate(core->hw, parent_rate);
1937 clk_pm_runtime_put(core);
1938 }
1939 return rate;
1940}
1941
1942/**
1943 * __clk_recalc_rates
1944 * @core: first clk in the subtree
1945 * @update_req: Whether req_rate should be updated with the new rate
1946 * @msg: notification type (see include/linux/clk.h)
1947 *
1948 * Walks the subtree of clks starting with clk and recalculates rates as it
1949 * goes. Note that if a clk does not implement the .recalc_rate callback then
1950 * it is assumed that the clock will take on the rate of its parent.
1951 *
1952 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1953 * if necessary.
1954 */
1955static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1956 unsigned long msg)
1957{
1958 unsigned long old_rate;
1959 unsigned long parent_rate = 0;
1960 struct clk_core *child;
1961
1962 lockdep_assert_held(&prepare_lock);
1963
1964 old_rate = core->rate;
1965
1966 if (core->parent)
1967 parent_rate = core->parent->rate;
1968
1969 core->rate = clk_recalc(core, parent_rate);
1970 if (update_req)
1971 core->req_rate = core->rate;
1972
1973 /*
1974 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1975 * & ABORT_RATE_CHANGE notifiers
1976 */
1977 if (core->notifier_count && msg)
1978 __clk_notify(core, msg, old_rate, new_rate: core->rate);
1979
1980 hlist_for_each_entry(child, &core->children, child_node)
1981 __clk_recalc_rates(core: child, update_req, msg);
1982}
1983
1984static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1985{
1986 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1987 __clk_recalc_rates(core, update_req: false, msg: 0);
1988
1989 return clk_core_get_rate_nolock(core);
1990}
1991
1992/**
1993 * clk_get_rate - return the rate of clk
1994 * @clk: the clk whose rate is being returned
1995 *
1996 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1997 * is set, which means a recalc_rate will be issued. Can be called regardless of
1998 * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1999 * 0.
2000 */
2001unsigned long clk_get_rate(struct clk *clk)
2002{
2003 unsigned long rate;
2004
2005 if (!clk)
2006 return 0;
2007
2008 clk_prepare_lock();
2009 rate = clk_core_get_rate_recalc(core: clk->core);
2010 clk_prepare_unlock();
2011
2012 return rate;
2013}
2014EXPORT_SYMBOL_GPL(clk_get_rate);
2015
2016static int clk_fetch_parent_index(struct clk_core *core,
2017 struct clk_core *parent)
2018{
2019 int i;
2020
2021 if (!parent)
2022 return -EINVAL;
2023
2024 for (i = 0; i < core->num_parents; i++) {
2025 /* Found it first try! */
2026 if (core->parents[i].core == parent)
2027 return i;
2028
2029 /* Something else is here, so keep looking */
2030 if (core->parents[i].core)
2031 continue;
2032
2033 /* Maybe core hasn't been cached but the hw is all we know? */
2034 if (core->parents[i].hw) {
2035 if (core->parents[i].hw == parent->hw)
2036 break;
2037
2038 /* Didn't match, but we're expecting a clk_hw */
2039 continue;
2040 }
2041
2042 /* Maybe it hasn't been cached (clk_set_parent() path) */
2043 if (parent == clk_core_get(core, p_index: i))
2044 break;
2045
2046 /* Fallback to comparing globally unique names */
2047 if (core->parents[i].name &&
2048 !strcmp(parent->name, core->parents[i].name))
2049 break;
2050 }
2051
2052 if (i == core->num_parents)
2053 return -EINVAL;
2054
2055 core->parents[i].core = parent;
2056 return i;
2057}
2058
2059/**
2060 * clk_hw_get_parent_index - return the index of the parent clock
2061 * @hw: clk_hw associated with the clk being consumed
2062 *
2063 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2064 * clock does not have a current parent.
2065 */
2066int clk_hw_get_parent_index(struct clk_hw *hw)
2067{
2068 struct clk_hw *parent = clk_hw_get_parent(hw);
2069
2070 if (WARN_ON(parent == NULL))
2071 return -EINVAL;
2072
2073 return clk_fetch_parent_index(core: hw->core, parent: parent->core);
2074}
2075EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2076
2077/*
2078 * Update the orphan status of @core and all its children.
2079 */
2080static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2081{
2082 struct clk_core *child;
2083
2084 core->orphan = is_orphan;
2085
2086 hlist_for_each_entry(child, &core->children, child_node)
2087 clk_core_update_orphan_status(core: child, is_orphan);
2088}
2089
2090static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2091{
2092 bool was_orphan = core->orphan;
2093
2094 hlist_del(n: &core->child_node);
2095
2096 if (new_parent) {
2097 bool becomes_orphan = new_parent->orphan;
2098
2099 /* avoid duplicate POST_RATE_CHANGE notifications */
2100 if (new_parent->new_child == core)
2101 new_parent->new_child = NULL;
2102
2103 hlist_add_head(n: &core->child_node, h: &new_parent->children);
2104
2105 if (was_orphan != becomes_orphan)
2106 clk_core_update_orphan_status(core, is_orphan: becomes_orphan);
2107 } else {
2108 hlist_add_head(n: &core->child_node, h: &clk_orphan_list);
2109 if (!was_orphan)
2110 clk_core_update_orphan_status(core, is_orphan: true);
2111 }
2112
2113 core->parent = new_parent;
2114}
2115
2116static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2117 struct clk_core *parent)
2118{
2119 unsigned long flags;
2120 struct clk_core *old_parent = core->parent;
2121
2122 /*
2123 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2124 *
2125 * 2. Migrate prepare state between parents and prevent race with
2126 * clk_enable().
2127 *
2128 * If the clock is not prepared, then a race with
2129 * clk_enable/disable() is impossible since we already have the
2130 * prepare lock (future calls to clk_enable() need to be preceded by
2131 * a clk_prepare()).
2132 *
2133 * If the clock is prepared, migrate the prepared state to the new
2134 * parent and also protect against a race with clk_enable() by
2135 * forcing the clock and the new parent on. This ensures that all
2136 * future calls to clk_enable() are practically NOPs with respect to
2137 * hardware and software states.
2138 *
2139 * See also: Comment for clk_set_parent() below.
2140 */
2141
2142 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2143 if (core->flags & CLK_OPS_PARENT_ENABLE) {
2144 clk_core_prepare_enable(core: old_parent);
2145 clk_core_prepare_enable(core: parent);
2146 }
2147
2148 /* migrate prepare count if > 0 */
2149 if (core->prepare_count) {
2150 clk_core_prepare_enable(core: parent);
2151 clk_core_enable_lock(core);
2152 }
2153
2154 /* update the clk tree topology */
2155 flags = clk_enable_lock();
2156 clk_reparent(core, new_parent: parent);
2157 clk_enable_unlock(flags);
2158
2159 return old_parent;
2160}
2161
2162static void __clk_set_parent_after(struct clk_core *core,
2163 struct clk_core *parent,
2164 struct clk_core *old_parent)
2165{
2166 /*
2167 * Finish the migration of prepare state and undo the changes done
2168 * for preventing a race with clk_enable().
2169 */
2170 if (core->prepare_count) {
2171 clk_core_disable_lock(core);
2172 clk_core_disable_unprepare(core: old_parent);
2173 }
2174
2175 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2176 if (core->flags & CLK_OPS_PARENT_ENABLE) {
2177 clk_core_disable_unprepare(core: parent);
2178 clk_core_disable_unprepare(core: old_parent);
2179 }
2180}
2181
2182static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2183 u8 p_index)
2184{
2185 unsigned long flags;
2186 int ret = 0;
2187 struct clk_core *old_parent;
2188
2189 old_parent = __clk_set_parent_before(core, parent);
2190
2191 trace_clk_set_parent(core, parent);
2192
2193 /* change clock input source */
2194 if (parent && core->ops->set_parent)
2195 ret = core->ops->set_parent(core->hw, p_index);
2196
2197 trace_clk_set_parent_complete(core, parent);
2198
2199 if (ret) {
2200 flags = clk_enable_lock();
2201 clk_reparent(core, new_parent: old_parent);
2202 clk_enable_unlock(flags);
2203
2204 __clk_set_parent_after(core, parent: old_parent, old_parent: parent);
2205
2206 return ret;
2207 }
2208
2209 __clk_set_parent_after(core, parent, old_parent);
2210
2211 return 0;
2212}
2213
2214/**
2215 * __clk_speculate_rates
2216 * @core: first clk in the subtree
2217 * @parent_rate: the "future" rate of clk's parent
2218 *
2219 * Walks the subtree of clks starting with clk, speculating rates as it
2220 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2221 *
2222 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2223 * pre-rate change notifications and returns early if no clks in the
2224 * subtree have subscribed to the notifications. Note that if a clk does not
2225 * implement the .recalc_rate callback then it is assumed that the clock will
2226 * take on the rate of its parent.
2227 */
2228static int __clk_speculate_rates(struct clk_core *core,
2229 unsigned long parent_rate)
2230{
2231 struct clk_core *child;
2232 unsigned long new_rate;
2233 int ret = NOTIFY_DONE;
2234
2235 lockdep_assert_held(&prepare_lock);
2236
2237 new_rate = clk_recalc(core, parent_rate);
2238
2239 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2240 if (core->notifier_count)
2241 ret = __clk_notify(core, PRE_RATE_CHANGE, old_rate: core->rate, new_rate);
2242
2243 if (ret & NOTIFY_STOP_MASK) {
2244 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2245 __func__, core->name, ret);
2246 goto out;
2247 }
2248
2249 hlist_for_each_entry(child, &core->children, child_node) {
2250 ret = __clk_speculate_rates(core: child, parent_rate: new_rate);
2251 if (ret & NOTIFY_STOP_MASK)
2252 break;
2253 }
2254
2255out:
2256 return ret;
2257}
2258
2259static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2260 struct clk_core *new_parent, u8 p_index)
2261{
2262 struct clk_core *child;
2263
2264 core->new_rate = new_rate;
2265 core->new_parent = new_parent;
2266 core->new_parent_index = p_index;
2267 /* include clk in new parent's PRE_RATE_CHANGE notifications */
2268 core->new_child = NULL;
2269 if (new_parent && new_parent != core->parent)
2270 new_parent->new_child = core;
2271
2272 hlist_for_each_entry(child, &core->children, child_node) {
2273 child->new_rate = clk_recalc(core: child, parent_rate: new_rate);
2274 clk_calc_subtree(core: child, new_rate: child->new_rate, NULL, p_index: 0);
2275 }
2276}
2277
2278/*
2279 * calculate the new rates returning the topmost clock that has to be
2280 * changed.
2281 */
2282static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2283 unsigned long rate)
2284{
2285 struct clk_core *top = core;
2286 struct clk_core *old_parent, *parent;
2287 unsigned long best_parent_rate = 0;
2288 unsigned long new_rate;
2289 unsigned long min_rate;
2290 unsigned long max_rate;
2291 int p_index = 0;
2292 long ret;
2293
2294 /* sanity */
2295 if (IS_ERR_OR_NULL(ptr: core))
2296 return NULL;
2297
2298 /* save parent rate, if it exists */
2299 parent = old_parent = core->parent;
2300 if (parent)
2301 best_parent_rate = parent->rate;
2302
2303 clk_core_get_boundaries(core, min_rate: &min_rate, max_rate: &max_rate);
2304
2305 /* find the closest rate and parent clk/rate */
2306 if (clk_core_can_round(core)) {
2307 struct clk_rate_request req;
2308
2309 clk_core_init_rate_req(core, req: &req, rate);
2310
2311 trace_clk_rate_request_start(req: &req);
2312
2313 ret = clk_core_determine_round_nolock(core, req: &req);
2314 if (ret < 0)
2315 return NULL;
2316
2317 trace_clk_rate_request_done(req: &req);
2318
2319 best_parent_rate = req.best_parent_rate;
2320 new_rate = req.rate;
2321 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2322
2323 if (new_rate < min_rate || new_rate > max_rate)
2324 return NULL;
2325 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2326 /* pass-through clock without adjustable parent */
2327 core->new_rate = core->rate;
2328 return NULL;
2329 } else {
2330 /* pass-through clock with adjustable parent */
2331 top = clk_calc_new_rates(core: parent, rate);
2332 new_rate = parent->new_rate;
2333 goto out;
2334 }
2335
2336 /* some clocks must be gated to change parent */
2337 if (parent != old_parent &&
2338 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2339 pr_debug("%s: %s not gated but wants to reparent\n",
2340 __func__, core->name);
2341 return NULL;
2342 }
2343
2344 /* try finding the new parent index */
2345 if (parent && core->num_parents > 1) {
2346 p_index = clk_fetch_parent_index(core, parent);
2347 if (p_index < 0) {
2348 pr_debug("%s: clk %s can not be parent of clk %s\n",
2349 __func__, parent->name, core->name);
2350 return NULL;
2351 }
2352 }
2353
2354 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2355 best_parent_rate != parent->rate)
2356 top = clk_calc_new_rates(core: parent, rate: best_parent_rate);
2357
2358out:
2359 clk_calc_subtree(core, new_rate, new_parent: parent, p_index);
2360
2361 return top;
2362}
2363
2364/*
2365 * Notify about rate changes in a subtree. Always walk down the whole tree
2366 * so that in case of an error we can walk down the whole tree again and
2367 * abort the change.
