1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2020 Intel Corporation
4 */
5
6#include "i915_drv.h"
7#include "intel_context.h"
8#include "intel_gpu_commands.h"
9#include "intel_gt.h"
10#include "intel_gtt.h"
11#include "intel_migrate.h"
12#include "intel_ring.h"
13#include "gem/i915_gem_lmem.h"
14
15struct insert_pte_data {
16 u64 offset;
17};
18
19#define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */
20
21#define GET_CCS_BYTES(i915, size) (HAS_FLAT_CCS(i915) ? \
22 DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
23static bool engine_supports_migration(struct intel_engine_cs *engine)
24{
25 if (!engine)
26 return false;
27
28 /*
29 * We need the ability to prevent aribtration (MI_ARB_ON_OFF),
30 * the ability to write PTE using inline data (MI_STORE_DATA)
31 * and of course the ability to do the block transfer (blits).
32 */
33 GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);
34
35 return true;
36}
37
38static void xehpsdv_toggle_pdes(struct i915_address_space *vm,
39 struct i915_page_table *pt,
40 void *data)
41{
42 struct insert_pte_data *d = data;
43
44 /*
45 * Insert a dummy PTE into every PT that will map to LMEM to ensure
46 * we have a correctly setup PDE structure for later use.
47 */
48 vm->insert_page(vm, 0, d->offset,
49 i915_gem_get_pat_index(i915: vm->i915, level: I915_CACHE_NONE),
50 PTE_LM);
51 GEM_BUG_ON(!pt->is_compact);
52 d->offset += SZ_2M;
53}
54
55static void xehpsdv_insert_pte(struct i915_address_space *vm,
56 struct i915_page_table *pt,
57 void *data)
58{
59 struct insert_pte_data *d = data;
60
61 /*
62 * We are playing tricks here, since the actual pt, from the hw
63 * pov, is only 256bytes with 32 entries, or 4096bytes with 512
64 * entries, but we are still guaranteed that the physical
65 * alignment is 64K underneath for the pt, and we are careful
66 * not to access the space in the void.
67 */
68 vm->insert_page(vm, px_dma(pt), d->offset,
69 i915_gem_get_pat_index(i915: vm->i915, level: I915_CACHE_NONE),
70 PTE_LM);
71 d->offset += SZ_64K;
72}
73
74static void insert_pte(struct i915_address_space *vm,
75 struct i915_page_table *pt,
76 void *data)
77{
78 struct insert_pte_data *d = data;
79
80 vm->insert_page(vm, px_dma(pt), d->offset,
81 i915_gem_get_pat_index(i915: vm->i915, level: I915_CACHE_NONE),
82 i915_gem_object_is_lmem(obj: pt->base) ? PTE_LM : 0);
83 d->offset += PAGE_SIZE;
84}
85
86static struct i915_address_space *migrate_vm(struct intel_gt *gt)
87{
88 struct i915_vm_pt_stash stash = {};
89 struct i915_ppgtt *vm;
90 int err;
91 int i;
92
93 /*
94 * We construct a very special VM for use by all migration contexts,
95 * it is kept pinned so that it can be used at any time. As we need
96 * to pre-allocate the page directories for the migration VM, this
97 * limits us to only using a small number of prepared vma.
98 *
99 * To be able to pipeline and reschedule migration operations while
100 * avoiding unnecessary contention on the vm itself, the PTE updates
101 * are inline with the blits. All the blits use the same fixed
102 * addresses, with the backing store redirection being updated on the
103 * fly. Only 2 implicit vma are used for all migration operations.
104 *
105 * We lay the ppGTT out as:
106 *
107 * [0, CHUNK_SZ) -> first object
108 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second object
109 * [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
110 *
111 * By exposing the dma addresses of the page directories themselves
112 * within the ppGTT, we are then able to rewrite the PTE prior to use.
113 * But the PTE update and subsequent migration operation must be atomic,
114 * i.e. within the same non-preemptible window so that we do not switch
115 * to another migration context that overwrites the PTE.
