1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
6 *
7 * Based on the lm83 driver. The LM90 is a sensor chip made by National
8 * Semiconductor. It reports up to two temperatures (its own plus up to
9 * one external one) with a 0.125 deg resolution (1 deg for local
10 * temperature) and a 3-4 deg accuracy.
11 *
12 * This driver also supports the LM89 and LM99, two other sensor chips
13 * made by National Semiconductor. Both have an increased remote
14 * temperature measurement accuracy (1 degree), and the LM99
15 * additionally shifts remote temperatures (measured and limits) by 16
16 * degrees, which allows for higher temperatures measurement.
17 * Note that there is no way to differentiate between both chips.
18 * When device is auto-detected, the driver will assume an LM99.
19 *
20 * This driver also supports the LM86, another sensor chip made by
21 * National Semiconductor. It is exactly similar to the LM90 except it
22 * has a higher accuracy.
23 *
24 * This driver also supports the ADM1032, a sensor chip made by Analog
25 * Devices. That chip is similar to the LM90, with a few differences
26 * that are not handled by this driver. Among others, it has a higher
27 * accuracy than the LM90, much like the LM86 does.
28 *
29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30 * chips made by Maxim. These chips are similar to the LM86.
31 * Note that there is no easy way to differentiate between the three
32 * variants. We use the device address to detect MAX6659, which will result
33 * in a detection as max6657 if it is on address 0x4c. The extra address
34 * and features of the MAX6659 are only supported if the chip is configured
35 * explicitly as max6659, or if its address is not 0x4c.
36 * These chips lack the remote temperature offset feature.
37 *
38 * This driver also supports the MAX6654 chip made by Maxim. This chip can be
39 * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
40 * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
41 * limits. Extended range is available by setting the configuration register
42 * accordingly, and is done during initialization. Extended precision is only
43 * available at conversion rates of 1 Hz and slower. Note that extended
44 * precision is not enabled by default, as this driver initializes all chips
45 * to 2 Hz by design. The driver also supports MAX6690, which is practically
46 * identical to MAX6654.
47 *
48 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
49 * MAX6692 chips made by Maxim. These are again similar to the LM86,
50 * but they use unsigned temperature values and can report temperatures
51 * from 0 to 145 degrees.
52 *
53 * This driver also supports the MAX6680 and MAX6681, two other sensor
54 * chips made by Maxim. These are quite similar to the other Maxim
55 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
56 * be treated identically.
57 *
58 * This driver also supports the MAX6695 and MAX6696, two other sensor
59 * chips made by Maxim. These are also quite similar to other Maxim
60 * chips, but support three temperature sensors instead of two. MAX6695
61 * and MAX6696 only differ in the pinout so they can be treated identically.
62 *
63 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
64 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
65 * and extended mode. They are mostly compatible with LM90 except for a data
66 * format difference for the temperature value registers.
67 *
68 * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
69 * / ON Semiconductor. The chips are similar to ADT7461 but support two external
70 * temperature sensors.
71 *
72 * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
73 * The chips are similar to ADT7461/ADT7461A but have full PEC support
74 * (undocumented).
75 *
76 * This driver also supports the SA56004 from Philips. This device is
77 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
78 *
79 * This driver also supports the G781 from GMT. This device is compatible
80 * with the ADM1032.
81 *
82 * This driver also supports TMP451 and TMP461 from Texas Instruments.
83 * Those devices are supported in both compatibility and extended mode.
84 * They are mostly compatible with ADT7461 except for local temperature
85 * low byte register and max conversion rate.
86 *
87 * This driver also supports MAX1617 and various clones such as G767
88 * and NE1617. Such clones will be detected as MAX1617.
89 *
90 * This driver also supports NE1618 from Philips. It is similar to NE1617
91 * but supports 11 bit external temperature values.
92 *
93 * This driver also supports NCT7716, NCT7717 and NCT7718 from Nuvoton.
94 * The NCT7716 is similar to NCT7717 but has one more address support.
95 *
96 * Since the LM90 was the first chipset supported by this driver, most
97 * comments will refer to this chipset, but are actually general and
98 * concern all supported chipsets, unless mentioned otherwise.
99 */
100
101#include <linux/bits.h>
102#include <linux/device.h>
103#include <linux/err.h>
104#include <linux/i2c.h>
105#include <linux/init.h>
106#include <linux/interrupt.h>
107#include <linux/jiffies.h>
108#include <linux/hwmon.h>
109#include <linux/kstrtox.h>
110#include <linux/module.h>
111#include <linux/mutex.h>
112#include <linux/of.h>
113#include <linux/regulator/consumer.h>
114#include <linux/slab.h>
115#include <linux/workqueue.h>
116
117/* The maximum number of channels currently supported */
118#define MAX_CHANNELS 3
119
120/*
121 * Addresses to scan
122 * Address is fully defined internally and cannot be changed except for
123 * MAX6659, MAX6680 and MAX6681.
124 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
125 * MAX6657, MAX6658, NCT1008, NCT7718 and W83L771 have address 0x4c.
126 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
127 * have address 0x4d.
128 * MAX6647 has address 0x4e.
129 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
130 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
131 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
132 * NCT7716 can have address 0x48 or 0x49.
133 * NCT7717 has address 0x48.
134 * SA56004 can have address 0x48 through 0x4F.