2368 */
2369static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2370 unsigned long event)
2371{
2372 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2373 int ret = NOTIFY_DONE;
2374
2375 if (core->rate == core->new_rate)
2376 return NULL;
2377
2378 if (core->notifier_count) {
2379 ret = __clk_notify(core, msg: event, old_rate: core->rate, new_rate: core->new_rate);
2380 if (ret & NOTIFY_STOP_MASK)
2381 fail_clk = core;
2382 }
2383
2384 hlist_for_each_entry(child, &core->children, child_node) {
2385 /* Skip children who will be reparented to another clock */
2386 if (child->new_parent && child->new_parent != core)
2387 continue;
2388 tmp_clk = clk_propagate_rate_change(core: child, event);
2389 if (tmp_clk)
2390 fail_clk = tmp_clk;
2391 }
2392
2393 /* handle the new child who might not be in core->children yet */
2394 if (core->new_child) {
2395 tmp_clk = clk_propagate_rate_change(core: core->new_child, event);
2396 if (tmp_clk)
2397 fail_clk = tmp_clk;
2398 }
2399
2400 return fail_clk;
2401}
2402
2403/*
2404 * walk down a subtree and set the new rates notifying the rate
2405 * change on the way
2406 */
2407static void clk_change_rate(struct clk_core *core)
2408{
2409 struct clk_core *child;
2410 struct hlist_node *tmp;
2411 unsigned long old_rate;
2412 unsigned long best_parent_rate = 0;
2413 bool skip_set_rate = false;
2414 struct clk_core *old_parent;
2415 struct clk_core *parent = NULL;
2416
2417 old_rate = core->rate;
2418
2419 if (core->new_parent) {
2420 parent = core->new_parent;
2421 best_parent_rate = core->new_parent->rate;
2422 } else if (core->parent) {
2423 parent = core->parent;
2424 best_parent_rate = core->parent->rate;
2425 }
2426
2427 if (clk_pm_runtime_get(core))
2428 return;
2429
2430 if (core->flags & CLK_SET_RATE_UNGATE) {
2431 clk_core_prepare(core);
2432 clk_core_enable_lock(core);
2433 }
2434
2435 if (core->new_parent && core->new_parent != core->parent) {
2436 old_parent = __clk_set_parent_before(core, parent: core->new_parent);
2437 trace_clk_set_parent(core, parent: core->new_parent);
2438
2439 if (core->ops->set_rate_and_parent) {
2440 skip_set_rate = true;
2441 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2442 best_parent_rate,
2443 core->new_parent_index);
2444 } else if (core->ops->set_parent) {
2445 core->ops->set_parent(core->hw, core->new_parent_index);
2446 }
2447
2448 trace_clk_set_parent_complete(core, parent: core->new_parent);
2449 __clk_set_parent_after(core, parent: core->new_parent, old_parent);
2450 }
2451
2452 if (core->flags & CLK_OPS_PARENT_ENABLE)
2453 clk_core_prepare_enable(core: parent);
2454
2455 trace_clk_set_rate(core, rate: core->new_rate);
2456
2457 if (!skip_set_rate && core->ops->set_rate)
2458 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2459
2460 trace_clk_set_rate_complete(core, rate: core->new_rate);
2461
2462 core->rate = clk_recalc(core, parent_rate: best_parent_rate);
2463
2464 if (core->flags & CLK_SET_RATE_UNGATE) {
2465 clk_core_disable_lock(core);
2466 clk_core_unprepare(core);
2467 }
2468
2469 if (core->flags & CLK_OPS_PARENT_ENABLE)
2470 clk_core_disable_unprepare(core: parent);
2471
2472 if (core->notifier_count && old_rate != core->rate)
2473 __clk_notify(core, POST_RATE_CHANGE, old_rate, new_rate: core->rate);
2474
2475 if (core->flags & CLK_RECALC_NEW_RATES)
2476 (void)clk_calc_new_rates(core, rate: core->new_rate);
2477
2478 /*
2479 * Use safe iteration, as change_rate can actually swap parents
2480 * for certain clock types.
2481 */
2482 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2483 /* Skip children who will be reparented to another clock */
2484 if (child->new_parent && child->new_parent != core)
2485 continue;
2486 clk_change_rate(core: child);
2487 }
2488
2489 /* handle the new child who might not be in core->children yet */
2490 if (core->new_child)
2491 clk_change_rate(core: core->new_child);
2492
2493 clk_pm_runtime_put(core);
2494}
2495
2496static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2497 unsigned long req_rate)
2498{
2499 int ret, cnt;
2500 struct clk_rate_request req;
2501
2502 lockdep_assert_held(&prepare_lock);
2503
2504 if (!core)
2505 return 0;
2506
2507 /* simulate what the rate would be if it could be freely set */
2508 cnt = clk_core_rate_nuke_protect(core);
2509 if (cnt < 0)
2510 return cnt;
2511
2512 clk_core_init_rate_req(core, req: &req, rate: req_rate);
2513
2514 trace_clk_rate_request_start(req: &req);
2515
2516 ret = clk_core_round_rate_nolock(core, req: &req);
2517
2518 trace_clk_rate_request_done(req: &req);
2519
2520 /* restore the protection */
2521 clk_core_rate_restore_protect(core, count: cnt);
2522
2523 return ret ? 0 : req.rate;
2524}
2525
2526static int clk_core_set_rate_nolock(struct clk_core *core,
2527 unsigned long req_rate)
2528{
2529 struct clk_core *top, *fail_clk;
2530 unsigned long rate;
2531 int ret;
2532
2533 if (!core)
2534 return 0;
2535
2536 rate = clk_core_req_round_rate_nolock(core, req_rate);
2537
2538 /* bail early if nothing to do */
2539 if (rate == clk_core_get_rate_nolock(core))
2540 return 0;
2541
2542 /* fail on a direct rate set of a protected provider */
2543 if (clk_core_rate_is_protected(core))
2544 return -EBUSY;
2545
2546 /* calculate new rates and get the topmost changed clock */
2547 top = clk_calc_new_rates(core, rate: req_rate);
2548 if (!top)
2549 return -EINVAL;
2550
2551 ret = clk_pm_runtime_get(core);
2552 if (ret)
2553 return ret;
2554
2555 /* notify that we are about to change rates */
2556 fail_clk = clk_propagate_rate_change(core: top, PRE_RATE_CHANGE);
2557 if (fail_clk) {
2558 pr_debug("%s: failed to set %s rate\n", __func__,
2559 fail_clk->name);
2560 clk_propagate_rate_change(core: top, ABORT_RATE_CHANGE);
2561 ret = -EBUSY;
2562 goto err;
2563 }
2564
2565 /* change the rates */
2566 clk_change_rate(core: top);
2567
2568 core->req_rate = req_rate;
2569err:
2570 clk_pm_runtime_put(core);
2571
2572 return ret;
2573}
2574
2575/**
2576 * clk_set_rate - specify a new rate for clk
2577 * @clk: the clk whose rate is being changed
2578 * @rate: the new rate for clk
2579 *
2580 * In the simplest case clk_set_rate will only adjust the rate of clk.
2581 *
2582 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2583 * propagate up to clk's parent; whether or not this happens depends on the
2584 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2585 * after calling .round_rate then upstream parent propagation is ignored. If
2586 * *parent_rate comes back with a new rate for clk's parent then we propagate
2587 * up to clk's parent and set its rate. Upward propagation will continue
2588 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2589 * .round_rate stops requesting changes to clk's parent_rate.
2590 *
2591 * Rate changes are accomplished via tree traversal that also recalculates the
2592 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2593 *
2594 * Returns 0 on success, -EERROR otherwise.
2595 */
2596int clk_set_rate(struct clk *clk, unsigned long rate)
2597{
2598 int ret;
2599
2600 if (!clk)
2601 return 0;
2602
2603 /* prevent racing with updates to the clock topology */
2604 clk_prepare_lock();
2605
2606 if (clk->exclusive_count)
2607 clk_core_rate_unprotect(core: clk->core);
2608
2609 ret = clk_core_set_rate_nolock(core: clk->core, req_rate: rate);
2610
2611 if (clk->exclusive_count)
2612 clk_core_rate_protect(core: clk->core);
2613
2614 clk_prepare_unlock();
2615
2616 return ret;
2617}
2618EXPORT_SYMBOL_GPL(clk_set_rate);
2619
2620/**
2621 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2622 * @clk: the clk whose rate is being changed
2623 * @rate: the new rate for clk
2624 *
2625 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2626 * within a critical section
2627 *
2628 * This can be used initially to ensure that at least 1 consumer is
2629 * satisfied when several consumers are competing for exclusivity over the
2630 * same clock provider.
2631 *
2632 * The exclusivity is not applied if setting the rate failed.
2633 *
2634 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2635 * clk_rate_exclusive_put().
2636 *
2637 * Returns 0 on success, -EERROR otherwise.
2638 */
2639int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2640{
2641 int ret;
2642
2643 if (!clk)
2644 return 0;
2645
2646 /* prevent racing with updates to the clock topology */
2647 clk_prepare_lock();
2648
2649 /*
2650 * The temporary protection removal is not here, on purpose
2651 * This function is meant to be used instead of clk_rate_protect,
2652 * so before the consumer code path protect the clock provider
2653 */
2654
2655 ret = clk_core_set_rate_nolock(core: clk->core, req_rate: rate);
2656 if (!ret) {
2657 clk_core_rate_protect(core: clk->core);
2658 clk->exclusive_count++;
2659 }
2660
2661 clk_prepare_unlock();
2662
2663 return ret;
2664}
2665EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2666
2667static int clk_set_rate_range_nolock(struct clk *clk,
2668 unsigned long min,
2669 unsigned long max)
2670{
2671 int ret = 0;
2672 unsigned long old_min, old_max, rate;
2673
2674 lockdep_assert_held(&prepare_lock);
2675
2676 if (!clk)
2677 return 0;
2678
2679 trace_clk_set_rate_range(core: clk->core, min, max);
2680
2681 if (min > max) {
2682 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2683 __func__, clk->core->name, clk->dev_id, clk->con_id,
2684 min, max);
2685 return -EINVAL;
2686 }
2687
2688 if (clk->exclusive_count)
2689 clk_core_rate_unprotect(core: clk->core);
2690
2691 /* Save the current values in case we need to rollback the change */
2692 old_min = clk->min_rate;
2693 old_max = clk->max_rate;
2694 clk->min_rate = min;
2695 clk->max_rate = max;
2696
2697 if (!clk_core_check_boundaries(core: clk->core, min_rate: min, max_rate: max)) {
2698 ret = -EINVAL;
2699 goto out;
2700 }
2701
2702 rate = clk->core->req_rate;
2703 if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2704 rate = clk_core_get_rate_recalc(core: clk->core);
2705
2706 /*
2707 * Since the boundaries have been changed, let's give the
2708 * opportunity to the provider to adjust the clock rate based on
2709 * the new boundaries.
2710 *
2711 * We also need to handle the case where the clock is currently
2712 * outside of the boundaries. Clamping the last requested rate
2713 * to the current minimum and maximum will also handle this.
2714 *
2715 * FIXME:
2716 * There is a catch. It may fail for the usual reason (clock
2717 * broken, clock protected, etc) but also because:
2718 * - round_rate() was not favorable and fell on the wrong
2719 * side of the boundary
2720 * - the determine_rate() callback does not really check for
2721 * this corner case when determining the rate
2722 */
2723 rate = clamp(rate, min, max);
2724 ret = clk_core_set_rate_nolock(core: clk->core, req_rate: rate);
2725 if (ret) {
2726 /* rollback the changes */
2727 clk->min_rate = old_min;
2728 clk->max_rate = old_max;
2729 }
2730
2731out:
2732 if (clk->exclusive_count)
2733 clk_core_rate_protect(core: clk->core);
2734
2735 return ret;
2736}
2737
2738/**
2739 * clk_set_rate_range - set a rate range for a clock source
2740 * @clk: clock source
2741 * @min: desired minimum clock rate in Hz, inclusive
2742 * @max: desired maximum clock rate in Hz, inclusive
2743 *
2744 * Return: 0 for success or negative errno on failure.
2745 */
2746int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2747{
2748 int ret;
2749
2750 if (!clk)
2751 return 0;
2752
2753 clk_prepare_lock();
2754
2755 ret = clk_set_rate_range_nolock(clk, min, max);
2756
2757 clk_prepare_unlock();
2758
2759 return ret;
2760}
2761EXPORT_SYMBOL_GPL(clk_set_rate_range);
2762
2763/**
2764 * clk_set_min_rate - set a minimum clock rate for a clock source
2765 * @clk: clock source
2766 * @rate: desired minimum clock rate in Hz, inclusive
2767 *
2768 * Returns success (0) or negative errno.
2769 */
2770int clk_set_min_rate(struct clk *clk, unsigned long rate)
2771{
2772 if (!clk)
2773 return 0;
2774
2775 trace_clk_set_min_rate(core: clk->core, rate);
2776
2777 return clk_set_rate_range(clk, rate, clk->max_rate);
2778}
2779EXPORT_SYMBOL_GPL(clk_set_min_rate);
2780
2781/**
2782 * clk_set_max_rate - set a maximum clock rate for a clock source
2783 * @clk: clock source
2784 * @rate: desired maximum clock rate in Hz, inclusive
2785 *
2786 * Returns success (0) or negative errno.
2787 */
2788int clk_set_max_rate(struct clk *clk, unsigned long rate)
2789{
2790 if (!clk)
2791 return 0;
2792
2793 trace_clk_set_max_rate(core: clk->core, rate);
2794
2795 return clk_set_rate_range(clk, clk->min_rate, rate);
2796}
2797EXPORT_SYMBOL_GPL(clk_set_max_rate);
2798
2799/**
2800 * clk_get_parent - return the parent of a clk
2801 * @clk: the clk whose parent gets returned
2802 *
2803 * Simply returns clk->parent. Returns NULL if clk is NULL.
2804 */
2805struct clk *clk_get_parent(struct clk *clk)
2806{
2807 struct clk *parent;
2808
2809 if (!clk)
2810 return NULL;
2811
2812 clk_prepare_lock();
2813 /* TODO: Create a per-user clk and change callers to call clk_put */
2814 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2815 clk_prepare_unlock();
2816
2817 return parent;
2818}
2819EXPORT_SYMBOL_GPL(clk_get_parent);
2820
2821static struct clk_core *__clk_init_parent(struct clk_core *core)
2822{
2823 u8 index = 0;
2824
2825 if (core->num_parents > 1 && core->ops->get_parent)
2826 index = core->ops->get_parent(core->hw);
2827
2828 return clk_core_get_parent_by_index(core, index);
2829}
2830
2831static void clk_core_reparent(struct clk_core *core,
2832 struct clk_core *new_parent)
2833{
2834 clk_reparent(core, new_parent);
2835 __clk_recalc_accuracies(core);
2836 __clk_recalc_rates(core, update_req: true, POST_RATE_CHANGE);
2837}
2838
2839void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2840{
2841 if (!hw)
2842 return;
2843
2844 clk_core_reparent(core: hw->core, new_parent: !new_parent ? NULL : new_parent->core);
2845}
2846
2847/**
2848 * clk_has_parent - check if a clock is a possible parent for another
2849 * @clk: clock source
2850 * @parent: parent clock source
2851 *
2852 * This function can be used in drivers that need to check that a clock can be
2853 * the parent of another without actually changing the parent.
2854 *
2855 * Returns true if @parent is a possible parent for @clk, false otherwise.