116 *
117 * This changes quite a bit on platforms with HAS_64K_PAGES support,
118 * where we instead have three windows, each CHUNK_SIZE in size. The
119 * first is reserved for mapping system-memory, and that just uses the
120 * 512 entry layout using 4K GTT pages. The other two windows just map
121 * lmem pages and must use the new compact 32 entry layout using 64K GTT
122 * pages, which ensures we can address any lmem object that the user
123 * throws at us. We then also use the xehpsdv_toggle_pdes as a way of
124 * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
125 * compact layout for each of these page-tables, that fall within the
126 * [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
127 *
128 * We lay the ppGTT out as:
129 *
130 * [0, CHUNK_SZ) -> first window/object, maps smem
131 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
132 * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
133 *
134 * For the PTE window it's also quite different, since each PTE must
135 * point to some 64K page, one for each PT(since it's in lmem), and yet
136 * each is only <= 4096bytes, but since the unused space within that PTE
137 * range is never touched, this should be fine.
138 *
139 * So basically each PT now needs 64K of virtual memory, instead of 4K,
140 * which looks like:
141 *
142 * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
143 */
144
145 vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
146 if (IS_ERR(ptr: vm))
147 return ERR_CAST(ptr: vm);
148
149 if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
150 err = -ENODEV;
151 goto err_vm;
152 }
153
154 if (HAS_64K_PAGES(gt->i915))
155 stash.pt_sz = I915_GTT_PAGE_SIZE_64K;
156
157 /*
158 * Each engine instance is assigned its own chunk in the VM, so
159 * that we can run multiple instances concurrently
160 */
161 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
162 struct intel_engine_cs *engine;
163 u64 base = (u64)i << 32;
164 struct insert_pte_data d = {};
165 struct i915_gem_ww_ctx ww;
166 u64 sz;
167
168 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
169 if (!engine_supports_migration(engine))
170 continue;
171
172 /*
173 * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
174 * 4x2 page directories for source/destination.
175 */
176 if (HAS_64K_PAGES(gt->i915))
177 sz = 3 * CHUNK_SZ;
178 else
179 sz = 2 * CHUNK_SZ;
180 d.offset = base + sz;
181
182 /*
183 * We need another page directory setup so that we can write
184 * the 8x512 PTE in each chunk.
185 */
186 if (HAS_64K_PAGES(gt->i915))
187 sz += (sz / SZ_2M) * SZ_64K;
188 else
189 sz += (sz >> 12) * sizeof(u64);
190
191 err = i915_vm_alloc_pt_stash(vm: &vm->vm, stash: &stash, size: sz);
192 if (err)
193 goto err_vm;
194
195 for_i915_gem_ww(&ww, err, true) {
196 err = i915_vm_lock_objects(vm: &vm->vm, ww: &ww);
197 if (err)
198 continue;
199 err = i915_vm_map_pt_stash(vm: &vm->vm, stash: &stash);
200 if (err)
201 continue;
202
203 vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
204 }
205 i915_vm_free_pt_stash(vm: &vm->vm, stash: &stash);
206 if (err)
207 goto err_vm;
208
209 /* Now allow the GPU to rewrite the PTE via its own ppGTT */
210 if (HAS_64K_PAGES(gt->i915)) {
211 vm->vm.foreach(&vm->vm, base, d.offset - base,
212 xehpsdv_insert_pte, &d);
213 d.offset = base + CHUNK_SZ;
214 vm->vm.foreach(&vm->vm,
215 d.offset,
216 2 * CHUNK_SZ,
217 xehpsdv_toggle_pdes, &d);
218 } else {
219 vm->vm.foreach(&vm->vm, base, d.offset - base,
220 insert_pte, &d);
221 }
222 }
223
224 return &vm->vm;
225
226err_vm:
227 i915_vm_put(vm: &vm->vm);
228 return ERR_PTR(error: err);
229}
230
231static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
232{
233 struct intel_engine_cs *engine;
234 int i;
235
236 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
237 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
238 if (engine_supports_migration(engine))
239 return engine;
240 }
241
242 return NULL;
243}
244
245static struct intel_context *pinned_context(struct intel_gt *gt)
246{
247 static struct lock_class_key key;
248 struct intel_engine_cs *engine;
249 struct i915_address_space *vm;
250 struct intel_context *ce;
251
252 engine = first_copy_engine(gt);
253 if (!engine)
254 return ERR_PTR(error: -ENODEV);
255
256 vm = migrate_vm(gt);
257 if (IS_ERR(ptr: vm))
258 return ERR_CAST(ptr: vm);
259
260 ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
261 I915_GEM_HWS_MIGRATE,
262 key: &key, name: "migrate");
263 i915_vm_put(vm);
264 return ce;
265}
266
267int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
268{
269 struct intel_context *ce;
270
271 memset(m, 0, sizeof(*m));
272
273 ce = pinned_context(gt);
274 if (IS_ERR(ptr: ce))
275 return PTR_ERR(ptr: ce);
276
277 m->context = ce;
278 return 0;
279}
280
281static int random_index(unsigned int max)
282{
283 return upper_32_bits(mul_u32_u32(get_random_u32(), max));
284}
285
286static struct intel_context *__migrate_engines(struct intel_gt *gt)
287{
288 struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
289 struct intel_engine_cs *engine;
290 unsigned int count, i;
291
292 count = 0;
293 for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
294 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
295 if (engine_supports_migration(engine))
296 engines[count++] = engine;
297 }
298
299 return intel_context_create(engine: engines[random_index(max: count)]);
300}
301
302struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
303{
304 struct intel_context *ce;
305
306 /*
307 * We randomly distribute contexts across the engines upon constrction,
308 * as they all share the same pinned vm, and so in order to allow
309 * multiple blits to run in parallel, we must construct each blit
310 * to use a different range of the vm for its GTT. This has to be
311 * known at construction, so we can not use the late greedy load
312 * balancing of the virtual-engine.