135 */
136
137static const unsigned short normal_i2c[] = {
138 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
139 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
140
141enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
142 g781, lm84, lm90, lm99,
143 max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
144 nct210, nct72, nct7716, nct7717, nct7718, ne1618, sa56004, tmp451, tmp461, w83l771,
145};
146
147/*
148 * The LM90 registers
149 */
150
151#define LM90_REG_MAN_ID 0xFE
152#define LM90_REG_CHIP_ID 0xFF
153#define LM90_REG_CONFIG1 0x03
154#define LM90_REG_CONFIG2 0xBF
155#define LM90_REG_CONVRATE 0x04
156#define LM90_REG_STATUS 0x02
157#define LM90_REG_LOCAL_TEMP 0x00
158#define LM90_REG_LOCAL_HIGH 0x05
159#define LM90_REG_LOCAL_LOW 0x06
160#define LM90_REG_LOCAL_CRIT 0x20
161#define LM90_REG_REMOTE_TEMPH 0x01
162#define LM90_REG_REMOTE_TEMPL 0x10
163#define LM90_REG_REMOTE_OFFSH 0x11
164#define LM90_REG_REMOTE_OFFSL 0x12
165#define LM90_REG_REMOTE_HIGHH 0x07
166#define LM90_REG_REMOTE_HIGHL 0x13
167#define LM90_REG_REMOTE_LOWH 0x08
168#define LM90_REG_REMOTE_LOWL 0x14
169#define LM90_REG_REMOTE_CRIT 0x19
170#define LM90_REG_TCRIT_HYST 0x21
171
172/* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
173
174#define MAX6657_REG_LOCAL_TEMPL 0x11
175#define MAX6696_REG_STATUS2 0x12
176#define MAX6659_REG_REMOTE_EMERG 0x16
177#define MAX6659_REG_LOCAL_EMERG 0x17
178
179/* SA56004 registers */
180
181#define SA56004_REG_LOCAL_TEMPL 0x22
182
183#define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
184
185/* TMP451/TMP461 registers */
186#define TMP451_REG_LOCAL_TEMPL 0x15
187#define TMP451_REG_CONALERT 0x22
188
189#define TMP461_REG_CHEN 0x16
190#define TMP461_REG_DFC 0x24
191
192/* ADT7481 registers */
193#define ADT7481_REG_STATUS2 0x23
194#define ADT7481_REG_CONFIG2 0x24
195
196#define ADT7481_REG_MAN_ID 0x3e
197#define ADT7481_REG_CHIP_ID 0x3d
198
199/* NCT7716/7717/7718 registers */
200#define NCT7716_REG_CHIP_ID 0xFD
201
202/* Device features */
203#define LM90_HAVE_EXTENDED_TEMP BIT(0) /* extended temperature support */
204#define LM90_HAVE_OFFSET BIT(1) /* temperature offset register */
205#define LM90_HAVE_UNSIGNED_TEMP BIT(2) /* temperatures are unsigned */
206#define LM90_HAVE_REM_LIMIT_EXT BIT(3) /* extended remote limit */
207#define LM90_HAVE_EMERGENCY BIT(4) /* 3rd upper (emergency) limit */
208#define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm */
209#define LM90_HAVE_TEMP3 BIT(6) /* 3rd temperature sensor */
210#define LM90_HAVE_BROKEN_ALERT BIT(7) /* Broken alert */
211#define LM90_PAUSE_FOR_CONFIG BIT(8) /* Pause conversion for config */
212#define LM90_HAVE_CRIT BIT(9) /* Chip supports CRIT/OVERT register */
213#define LM90_HAVE_CRIT_ALRM_SWP BIT(10) /* critical alarm bits swapped */
214#define LM90_HAVE_PEC BIT(11) /* Chip supports PEC */
215#define LM90_HAVE_PARTIAL_PEC BIT(12) /* Partial PEC support (adm1032)*/
216#define LM90_HAVE_ALARMS BIT(13) /* Create 'alarms' attribute */
217#define LM90_HAVE_EXT_UNSIGNED BIT(14) /* extended unsigned temperature*/
218#define LM90_HAVE_LOW BIT(15) /* low limits */
219#define LM90_HAVE_CONVRATE BIT(16) /* conversion rate */
220#define LM90_HAVE_REMOTE_EXT BIT(17) /* extended remote temperature */
221#define LM90_HAVE_FAULTQUEUE BIT(18) /* configurable samples count */
222
223/* LM90 status */
224#define LM90_STATUS_LTHRM BIT(0) /* local THERM limit tripped */
225#define LM90_STATUS_RTHRM BIT(1) /* remote THERM limit tripped */
226#define LM90_STATUS_ROPEN BIT(2) /* remote is an open circuit */
227#define LM90_STATUS_RLOW BIT(3) /* remote low temp limit tripped */
228#define LM90_STATUS_RHIGH BIT(4) /* remote high temp limit tripped */
229#define LM90_STATUS_LLOW BIT(5) /* local low temp limit tripped */
230#define LM90_STATUS_LHIGH BIT(6) /* local high temp limit tripped */
231#define LM90_STATUS_BUSY BIT(7) /* conversion is ongoing */
232
233/* MAX6695/6696 and ADT7481 2nd status register */
234#define MAX6696_STATUS2_R2THRM BIT(1) /* remote2 THERM limit tripped */
235#define MAX6696_STATUS2_R2OPEN BIT(2) /* remote2 is an open circuit */
236#define MAX6696_STATUS2_R2LOW BIT(3) /* remote2 low temp limit tripped */
237#define MAX6696_STATUS2_R2HIGH BIT(4) /* remote2 high temp limit tripped */
238#define MAX6696_STATUS2_ROT2 BIT(5) /* remote emergency limit tripped */
239#define MAX6696_STATUS2_R2OT2 BIT(6) /* remote2 emergency limit tripped */
240#define MAX6696_STATUS2_LOT2 BIT(7) /* local emergency limit tripped */
241
242/*
243 * Driver data (common to all clients)
244 */
245
246static const struct i2c_device_id lm90_id[] = {
247 { "adm1020", max1617 },
248 { "adm1021", max1617 },
249 { "adm1023", adm1023 },