2856 */
2857bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2858{
2859 /* NULL clocks should be nops, so return success if either is NULL. */
2860 if (!clk || !parent)
2861 return true;
2862
2863 return clk_core_has_parent(core: clk->core, parent: parent->core);
2864}
2865EXPORT_SYMBOL_GPL(clk_has_parent);
2866
2867static int clk_core_set_parent_nolock(struct clk_core *core,
2868 struct clk_core *parent)
2869{
2870 int ret = 0;
2871 int p_index = 0;
2872 unsigned long p_rate = 0;
2873
2874 lockdep_assert_held(&prepare_lock);
2875
2876 if (!core)
2877 return 0;
2878
2879 if (core->parent == parent)
2880 return 0;
2881
2882 /* verify ops for multi-parent clks */
2883 if (core->num_parents > 1 && !core->ops->set_parent)
2884 return -EPERM;
2885
2886 /* check that we are allowed to re-parent if the clock is in use */
2887 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2888 return -EBUSY;
2889
2890 if (clk_core_rate_is_protected(core))
2891 return -EBUSY;
2892
2893 /* try finding the new parent index */
2894 if (parent) {
2895 p_index = clk_fetch_parent_index(core, parent);
2896 if (p_index < 0) {
2897 pr_debug("%s: clk %s can not be parent of clk %s\n",
2898 __func__, parent->name, core->name);
2899 return p_index;
2900 }
2901 p_rate = parent->rate;
2902 }
2903
2904 ret = clk_pm_runtime_get(core);
2905 if (ret)
2906 return ret;
2907
2908 /* propagate PRE_RATE_CHANGE notifications */
2909 ret = __clk_speculate_rates(core, parent_rate: p_rate);
2910
2911 /* abort if a driver objects */
2912 if (ret & NOTIFY_STOP_MASK)
2913 goto runtime_put;
2914
2915 /* do the re-parent */
2916 ret = __clk_set_parent(core, parent, p_index);
2917
2918 /* propagate rate an accuracy recalculation accordingly */
2919 if (ret) {
2920 __clk_recalc_rates(core, update_req: true, ABORT_RATE_CHANGE);
2921 } else {
2922 __clk_recalc_rates(core, update_req: true, POST_RATE_CHANGE);
2923 __clk_recalc_accuracies(core);
2924 }
2925
2926runtime_put:
2927 clk_pm_runtime_put(core);
2928
2929 return ret;
2930}
2931
2932int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2933{
2934 return clk_core_set_parent_nolock(core: hw->core, parent: parent->core);
2935}
2936EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2937
2938/**
2939 * clk_set_parent - switch the parent of a mux clk
2940 * @clk: the mux clk whose input we are switching
2941 * @parent: the new input to clk
2942 *
2943 * Re-parent clk to use parent as its new input source. If clk is in
2944 * prepared state, the clk will get enabled for the duration of this call. If
2945 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2946 * that, the reparenting is glitchy in hardware, etc), use the
2947 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2948 *
2949 * After successfully changing clk's parent clk_set_parent will update the
2950 * clk topology, sysfs topology and propagate rate recalculation via
2951 * __clk_recalc_rates.
2952 *
2953 * Returns 0 on success, -EERROR otherwise.
2954 */
2955int clk_set_parent(struct clk *clk, struct clk *parent)
2956{
2957 int ret;
2958
2959 if (!clk)
2960 return 0;
2961
2962 clk_prepare_lock();
2963
2964 if (clk->exclusive_count)
2965 clk_core_rate_unprotect(core: clk->core);
2966
2967 ret = clk_core_set_parent_nolock(core: clk->core,
2968 parent: parent ? parent->core : NULL);
2969
2970 if (clk->exclusive_count)
2971 clk_core_rate_protect(core: clk->core);
2972
2973 clk_prepare_unlock();
2974
2975 return ret;
2976}
2977EXPORT_SYMBOL_GPL(clk_set_parent);
2978
2979static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2980{
2981 int ret = -EINVAL;
2982
2983 lockdep_assert_held(&prepare_lock);
2984
2985 if (!core)
2986 return 0;
2987
2988 if (clk_core_rate_is_protected(core))
2989 return -EBUSY;
2990
2991 trace_clk_set_phase(core, phase: degrees);
2992
2993 if (core->ops->set_phase) {
2994 ret = core->ops->set_phase(core->hw, degrees);
2995 if (!ret)
2996 core->phase = degrees;
2997 }
2998
2999 trace_clk_set_phase_complete(core, phase: degrees);
3000
3001 return ret;
3002}
3003
3004/**
3005 * clk_set_phase - adjust the phase shift of a clock signal
3006 * @clk: clock signal source
3007 * @degrees: number of degrees the signal is shifted
3008 *
3009 * Shifts the phase of a clock signal by the specified
3010 * degrees. Returns 0 on success, -EERROR otherwise.
3011 *
3012 * This function makes no distinction about the input or reference
3013 * signal that we adjust the clock signal phase against. For example
3014 * phase locked-loop clock signal generators we may shift phase with
3015 * respect to feedback clock signal input, but for other cases the
3016 * clock phase may be shifted with respect to some other, unspecified
3017 * signal.
3018 *
3019 * Additionally the concept of phase shift does not propagate through
3020 * the clock tree hierarchy, which sets it apart from clock rates and
3021 * clock accuracy. A parent clock phase attribute does not have an
3022 * impact on the phase attribute of a child clock.
3023 */
3024int clk_set_phase(struct clk *clk, int degrees)
3025{
3026 int ret;
3027
3028 if (!clk)
3029 return 0;
3030
3031 /* sanity check degrees */
3032 degrees %= 360;
3033 if (degrees < 0)
3034 degrees += 360;
3035
3036 clk_prepare_lock();
3037
3038 if (clk->exclusive_count)
3039 clk_core_rate_unprotect(core: clk->core);
3040
3041 ret = clk_core_set_phase_nolock(core: clk->core, degrees);
3042
3043 if (clk->exclusive_count)
3044 clk_core_rate_protect(core: clk->core);
3045
3046 clk_prepare_unlock();
3047
3048 return ret;
3049}
3050EXPORT_SYMBOL_GPL(clk_set_phase);
3051
3052static int clk_core_get_phase(struct clk_core *core)
3053{
3054 int ret;
3055
3056 lockdep_assert_held(&prepare_lock);
3057 if (!core->ops->get_phase)
3058 return 0;
3059
3060 /* Always try to update cached phase if possible */
3061 ret = core->ops->get_phase(core->hw);
3062 if (ret >= 0)
3063 core->phase = ret;
3064
3065 return ret;
3066}
3067
3068/**
3069 * clk_get_phase - return the phase shift of a clock signal
3070 * @clk: clock signal source
3071 *
3072 * Returns the phase shift of a clock node in degrees, otherwise returns
3073 * -EERROR.
3074 */
3075int clk_get_phase(struct clk *clk)
3076{
3077 int ret;
3078
3079 if (!clk)
3080 return 0;
3081
3082 clk_prepare_lock();
3083 ret = clk_core_get_phase(core: clk->core);
3084 clk_prepare_unlock();
3085
3086 return ret;
3087}
3088EXPORT_SYMBOL_GPL(clk_get_phase);
3089
3090static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3091{
3092 /* Assume a default value of 50% */
3093 core->duty.num = 1;
3094 core->duty.den = 2;
3095}
3096
3097static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3098
3099static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3100{
3101 struct clk_duty *duty = &core->duty;
3102 int ret = 0;
3103
3104 if (!core->ops->get_duty_cycle)
3105 return clk_core_update_duty_cycle_parent_nolock(core);
3106
3107 ret = core->ops->get_duty_cycle(core->hw, duty);
3108 if (ret)
3109 goto reset;
3110
3111 /* Don't trust the clock provider too much */
3112 if (duty->den == 0 || duty->num > duty->den) {
3113 ret = -EINVAL;
3114 goto reset;
3115 }
3116
3117 return 0;
3118
3119reset:
3120 clk_core_reset_duty_cycle_nolock(core);
3121 return ret;
3122}
3123
3124static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3125{
3126 int ret = 0;
3127
3128 if (core->parent &&
3129 core->flags & CLK_DUTY_CYCLE_PARENT) {
3130 ret = clk_core_update_duty_cycle_nolock(core: core->parent);
3131 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3132 } else {
3133 clk_core_reset_duty_cycle_nolock(core);
3134 }
3135
3136 return ret;
3137}
3138
3139static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3140 struct clk_duty *duty);
3141
3142static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3143 struct clk_duty *duty)
3144{
3145 int ret;
3146
3147 lockdep_assert_held(&prepare_lock);
3148
3149 if (clk_core_rate_is_protected(core))
3150 return -EBUSY;
3151
3152 trace_clk_set_duty_cycle(core, duty);
3153
3154 if (!core->ops->set_duty_cycle)
3155 return clk_core_set_duty_cycle_parent_nolock(core, duty);
3156
3157 ret = core->ops->set_duty_cycle(core->hw, duty);
3158 if (!ret)
3159 memcpy(&core->duty, duty, sizeof(*duty));
3160
3161 trace_clk_set_duty_cycle_complete(core, duty);
3162
3163 return ret;
3164}
3165
3166static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3167 struct clk_duty *duty)
3168{
3169 int ret = 0;
3170
3171 if (core->parent &&
3172 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3173 ret = clk_core_set_duty_cycle_nolock(core: core->parent, duty);
3174 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3175 }
3176
3177 return ret;
3178}
3179
3180/**
3181 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3182 * @clk: clock signal source
3183 * @num: numerator of the duty cycle ratio to be applied
3184 * @den: denominator of the duty cycle ratio to be applied
3185 *
3186 * Apply the duty cycle ratio if the ratio is valid and the clock can
3187 * perform this operation
3188 *
3189 * Returns (0) on success, a negative errno otherwise.
3190 */
3191int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3192{
3193 int ret;
3194 struct clk_duty duty;
3195
3196 if (!clk)
3197 return 0;
3198
3199 /* sanity check the ratio */
3200 if (den == 0 || num > den)
3201 return -EINVAL;
3202
3203 duty.num = num;
3204 duty.den = den;
3205
3206 clk_prepare_lock();
3207
3208 if (clk->exclusive_count)
3209 clk_core_rate_unprotect(core: clk->core);
3210
3211 ret = clk_core_set_duty_cycle_nolock(core: clk->core, duty: &duty);
3212
3213 if (clk->exclusive_count)
3214 clk_core_rate_protect(core: clk->core);
3215
3216 clk_prepare_unlock();
3217
3218 return ret;
3219}
3220EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3221
3222static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3223 unsigned int scale)
3224{
3225 struct clk_duty *duty = &core->duty;
3226 int ret;
3227
3228 clk_prepare_lock();
3229
3230 ret = clk_core_update_duty_cycle_nolock(core);
3231 if (!ret)
3232 ret = mult_frac(scale, duty->num, duty->den);
3233
3234 clk_prepare_unlock();
3235
3236 return ret;
3237}
3238
3239/**
3240 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3241 * @clk: clock signal source
3242 * @scale: scaling factor to be applied to represent the ratio as an integer
3243 *
3244 * Returns the duty cycle ratio of a clock node multiplied by the provided
3245 * scaling factor, or negative errno on error.
3246 */
3247int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3248{
3249 if (!clk)
3250 return 0;
3251
3252 return clk_core_get_scaled_duty_cycle(core: clk->core, scale);
3253}
3254EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3255
3256/**
3257 * clk_is_match - check if two clk's point to the same hardware clock
3258 * @p: clk compared against q
3259 * @q: clk compared against p
3260 *
3261 * Returns true if the two struct clk pointers both point to the same hardware
3262 * clock node. Put differently, returns true if struct clk *p and struct clk *q
3263 * share the same struct clk_core object.
3264 *
3265 * Returns false otherwise. Note that two NULL clks are treated as matching.