313 */
314 ce = __migrate_engines(gt: m->context->engine->gt);
315 if (IS_ERR(ptr: ce))
316 return ce;
317
318 ce->ring = NULL;
319 ce->ring_size = SZ_256K;
320
321 i915_vm_put(vm: ce->vm);
322 ce->vm = i915_vm_get(vm: m->context->vm);
323
324 return ce;
325}
326
327static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
328{
329 dma_addr_t addr = sg_dma_address(sg);
330
331 return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
332}
333
334static int emit_no_arbitration(struct i915_request *rq)
335{
336 u32 *cs;
337
338 cs = intel_ring_begin(rq, num_dwords: 2);
339 if (IS_ERR(ptr: cs))
340 return PTR_ERR(ptr: cs);
341
342 /* Explicitly disable preemption for this request. */
343 *cs++ = MI_ARB_ON_OFF;
344 *cs++ = MI_NOOP;
345 intel_ring_advance(rq, cs);
346
347 return 0;
348}
349
350static int max_pte_pkt_size(struct i915_request *rq, int pkt)
351{
352 struct intel_ring *ring = rq->ring;
353
354 pkt = min_t(int, pkt, (ring->space - rq->reserved_space) / sizeof(u32) + 5);
355 pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
356
357 return pkt;
358}
359
360#define I915_EMIT_PTE_NUM_DWORDS 6
361
362static int emit_pte(struct i915_request *rq,
363 struct sgt_dma *it,
364 unsigned int pat_index,
365 bool is_lmem,
366 u64 offset,
367 int length)
368{
369 bool has_64K_pages = HAS_64K_PAGES(rq->i915);
370 const u64 encode = rq->context->vm->pte_encode(0, pat_index,
371 is_lmem ? PTE_LM : 0);
372 struct intel_ring *ring = rq->ring;
373 int pkt, dword_length;
374 u32 total = 0;
375 u32 page_size;
376 u32 *hdr, *cs;
377
378 GEM_BUG_ON(GRAPHICS_VER(rq->i915) < 8);
379
380 page_size = I915_GTT_PAGE_SIZE;
381 dword_length = 0x400;
382
383 /* Compute the page directory offset for the target address range */
384 if (has_64K_pages) {
385 GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));
386
387 offset /= SZ_2M;
388 offset *= SZ_64K;
389 offset += 3 * CHUNK_SZ;
390
391 if (is_lmem) {
392 page_size = I915_GTT_PAGE_SIZE_64K;
393 dword_length = 0x40;
394 }
395 } else {
396 offset >>= 12;
397 offset *= sizeof(u64);
398 offset += 2 * CHUNK_SZ;
399 }
400
401 offset += (u64)rq->engine->instance << 32;
402
403 cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
404 if (IS_ERR(ptr: cs))
405 return PTR_ERR(ptr: cs);
406
407 /* Pack as many PTE updates as possible into a single MI command */
408 pkt = max_pte_pkt_size(rq, pkt: dword_length);
409
410 hdr = cs;
411 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
412 *cs++ = lower_32_bits(offset);
413 *cs++ = upper_32_bits(offset);
414
415 do {
416 if (cs - hdr >= pkt) {
417 int dword_rem;
418
419 *hdr += cs - hdr - 2;
420 *cs++ = MI_NOOP;
421
422 ring->emit = (void *)cs - ring->vaddr;
423 intel_ring_advance(rq, cs);
424 intel_ring_update_space(ring);
425
426 cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
427 if (IS_ERR(ptr: cs))
428 return PTR_ERR(ptr: cs);
429
430 dword_rem = dword_length;
431 if (has_64K_pages) {
432 if (IS_ALIGNED(total, SZ_2M)) {
433 offset = round_up(offset, SZ_64K);
434 } else {
435 dword_rem = SZ_2M - (total & (SZ_2M - 1));
436 dword_rem /= page_size;
437 dword_rem *= 2;
438 }
439 }
440
441 pkt = max_pte_pkt_size(rq, pkt: dword_rem);
442
443 hdr = cs;
444 *cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
445 *cs++ = lower_32_bits(offset);
446 *cs++ = upper_32_bits(offset);
447 }
448
449 GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));
450
451 *cs++ = lower_32_bits(encode | it->dma);
452 *cs++ = upper_32_bits(encode | it->dma);
453
454 offset += 8;