250 { "adm1032", adm1032 },
251 { "adt7421", adt7461a },
252 { "adt7461", adt7461 },
253 { "adt7461a", adt7461a },
254 { "adt7481", adt7481 },
255 { "adt7482", adt7481 },
256 { "adt7483a", adt7481 },
257 { "g781", g781 },
258 { "gl523sm", max1617 },
259 { "lm84", lm84 },
260 { "lm86", lm90 },
261 { "lm89", lm90 },
262 { "lm90", lm90 },
263 { "lm99", lm99 },
264 { "max1617", max1617 },
265 { "max6642", max6642 },
266 { "max6646", max6646 },
267 { "max6647", max6646 },
268 { "max6648", max6648 },
269 { "max6649", max6646 },
270 { "max6654", max6654 },
271 { "max6657", max6657 },
272 { "max6658", max6657 },
273 { "max6659", max6659 },
274 { "max6680", max6680 },
275 { "max6681", max6680 },
276 { "max6690", max6654 },
277 { "max6692", max6648 },
278 { "max6695", max6696 },
279 { "max6696", max6696 },
280 { "mc1066", max1617 },
281 { "nct1008", adt7461a },
282 { "nct210", nct210 },
283 { "nct214", nct72 },
284 { "nct218", nct72 },
285 { "nct72", nct72 },
286 { "nct7716", nct7716 },
287 { "nct7717", nct7717 },
288 { "nct7718", nct7718 },
289 { "ne1618", ne1618 },
290 { "w83l771", w83l771 },
291 { "sa56004", sa56004 },
292 { "thmc10", max1617 },
293 { "tmp451", tmp451 },
294 { "tmp461", tmp461 },
295 { }
296};
297MODULE_DEVICE_TABLE(i2c, lm90_id);
298
299static const struct of_device_id __maybe_unused lm90_of_match[] = {
300 {
301 .compatible = "adi,adm1032",
302 .data = (void *)adm1032
303 },
304 {
305 .compatible = "adi,adt7461",
306 .data = (void *)adt7461
307 },
308 {
309 .compatible = "adi,adt7461a",
310 .data = (void *)adt7461a
311 },
312 {
313 .compatible = "adi,adt7481",
314 .data = (void *)adt7481
315 },
316 {
317 .compatible = "gmt,g781",
318 .data = (void *)g781
319 },
320 {
321 .compatible = "national,lm90",
322 .data = (void *)lm90
323 },
324 {
325 .compatible = "national,lm86",
326 .data = (void *)lm90
327 },
328 {
329 .compatible = "national,lm89",
330 .data = (void *)lm90
331 },
332 {
333 .compatible = "national,lm99",
334 .data = (void *)lm99
335 },
336 {
337 .compatible = "dallas,max6646",
338 .data = (void *)max6646
339 },
340 {
341 .compatible = "dallas,max6647",
342 .data = (void *)max6646
343 },
344 {
345 .compatible = "dallas,max6649",
346 .data = (void *)max6646
347 },
348 {
349 .compatible = "dallas,max6654",
350 .data = (void *)max6654
351 },
352 {
353 .compatible = "dallas,max6657",
354 .data = (void *)max6657
355 },
356 {
357 .compatible = "dallas,max6658",
358 .data = (void *)max6657
359 },
360 {
361 .compatible = "dallas,max6659",
362 .data = (void *)max6659
363 },
364 {
365 .compatible = "dallas,max6680",
366 .data = (void *)max6680
367 },
368 {
369 .compatible = "dallas,max6681",
370 .data = (void *)max6680
371 },
372 {
373 .compatible = "dallas,max6695",
374 .data = (void *)max6696
375 },
376 {
377 .compatible = "dallas,max6696",
378 .data = (void *)max6696
379 },
380 {
381 .compatible = "onnn,nct1008",
382 .data = (void *)adt7461a
383 },
384 {
385 .compatible = "onnn,nct214",
386 .data = (void *)nct72
387 },
388 {
389 .compatible = "onnn,nct218",
390 .data = (void *)nct72
391 },
392 {
393 .compatible = "onnn,nct72",
394 .data = (void *)nct72
395 },
396 {
397 .compatible = "nuvoton,nct7716",
398 .data = (void *)nct7716
399 },
400 {
401 .compatible = "nuvoton,nct7717",
402 .data = (void *)nct7717
403 },
404 {
405 .compatible = "nuvoton,nct7718",
406 .data = (void *)nct7718
407 },
408 {
409 .compatible = "winbond,w83l771",
410 .data = (void *)w83l771
411 },
412 {
413 .compatible = "nxp,sa56004",
414 .data = (void *)sa56004
415 },
416 {
417 .compatible = "ti,tmp451",
418 .data = (void *)tmp451
419 },
420 {
421 .compatible = "ti,tmp461",
422 .data = (void *)tmp461
423 },
424 { },
425};
426MODULE_DEVICE_TABLE(of, lm90_of_match);
427
428/*
429 * chip type specific parameters
430 */
431struct lm90_params {
432 u32 flags; /* Capabilities */
433 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
434 /* Upper 8 bits for max6695/96 */
435 u8 max_convrate; /* Maximum conversion rate register value */
436 u8 resolution; /* 16-bit resolution (default 11 bit) */
437 u8 reg_status2; /* 2nd status register (optional) */
438 u8 reg_local_ext; /* Extended local temp register (optional) */
439 u8 faultqueue_mask; /* fault queue bit mask */
440 u8 faultqueue_depth; /* fault queue depth if mask is used */
441};
442
443static const struct lm90_params lm90_params[] = {
444 [adm1023] = {
445 .flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
446 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
447 | LM90_HAVE_REMOTE_EXT,
448 .alert_alarms = 0x7c,
449 .resolution = 8,
450 .max_convrate = 7,
451 },
452 [adm1032] = {
453 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
454 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