3266 */
3267bool clk_is_match(const struct clk *p, const struct clk *q)
3268{
3269 /* trivial case: identical struct clk's or both NULL */
3270 if (p == q)
3271 return true;
3272
3273 /* true if clk->core pointers match. Avoid dereferencing garbage */
3274 if (!IS_ERR_OR_NULL(ptr: p) && !IS_ERR_OR_NULL(ptr: q))
3275 if (p->core == q->core)
3276 return true;
3277
3278 return false;
3279}
3280EXPORT_SYMBOL_GPL(clk_is_match);
3281
3282/*** debugfs support ***/
3283
3284#ifdef CONFIG_DEBUG_FS
3285#include <linux/debugfs.h>
3286
3287static struct dentry *rootdir;
3288static int inited = 0;
3289static DEFINE_MUTEX(clk_debug_lock);
3290static HLIST_HEAD(clk_debug_list);
3291
3292static struct hlist_head *orphan_list[] = {
3293 &clk_orphan_list,
3294 NULL,
3295};
3296
3297static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3298 int level)
3299{
3300 int phase;
3301 struct clk *clk_user;
3302 int multi_node = 0;
3303
3304 seq_printf(m: s, fmt: "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3305 level * 3 + 1, "",
3306 35 - level * 3, c->name,
3307 c->enable_count, c->prepare_count, c->protect_count,
3308 clk_core_get_rate_recalc(core: c),
3309 clk_core_get_accuracy_recalc(core: c));
3310
3311 phase = clk_core_get_phase(core: c);
3312 if (phase >= 0)
3313 seq_printf(m: s, fmt: "%-5d", phase);
3314 else
3315 seq_puts(m: s, s: "-----");
3316
3317 seq_printf(m: s, fmt: " %-6d", clk_core_get_scaled_duty_cycle(core: c, scale: 100000));
3318
3319 if (c->ops->is_enabled)
3320 seq_printf(m: s, fmt: " %5c ", clk_core_is_enabled(core: c) ? 'Y' : 'N');
3321 else if (!c->ops->enable)
3322 seq_printf(m: s, fmt: " %5c ", 'Y');
3323 else
3324 seq_printf(m: s, fmt: " %5c ", '?');
3325
3326 hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3327 seq_printf(m: s, fmt: "%*s%-*s %-25s\n",
3328 level * 3 + 2 + 105 * multi_node, "",
3329 30,
3330 clk_user->dev_id ? clk_user->dev_id : "deviceless",
3331 clk_user->con_id ? clk_user->con_id : "no_connection_id");
3332
3333 multi_node = 1;
3334 }
3335
3336}
3337
3338static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3339 int level)
3340{
3341 struct clk_core *child;
3342
3343 clk_summary_show_one(s, c, level);
3344
3345 hlist_for_each_entry(child, &c->children, child_node)
3346 clk_summary_show_subtree(s, c: child, level: level + 1);
3347}
3348
3349static int clk_summary_show(struct seq_file *s, void *data)
3350{
3351 struct clk_core *c;
3352 struct hlist_head **lists = s->private;
3353 int ret;
3354
3355 seq_puts(m: s, s: " enable prepare protect duty hardware connection\n");
3356 seq_puts(m: s, s: " clock count count count rate accuracy phase cycle enable consumer id\n");
3357 seq_puts(m: s, s: "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3358
3359 ret = clk_pm_runtime_get_all();
3360 if (ret)
3361 return ret;
3362
3363 clk_prepare_lock();
3364
3365 for (; *lists; lists++)
3366 hlist_for_each_entry(c, *lists, child_node)
3367 clk_summary_show_subtree(s, c, level: 0);
3368
3369 clk_prepare_unlock();
3370 clk_pm_runtime_put_all();
3371
3372 return 0;
3373}
3374DEFINE_SHOW_ATTRIBUTE(clk_summary);
3375
3376static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3377{
3378 int phase;
3379 unsigned long min_rate, max_rate;
3380
3381 clk_core_get_boundaries(core: c, min_rate: &min_rate, max_rate: &max_rate);
3382
3383 /* This should be JSON format, i.e. elements separated with a comma */
3384 seq_printf(m: s, fmt: "\"%s\": { ", c->name);
3385 seq_printf(m: s, fmt: "\"enable_count\": %d,", c->enable_count);
3386 seq_printf(m: s, fmt: "\"prepare_count\": %d,", c->prepare_count);
3387 seq_printf(m: s, fmt: "\"protect_count\": %d,", c->protect_count);
3388 seq_printf(m: s, fmt: "\"rate\": %lu,", clk_core_get_rate_recalc(core: c));
3389 seq_printf(m: s, fmt: "\"min_rate\": %lu,", min_rate);
3390 seq_printf(m: s, fmt: "\"max_rate\": %lu,", max_rate);
3391 seq_printf(m: s, fmt: "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(core: c));
3392 phase = clk_core_get_phase(core: c);
3393 if (phase >= 0)
3394 seq_printf(m: s, fmt: "\"phase\": %d,", phase);
3395 seq_printf(m: s, fmt: "\"duty_cycle\": %u",
3396 clk_core_get_scaled_duty_cycle(core: c, scale: 100000));
3397}
3398
3399static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3400{
3401 struct clk_core *child;
3402
3403 clk_dump_one(s, c, level);
3404
3405 hlist_for_each_entry(child, &c->children, child_node) {
3406 seq_putc(m: s, c: ',');
3407 clk_dump_subtree(s, c: child, level: level + 1);
3408 }
3409
3410 seq_putc(m: s, c: '}');
3411}
3412
3413static int clk_dump_show(struct seq_file *s, void *data)
3414{
3415 struct clk_core *c;
3416 bool first_node = true;
3417 struct hlist_head **lists = s->private;
3418 int ret;
3419
3420 ret = clk_pm_runtime_get_all();
3421 if (ret)
3422 return ret;
3423
3424 seq_putc(m: s, c: '{');
3425
3426 clk_prepare_lock();
3427
3428 for (; *lists; lists++) {
3429 hlist_for_each_entry(c, *lists, child_node) {
3430 if (!first_node)
3431 seq_putc(m: s, c: ',');
3432 first_node = false;
3433 clk_dump_subtree(s, c, level: 0);
3434 }
3435 }
3436
3437 clk_prepare_unlock();
3438 clk_pm_runtime_put_all();
3439
3440 seq_puts(m: s, s: "}\n");
3441 return 0;
3442}
3443DEFINE_SHOW_ATTRIBUTE(clk_dump);
3444
3445#undef CLOCK_ALLOW_WRITE_DEBUGFS
3446#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3447/*
3448 * This can be dangerous, therefore don't provide any real compile time
3449 * configuration option for this feature.
3450 * People who want to use this will need to modify the source code directly.
3451 */
3452static int clk_rate_set(void *data, u64 val)
3453{
3454 struct clk_core *core = data;
3455 int ret;
3456
3457 clk_prepare_lock();
3458 ret = clk_core_set_rate_nolock(core, val);
3459 clk_prepare_unlock();
3460
3461 return ret;
3462}
3463
3464#define clk_rate_mode 0644
3465
3466static int clk_phase_set(void *data, u64 val)
3467{
3468 struct clk_core *core = data;
3469 int degrees = do_div(val, 360);
3470 int ret;
3471
3472 clk_prepare_lock();
3473 ret = clk_core_set_phase_nolock(core, degrees);
3474 clk_prepare_unlock();
3475
3476 return ret;
3477}
3478
3479#define clk_phase_mode 0644
3480
3481static int clk_prepare_enable_set(void *data, u64 val)
3482{
3483 struct clk_core *core = data;
3484 int ret = 0;
3485
3486 if (val)
3487 ret = clk_prepare_enable(core->hw->clk);
3488 else
3489 clk_disable_unprepare(core->hw->clk);
3490
3491 return ret;
3492}
3493
3494static int clk_prepare_enable_get(void *data, u64 *val)
3495{
3496 struct clk_core *core = data;
3497
3498 *val = core->enable_count && core->prepare_count;
3499 return 0;
3500}
3501
3502DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3503 clk_prepare_enable_set, "%llu\n");
3504
3505#else
3506#define clk_rate_set NULL
3507#define clk_rate_mode 0444
3508
3509#define clk_phase_set NULL
3510#define clk_phase_mode 0644
3511#endif
3512
3513static int clk_rate_get(void *data, u64 *val)
3514{
3515 struct clk_core *core = data;
3516
3517 clk_prepare_lock();
3518 *val = clk_core_get_rate_recalc(core);
3519 clk_prepare_unlock();
3520
3521 return 0;
3522}
3523
3524DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3525
3526static int clk_phase_get(void *data, u64 *val)
3527{
3528 struct clk_core *core = data;
3529
3530 *val = core->phase;
3531 return 0;
3532}
3533
3534DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3535
3536static const struct {
3537 unsigned long flag;
3538 const char *name;
3539} clk_flags[] = {
3540#define ENTRY(f) { f, #f }
3541 ENTRY(CLK_SET_RATE_GATE),
3542 ENTRY(CLK_SET_PARENT_GATE),
3543 ENTRY(CLK_SET_RATE_PARENT),
3544 ENTRY(CLK_IGNORE_UNUSED),
3545 ENTRY(CLK_GET_RATE_NOCACHE),
3546 ENTRY(CLK_SET_RATE_NO_REPARENT),
3547 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3548 ENTRY(CLK_RECALC_NEW_RATES),
3549 ENTRY(CLK_SET_RATE_UNGATE),
3550 ENTRY(CLK_IS_CRITICAL),
3551 ENTRY(CLK_OPS_PARENT_ENABLE),
3552 ENTRY(CLK_DUTY_CYCLE_PARENT),
3553#undef ENTRY
3554};
3555
3556static int clk_flags_show(struct seq_file *s, void *data)
3557{
3558 struct clk_core *core = s->private;
3559 unsigned long flags = core->flags;
3560 unsigned int i;
3561
3562 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3563 if (flags & clk_flags[i].flag) {
3564 seq_printf(m: s, fmt: "%s\n", clk_flags[i].name);
3565 flags &= ~clk_flags[i].flag;
3566 }
3567 }
3568 if (flags) {
3569 /* Unknown flags */
3570 seq_printf(m: s, fmt: "0x%lx\n", flags);
3571 }
3572
3573 return 0;
3574}
3575DEFINE_SHOW_ATTRIBUTE(clk_flags);
3576
3577static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3578 unsigned int i, char terminator)
3579{
3580 struct clk_core *parent;
3581 const char *name = NULL;
3582
3583 /*
3584 * Go through the following options to fetch a parent's name.
3585 *
3586 * 1. Fetch the registered parent clock and use its name
3587 * 2. Use the global (fallback) name if specified
3588 * 3. Use the local fw_name if provided
3589 * 4. Fetch parent clock's clock-output-name if DT index was set
3590 *
3591 * This may still fail in some cases, such as when the parent is
3592 * specified directly via a struct clk_hw pointer, but it isn't
3593 * registered (yet).
3594 */
3595 parent = clk_core_get_parent_by_index(core, index: i);
3596 if (parent) {
3597 seq_puts(m: s, s: parent->name);
3598 } else if (core->parents[i].name) {
3599 seq_puts(m: s, s: core->parents[i].name);
3600 } else if (core->parents[i].fw_name) {
3601 seq_printf(m: s, fmt: "<%s>(fw)", core->parents[i].fw_name);
3602 } else {
3603 if (core->parents[i].index >= 0)
3604 name = of_clk_get_parent_name(np: core->of_node, index: core->parents[i].index);
3605 if (!name)
3606 name = "(missing)";
3607
3608 seq_puts(m: s, s: name);
3609 }
3610
3611 seq_putc(m: s, c: terminator);
3612}
3613
3614static int possible_parents_show(struct seq_file *s, void *data)
3615{
3616 struct clk_core *core = s->private;
3617 int i;
3618
3619 for (i = 0; i < core->num_parents - 1; i++)
3620 possible_parent_show(s, core, i, terminator: ' ');
3621
3622 possible_parent_show(s, core, i, terminator: '\n');
3623
3624 return 0;
3625}
3626DEFINE_SHOW_ATTRIBUTE(possible_parents);
3627
3628static int current_parent_show(struct seq_file *s, void *data)
3629{
3630 struct clk_core *core = s->private;
3631
3632 if (core->parent)
3633 seq_printf(m: s, fmt: "%s\n", core->parent->name);
3634
3635 return 0;
3636}
3637DEFINE_SHOW_ATTRIBUTE(current_parent);
3638
3639#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3640static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3641 size_t count, loff_t *ppos)
3642{
3643 struct seq_file *s = file->private_data;
3644 struct clk_core *core = s->private;
3645 struct clk_core *parent;
3646 u8 idx;
3647 int err;
3648
3649 err = kstrtou8_from_user(ubuf, count, 0, &idx);
3650 if (err < 0)
3651 return err;
3652
3653 parent = clk_core_get_parent_by_index(core, idx);
3654 if (!parent)
3655 return -ENOENT;
3656
3657 clk_prepare_lock();
3658 err = clk_core_set_parent_nolock(core, parent);
3659 clk_prepare_unlock();
3660 if (err)
3661 return err;
3662
3663 return count;
3664}
3665
3666static const struct file_operations current_parent_rw_fops = {
3667 .open = current_parent_open,
3668 .write = current_parent_write,
3669 .read = seq_read,
3670 .llseek = seq_lseek,
3671 .release = single_release,
3672};
3673#endif
3674
3675static int clk_duty_cycle_show(struct seq_file *s, void *data)
3676{
3677 struct clk_core *core = s->private;
3678 struct clk_duty *duty = &core->duty;
3679
3680 seq_printf(m: s, fmt: "%u/%u\n", duty->num, duty->den);
3681
3682 return 0;
3683}
3684DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3685
3686static int clk_min_rate_show(struct seq_file *s, void *data)
3687{
3688 struct clk_core *core = s->private;
3689 unsigned long min_rate, max_rate;
3690
3691 clk_prepare_lock();
3692 clk_core_get_boundaries(core, min_rate: &min_rate, max_rate: &max_rate);
3693 clk_prepare_unlock();
3694 seq_printf(m: s, fmt: "%lu\n", min_rate);
3695
3696 return 0;
3697}
3698DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3699
3700static int clk_max_rate_show(struct seq_file *s, void *data)
3701{
3702 struct clk_core *core = s->private;
3703 unsigned long min_rate, max_rate;
3704
3705 clk_prepare_lock();
3706 clk_core_get_boundaries(core, min_rate: &min_rate, max_rate: &max_rate);
3707 clk_prepare_unlock();
3708 seq_printf(m: s, fmt: "%lu\n", max_rate);
3709
3710 return 0;
3711}
3712DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3713
3714static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3715{
3716 struct dentry *root;
3717
3718 if (!core || !pdentry)
3719 return;
3720
3721 root = debugfs_create_dir(name: core->name, parent: pdentry);
3722 core->dentry = root;
3723
3724 debugfs_create_file(name: "clk_rate", clk_rate_mode, parent: root, data: core,
3725 fops: &clk_rate_fops);
3726 debugfs_create_file(name: "clk_min_rate", mode: 0444, parent: root, data: core, fops: &clk_min_rate_fops);
3727 debugfs_create_file(name: "clk_max_rate", mode: 0444, parent: root, data: core, fops: &clk_max_rate_fops);
3728 debugfs_create_ulong(name: "clk_accuracy", mode: 0444, parent: root, value: &core->accuracy);
3729 debugfs_create_file(name: "clk_phase", clk_phase_mode, parent: root, data: core,
3730 fops: &clk_phase_fops);
3731 debugfs_create_file(name: "clk_flags", mode: 0444, parent: root, data: core, fops: &clk_flags_fops);
3732 debugfs_create_u32(name: "clk_prepare_count", mode: 0444, parent: root, value: &core->prepare_count);
3733 debugfs_create_u32(name: "clk_enable_count", mode: 0444, parent: root, value: &core->enable_count);
3734 debugfs_create_u32(name: "clk_protect_count", mode: 0444, parent: root, value: &core->protect_count);
3735 debugfs_create_u32(name: "clk_notifier_count", mode: 0444, parent: root, value: &core->notifier_count);
3736 debugfs_create_file(name: "clk_duty_cycle", mode: 0444, parent: root, data: core,
3737 fops: &clk_duty_cycle_fops);
3738#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3739 debugfs_create_file("clk_prepare_enable", 0644, root, core,
3740 &clk_prepare_enable_fops);
3741
3742 if (core->num_parents > 1)
3743 debugfs_create_file("clk_parent", 0644, root, core,
3744 &current_parent_rw_fops);
3745 else
3746#endif
3747 if (core->num_parents > 0)
3748 debugfs_create_file(name: "clk_parent", mode: 0444, parent: root, data: core,
3749 fops: &current_parent_fops);
3750
3751 if (core->num_parents > 1)
3752 debugfs_create_file(name: "clk_possible_parents", mode: 0444, parent: root, data: core,
3753 fops: &possible_parents_fops);
3754
3755 if (core->ops->debug_init)
3756 core->ops->debug_init(core->hw, core->dentry);
3757}
3758
3759/**
3760 * clk_debug_register - add a clk node to the debugfs clk directory
3761 * @core: the clk being added to the debugfs clk directory
3762 *
3763 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3764 * initialized. Otherwise it bails out early since the debugfs clk directory
3765 * will be created lazily by clk_debug_init as part of a late_initcall.
