1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2010 Google, Inc.
4 *
5 * Author:
6 * Colin Cross <ccross@google.com>
7 */
8
9#define pr_fmt(fmt) "tegra-timer: " fmt
10
11#include <linux/clk.h>
12#include <linux/clockchips.h>
13#include <linux/cpu.h>
14#include <linux/cpumask.h>
15#include <linux/delay.h>
16#include <linux/err.h>
17#include <linux/interrupt.h>
18#include <linux/of_address.h>
19#include <linux/of_irq.h>
20#include <linux/percpu.h>
21#include <linux/sched_clock.h>
22#include <linux/time.h>
23
24#include "timer-of.h"
25
26#define RTC_SECONDS 0x08
27#define RTC_SHADOW_SECONDS 0x0c
28#define RTC_MILLISECONDS 0x10
29
30#define TIMERUS_CNTR_1US 0x10
31#define TIMERUS_USEC_CFG 0x14
32#define TIMERUS_CNTR_FREEZE 0x4c
33
34#define TIMER_PTV 0x0
35#define TIMER_PTV_EN BIT(31)
36#define TIMER_PTV_PER BIT(30)
37#define TIMER_PCR 0x4
38#define TIMER_PCR_INTR_CLR BIT(30)
39
40#define TIMER1_BASE 0x00
41#define TIMER2_BASE 0x08
42#define TIMER3_BASE 0x50
43#define TIMER4_BASE 0x58
44#define TIMER10_BASE 0x90
45
46#define TIMER1_IRQ_IDX 0
47#define TIMER10_IRQ_IDX 10
48
49#define TIMER_1MHz 1000000
50
51static u32 usec_config;
52static void __iomem *timer_reg_base;
53
54static int tegra_timer_set_next_event(unsigned long cycles,
55 struct clock_event_device *evt)
56{
57 void __iomem *reg_base = timer_of_base(to: to_timer_of(clkevt: evt));
58
59 /*
60 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will
61 * fire after one tick if 0 is loaded.
62 *
63 * The minimum and maximum numbers of oneshot ticks are defined
64 * by clockevents_config_and_register(1, 0x1fffffff + 1) invocation
65 * below in the code. Hence the cycles (ticks) can't be outside of
66 * a range supportable by hardware.
67 */
68 writel_relaxed(TIMER_PTV_EN | (cycles - 1), reg_base + TIMER_PTV);
69
70 return 0;
71}
72
73static int tegra_timer_shutdown(struct clock_event_device *evt)
74{
75 void __iomem *reg_base = timer_of_base(to: to_timer_of(clkevt: evt));
76
77 writel_relaxed(0, reg_base + TIMER_PTV);
78
79 return 0;
80}
81
82static int tegra_timer_set_periodic(struct clock_event_device *evt)
83{
84 void __iomem *reg_base = timer_of_base(to: to_timer_of(clkevt: evt));
85 unsigned long period = timer_of_period(to: to_timer_of(clkevt: evt));
86
87 writel_relaxed(TIMER_PTV_EN | TIMER_PTV_PER | (period - 1),
88 reg_base + TIMER_PTV);
89
90 return 0;
91}
92
93static irqreturn_t tegra_timer_isr(int irq, void *dev_id)
94{
95 struct clock_event_device *evt = dev_id;
96 void __iomem *reg_base = timer_of_base(to: to_timer_of(clkevt: evt));
97
98 writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR);
99 evt->event_handler(evt);
100
101 return IRQ_HANDLED;
102}
103
104static void tegra_timer_suspend(struct clock_event_device *evt)
105{
106 void __iomem *reg_base = timer_of_base(to: to_timer_of(clkevt: evt));
107
108 writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR);
109}
110
111static void tegra_timer_resume(struct clock_event_device *evt)
112{
113 writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);
114}
115
116static DEFINE_PER_CPU(struct timer_of, tegra_to) = {
117 .flags = TIMER_OF_CLOCK | TIMER_OF_BASE,
118
119 .clkevt = {
120 .name = "tegra_timer",
121 .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
122 .set_next_event = tegra_timer_set_next_event,
123 .set_state_shutdown = tegra_timer_shutdown,
124 .set_state_periodic = tegra_timer_set_periodic,
125 .set_state_oneshot = tegra_timer_shutdown,
126 .tick_resume = tegra_timer_shutdown,
127 .suspend = tegra_timer_suspend,
128 .resume = tegra_timer_resume,
129 },
130};
131
132static int tegra_timer_setup(unsigned int cpu)
133{
134 struct timer_of *to = per_cpu_ptr(&tegra_to, cpu);
135
136 writel_relaxed(0, timer_of_base(to) + TIMER_PTV);
137 writel_relaxed(TIMER_PCR_INTR_CLR, timer_of_base(to) + TIMER_PCR);
138
139 irq_force_affinity(irq: to->clkevt.irq, cpumask_of(cpu));
140 enable_irq(irq: to->clkevt.irq);
141
142 /*
143 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will
144 * fire after one tick if 0 is loaded and thus minimum number of
145 * ticks is 1. In result both of the clocksource's tick limits are
146 * higher than a minimum and maximum that hardware register can
147 * take by 1, this is then taken into account by set_next_event
148 * callback.