455 total += page_size;
456
457 it->dma += page_size;
458 if (it->dma >= it->max) {
459 it->sg = __sg_next(sg: it->sg);
460 if (!it->sg || sg_dma_len(it->sg) == 0)
461 break;
462
463 it->dma = sg_dma_address(it->sg);
464 it->max = it->dma + sg_dma_len(it->sg);
465 }
466 } while (total < length);
467
468 *hdr += cs - hdr - 2;
469 *cs++ = MI_NOOP;
470
471 ring->emit = (void *)cs - ring->vaddr;
472 intel_ring_advance(rq, cs);
473 intel_ring_update_space(ring);
474
475 return total;
476}
477
478static bool wa_1209644611_applies(int ver, u32 size)
479{
480 u32 height = size >> PAGE_SHIFT;
481
482 if (ver != 11)
483 return false;
484
485 return height % 4 == 3 && height <= 8;
486}
487
488/**
489 * DOC: Flat-CCS - Memory compression for Local memory
490 *
491 * On Xe-HP and later devices, we use dedicated compression control state (CCS)
492 * stored in local memory for each surface, to support the 3D and media
493 * compression formats.
494 *
495 * The memory required for the CCS of the entire local memory is 1/256 of the
496 * local memory size. So before the kernel boot, the required memory is reserved
497 * for the CCS data and a secure register will be programmed with the CCS base
498 * address.
499 *
500 * Flat CCS data needs to be cleared when a lmem object is allocated.
501 * And CCS data can be copied in and out of CCS region through
502 * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
503 *
504 * I915 supports Flat-CCS on lmem only objects. When an objects has smem in
505 * its preference list, on memory pressure, i915 needs to migrate the lmem
506 * content into smem. If the lmem object is Flat-CCS compressed by userspace,
507 * then i915 needs to decompress it. But I915 lack the required information
508 * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
509 *
510 * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
511 * be temporarily evicted to smem, along with the auxiliary CCS state, where
512 * it can be potentially swapped-out at a later point, if required.
513 * If userspace later touches the evicted pages, then we always move
514 * the backing memory back to lmem, which includes restoring the saved CCS state,
515 * and potentially performing any required swap-in.
516 *
517 * For the migration of the lmem objects with smem in placement list, such as
518 * {lmem, smem}, objects are treated as non Flat-CCS capable objects.
519 */
520
521static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
522{
523 *cmd++ = MI_FLUSH_DW | flags;
524 *cmd++ = 0;
525 *cmd++ = 0;
526
527 return cmd;
528}
529
530static int emit_copy_ccs(struct i915_request *rq,
531 u32 dst_offset, u8 dst_access,
532 u32 src_offset, u8 src_access, int size)
533{
534 struct drm_i915_private *i915 = rq->i915;
535 int mocs = rq->engine->gt->mocs.uc_index << 1;
536 u32 num_ccs_blks;
537 u32 *cs;
538
539 cs = intel_ring_begin(rq, num_dwords: 12);
540 if (IS_ERR(ptr: cs))
541 return PTR_ERR(ptr: cs);
542
543 num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
544 NUM_CCS_BYTES_PER_BLOCK);
545 GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
546 cs = i915_flush_dw(cmd: cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
547
548 /*
549 * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
550 * data in and out of the CCS region.
551 *
552 * We can copy at most 1024 blocks of 256 bytes using one
553 * XY_CTRL_SURF_COPY_BLT instruction.
554 *
555 * In case we need to copy more than 1024 blocks, we need to add
556 * another instruction to the same batch buffer.