3766 */
3767static void clk_debug_register(struct clk_core *core)
3768{
3769 mutex_lock(&clk_debug_lock);
3770 hlist_add_head(n: &core->debug_node, h: &clk_debug_list);
3771 if (inited)
3772 clk_debug_create_one(core, pdentry: rootdir);
3773 mutex_unlock(lock: &clk_debug_lock);
3774}
3775
3776 /**
3777 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3778 * @core: the clk being removed from the debugfs clk directory
3779 *
3780 * Dynamically removes a clk and all its child nodes from the
3781 * debugfs clk directory if clk->dentry points to debugfs created by
3782 * clk_debug_register in __clk_core_init.
3783 */
3784static void clk_debug_unregister(struct clk_core *core)
3785{
3786 mutex_lock(&clk_debug_lock);
3787 hlist_del_init(n: &core->debug_node);
3788 debugfs_remove_recursive(dentry: core->dentry);
3789 core->dentry = NULL;
3790 mutex_unlock(lock: &clk_debug_lock);
3791}
3792
3793/**
3794 * clk_debug_init - lazily populate the debugfs clk directory
3795 *
3796 * clks are often initialized very early during boot before memory can be
3797 * dynamically allocated and well before debugfs is setup. This function
3798 * populates the debugfs clk directory once at boot-time when we know that
3799 * debugfs is setup. It should only be called once at boot-time, all other clks
3800 * added dynamically will be done so with clk_debug_register.
3801 */
3802static int __init clk_debug_init(void)
3803{
3804 struct clk_core *core;
3805
3806#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3807 pr_warn("\n");
3808 pr_warn("********************************************************************\n");
3809 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3810 pr_warn("** **\n");
3811 pr_warn("** WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3812 pr_warn("** **\n");
3813 pr_warn("** This means that this kernel is built to expose clk operations **\n");
3814 pr_warn("** such as parent or rate setting, enabling, disabling, etc. **\n");
3815 pr_warn("** to userspace, which may compromise security on your system. **\n");
3816 pr_warn("** **\n");
3817 pr_warn("** If you see this message and you are not debugging the **\n");
3818 pr_warn("** kernel, report this immediately to your vendor! **\n");
3819 pr_warn("** **\n");
3820 pr_warn("** NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE **\n");
3821 pr_warn("********************************************************************\n");
3822#endif
3823
3824 rootdir = debugfs_create_dir(name: "clk", NULL);
3825
3826 debugfs_create_file(name: "clk_summary", mode: 0444, parent: rootdir, data: &all_lists,
3827 fops: &clk_summary_fops);
3828 debugfs_create_file(name: "clk_dump", mode: 0444, parent: rootdir, data: &all_lists,
3829 fops: &clk_dump_fops);
3830 debugfs_create_file(name: "clk_orphan_summary", mode: 0444, parent: rootdir, data: &orphan_list,
3831 fops: &clk_summary_fops);
3832 debugfs_create_file(name: "clk_orphan_dump", mode: 0444, parent: rootdir, data: &orphan_list,
3833 fops: &clk_dump_fops);
3834
3835 mutex_lock(&clk_debug_lock);
3836 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3837 clk_debug_create_one(core, pdentry: rootdir);
3838
3839 inited = 1;
3840 mutex_unlock(lock: &clk_debug_lock);
3841
3842 return 0;
3843}
3844late_initcall(clk_debug_init);
3845#else
3846static inline void clk_debug_register(struct clk_core *core) { }
3847static inline void clk_debug_unregister(struct clk_core *core)
3848{
3849}
3850#endif
3851
3852static void clk_core_reparent_orphans_nolock(void)
3853{
3854 struct clk_core *orphan;
3855 struct hlist_node *tmp2;
3856
3857 /*
3858 * walk the list of orphan clocks and reparent any that newly finds a
3859 * parent.
3860 */
3861 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3862 struct clk_core *parent = __clk_init_parent(core: orphan);
3863
3864 /*
3865 * We need to use __clk_set_parent_before() and _after() to
3866 * properly migrate any prepare/enable count of the orphan
3867 * clock. This is important for CLK_IS_CRITICAL clocks, which
3868 * are enabled during init but might not have a parent yet.
3869 */
3870 if (parent) {
3871 /* update the clk tree topology */
3872 __clk_set_parent_before(core: orphan, parent);
3873 __clk_set_parent_after(core: orphan, parent, NULL);
3874 __clk_recalc_accuracies(core: orphan);
3875 __clk_recalc_rates(core: orphan, update_req: true, msg: 0);
3876
3877 /*
3878 * __clk_init_parent() will set the initial req_rate to
3879 * 0 if the clock doesn't have clk_ops::recalc_rate and
3880 * is an orphan when it's registered.
3881 *
3882 * 'req_rate' is used by clk_set_rate_range() and
3883 * clk_put() to trigger a clk_set_rate() call whenever
3884 * the boundaries are modified. Let's make sure
3885 * 'req_rate' is set to something non-zero so that
3886 * clk_set_rate_range() doesn't drop the frequency.
3887 */
3888 orphan->req_rate = orphan->rate;
3889 }
3890 }
3891}
3892
3893/**
3894 * __clk_core_init - initialize the data structures in a struct clk_core
3895 * @core: clk_core being initialized
3896 *
3897 * Initializes the lists in struct clk_core, queries the hardware for the
3898 * parent and rate and sets them both.
3899 */
3900static int __clk_core_init(struct clk_core *core)
3901{
3902 int ret;
3903 struct clk_core *parent;
3904 unsigned long rate;
3905 int phase;
3906
3907 clk_prepare_lock();
3908
3909 /*
3910 * Set hw->core after grabbing the prepare_lock to synchronize with
3911 * callers of clk_core_fill_parent_index() where we treat hw->core
3912 * being NULL as the clk not being registered yet. This is crucial so
3913 * that clks aren't parented until their parent is fully registered.
3914 */
3915 core->hw->core = core;
3916
3917 ret = clk_pm_runtime_get(core);
3918 if (ret)
3919 goto unlock;
3920
3921 /* check to see if a clock with this name is already registered */
3922 if (clk_core_lookup(name: core->name)) {
3923 pr_debug("%s: clk %s already initialized\n",
3924 __func__, core->name);
3925 ret = -EEXIST;
3926 goto out;
3927 }
3928
3929 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3930 if (core->ops->set_rate &&
3931 !((core->ops->round_rate || core->ops->determine_rate) &&
3932 core->ops->recalc_rate)) {
3933 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3934 __func__, core->name);
3935 ret = -EINVAL;
3936 goto out;
3937 }
3938
3939 if (core->ops->set_parent && !core->ops->get_parent) {
3940 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3941 __func__, core->name);
3942 ret = -EINVAL;
3943 goto out;
3944 }
3945
3946 if (core->ops->set_parent && !core->ops->determine_rate) {
3947 pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3948 __func__, core->name);
3949 ret = -EINVAL;
3950 goto out;
3951 }
3952
3953 if (core->num_parents > 1 && !core->ops->get_parent) {
3954 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3955 __func__, core->name);
3956 ret = -EINVAL;
3957 goto out;
3958 }
3959
3960 if (core->ops->set_rate_and_parent &&
3961 !(core->ops->set_parent && core->ops->set_rate)) {
3962 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3963 __func__, core->name);
3964 ret = -EINVAL;
3965 goto out;
3966 }
3967
3968 /*
3969 * optional platform-specific magic
3970 *
3971 * The .init callback is not used by any of the basic clock types, but
3972 * exists for weird hardware that must perform initialization magic for
3973 * CCF to get an accurate view of clock for any other callbacks. It may
3974 * also be used needs to perform dynamic allocations. Such allocation
3975 * must be freed in the terminate() callback.
3976 * This callback shall not be used to initialize the parameters state,
3977 * such as rate, parent, etc ...
3978 *
3979 * If it exist, this callback should called before any other callback of
3980 * the clock
3981 */
3982 if (core->ops->init) {
3983 ret = core->ops->init(core->hw);
3984 if (ret)
3985 goto out;
3986 }
3987
3988 parent = core->parent = __clk_init_parent(core);
3989
3990 /*
3991 * Populate core->parent if parent has already been clk_core_init'd. If
3992 * parent has not yet been clk_core_init'd then place clk in the orphan
3993 * list. If clk doesn't have any parents then place it in the root
3994 * clk list.
3995 *
3996 * Every time a new clk is clk_init'd then we walk the list of orphan
3997 * clocks and re-parent any that are children of the clock currently
3998 * being clk_init'd.
3999 */
4000 if (parent) {
4001 hlist_add_head(n: &core->child_node, h: &parent->children);
4002 core->orphan = parent->orphan;
4003 } else if (!core->num_parents) {
4004 hlist_add_head(n: &core->child_node, h: &clk_root_list);
4005 core->orphan = false;
4006 } else {
4007 hlist_add_head(n: &core->child_node, h: &clk_orphan_list);
4008 core->orphan = true;
4009 }
4010
4011 /*
4012 * Set clk's accuracy. The preferred method is to use
4013 * .recalc_accuracy. For simple clocks and lazy developers the default
4014 * fallback is to use the parent's accuracy. If a clock doesn't have a
4015 * parent (or is orphaned) then accuracy is set to zero (perfect
4016 * clock).
4017 */
4018 if (core->ops->recalc_accuracy)
4019 core->accuracy = core->ops->recalc_accuracy(core->hw,
4020 clk_core_get_accuracy_no_lock(core: parent));
4021 else if (parent)
4022 core->accuracy = parent->accuracy;
4023 else
4024 core->accuracy = 0;
4025
4026 /*
4027 * Set clk's phase by clk_core_get_phase() caching the phase.
4028 * Since a phase is by definition relative to its parent, just
4029 * query the current clock phase, or just assume it's in phase.
4030 */
4031 phase = clk_core_get_phase(core);
4032 if (phase < 0) {
4033 ret = phase;
4034 pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4035 core->name);
4036 goto out;
4037 }
4038
4039 /*
4040 * Set clk's duty cycle.
4041 */
4042 clk_core_update_duty_cycle_nolock(core);
4043
4044 /*
4045 * Set clk's rate. The preferred method is to use .recalc_rate. For
4046 * simple clocks and lazy developers the default fallback is to use the
4047 * parent's rate. If a clock doesn't have a parent (or is orphaned)
4048 * then rate is set to zero.
4049 */
4050 if (core->ops->recalc_rate)
4051 rate = core->ops->recalc_rate(core->hw,
4052 clk_core_get_rate_nolock(core: parent));
4053 else if (parent)
4054 rate = parent->rate;
4055 else
4056 rate = 0;
4057 core->rate = core->req_rate = rate;
4058
4059 /*
4060 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4061 * don't get accidentally disabled when walking the orphan tree and
4062 * reparenting clocks
4063 */
4064 if (core->flags & CLK_IS_CRITICAL) {
4065 ret = clk_core_prepare(core);
4066 if (ret) {
4067 pr_warn("%s: critical clk '%s' failed to prepare\n",
4068 __func__, core->name);
4069 goto out;
4070 }
4071
4072 ret = clk_core_enable_lock(core);
4073 if (ret) {
4074 pr_warn("%s: critical clk '%s' failed to enable\n",
4075 __func__, core->name);
4076 clk_core_unprepare(core);
4077 goto out;
4078 }
4079 }
4080
4081 clk_core_reparent_orphans_nolock();
4082out:
4083 clk_pm_runtime_put(core);
4084unlock:
4085 if (ret) {
4086 hlist_del_init(n: &core->child_node);
4087 core->hw->core = NULL;
4088 }
4089
4090 clk_prepare_unlock();
4091
4092 if (!ret)
4093 clk_debug_register(core);
4094
4095 return ret;
4096}
4097
4098/**
4099 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4100 * @core: clk to add consumer to
4101 * @clk: consumer to link to a clk
4102 */
4103static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4104{
4105 clk_prepare_lock();
4106 hlist_add_head(n: &clk->clks_node, h: &core->clks);
4107 clk_prepare_unlock();
4108}
4109
4110/**
4111 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4112 * @clk: consumer to unlink
4113 */
4114static void clk_core_unlink_consumer(struct clk *clk)
4115{
4116 lockdep_assert_held(&prepare_lock);
4117 hlist_del(n: &clk->clks_node);
4118}
4119
4120/**
4121 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4122 * @core: clk to allocate a consumer for
4123 * @dev_id: string describing device name
4124 * @con_id: connection ID string on device
4125 *
4126 * Returns: clk consumer left unlinked from the consumer list
4127 */
4128static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4129 const char *con_id)
4130{
4131 struct clk *clk;
4132
4133 clk = kzalloc(size: sizeof(*clk), GFP_KERNEL);
4134 if (!clk)
4135 return ERR_PTR(error: -ENOMEM);
4136
4137 clk->core = core;
4138 clk->dev_id = dev_id;
4139 clk->con_id = kstrdup_const(s: con_id, GFP_KERNEL);
4140 clk->max_rate = ULONG_MAX;
4141
4142 return clk;
4143}
4144
4145/**
4146 * free_clk - Free a clk consumer
4147 * @clk: clk consumer to free
4148 *
4149 * Note, this assumes the clk has been unlinked from the clk_core consumer
4150 * list.
4151 */
4152static void free_clk(struct clk *clk)
4153{
4154 kfree_const(x: clk->con_id);
4155 kfree(objp: clk);
4156}
4157
4158/**
4159 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4160 * a clk_hw
4161 * @dev: clk consumer device
4162 * @hw: clk_hw associated with the clk being consumed
4163 * @dev_id: string describing device name
4164 * @con_id: connection ID string on device
4165 *
4166 * This is the main function used to create a clk pointer for use by clk
4167 * consumers. It connects a consumer to the clk_core and clk_hw structures
4168 * used by the framework and clk provider respectively.