149 */
150 clockevents_config_and_register(dev: &to->clkevt, freq: timer_of_rate(to),
151 min_delta: 1, /* min */
152 max_delta: 0x1fffffff + 1); /* max 29 bits + 1 */
153
154 return 0;
155}
156
157static int tegra_timer_stop(unsigned int cpu)
158{
159 struct timer_of *to = per_cpu_ptr(&tegra_to, cpu);
160
161 to->clkevt.set_state_shutdown(&to->clkevt);
162 disable_irq_nosync(irq: to->clkevt.irq);
163
164 return 0;
165}
166
167static u64 notrace tegra_read_sched_clock(void)
168{
169 return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US);
170}
171
172#ifdef CONFIG_ARM
173static unsigned long tegra_delay_timer_read_counter_long(void)
174{
175 return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US);
176}
177
178static struct delay_timer tegra_delay_timer = {
179 .read_current_timer = tegra_delay_timer_read_counter_long,
180 .freq = TIMER_1MHz,
181};
182#endif
183
184static struct timer_of suspend_rtc_to = {
185 .flags = TIMER_OF_BASE | TIMER_OF_CLOCK,
186};
187
188/*
189 * tegra_rtc_read - Reads the Tegra RTC registers
190 * Care must be taken that this function is not called while the
191 * tegra_rtc driver could be executing to avoid race conditions
192 * on the RTC shadow register
193 */
194static u64 tegra_rtc_read_ms(struct clocksource *cs)
195{
196 void __iomem *reg_base = timer_of_base(to: &suspend_rtc_to);
197
198 u32 ms = readl_relaxed(reg_base + RTC_MILLISECONDS);
199 u32 s = readl_relaxed(reg_base + RTC_SHADOW_SECONDS);
200
201 return (u64)s * MSEC_PER_SEC + ms;
202}
203
204static struct clocksource suspend_rtc_clocksource = {
205 .name = "tegra_suspend_timer",
206 .rating = 200,
207 .read = tegra_rtc_read_ms,
208 .mask = CLOCKSOURCE_MASK(32),
209 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
210};
211
212static inline unsigned int tegra_base_for_cpu(int cpu, bool tegra20)
213{
214 if (tegra20) {
215 switch (cpu) {
216 case 0:
217 return TIMER1_BASE;
218 case 1:
219 return TIMER2_BASE;
220 case 2:
221 return TIMER3_BASE;
222 default:
223 return TIMER4_BASE;
224 }
225 }
226
227 return TIMER10_BASE + cpu * 8;
228}
229
230static inline unsigned int tegra_irq_idx_for_cpu(int cpu, bool tegra20)
231{
232 if (tegra20)
233 return TIMER1_IRQ_IDX + cpu;
234
235 return TIMER10_IRQ_IDX + cpu;
236}
237
238static inline unsigned long tegra_rate_for_timer(struct timer_of *to,
239 bool tegra20)
240{
241 /*
242 * TIMER1-9 are fixed to 1MHz, TIMER10-13 are running off the
243 * parent clock.