455 | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
456 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
457 | LM90_HAVE_FAULTQUEUE,
458 .alert_alarms = 0x7c,
459 .max_convrate = 10,
460 },
461 [adt7461] = {
462 /*
463 * Standard temperature range is supposed to be unsigned,
464 * but that does not match reality. Negative temperatures
465 * are always reported.
466 */
467 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
468 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
469 | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
470 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
471 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
472 .alert_alarms = 0x7c,
473 .max_convrate = 10,
474 .resolution = 10,
475 },
476 [adt7461a] = {
477 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
478 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
479 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
480 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
481 | LM90_HAVE_FAULTQUEUE,
482 .alert_alarms = 0x7c,
483 .max_convrate = 10,
484 },
485 [adt7481] = {
486 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
487 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
488 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
489 | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
490 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
491 | LM90_HAVE_FAULTQUEUE,
492 .alert_alarms = 0x1c7c,
493 .max_convrate = 11,
494 .resolution = 10,
495 .reg_status2 = ADT7481_REG_STATUS2,
496 },
497 [g781] = {
498 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
499 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
500 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
501 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
502 .alert_alarms = 0x7c,
503 .max_convrate = 7,
504 },
505 [lm84] = {
506 .flags = LM90_HAVE_ALARMS,
507 .resolution = 8,
508 },
509 [lm90] = {
510 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
511 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
512 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
513 | LM90_HAVE_FAULTQUEUE,
514 .alert_alarms = 0x7b,
515 .max_convrate = 9,
516 .faultqueue_mask = BIT(0),
517 .faultqueue_depth = 3,
518 },
519 [lm99] = {
520 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
521 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
522 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
523 | LM90_HAVE_FAULTQUEUE,
524 .alert_alarms = 0x7b,
525 .max_convrate = 9,
526 .faultqueue_mask = BIT(0),
527 .faultqueue_depth = 3,
528 },
529 [max1617] = {
530 .flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
531 LM90_HAVE_LOW | LM90_HAVE_ALARMS,
532 .alert_alarms = 0x78,
533 .resolution = 8,
534 .max_convrate = 7,
535 },
536 [max6642] = {
537 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
538 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
539 .alert_alarms = 0x50,
540 .resolution = 10,
541 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
542 .faultqueue_mask = BIT(4),
543 .faultqueue_depth = 2,
544 },
545 [max6646] = {
546 .flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
547 | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
548 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
549 .alert_alarms = 0x7c,
550 .max_convrate = 6,
551 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
552 },
553 [max6648] = {
554 .flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
555 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
556 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
557 .alert_alarms = 0x7c,
558 .max_convrate = 6,
559 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
560 },
561 [max6654] = {
562 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
563 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
564 .alert_alarms = 0x7c,
565 .max_convrate = 7,
566 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
567 },
568 [max6657] = {
569 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
570 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
571 | LM90_HAVE_REMOTE_EXT,
572 .alert_alarms = 0x7c,
573 .max_convrate = 8,
574 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
575 },
576 [max6659] = {
577 .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
578 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
579 | LM90_HAVE_REMOTE_EXT,
580 .alert_alarms = 0x7c,
581 .max_convrate = 8,
582 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
583 },
584 [max6680] = {
585 /*
586 * Apparent temperatures of 128 degrees C or higher are reported
587 * and treated as negative temperatures (meaning min_alarm will
588 * be set).