4169 */
4170struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4171 const char *dev_id, const char *con_id)
4172{
4173 struct clk *clk;
4174 struct clk_core *core;
4175
4176 /* This is to allow this function to be chained to others */
4177 if (IS_ERR_OR_NULL(ptr: hw))
4178 return ERR_CAST(ptr: hw);
4179
4180 core = hw->core;
4181 clk = alloc_clk(core, dev_id, con_id);
4182 if (IS_ERR(ptr: clk))
4183 return clk;
4184 clk->dev = dev;
4185
4186 if (!try_module_get(module: core->owner)) {
4187 free_clk(clk);
4188 return ERR_PTR(error: -ENOENT);
4189 }
4190
4191 kref_get(kref: &core->ref);
4192 clk_core_link_consumer(core, clk);
4193
4194 return clk;
4195}
4196
4197/**
4198 * clk_hw_get_clk - get clk consumer given an clk_hw
4199 * @hw: clk_hw associated with the clk being consumed
4200 * @con_id: connection ID string on device
4201 *
4202 * Returns: new clk consumer
4203 * This is the function to be used by providers which need
4204 * to get a consumer clk and act on the clock element
4205 * Calls to this function must be balanced with calls clk_put()
4206 */
4207struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4208{
4209 struct device *dev = hw->core->dev;
4210 const char *name = dev ? dev_name(dev) : NULL;
4211
4212 return clk_hw_create_clk(dev, hw, dev_id: name, con_id);
4213}
4214EXPORT_SYMBOL(clk_hw_get_clk);
4215
4216static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4217{
4218 const char *dst;
4219
4220 if (!src) {
4221 if (must_exist)
4222 return -EINVAL;
4223 return 0;
4224 }
4225
4226 *dst_p = dst = kstrdup_const(s: src, GFP_KERNEL);
4227 if (!dst)
4228 return -ENOMEM;
4229
4230 return 0;
4231}
4232
4233static int clk_core_populate_parent_map(struct clk_core *core,
4234 const struct clk_init_data *init)
4235{
4236 u8 num_parents = init->num_parents;
4237 const char * const *parent_names = init->parent_names;
4238 const struct clk_hw **parent_hws = init->parent_hws;
4239 const struct clk_parent_data *parent_data = init->parent_data;
4240 int i, ret = 0;
4241 struct clk_parent_map *parents, *parent;
4242
4243 if (!num_parents)
4244 return 0;
4245
4246 /*
4247 * Avoid unnecessary string look-ups of clk_core's possible parents by
4248 * having a cache of names/clk_hw pointers to clk_core pointers.
4249 */
4250 parents = kcalloc(n: num_parents, size: sizeof(*parents), GFP_KERNEL);
4251 core->parents = parents;
4252 if (!parents)
4253 return -ENOMEM;
4254
4255 /* Copy everything over because it might be __initdata */
4256 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4257 parent->index = -1;
4258 if (parent_names) {
4259 /* throw a WARN if any entries are NULL */
4260 WARN(!parent_names[i],
4261 "%s: invalid NULL in %s's .parent_names\n",
4262 __func__, core->name);
4263 ret = clk_cpy_name(dst_p: &parent->name, src: parent_names[i],
4264 must_exist: true);
4265 } else if (parent_data) {
4266 parent->hw = parent_data[i].hw;
4267 parent->index = parent_data[i].index;
4268 ret = clk_cpy_name(dst_p: &parent->fw_name,
4269 src: parent_data[i].fw_name, must_exist: false);
4270 if (!ret)
4271 ret = clk_cpy_name(dst_p: &parent->name,
4272 src: parent_data[i].name,
4273 must_exist: false);
4274 } else if (parent_hws) {
4275 parent->hw = parent_hws[i];
4276 } else {
4277 ret = -EINVAL;
4278 WARN(1, "Must specify parents if num_parents > 0\n");
4279 }
4280
4281 if (ret) {
4282 do {
4283 kfree_const(x: parents[i].name);
4284 kfree_const(x: parents[i].fw_name);
4285 } while (--i >= 0);
4286 kfree(objp: parents);
4287
4288 return ret;
4289 }
4290 }
4291
4292 return 0;
4293}
4294
4295static void clk_core_free_parent_map(struct clk_core *core)
4296{
4297 int i = core->num_parents;
4298
4299 if (!core->num_parents)
4300 return;
4301
4302 while (--i >= 0) {
4303 kfree_const(x: core->parents[i].name);
4304 kfree_const(x: core->parents[i].fw_name);
4305 }
4306
4307 kfree(objp: core->parents);
4308}
4309
4310/* Free memory allocated for a struct clk_core */
4311static void __clk_release(struct kref *ref)
4312{
4313 struct clk_core *core = container_of(ref, struct clk_core, ref);
4314
4315 if (core->rpm_enabled) {
4316 mutex_lock(&clk_rpm_list_lock);
4317 hlist_del(n: &core->rpm_node);
4318 mutex_unlock(lock: &clk_rpm_list_lock);
4319 }
4320
4321 clk_core_free_parent_map(core);
4322 kfree_const(x: core->name);
4323 kfree(objp: core);
4324}
4325
4326static struct clk *
4327__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4328{
4329 int ret;
4330 struct clk_core *core;
4331 const struct clk_init_data *init = hw->init;
4332
4333 /*
4334 * The init data is not supposed to be used outside of registration path.
4335 * Set it to NULL so that provider drivers can't use it either and so that
4336 * we catch use of hw->init early on in the core.
4337 */
4338 hw->init = NULL;
4339
4340 core = kzalloc(size: sizeof(*core), GFP_KERNEL);
4341 if (!core) {
4342 ret = -ENOMEM;
4343 goto fail_out;
4344 }
4345
4346 kref_init(kref: &core->ref);
4347
4348 core->name = kstrdup_const(s: init->name, GFP_KERNEL);
4349 if (!core->name) {
4350 ret = -ENOMEM;
4351 goto fail_name;
4352 }
4353
4354 if (WARN_ON(!init->ops)) {
4355 ret = -EINVAL;
4356 goto fail_ops;
4357 }
4358 core->ops = init->ops;
4359
4360 core->dev = dev;
4361 clk_pm_runtime_init(core);
4362 core->of_node = np;
4363 if (dev && dev->driver)
4364 core->owner = dev->driver->owner;
4365 core->hw = hw;
4366 core->flags = init->flags;
4367 core->num_parents = init->num_parents;
4368 core->min_rate = 0;
4369 core->max_rate = ULONG_MAX;
4370
4371 ret = clk_core_populate_parent_map(core, init);
4372 if (ret)
4373 goto fail_parents;
4374
4375 INIT_HLIST_HEAD(&core->clks);
4376
4377 /*
4378 * Don't call clk_hw_create_clk() here because that would pin the
4379 * provider module to itself and prevent it from ever being removed.
4380 */
4381 hw->clk = alloc_clk(core, NULL, NULL);
4382 if (IS_ERR(ptr: hw->clk)) {
4383 ret = PTR_ERR(ptr: hw->clk);
4384 goto fail_create_clk;
4385 }
4386
4387 clk_core_link_consumer(core, clk: hw->clk);
4388
4389 ret = __clk_core_init(core);
4390 if (!ret)
4391 return hw->clk;
4392
4393 clk_prepare_lock();
4394 clk_core_unlink_consumer(clk: hw->clk);
4395 clk_prepare_unlock();
4396
4397 free_clk(clk: hw->clk);
4398 hw->clk = NULL;
4399
4400fail_create_clk:
4401fail_parents:
4402fail_ops:
4403fail_name:
4404 kref_put(kref: &core->ref, release: __clk_release);
4405fail_out:
4406 return ERR_PTR(error: ret);
4407}
4408
4409/**
4410 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4411 * @dev: Device to get device node of
4412 *
4413 * Return: device node pointer of @dev, or the device node pointer of
4414 * @dev->parent if dev doesn't have a device node, or NULL if neither
4415 * @dev or @dev->parent have a device node.
4416 */
4417static struct device_node *dev_or_parent_of_node(struct device *dev)
4418{
4419 struct device_node *np;
4420
4421 if (!dev)
4422 return NULL;
4423
4424 np = dev_of_node(dev);
4425 if (!np)
4426 np = dev_of_node(dev: dev->parent);
4427
4428 return np;
4429}
4430
4431/**
4432 * clk_register - allocate a new clock, register it and return an opaque cookie
4433 * @dev: device that is registering this clock
4434 * @hw: link to hardware-specific clock data
4435 *
4436 * clk_register is the *deprecated* interface for populating the clock tree with
4437 * new clock nodes. Use clk_hw_register() instead.
4438 *
4439 * Returns: a pointer to the newly allocated struct clk which
4440 * cannot be dereferenced by driver code but may be used in conjunction with the
4441 * rest of the clock API. In the event of an error clk_register will return an
4442 * error code; drivers must test for an error code after calling clk_register.
4443 */
4444struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4445{
4446 return __clk_register(dev, np: dev_or_parent_of_node(dev), hw);
4447}
4448EXPORT_SYMBOL_GPL(clk_register);
4449
4450/**
4451 * clk_hw_register - register a clk_hw and return an error code
4452 * @dev: device that is registering this clock
4453 * @hw: link to hardware-specific clock data
4454 *
4455 * clk_hw_register is the primary interface for populating the clock tree with
4456 * new clock nodes. It returns an integer equal to zero indicating success or
4457 * less than zero indicating failure. Drivers must test for an error code after
4458 * calling clk_hw_register().
4459 */
4460int clk_hw_register(struct device *dev, struct clk_hw *hw)
4461{
4462 return PTR_ERR_OR_ZERO(ptr: __clk_register(dev, np: dev_or_parent_of_node(dev),
4463 hw));
4464}
4465EXPORT_SYMBOL_GPL(clk_hw_register);
4466
4467/*
4468 * of_clk_hw_register - register a clk_hw and return an error code
4469 * @node: device_node of device that is registering this clock
4470 * @hw: link to hardware-specific clock data
4471 *
4472 * of_clk_hw_register() is the primary interface for populating the clock tree
4473 * with new clock nodes when a struct device is not available, but a struct
4474 * device_node is. It returns an integer equal to zero indicating success or
4475 * less than zero indicating failure. Drivers must test for an error code after
4476 * calling of_clk_hw_register().
4477 */
4478int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4479{
4480 return PTR_ERR_OR_ZERO(ptr: __clk_register(NULL, np: node, hw));
4481}
4482EXPORT_SYMBOL_GPL(of_clk_hw_register);
4483
4484/*
4485 * Empty clk_ops for unregistered clocks. These are used temporarily
4486 * after clk_unregister() was called on a clock and until last clock
4487 * consumer calls clk_put() and the struct clk object is freed.
4488 */
4489static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4490{
4491 return -ENXIO;
4492}
4493
4494static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4495{
4496 WARN_ON_ONCE(1);
4497}
4498
4499static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4500 unsigned long parent_rate)
4501{
4502 return -ENXIO;
4503}
4504
4505static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4506{
4507 return -ENXIO;
4508}
4509
4510static int clk_nodrv_determine_rate(struct clk_hw *hw,
4511 struct clk_rate_request *req)
4512{
4513 return -ENXIO;
4514}
4515
4516static const struct clk_ops clk_nodrv_ops = {
4517 .enable = clk_nodrv_prepare_enable,
4518 .disable = clk_nodrv_disable_unprepare,
4519 .prepare = clk_nodrv_prepare_enable,
4520 .unprepare = clk_nodrv_disable_unprepare,
4521 .determine_rate = clk_nodrv_determine_rate,
4522 .set_rate = clk_nodrv_set_rate,
4523 .set_parent = clk_nodrv_set_parent,
4524};
4525
4526static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4527 const struct clk_core *target)
4528{
4529 int i;
4530 struct clk_core *child;
4531
4532 for (i = 0; i < root->num_parents; i++)
4533 if (root->parents[i].core == target)
4534 root->parents[i].core = NULL;
4535
4536 hlist_for_each_entry(child, &root->children, child_node)
4537 clk_core_evict_parent_cache_subtree(root: child, target);
4538}
4539
4540/* Remove this clk from all parent caches */
4541static void clk_core_evict_parent_cache(struct clk_core *core)
4542{
4543 const struct hlist_head **lists;
4544 struct clk_core *root;
4545
4546 lockdep_assert_held(&prepare_lock);
4547
4548 for (lists = all_lists; *lists; lists++)
4549 hlist_for_each_entry(root, *lists, child_node)
4550 clk_core_evict_parent_cache_subtree(root, target: core);
4551
4552}
4553
4554/**
4555 * clk_unregister - unregister a currently registered clock
4556 * @clk: clock to unregister
4557 */
4558void clk_unregister(struct clk *clk)
4559{
4560 unsigned long flags;
4561 const struct clk_ops *ops;
4562
4563 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4564 return;
4565
4566 clk_debug_unregister(core: clk->core);
4567
4568 clk_prepare_lock();
4569
4570 ops = clk->core->ops;
4571 if (ops == &clk_nodrv_ops) {
4572 pr_err("%s: unregistered clock: %s\n", __func__,
4573 clk->core->name);
4574 clk_prepare_unlock();
4575 return;
4576 }
4577 /*
4578 * Assign empty clock ops for consumers that might still hold
4579 * a reference to this clock.
4580 */
4581 flags = clk_enable_lock();
4582 clk->core->ops = &clk_nodrv_ops;
4583 clk_enable_unlock(flags);
4584
4585 if (ops->terminate)
4586 ops->terminate(clk->core->hw);
4587
4588 if (!hlist_empty(h: &clk->core->children)) {
4589 struct clk_core *child;
4590 struct hlist_node *t;
4591
4592 /* Reparent all children to the orphan list. */
4593 hlist_for_each_entry_safe(child, t, &clk->core->children,
4594 child_node)
4595 clk_core_set_parent_nolock(core: child, NULL);
4596 }
4597
4598 clk_core_evict_parent_cache(core: clk->core);
4599
4600 hlist_del_init(n: &clk->core->child_node);
4601
4602 if (clk->core->prepare_count)
4603 pr_warn("%s: unregistering prepared clock: %s\n",
4604 __func__, clk->core->name);
4605
4606 if (clk->core->protect_count)
4607 pr_warn("%s: unregistering protected clock: %s\n",
4608 __func__, clk->core->name);
4609 clk_prepare_unlock();
4610
4611 kref_put(kref: &clk->core->ref, release: __clk_release);
4612 free_clk(clk);
4613}
4614EXPORT_SYMBOL_GPL(clk_unregister);
4615
4616/**
4617 * clk_hw_unregister - unregister a currently registered clk_hw
4618 * @hw: hardware-specific clock data to unregister
4619 */
4620void clk_hw_unregister(struct clk_hw *hw)
4621{
4622 clk_unregister(hw->clk);
4623}
4624EXPORT_SYMBOL_GPL(clk_hw_unregister);
4625
4626static void devm_clk_unregister_cb(struct device *dev, void *res)
4627{
4628 clk_unregister(*(struct clk **)res);
4629}
4630
4631static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4632{
4633 clk_hw_unregister(*(struct clk_hw **)res);
4634}
4635
4636/**
4637 * devm_clk_register - resource managed clk_register()
4638 * @dev: device that is registering this clock
4639 * @hw: link to hardware-specific clock data
4640 *
4641 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4642 *
4643 * Clocks returned from this function are automatically clk_unregister()ed on
4644 * driver detach. See clk_register() for more information.