244 */
245 if (tegra20)
246 return TIMER_1MHz;
247
248 return timer_of_rate(to);
249}
250
251static int __init tegra_init_timer(struct device_node *np, bool tegra20,
252 int rating)
253{
254 struct timer_of *to;
255 int cpu, ret;
256
257 to = this_cpu_ptr(&tegra_to);
258 ret = timer_of_init(np, to);
259 if (ret)
260 goto out;
261
262 timer_reg_base = timer_of_base(to);
263
264 /*
265 * Configure microsecond timers to have 1MHz clock
266 * Config register is 0xqqww, where qq is "dividend", ww is "divisor"
267 * Uses n+1 scheme
268 */
269 switch (timer_of_rate(to)) {
270 case 12000000:
271 usec_config = 0x000b; /* (11+1)/(0+1) */
272 break;
273 case 12800000:
274 usec_config = 0x043f; /* (63+1)/(4+1) */
275 break;
276 case 13000000:
277 usec_config = 0x000c; /* (12+1)/(0+1) */
278 break;
279 case 16800000:
280 usec_config = 0x0453; /* (83+1)/(4+1) */
281 break;
282 case 19200000:
283 usec_config = 0x045f; /* (95+1)/(4+1) */
284 break;
285 case 26000000:
286 usec_config = 0x0019; /* (25+1)/(0+1) */
287 break;
288 case 38400000:
289 usec_config = 0x04bf; /* (191+1)/(4+1) */
290 break;
291 case 48000000:
292 usec_config = 0x002f; /* (47+1)/(0+1) */
293 break;
294 default:
295 ret = -EINVAL;
296 goto out;
297 }
298
299 writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);
300
301 for_each_possible_cpu(cpu) {
302 struct timer_of *cpu_to = per_cpu_ptr(&tegra_to, cpu);
303 unsigned long flags = IRQF_TIMER | IRQF_NOBALANCING;
304 unsigned long rate = tegra_rate_for_timer(to, tegra20);
305 unsigned int base = tegra_base_for_cpu(cpu, tegra20);
306 unsigned int idx = tegra_irq_idx_for_cpu(cpu, tegra20);
307 unsigned int irq = irq_of_parse_and_map(node: np, index: idx);
308
309 if (!irq) {
310 pr_err("failed to map irq for cpu%d\n", cpu);
311 ret = -EINVAL;
312 goto out_irq;
313 }
314
315 cpu_to->clkevt.irq = irq;
316 cpu_to->clkevt.rating = rating;
317 cpu_to->clkevt.cpumask = cpumask_of(cpu);
318 cpu_to->of_base.base = timer_reg_base + base;
319 cpu_to->of_clk.period = rate / HZ;
320 cpu_to->of_clk.rate = rate;
321
322 irq_set_status_flags(irq: cpu_to->clkevt.irq, set: IRQ_NOAUTOEN);
323
324 ret = request_irq(irq: cpu_to->clkevt.irq, handler: tegra_timer_isr, flags,
325 name: cpu_to->clkevt.name, dev: &cpu_to->clkevt);
326 if (ret) {
327 pr_err("failed to set up irq for cpu%d: %d\n",
328 cpu, ret);
329 irq_dispose_mapping(virq: cpu_to->clkevt.irq);
330 cpu_to->clkevt.irq = 0;
331 goto out_irq;
332 }
333 }
334
335 sched_clock_register(read: tegra_read_sched_clock, bits: 32, TIMER_1MHz);
336
337 ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US,
338 "timer_us", TIMER_1MHz, 300, 32,
339 clocksource_mmio_readl_up);
340 if (ret)
341 pr_err("failed to register clocksource: %d\n", ret);
342
343#ifdef CONFIG_ARM
344 register_current_timer_delay(&tegra_delay_timer);
345#endif
346
347 ret = cpuhp_setup_state(state: CPUHP_AP_TEGRA_TIMER_STARTING,
348 name: "AP_TEGRA_TIMER_STARTING", startup: tegra_timer_setup,
349 teardown: tegra_timer_stop);
350 if (ret)
351 pr_err("failed to set up cpu hp state: %d\n", ret);
352
353 return ret;
354
355out_irq:
356 for_each_possible_cpu(cpu) {
357 struct timer_of *cpu_to;
358
359 cpu_to = per_cpu_ptr(&tegra_to, cpu);
360 if (cpu_to->clkevt.irq) {
361 free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt);
362 irq_dispose_mapping(virq: cpu_to->clkevt.irq);
363 }
364 }
365
366 to->of_base.base = timer_reg_base;
367out:
368 timer_of_cleanup(to);
369
370 return ret;
371}
372
373static int __init tegra210_init_timer(struct device_node *np)
374{
375 /*
376 * Arch-timer can't survive across power cycle of CPU core and
377 * after CPUPORESET signal due to a system design shortcoming,
378 * hence tegra-timer is more preferable on Tegra210.
379 */
380 return tegra_init_timer(np, tegra20: false, rating: 460);
381}
382TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra210_init_timer);
383
384static int __init tegra20_init_timer(struct device_node *np)
385{
386 int rating;
387
388 /*
389 * Tegra20 and Tegra30 have Cortex A9 CPU that has a TWD timer,
390 * that timer runs off the CPU clock and hence is subjected to
391 * a jitter caused by DVFS clock rate changes. Tegra-timer is
392 * more preferable for older Tegra's, while later SoC generations
393 * have arch-timer as a main per-CPU timer and it is not affected
394 * by DVFS changes.
395 */
396 if (of_machine_is_compatible(compat: "nvidia,tegra20") ||
397 of_machine_is_compatible(compat: "nvidia,tegra30"))
398 rating = 460;
399 else
400 rating = 330;
401
402 return tegra_init_timer(np, tegra20: true, rating);
403}
404TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra20_init_timer);
405
406static int __init tegra20_init_rtc(struct device_node *np)
407{
408 int ret;
409
410 ret = timer_of_init(np, to: &suspend_rtc_to);
411 if (ret)
412 return ret;
413
414 return clocksource_register_hz(cs: &suspend_rtc_clocksource, hz: 1000);
415}
416TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc);
417

source code of linux/drivers/clocksource/timer-tegra.c