589 */
590 .flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
591 | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
592 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
593 | LM90_HAVE_REMOTE_EXT,
594 .alert_alarms = 0x7c,
595 .max_convrate = 7,
596 },
597 [max6696] = {
598 .flags = LM90_HAVE_EMERGENCY
599 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
600 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
601 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
602 .alert_alarms = 0x1c7c,
603 .max_convrate = 6,
604 .reg_status2 = MAX6696_REG_STATUS2,
605 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
606 .faultqueue_mask = BIT(5),
607 .faultqueue_depth = 4,
608 },
609 [nct72] = {
610 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
611 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
612 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
613 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
614 | LM90_HAVE_FAULTQUEUE,
615 .alert_alarms = 0x7c,
616 .max_convrate = 10,
617 .resolution = 10,
618 },
619 [nct210] = {
620 .flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
621 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
622 | LM90_HAVE_REMOTE_EXT,
623 .alert_alarms = 0x7c,
624 .resolution = 11,
625 .max_convrate = 7,
626 },
627 [nct7716] = {
628 .flags = LM90_HAVE_ALARMS | LM90_HAVE_CONVRATE,
629 .alert_alarms = 0x40,
630 .resolution = 8,
631 .max_convrate = 8,
632 },
633 [nct7717] = {
634 .flags = LM90_HAVE_ALARMS | LM90_HAVE_CONVRATE,
635 .alert_alarms = 0x40,
636 .resolution = 8,
637 .max_convrate = 8,
638 },
639 [nct7718] = {
640 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
641 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
642 | LM90_HAVE_REMOTE_EXT,
643 .alert_alarms = 0x7c,
644 .resolution = 11,
645 .max_convrate = 8,
646 },
647 [ne1618] = {
648 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
649 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
650 .alert_alarms = 0x7c,
651 .resolution = 11,
652 .max_convrate = 7,
653 },
654 [w83l771] = {
655 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
656 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
657 | LM90_HAVE_REMOTE_EXT,
658 .alert_alarms = 0x7c,
659 .max_convrate = 8,
660 },
661 [sa56004] = {
662 /*
663 * Apparent temperatures of 128 degrees C or higher are reported
664 * and treated as negative temperatures (meaning min_alarm will
665 * be set).
666 */
667 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
668 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
669 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
670 .alert_alarms = 0x7b,
671 .max_convrate = 9,
672 .reg_local_ext = SA56004_REG_LOCAL_TEMPL,
673 .faultqueue_mask = BIT(0),
674 .faultqueue_depth = 3,
675 },
676 [tmp451] = {
677 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
678 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
679 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
680 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
681 .alert_alarms = 0x7c,
682 .max_convrate = 9,
683 .resolution = 12,
684 .reg_local_ext = TMP451_REG_LOCAL_TEMPL,
685 },
686 [tmp461] = {
687 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
688 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
689 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
690 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
691 .alert_alarms = 0x7c,
692 .max_convrate = 9,
693 .resolution = 12,
694 .reg_local_ext = TMP451_REG_LOCAL_TEMPL,
695 },
696};
697
698/*
699 * temperature register index
700 */
701enum lm90_temp_reg_index {
702 LOCAL_LOW = 0,
703 LOCAL_HIGH,
704 LOCAL_CRIT,
705 REMOTE_CRIT,
706 LOCAL_EMERG, /* max6659 and max6695/96 */
707 REMOTE_EMERG, /* max6659 and max6695/96 */
708 REMOTE2_CRIT, /* max6695/96 only */
709 REMOTE2_EMERG, /* max6695/96 only */
710
711 REMOTE_TEMP,
712 REMOTE_LOW,
713 REMOTE_HIGH,
714 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
715 LOCAL_TEMP,
716 REMOTE2_TEMP, /* max6695/96 only */
717 REMOTE2_LOW, /* max6695/96 only */
718 REMOTE2_HIGH, /* max6695/96 only */
719 REMOTE2_OFFSET,
720
721 TEMP_REG_NUM
722};
723
724/*
725 * Client data (each client gets its own)
726 */
727
728struct lm90_data {
729 struct i2c_client *client;
730 struct device *hwmon_dev;
731 u32 chip_config[2];
732 u32 channel_config[MAX_CHANNELS + 1];
733 const char *channel_label[MAX_CHANNELS];
734 struct hwmon_channel_info chip_info;
735 struct hwmon_channel_info temp_info;
736 const struct hwmon_channel_info *info[3];
737 struct hwmon_chip_info chip;
738 struct mutex update_lock;
739 struct delayed_work alert_work;
740 struct work_struct report_work;
741 bool valid; /* true if register values are valid */
742 bool alarms_valid; /* true if status register values are valid */
743 unsigned long last_updated; /* in jiffies */
744 unsigned long alarms_updated; /* in jiffies */
745 int kind;
746 u32 flags;
747
748 unsigned int update_interval; /* in milliseconds */
749
750 u8 config; /* Current configuration register value */
751 u8 config_orig; /* Original configuration register value */
752 u8 convrate_orig; /* Original conversion rate register value */
753 u8 resolution; /* temperature resolution in bit */
754 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
755 /* Upper 8 bits for max6695/96 */
756 u8 max_convrate; /* Maximum conversion rate */
757 u8 reg_status2; /* 2nd status register (optional) */
758 u8 reg_local_ext; /* local extension register offset */
759 u8 reg_remote_ext; /* remote temperature low byte */
760 u8 faultqueue_mask; /* fault queue mask */
761 u8 faultqueue_depth; /* fault queue mask */
762
763 /* registers values */
764 u16 temp[TEMP_REG_NUM];
765 u8 temp_hyst;
766 u8 conalert;
767 u16 reported_alarms; /* alarms reported as sysfs/udev events */
768 u16 current_alarms; /* current alarms, reported by chip */
769 u16 alarms; /* alarms not yet reported to user */
770};
771
772/*
773 * Support functions
774 */
775
776/*
777 * If the chip supports PEC but not on write byte transactions, we need
778 * to explicitly ask for a transaction without PEC.