4645 */
4646struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4647{
4648 struct clk *clk;
4649 struct clk **clkp;
4650
4651 clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4652 if (!clkp)
4653 return ERR_PTR(error: -ENOMEM);
4654
4655 clk = clk_register(dev, hw);
4656 if (!IS_ERR(ptr: clk)) {
4657 *clkp = clk;
4658 devres_add(dev, res: clkp);
4659 } else {
4660 devres_free(res: clkp);
4661 }
4662
4663 return clk;
4664}
4665EXPORT_SYMBOL_GPL(devm_clk_register);
4666
4667/**
4668 * devm_clk_hw_register - resource managed clk_hw_register()
4669 * @dev: device that is registering this clock
4670 * @hw: link to hardware-specific clock data
4671 *
4672 * Managed clk_hw_register(). Clocks registered by this function are
4673 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4674 * for more information.
4675 */
4676int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4677{
4678 struct clk_hw **hwp;
4679 int ret;
4680
4681 hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4682 if (!hwp)
4683 return -ENOMEM;
4684
4685 ret = clk_hw_register(dev, hw);
4686 if (!ret) {
4687 *hwp = hw;
4688 devres_add(dev, res: hwp);
4689 } else {
4690 devres_free(res: hwp);
4691 }
4692
4693 return ret;
4694}
4695EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4696
4697static void devm_clk_release(struct device *dev, void *res)
4698{
4699 clk_put(clk: *(struct clk **)res);
4700}
4701
4702/**
4703 * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4704 * @dev: device that is registering this clock
4705 * @hw: clk_hw associated with the clk being consumed
4706 * @con_id: connection ID string on device
4707 *
4708 * Managed clk_hw_get_clk(). Clocks got with this function are
4709 * automatically clk_put() on driver detach. See clk_put()
4710 * for more information.
4711 */
4712struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4713 const char *con_id)
4714{
4715 struct clk *clk;
4716 struct clk **clkp;
4717
4718 /* This should not happen because it would mean we have drivers
4719 * passing around clk_hw pointers instead of having the caller use
4720 * proper clk_get() style APIs
4721 */
4722 WARN_ON_ONCE(dev != hw->core->dev);
4723
4724 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4725 if (!clkp)
4726 return ERR_PTR(error: -ENOMEM);
4727
4728 clk = clk_hw_get_clk(hw, con_id);
4729 if (!IS_ERR(ptr: clk)) {
4730 *clkp = clk;
4731 devres_add(dev, res: clkp);
4732 } else {
4733 devres_free(res: clkp);
4734 }
4735
4736 return clk;
4737}
4738EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4739
4740/*
4741 * clkdev helpers
4742 */
4743
4744void __clk_put(struct clk *clk)
4745{
4746 struct module *owner;
4747
4748 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4749 return;
4750
4751 clk_prepare_lock();
4752
4753 /*
4754 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4755 * given user should be balanced with calls to clk_rate_exclusive_put()
4756 * and by that same consumer
4757 */
4758 if (WARN_ON(clk->exclusive_count)) {
4759 /* We voiced our concern, let's sanitize the situation */
4760 clk->core->protect_count -= (clk->exclusive_count - 1);
4761 clk_core_rate_unprotect(core: clk->core);
4762 clk->exclusive_count = 0;
4763 }
4764
4765 hlist_del(n: &clk->clks_node);
4766
4767 /* If we had any boundaries on that clock, let's drop them. */
4768 if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4769 clk_set_rate_range_nolock(clk, min: 0, ULONG_MAX);
4770
4771 clk_prepare_unlock();
4772
4773 owner = clk->core->owner;
4774 kref_put(kref: &clk->core->ref, release: __clk_release);
4775 module_put(module: owner);
4776 free_clk(clk);
4777}
4778
4779/*** clk rate change notifiers ***/
4780
4781/**
4782 * clk_notifier_register - add a clk rate change notifier
4783 * @clk: struct clk * to watch
4784 * @nb: struct notifier_block * with callback info
4785 *
4786 * Request notification when clk's rate changes. This uses an SRCU
4787 * notifier because we want it to block and notifier unregistrations are
4788 * uncommon. The callbacks associated with the notifier must not
4789 * re-enter into the clk framework by calling any top-level clk APIs;
4790 * this will cause a nested prepare_lock mutex.
4791 *
4792 * In all notification cases (pre, post and abort rate change) the original
4793 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4794 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4795 *
4796 * clk_notifier_register() must be called from non-atomic context.
4797 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4798 * allocation failure; otherwise, passes along the return value of
4799 * srcu_notifier_chain_register().
4800 */
4801int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4802{
4803 struct clk_notifier *cn;
4804 int ret = -ENOMEM;
4805
4806 if (!clk || !nb)
4807 return -EINVAL;
4808
4809 clk_prepare_lock();
4810
4811 /* search the list of notifiers for this clk */
4812 list_for_each_entry(cn, &clk_notifier_list, node)
4813 if (cn->clk == clk)
4814 goto found;
4815
4816 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4817 cn = kzalloc(size: sizeof(*cn), GFP_KERNEL);
4818 if (!cn)
4819 goto out;
4820
4821 cn->clk = clk;
4822 srcu_init_notifier_head(nh: &cn->notifier_head);
4823
4824 list_add(new: &cn->node, head: &clk_notifier_list);
4825
4826found:
4827 ret = srcu_notifier_chain_register(nh: &cn->notifier_head, nb);
4828
4829 clk->core->notifier_count++;
4830
4831out:
4832 clk_prepare_unlock();
4833
4834 return ret;
4835}
4836EXPORT_SYMBOL_GPL(clk_notifier_register);
4837
4838/**
4839 * clk_notifier_unregister - remove a clk rate change notifier
4840 * @clk: struct clk *
4841 * @nb: struct notifier_block * with callback info
4842 *
4843 * Request no further notification for changes to 'clk' and frees memory
4844 * allocated in clk_notifier_register.
4845 *
4846 * Returns -EINVAL if called with null arguments; otherwise, passes
4847 * along the return value of srcu_notifier_chain_unregister().
4848 */
4849int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4850{
4851 struct clk_notifier *cn;
4852 int ret = -ENOENT;
4853
4854 if (!clk || !nb)
4855 return -EINVAL;
4856
4857 clk_prepare_lock();
4858
4859 list_for_each_entry(cn, &clk_notifier_list, node) {
4860 if (cn->clk == clk) {
4861 ret = srcu_notifier_chain_unregister(nh: &cn->notifier_head, nb);
4862
4863 clk->core->notifier_count--;
4864
4865 /* XXX the notifier code should handle this better */
4866 if (!cn->notifier_head.head) {
4867 srcu_cleanup_notifier_head(&cn->notifier_head);
4868 list_del(entry: &cn->node);
4869 kfree(objp: cn);
4870 }
4871 break;
4872 }
4873 }
4874
4875 clk_prepare_unlock();
4876
4877 return ret;
4878}
4879EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4880
4881struct clk_notifier_devres {
4882 struct clk *clk;
4883 struct notifier_block *nb;
4884};
4885
4886static void devm_clk_notifier_release(struct device *dev, void *res)
4887{
4888 struct clk_notifier_devres *devres = res;
4889
4890 clk_notifier_unregister(devres->clk, devres->nb);
4891}
4892
4893int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4894 struct notifier_block *nb)
4895{
4896 struct clk_notifier_devres *devres;
4897 int ret;
4898
4899 devres = devres_alloc(devm_clk_notifier_release,
4900 sizeof(*devres), GFP_KERNEL);
4901
4902 if (!devres)
4903 return -ENOMEM;
4904
4905 ret = clk_notifier_register(clk, nb);
4906 if (!ret) {
4907 devres->clk = clk;
4908 devres->nb = nb;
4909 devres_add(dev, res: devres);
4910 } else {
4911 devres_free(res: devres);
4912 }
4913
4914 return ret;
4915}
4916EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4917
4918#ifdef CONFIG_OF
4919static void clk_core_reparent_orphans(void)
4920{
4921 clk_prepare_lock();
4922 clk_core_reparent_orphans_nolock();
4923 clk_prepare_unlock();
4924}
4925
4926/**
4927 * struct of_clk_provider - Clock provider registration structure
4928 * @link: Entry in global list of clock providers
4929 * @node: Pointer to device tree node of clock provider
4930 * @get: Get clock callback. Returns NULL or a struct clk for the
4931 * given clock specifier
4932 * @get_hw: Get clk_hw callback. Returns NULL, ERR_PTR or a
4933 * struct clk_hw for the given clock specifier
4934 * @data: context pointer to be passed into @get callback
4935 */
4936struct of_clk_provider {
4937 struct list_head link;
4938
4939 struct device_node *node;
4940 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4941 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4942 void *data;
4943};
4944
4945extern struct of_device_id __clk_of_table;
4946static const struct of_device_id __clk_of_table_sentinel
4947 __used __section("__clk_of_table_end");
4948
4949static LIST_HEAD(of_clk_providers);
4950static DEFINE_MUTEX(of_clk_mutex);
4951
4952struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4953 void *data)
4954{
4955 return data;
4956}
4957EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4958
4959struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4960{
4961 return data;
4962}
4963EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4964
4965struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4966{
4967 struct clk_onecell_data *clk_data = data;
4968 unsigned int idx = clkspec->args[0];
4969
4970 if (idx >= clk_data->clk_num) {
4971 pr_err("%s: invalid clock index %u\n", __func__, idx);
4972 return ERR_PTR(error: -EINVAL);
4973 }
4974
4975 return clk_data->clks[idx];
4976}
4977EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4978
4979struct clk_hw *
4980of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4981{
4982 struct clk_hw_onecell_data *hw_data = data;
4983 unsigned int idx = clkspec->args[0];
4984
4985 if (idx >= hw_data->num) {
4986 pr_err("%s: invalid index %u\n", __func__, idx);
4987 return ERR_PTR(error: -EINVAL);
4988 }
4989
4990 return hw_data->hws[idx];
4991}
4992EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4993
4994/**
4995 * of_clk_add_provider() - Register a clock provider for a node
4996 * @np: Device node pointer associated with clock provider
4997 * @clk_src_get: callback for decoding clock
4998 * @data: context pointer for @clk_src_get callback.
4999 *
5000 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
5001 */
5002int of_clk_add_provider(struct device_node *np,
5003 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
5004 void *data),
5005 void *data)
5006{
5007 struct of_clk_provider *cp;
5008 int ret;
5009
5010 if (!np)
5011 return 0;
5012
5013 cp = kzalloc(size: sizeof(*cp), GFP_KERNEL);
5014 if (!cp)
5015 return -ENOMEM;
5016
5017 cp->node = of_node_get(node: np);
5018 cp->data = data;
5019 cp->get = clk_src_get;
5020
5021 mutex_lock(&of_clk_mutex);
5022 list_add(new: &cp->link, head: &of_clk_providers);
5023 mutex_unlock(lock: &of_clk_mutex);
5024 pr_debug("Added clock from %pOF\n", np);
5025
5026 clk_core_reparent_orphans();
5027
5028 ret = of_clk_set_defaults(node: np, clk_supplier: true);
5029 if (ret < 0)
5030 of_clk_del_provider(np);
5031
5032 fwnode_dev_initialized(fwnode: &np->fwnode, initialized: true);
5033
5034 return ret;
5035}
5036EXPORT_SYMBOL_GPL(of_clk_add_provider);
5037
5038/**
5039 * of_clk_add_hw_provider() - Register a clock provider for a node
5040 * @np: Device node pointer associated with clock provider
5041 * @get: callback for decoding clk_hw
5042 * @data: context pointer for @get callback.
5043 */
5044int of_clk_add_hw_provider(struct device_node *np,
5045 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5046 void *data),
5047 void *data)
5048{
5049 struct of_clk_provider *cp;
5050 int ret;
5051
5052 if (!np)
5053 return 0;
5054
5055 cp = kzalloc(size: sizeof(*cp), GFP_KERNEL);
5056 if (!cp)
5057 return -ENOMEM;
5058
5059 cp->node = of_node_get(node: np);
5060 cp->data = data;
5061 cp->get_hw = get;
5062
5063 mutex_lock(&of_clk_mutex);
5064 list_add(new: &cp->link, head: &of_clk_providers);
5065 mutex_unlock(lock: &of_clk_mutex);
5066 pr_debug("Added clk_hw provider from %pOF\n", np);
5067
5068 clk_core_reparent_orphans();
5069
5070 ret = of_clk_set_defaults(node: np, clk_supplier: true);
5071 if (ret < 0)
5072 of_clk_del_provider(np);
5073
5074 fwnode_dev_initialized(fwnode: &np->fwnode, initialized: true);
5075
5076 return ret;
5077}
5078EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5079
5080static void devm_of_clk_release_provider(struct device *dev, void *res)
5081{
5082 of_clk_del_provider(np: *(struct device_node **)res);
5083}
5084
5085/*
5086 * We allow a child device to use its parent device as the clock provider node
5087 * for cases like MFD sub-devices where the child device driver wants to use
5088 * devm_*() APIs but not list the device in DT as a sub-node.
5089 */
5090static struct device_node *get_clk_provider_node(struct device *dev)
5091{
5092 struct device_node *np, *parent_np;
5093
5094 np = dev->of_node;
5095 parent_np = dev->parent ? dev->parent->of_node : NULL;
5096
5097 if (!of_property_present(np, propname: "#clock-cells"))
5098 if (of_property_present(np: parent_np, propname: "#clock-cells"))
5099 np = parent_np;
5100
5101 return np;
5102}
5103
5104/**
5105 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5106 * @dev: Device acting as the clock provider (used for DT node and lifetime)
5107 * @get: callback for decoding clk_hw
5108 * @data: context pointer for @get callback
5109 *
5110 * Registers clock provider for given device's node. If the device has no DT
5111 * node or if the device node lacks of clock provider information (#clock-cells)
5112 * then the parent device's node is scanned for this information. If parent node
5113 * has the #clock-cells then it is used in registration. Provider is
5114 * automatically released at device exit.
5115 *
5116 * Return: 0 on success or an errno on failure.