557 *
558 * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
559 *
560 * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
561 */
562 *cs++ = XY_CTRL_SURF_COPY_BLT |
563 src_access << SRC_ACCESS_TYPE_SHIFT |
564 dst_access << DST_ACCESS_TYPE_SHIFT |
565 ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
566 *cs++ = src_offset;
567 *cs++ = rq->engine->instance |
568 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
569 *cs++ = dst_offset;
570 *cs++ = rq->engine->instance |
571 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
572
573 cs = i915_flush_dw(cmd: cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
574 *cs++ = MI_NOOP;
575
576 intel_ring_advance(rq, cs);
577
578 return 0;
579}
580
581static int emit_copy(struct i915_request *rq,
582 u32 dst_offset, u32 src_offset, int size)
583{
584 const int ver = GRAPHICS_VER(rq->i915);
585 u32 instance = rq->engine->instance;
586 u32 *cs;
587
588 cs = intel_ring_begin(rq, num_dwords: ver >= 8 ? 10 : 6);
589 if (IS_ERR(ptr: cs))
590 return PTR_ERR(ptr: cs);
591
592 if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
593 *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
594 *cs++ = BLT_DEPTH_32 | PAGE_SIZE;
595 *cs++ = 0;
596 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
597 *cs++ = dst_offset;
598 *cs++ = instance;
599 *cs++ = 0;
600 *cs++ = PAGE_SIZE;
601 *cs++ = src_offset;
602 *cs++ = instance;
603 } else if (ver >= 8) {
604 *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
605 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
606 *cs++ = 0;
607 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
608 *cs++ = dst_offset;
609 *cs++ = instance;
610 *cs++ = 0;
611 *cs++ = PAGE_SIZE;
612 *cs++ = src_offset;
613 *cs++ = instance;
614 } else {
615 GEM_BUG_ON(instance);
616 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
617 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
618 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
619 *cs++ = dst_offset;
620 *cs++ = PAGE_SIZE;
621 *cs++ = src_offset;
622 }
623
624 intel_ring_advance(rq, cs);
625 return 0;
626}
627
628static u64 scatter_list_length(struct scatterlist *sg)
629{
630 u64 len = 0;
631
632 while (sg && sg_dma_len(sg)) {
633 len += sg_dma_len(sg);
634 sg = sg_next(sg);
635 }
636
637 return len;
638}
639
640static int
641calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
642 u64 bytes_to_cpy, u64 ccs_bytes_to_cpy)
643{
644 if (ccs_bytes_to_cpy && !src_is_lmem)
645 /*
646 * When CHUNK_SZ is passed all the pages upto CHUNK_SZ
647 * will be taken for the blt. in Flat-ccs supported
648 * platform Smem obj will have more pages than required
649 * for main meory hence limit it to the required size
650 * for main memory
651 */
652 return min_t(u64, bytes_to_cpy, CHUNK_SZ);
653 else
654 return CHUNK_SZ;
655}
656
657static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy)
658{
659 u64 len;
660
661 do {
662 GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
663 len = it->max - it->dma;
664 if (len > bytes_to_cpy) {
665 it->dma += bytes_to_cpy;
666 break;
667 }
668
669 bytes_to_cpy -= len;
670
671 it->sg = __sg_next(sg: it->sg);
672 it->dma = sg_dma_address(it->sg);
673 it->max = it->dma + sg_dma_len(it->sg);
674 } while (bytes_to_cpy);
675}
676
677int
678intel_context_migrate_copy(struct intel_context *ce,
679 const struct i915_deps *deps,
680 struct scatterlist *src,
681 unsigned int src_pat_index,
682 bool src_is_lmem,
683 struct scatterlist *dst,
684 unsigned int dst_pat_index,
685 bool dst_is_lmem,
686 struct i915_request **out)
687{
688 struct sgt_dma it_src = sg_sgt(sg: src), it_dst = sg_sgt(sg: dst), it_ccs;
689 struct drm_i915_private *i915 = ce->engine->i915;
690 u64 ccs_bytes_to_cpy = 0, bytes_to_cpy;
691 unsigned int ccs_pat_index;
692 u32 src_offset, dst_offset;
693 u8 src_access, dst_access;
694 struct i915_request *rq;
695 u64 src_sz, dst_sz;
696 bool ccs_is_src, overwrite_ccs;
697 int err;
698
699 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
700 GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
701 *out = NULL;
702
703 GEM_BUG_ON(ce->ring->size < SZ_64K);
704
705 src_sz = scatter_list_length(sg: src);
706 bytes_to_cpy = src_sz;
707
708 if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
709 src_access = !src_is_lmem && dst_is_lmem;
710 dst_access = !src_access;
711
712 dst_sz = scatter_list_length(sg: dst);
713 if (src_is_lmem) {
714 it_ccs = it_dst;
715 ccs_pat_index = dst_pat_index;
716 ccs_is_src = false;
717 } else if (dst_is_lmem) {
718 bytes_to_cpy = dst_sz;
719 it_ccs = it_src;
720 ccs_pat_index = src_pat_index;
721 ccs_is_src = true;
722 }
723
724 /*
725 * When there is a eviction of ccs needed smem will have the
726 * extra pages for the ccs data
727 *
728 * TO-DO: Want to move the size mismatch check to a WARN_ON,
729 * but still we have some requests of smem->lmem with same size.