779 */
780static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
781{
782 return i2c_smbus_xfer(adapter: client->adapter, addr: client->addr,
783 flags: client->flags & ~I2C_CLIENT_PEC,
784 I2C_SMBUS_WRITE, command: value, I2C_SMBUS_BYTE, NULL);
785}
786
787/*
788 * It is assumed that client->update_lock is held (unless we are in
789 * detection or initialization steps). This matters when PEC is enabled
790 * for chips with partial PEC support, because we don't want the address
791 * pointer to change between the write byte and the read byte transactions.
792 */
793static int lm90_read_reg(struct i2c_client *client, u8 reg)
794{
795 struct lm90_data *data = i2c_get_clientdata(client);
796 bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
797 (data->flags & LM90_HAVE_PARTIAL_PEC);
798 int err;
799
800 if (partial_pec) {
801 err = lm90_write_no_pec(client, value: reg);
802 if (err)
803 return err;
804 return i2c_smbus_read_byte(client);
805 }
806 return i2c_smbus_read_byte_data(client, command: reg);
807}
808
809/*
810 * Return register write address
811 *
812 * The write address for registers 0x03 .. 0x08 is the read address plus 6.
813 * For other registers the write address matches the read address.
814 */
815static u8 lm90_write_reg_addr(u8 reg)
816{
817 if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
818 return reg + 6;
819 return reg;
820}
821
822/*
823 * Write into LM90 register.
824 * Convert register address to write address if needed, then execute the
825 * operation.
826 */
827static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
828{
829 return i2c_smbus_write_byte_data(client, command: lm90_write_reg_addr(reg), value: val);
830}
831
832/*
833 * Write into 16-bit LM90 register.
834 * Convert register addresses to write address if needed, then execute the
835 * operation.
836 */
837static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
838{
839 int ret;
840
841 ret = lm90_write_reg(client, reg: regh, val: val >> 8);
842 if (ret < 0 || !regl)
843 return ret;
844 return lm90_write_reg(client, reg: regl, val: val & 0xff);
845}
846
847static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
848 bool is_volatile)
849{
850 int oldh, newh, l;
851
852 oldh = lm90_read_reg(client, reg: regh);
853 if (oldh < 0)
854 return oldh;
855
856 if (!regl)
857 return oldh << 8;
858
859 l = lm90_read_reg(client, reg: regl);
860 if (l < 0)
861 return l;
862
863 if (!is_volatile)
864 return (oldh << 8) | l;
865
866 /*
867 * For volatile registers we have to use a trick.
868 * We have to read two registers to have the sensor temperature,
869 * but we have to beware a conversion could occur between the
870 * readings. The datasheet says we should either use
871 * the one-shot conversion register, which we don't want to do
872 * (disables hardware monitoring) or monitor the busy bit, which is
873 * impossible (we can't read the values and monitor that bit at the
874 * exact same time). So the solution used here is to read the high
875 * the high byte again. If the new high byte matches the old one,
876 * then we have a valid reading. Otherwise we have to read the low
877 * byte again, and now we believe we have a correct reading.
878 */
879 newh = lm90_read_reg(client, reg: regh);
880 if (newh < 0)
881 return newh;
882 if (oldh != newh) {
883 l = lm90_read_reg(client, reg: regl);
884 if (l < 0)
885 return l;
886 }
887 return (newh << 8) | l;
888}
889
890static int lm90_update_confreg(struct lm90_data *data, u8 config)
891{
892 if (data->config != config) {
893 int err;
894
895 err = lm90_write_reg(client: data->client, LM90_REG_CONFIG1, val: config);
896 if (err)
897 return err;
898 data->config = config;
899 }
900 return 0;
901}
902
903/*
904 * client->update_lock must be held when calling this function (unless we are
905 * in detection or initialization steps), and while a remote channel other
906 * than channel 0 is selected. Also, calling code must make sure to re-select
907 * external channel 0 before releasing the lock. This is necessary because
908 * various registers have different meanings as a result of selecting a
909 * non-default remote channel.
910 */
911static int lm90_select_remote_channel(struct lm90_data *data, bool second)
912{
913 u8 config = data->config & ~0x08;
914
915 if (second)
916 config |= 0x08;
917
918 return lm90_update_confreg(data, config);
919}
920
921static int lm90_write_convrate(struct lm90_data *data, int val)
922{
923 u8 config = data->config;
924 int err;
925
926 /* Save config and pause conversion */
927 if (data->flags & LM90_PAUSE_FOR_CONFIG) {
928 err = lm90_update_confreg(data, config: config | 0x40);
929 if (err < 0)
930 return err;
931 }
932
933 /* Set conv rate */
934 err = lm90_write_reg(client: data->client, LM90_REG_CONVRATE, val);
935
936 /* Revert change to config */
937 lm90_update_confreg(data, config);
938
939 return err;
940}
941
942/*
943 * Set conversion rate.
944 * client->update_lock must be held when calling this function (unless we are
945 * in detection or initialization steps).