5117 */
5118int devm_of_clk_add_hw_provider(struct device *dev,
5119 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5120 void *data),
5121 void *data)
5122{
5123 struct device_node **ptr, *np;
5124 int ret;
5125
5126 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5127 GFP_KERNEL);
5128 if (!ptr)
5129 return -ENOMEM;
5130
5131 np = get_clk_provider_node(dev);
5132 ret = of_clk_add_hw_provider(np, get, data);
5133 if (!ret) {
5134 *ptr = np;
5135 devres_add(dev, res: ptr);
5136 } else {
5137 devres_free(res: ptr);
5138 }
5139
5140 return ret;
5141}
5142EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5143
5144/**
5145 * of_clk_del_provider() - Remove a previously registered clock provider
5146 * @np: Device node pointer associated with clock provider
5147 */
5148void of_clk_del_provider(struct device_node *np)
5149{
5150 struct of_clk_provider *cp;
5151
5152 if (!np)
5153 return;
5154
5155 mutex_lock(&of_clk_mutex);
5156 list_for_each_entry(cp, &of_clk_providers, link) {
5157 if (cp->node == np) {
5158 list_del(entry: &cp->link);
5159 fwnode_dev_initialized(fwnode: &np->fwnode, initialized: false);
5160 of_node_put(node: cp->node);
5161 kfree(objp: cp);
5162 break;
5163 }
5164 }
5165 mutex_unlock(lock: &of_clk_mutex);
5166}
5167EXPORT_SYMBOL_GPL(of_clk_del_provider);
5168
5169/**
5170 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5171 * @np: device node to parse clock specifier from
5172 * @index: index of phandle to parse clock out of. If index < 0, @name is used
5173 * @name: clock name to find and parse. If name is NULL, the index is used
5174 * @out_args: Result of parsing the clock specifier
5175 *
5176 * Parses a device node's "clocks" and "clock-names" properties to find the
5177 * phandle and cells for the index or name that is desired. The resulting clock
5178 * specifier is placed into @out_args, or an errno is returned when there's a
5179 * parsing error. The @index argument is ignored if @name is non-NULL.
5180 *
5181 * Example:
5182 *
5183 * phandle1: clock-controller@1 {
5184 * #clock-cells = <2>;
5185 * }
5186 *
5187 * phandle2: clock-controller@2 {
5188 * #clock-cells = <1>;
5189 * }
5190 *
5191 * clock-consumer@3 {
5192 * clocks = <&phandle1 1 2 &phandle2 3>;
5193 * clock-names = "name1", "name2";
5194 * }
5195 *
5196 * To get a device_node for `clock-controller@2' node you may call this
5197 * function a few different ways:
5198 *
5199 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5200 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5201 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5202 *
5203 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5204 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5205 * the "clock-names" property of @np.
5206 */
5207static int of_parse_clkspec(const struct device_node *np, int index,
5208 const char *name, struct of_phandle_args *out_args)
5209{
5210 int ret = -ENOENT;
5211
5212 /* Walk up the tree of devices looking for a clock property that matches */
5213 while (np) {
5214 /*
5215 * For named clocks, first look up the name in the
5216 * "clock-names" property. If it cannot be found, then index
5217 * will be an error code and of_parse_phandle_with_args() will
5218 * return -EINVAL.
5219 */
5220 if (name)
5221 index = of_property_match_string(np, propname: "clock-names", string: name);
5222 ret = of_parse_phandle_with_args(np, list_name: "clocks", cells_name: "#clock-cells",
5223 index, out_args);
5224 if (!ret)
5225 break;
5226 if (name && index >= 0)
5227 break;
5228
5229 /*
5230 * No matching clock found on this node. If the parent node
5231 * has a "clock-ranges" property, then we can try one of its
5232 * clocks.
5233 */
5234 np = np->parent;
5235 if (np && !of_get_property(node: np, name: "clock-ranges", NULL))
5236 break;
5237 index = 0;
5238 }
5239
5240 return ret;
5241}
5242
5243static struct clk_hw *
5244__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5245 struct of_phandle_args *clkspec)
5246{
5247 struct clk *clk;
5248
5249 if (provider->get_hw)
5250 return provider->get_hw(clkspec, provider->data);
5251
5252 clk = provider->get(clkspec, provider->data);
5253 if (IS_ERR(ptr: clk))
5254 return ERR_CAST(ptr: clk);
5255 return __clk_get_hw(clk);
5256}
5257
5258static struct clk_hw *
5259of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5260{
5261 struct of_clk_provider *provider;
5262 struct clk_hw *hw = ERR_PTR(error: -EPROBE_DEFER);
5263
5264 if (!clkspec)
5265 return ERR_PTR(error: -EINVAL);
5266
5267 mutex_lock(&of_clk_mutex);
5268 list_for_each_entry(provider, &of_clk_providers, link) {
5269 if (provider->node == clkspec->np) {
5270 hw = __of_clk_get_hw_from_provider(provider, clkspec);
5271 if (!IS_ERR(ptr: hw))
5272 break;
5273 }
5274 }
5275 mutex_unlock(lock: &of_clk_mutex);
5276
5277 return hw;
5278}
5279
5280/**
5281 * of_clk_get_from_provider() - Lookup a clock from a clock provider
5282 * @clkspec: pointer to a clock specifier data structure
5283 *
5284 * This function looks up a struct clk from the registered list of clock
5285 * providers, an input is a clock specifier data structure as returned
5286 * from the of_parse_phandle_with_args() function call.
5287 */
5288struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5289{
5290 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5291
5292 return clk_hw_create_clk(NULL, hw, NULL, con_id: __func__);
5293}
5294EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5295
5296struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5297 const char *con_id)
5298{
5299 int ret;
5300 struct clk_hw *hw;
5301 struct of_phandle_args clkspec;
5302
5303 ret = of_parse_clkspec(np, index, name: con_id, out_args: &clkspec);
5304 if (ret)
5305 return ERR_PTR(error: ret);
5306
5307 hw = of_clk_get_hw_from_clkspec(clkspec: &clkspec);
5308 of_node_put(node: clkspec.np);
5309
5310 return hw;
5311}
5312
5313static struct clk *__of_clk_get(struct device_node *np,
5314 int index, const char *dev_id,
5315 const char *con_id)
5316{
5317 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5318
5319 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5320}
5321
5322struct clk *of_clk_get(struct device_node *np, int index)
5323{
5324 return __of_clk_get(np, index, dev_id: np->full_name, NULL);
5325}
5326EXPORT_SYMBOL(of_clk_get);
5327
5328/**
5329 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5330 * @np: pointer to clock consumer node
5331 * @name: name of consumer's clock input, or NULL for the first clock reference
5332 *
5333 * This function parses the clocks and clock-names properties,
5334 * and uses them to look up the struct clk from the registered list of clock
5335 * providers.
5336 */
5337struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5338{
5339 if (!np)
5340 return ERR_PTR(error: -ENOENT);
5341
5342 return __of_clk_get(np, index: 0, dev_id: np->full_name, con_id: name);
5343}
5344EXPORT_SYMBOL(of_clk_get_by_name);
5345
5346/**
5347 * of_clk_get_parent_count() - Count the number of clocks a device node has
5348 * @np: device node to count
5349 *
5350 * Returns: The number of clocks that are possible parents of this node
5351 */
5352unsigned int of_clk_get_parent_count(const struct device_node *np)
5353{
5354 int count;
5355
5356 count = of_count_phandle_with_args(np, list_name: "clocks", cells_name: "#clock-cells");
5357 if (count < 0)
5358 return 0;
5359
5360 return count;
5361}
5362EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5363
5364const char *of_clk_get_parent_name(const struct device_node *np, int index)
5365{
5366 struct of_phandle_args clkspec;
5367 struct property *prop;
5368 const char *clk_name;
5369 const __be32 *vp;
5370 u32 pv;
5371 int rc;
5372 int count;
5373 struct clk *clk;
5374
5375 rc = of_parse_phandle_with_args(np, list_name: "clocks", cells_name: "#clock-cells", index,
5376 out_args: &clkspec);
5377 if (rc)
5378 return NULL;
5379
5380 index = clkspec.args_count ? clkspec.args[0] : 0;
5381 count = 0;
5382
5383 /* if there is an indices property, use it to transfer the index
5384 * specified into an array offset for the clock-output-names property.
5385 */
5386 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5387 if (index == pv) {
5388 index = count;
5389 break;
5390 }
5391 count++;
5392 }
5393 /* We went off the end of 'clock-indices' without finding it */
5394 if (prop && !vp)
5395 return NULL;
5396
5397 if (of_property_read_string_index(np: clkspec.np, propname: "clock-output-names",
5398 index,
5399 output: &clk_name) < 0) {
5400 /*
5401 * Best effort to get the name if the clock has been
5402 * registered with the framework. If the clock isn't
5403 * registered, we return the node name as the name of
5404 * the clock as long as #clock-cells = 0.
5405 */
5406 clk = of_clk_get_from_provider(&clkspec);
5407 if (IS_ERR(ptr: clk)) {
5408 if (clkspec.args_count == 0)
5409 clk_name = clkspec.np->name;
5410 else
5411 clk_name = NULL;
5412 } else {
5413 clk_name = __clk_get_name(clk);
5414 clk_put(clk);
5415 }
5416 }
5417
5418
5419 of_node_put(node: clkspec.np);
5420 return clk_name;
5421}
5422EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5423
5424/**
5425 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5426 * number of parents
5427 * @np: Device node pointer associated with clock provider
5428 * @parents: pointer to char array that hold the parents' names
5429 * @size: size of the @parents array
5430 *
5431 * Return: number of parents for the clock node.
5432 */
5433int of_clk_parent_fill(struct device_node *np, const char **parents,
5434 unsigned int size)
5435{
5436 unsigned int i = 0;
5437
5438 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5439 i++;
5440
5441 return i;
5442}
5443EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5444
5445struct clock_provider {
5446 void (*clk_init_cb)(struct device_node *);
5447 struct device_node *np;
5448 struct list_head node;
5449};
5450
5451/*
5452 * This function looks for a parent clock. If there is one, then it
5453 * checks that the provider for this parent clock was initialized, in
5454 * this case the parent clock will be ready.
5455 */
5456static int parent_ready(struct device_node *np)
5457{
5458 int i = 0;
5459
5460 while (true) {
5461 struct clk *clk = of_clk_get(np, i);
5462
5463 /* this parent is ready we can check the next one */
5464 if (!IS_ERR(ptr: clk)) {
5465 clk_put(clk);
5466 i++;
5467 continue;
5468 }
5469
5470 /* at least one parent is not ready, we exit now */
5471 if (PTR_ERR(ptr: clk) == -EPROBE_DEFER)
5472 return 0;
5473
5474 /*
5475 * Here we make assumption that the device tree is
5476 * written correctly. So an error means that there is
5477 * no more parent. As we didn't exit yet, then the
5478 * previous parent are ready. If there is no clock
5479 * parent, no need to wait for them, then we can
5480 * consider their absence as being ready
5481 */
5482 return 1;
5483 }
5484}
5485
5486/**
5487 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5488 * @np: Device node pointer associated with clock provider
5489 * @index: clock index
5490 * @flags: pointer to top-level framework flags
5491 *
5492 * Detects if the clock-critical property exists and, if so, sets the
5493 * corresponding CLK_IS_CRITICAL flag.
5494 *
5495 * Do not use this function. It exists only for legacy Device Tree
5496 * bindings, such as the one-clock-per-node style that are outdated.
5497 * Those bindings typically put all clock data into .dts and the Linux
5498 * driver has no clock data, thus making it impossible to set this flag
5499 * correctly from the driver. Only those drivers may call
5500 * of_clk_detect_critical from their setup functions.
5501 *
5502 * Return: error code or zero on success
5503 */
5504int of_clk_detect_critical(struct device_node *np, int index,
5505 unsigned long *flags)
5506{
5507 struct property *prop;
5508 const __be32 *cur;
5509 uint32_t idx;
5510
5511 if (!np || !flags)
5512 return -EINVAL;
5513
5514 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5515 if (index == idx)
5516 *flags |= CLK_IS_CRITICAL;
5517
5518 return 0;
5519}
5520
5521/**
5522 * of_clk_init() - Scan and init clock providers from the DT
5523 * @matches: array of compatible values and init functions for providers.
5524 *
5525 * This function scans the device tree for matching clock providers
5526 * and calls their initialization functions. It also does it by trying
5527 * to follow the dependencies.
5528 */
5529void __init of_clk_init(const struct of_device_id *matches)
5530{
5531 const struct of_device_id *match;
5532 struct device_node *np;
5533 struct clock_provider *clk_provider, *next;
5534 bool is_init_done;
5535 bool force = false;
5536 LIST_HEAD(clk_provider_list);
5537
5538 if (!matches)
5539 matches = &__clk_of_table;
5540
5541 /* First prepare the list of the clocks providers */
5542 for_each_matching_node_and_match(np, matches, &match) {
5543 struct clock_provider *parent;
5544
5545 if (!of_device_is_available(device: np))
5546 continue;
5547
5548 parent = kzalloc(size: sizeof(*parent), GFP_KERNEL);
5549 if (!parent) {
5550 list_for_each_entry_safe(clk_provider, next,
5551 &clk_provider_list, node) {
5552 list_del(entry: &clk_provider->node);
5553 of_node_put(node: clk_provider->np);
5554 kfree(objp: clk_provider);
5555 }
5556 of_node_put(node: np);
5557 return;
5558 }
5559
5560 parent->clk_init_cb = match->data;
5561 parent->np = of_node_get(node: np);
5562 list_add_tail(new: &parent->node, head: &clk_provider_list);
5563 }
5564
5565 while (!list_empty(head: &clk_provider_list)) {
5566 is_init_done = false;
5567 list_for_each_entry_safe(clk_provider, next,
5568 &clk_provider_list, node) {
5569 if (force || parent_ready(np: clk_provider->np)) {
5570
5571 /* Don't populate platform devices */
5572 of_node_set_flag(n: clk_provider->np,
5573 OF_POPULATED);
5574
5575 clk_provider->clk_init_cb(clk_provider->np);
5576 of_clk_set_defaults(node: clk_provider->np, clk_supplier: true);
5577
5578 list_del(entry: &clk_provider->node);
5579 of_node_put(node: clk_provider->np);
5580 kfree(objp: clk_provider);
5581 is_init_done = true;
5582 }
5583 }
5584
5585 /*
5586 * We didn't manage to initialize any of the
5587 * remaining providers during the last loop, so now we
5588 * initialize all the remaining ones unconditionally
5589 * in case the clock parent was not mandatory
5590 */
5591 if (!is_init_done)
5592 force = true;
5593 }
5594}
5595#endif
5596

source code of linux/drivers/clk/clk.c