730 * Need to fix it.
731 */
732 ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
733 if (ccs_bytes_to_cpy)
734 get_ccs_sg_sgt(it: &it_ccs, bytes_to_cpy);
735 }
736
737 overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;
738
739 src_offset = 0;
740 dst_offset = CHUNK_SZ;
741 if (HAS_64K_PAGES(ce->engine->i915)) {
742 src_offset = 0;
743 dst_offset = 0;
744 if (src_is_lmem)
745 src_offset = CHUNK_SZ;
746 if (dst_is_lmem)
747 dst_offset = 2 * CHUNK_SZ;
748 }
749
750 do {
751 int len;
752
753 rq = i915_request_create(ce);
754 if (IS_ERR(ptr: rq)) {
755 err = PTR_ERR(ptr: rq);
756 goto out_ce;
757 }
758
759 if (deps) {
760 err = i915_request_await_deps(rq, deps);
761 if (err)
762 goto out_rq;
763
764 if (rq->engine->emit_init_breadcrumb) {
765 err = rq->engine->emit_init_breadcrumb(rq);
766 if (err)
767 goto out_rq;
768 }
769
770 deps = NULL;
771 }
772
773 /* The PTE updates + copy must not be interrupted. */
774 err = emit_no_arbitration(rq);
775 if (err)
776 goto out_rq;
777
778 src_sz = calculate_chunk_sz(i915, src_is_lmem,
779 bytes_to_cpy, ccs_bytes_to_cpy);
780
781 len = emit_pte(rq, it: &it_src, pat_index: src_pat_index, is_lmem: src_is_lmem,
782 offset: src_offset, length: src_sz);
783 if (!len) {
784 err = -EINVAL;
785 goto out_rq;
786 }
787 if (len < 0) {
788 err = len;
789 goto out_rq;
790 }
791
792 err = emit_pte(rq, it: &it_dst, pat_index: dst_pat_index, is_lmem: dst_is_lmem,
793 offset: dst_offset, length: len);
794 if (err < 0)
795 goto out_rq;
796 if (err < len) {
797 err = -EINVAL;
798 goto out_rq;
799 }
800
801 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
802 if (err)
803 goto out_rq;
804
805 err = emit_copy(rq, dst_offset, src_offset, size: len);
806 if (err)
807 goto out_rq;
808
809 bytes_to_cpy -= len;
810
811 if (ccs_bytes_to_cpy) {
812 int ccs_sz;
813
814 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
815 if (err)
816 goto out_rq;
817
818 ccs_sz = GET_CCS_BYTES(i915, len);
819 err = emit_pte(rq, it: &it_ccs, pat_index: ccs_pat_index, is_lmem: false,
820 offset: ccs_is_src ? src_offset : dst_offset,
821 length: ccs_sz);
822 if (err < 0)
823 goto out_rq;
824 if (err < ccs_sz) {
825 err = -EINVAL;
826 goto out_rq;
827 }
828
829 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
830 if (err)
831 goto out_rq;
832
833 err = emit_copy_ccs(rq, dst_offset, dst_access,
834 src_offset, src_access, size: len);
835 if (err)
836 goto out_rq;
837
838 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
839 if (err)
840 goto out_rq;
841 ccs_bytes_to_cpy -= ccs_sz;
842 } else if (overwrite_ccs) {
843 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
844 if (err)
845 goto out_rq;
846
847 if (src_is_lmem) {
848 /*
849 * If the src is already in lmem, then we must
850 * be doing an lmem -> lmem transfer, and so
851 * should be safe to directly copy the CCS
852 * state. In this case we have either
853 * initialised the CCS aux state when first
854 * clearing the pages (since it is already
855 * allocated in lmem), or the user has
856 * potentially populated it, in which case we
857 * need to copy the CCS state as-is.