946 */
947static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
948 unsigned int interval)
949{
950 unsigned int update_interval;
951 int i, err;
952
953 /* Shift calculations to avoid rounding errors */
954 interval <<= 6;
955
956 /* find the nearest update rate */
957 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
958 i < data->max_convrate; i++, update_interval >>= 1)
959 if (interval >= update_interval * 3 / 4)
960 break;
961
962 err = lm90_write_convrate(data, val: i);
963 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
964 return err;
965}
966
967static int lm90_set_faultqueue(struct i2c_client *client,
968 struct lm90_data *data, int val)
969{
970 int err;
971
972 if (data->faultqueue_mask) {
973 err = lm90_update_confreg(data, config: val <= data->faultqueue_depth / 2 ?
974 data->config & ~data->faultqueue_mask :
975 data->config | data->faultqueue_mask);
976 } else {
977 static const u8 values[4] = {0, 2, 6, 0x0e};
978
979 data->conalert = (data->conalert & 0xf1) | values[val - 1];
980 err = lm90_write_reg(client: data->client, TMP451_REG_CONALERT,
981 val: data->conalert);
982 }
983
984 return err;
985}
986
987static int lm90_update_limits(struct device *dev)
988{
989 struct lm90_data *data = dev_get_drvdata(dev);
990 struct i2c_client *client = data->client;
991 int val;
992
993 if (data->flags & LM90_HAVE_CRIT) {
994 val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
995 if (val < 0)
996 return val;
997 data->temp[LOCAL_CRIT] = val << 8;
998
999 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1000 if (val < 0)
1001 return val;
1002 data->temp[REMOTE_CRIT] = val << 8;
1003
1004 val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
1005 if (val < 0)
1006 return val;
1007 data->temp_hyst = val;
1008 }
1009 if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
1010 val = lm90_read_reg(client, TMP451_REG_CONALERT);
1011 if (val < 0)
1012 return val;
1013 data->conalert = val;
1014 }
1015
1016 val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
1017 regl: (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
1018 is_volatile: false);
1019 if (val < 0)
1020 return val;
1021 data->temp[REMOTE_LOW] = val;
1022
1023 val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
1024 regl: (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
1025 is_volatile: false);
1026 if (val < 0)
1027 return val;
1028 data->temp[REMOTE_HIGH] = val;
1029
1030 if (data->flags & LM90_HAVE_OFFSET) {
1031 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1032 LM90_REG_REMOTE_OFFSL, is_volatile: false);
1033 if (val < 0)
1034 return val;
1035 data->temp[REMOTE_OFFSET] = val;
1036 }
1037
1038 if (data->flags & LM90_HAVE_EMERGENCY) {
1039 val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
1040 if (val < 0)
1041 return val;
1042 data->temp[LOCAL_EMERG] = val << 8;
1043
1044 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1045 if (val < 0)
1046 return val;
1047 data->temp[REMOTE_EMERG] = val << 8;
1048 }
1049
1050 if (data->flags & LM90_HAVE_TEMP3) {
1051 val = lm90_select_remote_channel(data, second: true);
1052 if (val < 0)
1053 return val;
1054
1055 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1056 if (val < 0)
1057 return val;
1058 data->temp[REMOTE2_CRIT] = val << 8;
1059
1060 if (data->flags & LM90_HAVE_EMERGENCY) {
1061 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1062 if (val < 0)
1063 return val;
1064 data->temp[REMOTE2_EMERG] = val << 8;
1065 }
1066
1067 val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1068 if (val < 0)
1069 return val;
1070 data->temp[REMOTE2_LOW] = val << 8;
1071
1072 val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1073 if (val < 0)
1074 return val;
1075 data->temp[REMOTE2_HIGH] = val << 8;
1076
1077 if (data->flags & LM90_HAVE_OFFSET) {
1078 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1079 LM90_REG_REMOTE_OFFSL, is_volatile: false);
1080 if (val < 0)
1081 return val;
1082 data->temp[REMOTE2_OFFSET] = val;
1083 }
1084
1085 lm90_select_remote_channel(data, second: false);
1086 }
1087
1088 return 0;
1089}
1090
1091static void lm90_report_alarms(struct work_struct *work)
1092{
1093 struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1094 u16 cleared_alarms, new_alarms, current_alarms;
1095 struct device *hwmon_dev = data->hwmon_dev;
1096 struct device *dev = &data->client->dev;
1097 int st, st2;
1098
1099 current_alarms = data->current_alarms;
1100 cleared_alarms = data->reported_alarms & ~current_alarms;
1101 new_alarms = current_alarms & ~data->reported_alarms;
1102
1103 if (!cleared_alarms && !new_alarms)
1104 return;
1105
1106 st = new_alarms & 0xff;
1107 st2 = new_alarms >> 8;
1108
1109 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1110 (st2 & MAX6696_STATUS2_LOT2))
1111 dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1112 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1113 (st2 & MAX6696_STATUS2_ROT2))
1114 dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1115 if (st & LM90_STATUS_ROPEN)
1116 dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1117 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1118 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1119 dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1120 if (st2 & MAX6696_STATUS2_R2OPEN)
1121 dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1122
1123 st |= cleared_alarms & 0xff;
1124 st2 |= cleared_alarms >> 8;
1125
1126 if (st & LM90_STATUS_LLOW)