858 */
859 err = emit_copy_ccs(rq,
860 dst_offset, INDIRECT_ACCESS,
861 src_offset, INDIRECT_ACCESS,
862 size: len);
863 } else {
864 /*
865 * While we can't always restore/manage the CCS
866 * state, we still need to ensure we don't leak
867 * the CCS state from the previous user, so make
868 * sure we overwrite it with something.
869 */
870 err = emit_copy_ccs(rq,
871 dst_offset, INDIRECT_ACCESS,
872 src_offset: dst_offset, DIRECT_ACCESS,
873 size: len);
874 }
875
876 if (err)
877 goto out_rq;
878
879 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
880 if (err)
881 goto out_rq;
882 }
883
884 /* Arbitration is re-enabled between requests. */
885out_rq:
886 if (*out)
887 i915_request_put(rq: *out);
888 *out = i915_request_get(rq);
889 i915_request_add(rq);
890
891 if (err)
892 break;
893
894 if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
895 if (src_is_lmem)
896 WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
897 else
898 WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
899 break;
900 }
901
902 if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
903 !it_dst.sg || !sg_dma_len(it_dst.sg) ||
904 (ccs_bytes_to_cpy && (!it_ccs.sg ||
905 !sg_dma_len(it_ccs.sg))))) {
906 err = -EINVAL;
907 break;
908 }
909
910 cond_resched();
911 } while (1);
912
913out_ce:
914 return err;
915}
916
917static int emit_clear(struct i915_request *rq, u32 offset, int size,
918 u32 value, bool is_lmem)
919{
920 struct drm_i915_private *i915 = rq->i915;
921 int mocs = rq->engine->gt->mocs.uc_index << 1;
922 const int ver = GRAPHICS_VER(i915);
923 int ring_sz;
924 u32 *cs;
925
926 GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);
927
928 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
929 ring_sz = XY_FAST_COLOR_BLT_DW;
930 else if (ver >= 8)
931 ring_sz = 8;
932 else
933 ring_sz = 6;
934
935 cs = intel_ring_begin(rq, num_dwords: ring_sz);
936 if (IS_ERR(ptr: cs))
937 return PTR_ERR(ptr: cs);
938
939 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
940 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
941 (XY_FAST_COLOR_BLT_DW - 2);
942 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
943 (PAGE_SIZE - 1);
944 *cs++ = 0;
945 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
946 *cs++ = offset;
947 *cs++ = rq->engine->instance;
948 *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
949 /* BG7 */
950 *cs++ = value;
951 *cs++ = 0;
952 *cs++ = 0;
953 *cs++ = 0;
954 /* BG11 */
955 *cs++ = 0;
956 *cs++ = 0;
957 /* BG13 */
958 *cs++ = 0;
959 *cs++ = 0;
960 *cs++ = 0;
961 } else if (ver >= 8) {
962 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
963 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
964 *cs++ = 0;
965 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
966 *cs++ = offset;
967 *cs++ = rq->engine->instance;
968 *cs++ = value;
969 *cs++ = MI_NOOP;
970 } else {
971 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
972 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
973 *cs++ = 0;
974 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
975 *cs++ = offset;
976 *cs++ = value;
977 }
978
979 intel_ring_advance(rq, cs);
980 return 0;
981}
982
983int
984intel_context_migrate_clear(struct intel_context *ce,
985 const struct i915_deps *deps,
986 struct scatterlist *sg,
987 unsigned int pat_index,
988 bool is_lmem,
989 u32 value,
990 struct i915_request **out)
991{
992 struct drm_i915_private *i915 = ce->engine->i915;
993 struct sgt_dma it = sg_sgt(sg);
994 struct i915_request *rq;
995 u32 offset;
996 int err;
997
998 GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
999 *out = NULL;
1000
1001 GEM_BUG_ON(ce->ring->size < SZ_64K);
1002
1003 offset = 0;
1004 if (HAS_64K_PAGES(i915) && is_lmem)
1005 offset = CHUNK_SZ;
1006
1007 do {
1008 int len;
1009
1010 rq = i915_request_create(ce);
1011 if (IS_ERR(ptr: rq)) {
1012 err = PTR_ERR(ptr: rq);
1013 goto out_ce;
1014 }
1015
1016 if (deps) {
1017 err = i915_request_await_deps(rq, deps);
1018 if (err)
1019 goto out_rq;
1020
1021 if (rq->engine->emit_init_breadcrumb) {
1022 err = rq->engine->emit_init_breadcrumb(rq);
1023 if (err)
1024 goto out_rq;
1025 }
1026
1027 deps = NULL;
1028 }
1029
1030 /* The PTE updates + clear must not be interrupted. */
1031 err = emit_no_arbitration(rq);
1032 if (err)
1033 goto out_rq;
1034
1035 len = emit_pte(rq, it: &it, pat_index, is_lmem, offset, CHUNK_SZ);
1036 if (len <= 0) {
1037 err = len;
1038 goto out_rq;
1039 }
1040
1041 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1042 if (err)
1043 goto out_rq;
1044
1045 err = emit_clear(rq, offset, size: len, value, is_lmem);
1046 if (err)
1047 goto out_rq;
1048
1049 if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
1050 /*
1051 * copy the content of memory into corresponding
1052 * ccs surface
1053 */
1054 err = emit_copy_ccs(rq, dst_offset: offset, INDIRECT_ACCESS, src_offset: offset,
1055 DIRECT_ACCESS, size: len);
1056 if (err)
1057 goto out_rq;
1058 }
1059
1060 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1061
1062 /* Arbitration is re-enabled between requests. */
1063out_rq:
1064 if (*out)
1065 i915_request_put(rq: *out);
1066 *out = i915_request_get(rq);
1067 i915_request_add(rq);
1068 if (err || !it.sg || !sg_dma_len(it.sg))
1069 break;
1070
1071 cond_resched();
1072 } while (1);
1073
1074out_ce:
1075 return err;
1076}
1077
1078int intel_migrate_copy(struct intel_migrate *m,
1079 struct i915_gem_ww_ctx *ww,
1080 const struct i915_deps *deps,
1081 struct scatterlist *src,
1082 unsigned int src_pat_index,
1083 bool src_is_lmem,
1084 struct scatterlist *dst,
1085 unsigned int dst_pat_index,
1086 bool dst_is_lmem,
1087 struct i915_request **out)
1088{
1089 struct intel_context *ce;
1090 int err;
1091
1092 *out = NULL;
1093 if (!m->context)
1094 return -ENODEV;
1095
1096 ce = intel_migrate_create_context(m);
1097 if (IS_ERR(ptr: ce))
1098 ce = intel_context_get(ce: m->context);
1099 GEM_BUG_ON(IS_ERR(ce));
1100
1101 err = intel_context_pin_ww(ce, ww);
1102 if (err)
1103 goto out;
1104
1105 err = intel_context_migrate_copy(ce, deps,
1106 src, src_pat_index, src_is_lmem,
1107 dst, dst_pat_index, dst_is_lmem,
1108 out);
1109
1110 intel_context_unpin(ce);
1111out:
1112 intel_context_put(ce);
1113 return err;
1114}
1115
1116int
1117intel_migrate_clear(struct intel_migrate *m,
1118 struct i915_gem_ww_ctx *ww,
1119 const struct i915_deps *deps,
1120 struct scatterlist *sg,
1121 unsigned int pat_index,
1122 bool is_lmem,
1123 u32 value,
1124 struct i915_request **out)
1125{
1126 struct intel_context *ce;
1127 int err;
1128
1129 *out = NULL;
1130 if (!m->context)
1131 return -ENODEV;
1132
1133 ce = intel_migrate_create_context(m);
1134 if (IS_ERR(ptr: ce))
1135 ce = intel_context_get(ce: m->context);
1136 GEM_BUG_ON(IS_ERR(ce));
1137
1138 err = intel_context_pin_ww(ce, ww);
1139 if (err)
1140 goto out;
1141
1142 err = intel_context_migrate_clear(ce, deps, sg, pat_index,
1143 is_lmem, value, out);
1144
1145 intel_context_unpin(ce);
1146out:
1147 intel_context_put(ce);
1148 return err;
1149}
1150
1151void intel_migrate_fini(struct intel_migrate *m)
1152{
1153 struct intel_context *ce;
1154
1155 ce = fetch_and_zero(&m->context);
1156 if (!ce)
1157 return;
1158
1159 intel_engine_destroy_pinned_context(ce);
1160}
1161
1162#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1163#include "selftest_migrate.c"
1164#endif
1165

source code of linux/drivers/gpu/drm/i915/gt/intel_migrate.c