1127 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_min_alarm, channel: 0);
1128 if (st & LM90_STATUS_RLOW)
1129 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_min_alarm, channel: 1);
1130 if (st2 & MAX6696_STATUS2_R2LOW)
1131 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_min_alarm, channel: 2);
1132
1133 if (st & LM90_STATUS_LHIGH)
1134 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_max_alarm, channel: 0);
1135 if (st & LM90_STATUS_RHIGH)
1136 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_max_alarm, channel: 1);
1137 if (st2 & MAX6696_STATUS2_R2HIGH)
1138 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_max_alarm, channel: 2);
1139
1140 if (st & LM90_STATUS_LTHRM)
1141 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_crit_alarm, channel: 0);
1142 if (st & LM90_STATUS_RTHRM)
1143 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_crit_alarm, channel: 1);
1144 if (st2 & MAX6696_STATUS2_R2THRM)
1145 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_crit_alarm, channel: 2);
1146
1147 if (st2 & MAX6696_STATUS2_LOT2)
1148 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_emergency_alarm, channel: 0);
1149 if (st2 & MAX6696_STATUS2_ROT2)
1150 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_emergency_alarm, channel: 1);
1151 if (st2 & MAX6696_STATUS2_R2OT2)
1152 hwmon_notify_event(dev: hwmon_dev, type: hwmon_temp, attr: hwmon_temp_emergency_alarm, channel: 2);
1153
1154 data->reported_alarms = current_alarms;
1155}
1156
1157static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1158{
1159 if (force || !data->alarms_valid ||
1160 time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1161 struct i2c_client *client = data->client;
1162 bool check_enable;
1163 u16 alarms;
1164 int val;
1165
1166 data->alarms_valid = false;
1167
1168 val = lm90_read_reg(client, LM90_REG_STATUS);
1169 if (val < 0)
1170 return val;
1171 alarms = val & ~LM90_STATUS_BUSY;
1172
1173 if (data->reg_status2) {
1174 val = lm90_read_reg(client, reg: data->reg_status2);
1175 if (val < 0)
1176 return val;
1177 alarms |= val << 8;
1178 }
1179 /*
1180 * If the update is forced (called from interrupt or alert
1181 * handler) and alarm data is valid, the alarms may have been
1182 * updated after the last update interval, and the status
1183 * register may still be cleared. Only add additional alarms
1184 * in this case. Alarms will be cleared later if appropriate.
1185 */
1186 if (force && data->alarms_valid)
1187 data->current_alarms |= alarms;
1188 else
1189 data->current_alarms = alarms;
1190 data->alarms |= alarms;
1191
1192 check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1193 (data->config & 0x80);
1194
1195 if (force || check_enable)
1196 schedule_work(work: &data->report_work);
1197
1198 /*
1199 * Re-enable ALERT# output if it was originally enabled, relevant
1200 * alarms are all clear, and alerts are currently disabled.
1201 * Otherwise (re)schedule worker if needed.
1202 */
1203 if (check_enable) {
1204 if (!(data->current_alarms & data->alert_alarms)) {
1205 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1206 lm90_update_confreg(data, config: data->config & ~0x80);
1207 /*
1208 * We may have been called from the update handler.
1209 * If so, the worker, if scheduled, is no longer
1210 * needed. Cancel it. Don't synchronize because
1211 * it may already be running.
1212 */
1213 cancel_delayed_work(dwork: &data->alert_work);
1214 } else {
1215 schedule_delayed_work(dwork: &data->alert_work,
1216 max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1217 }
1218 }
1219 data->alarms_updated = jiffies;
1220 data->alarms_valid = true;
1221 }
1222 return 0;
1223}
1224
1225static int lm90_update_alarms(struct lm90_data *data, bool force)
1226{
1227 int err;
1228
1229 mutex_lock(&data->update_lock);
1230 err = lm90_update_alarms_locked(data, force);
1231 mutex_unlock(lock: &data->update_lock);
1232
1233 return err;
1234}
1235
1236static void lm90_alert_work(struct work_struct *__work)
1237{
1238 struct delayed_work *delayed_work = to_delayed_work(work: __work);
1239 struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1240
1241 /* Nothing to do if alerts are enabled */
1242 if (!(data->config & 0x80))
1243 return;
1244
1245 lm90_update_alarms(data, force: true);
1246}
1247
1248static int lm90_update_device(struct device *dev)
1249{
1250 struct lm90_data *data = dev_get_drvdata(dev);
1251 struct i2c_client *client = data->client;
1252 unsigned long next_update;
1253 int val;
1254
1255 if (!data->valid) {
1256 val = lm90_update_limits(dev);
1257 if (val < 0)
1258 return val;
1259 }
1260
1261 next_update = data->last_updated +
1262 msecs_to_jiffies(m: data->update_interval);
1263 if (time_after(jiffies, next_update) || !data->valid) {
1264 dev_dbg(&client->dev, "Updating lm90 data.\n");
1265
1266 data->valid = false;
1267
1268 val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1269 if (val < 0)
1270 return val;
1271 data->temp[LOCAL_LOW] = val << 8;
1272
1273 val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1274 if (val < 0)
1275 return val;
1276 data->temp[LOCAL_HIGH] = val << 8;
1277
1278 val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1279 regl: data->reg_local_ext, is_volatile: true);
1280 if (val < 0)
1281 return val;
1282 data->temp[LOCAL_TEMP] = val;
1283 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1284 regl: data->reg_remote_ext, is_volatile: true);
1285 if (val < 0)
1286 return val;
1287 data->temp[REMOTE_TEMP] = val;
1288
1289 if (data->flags & LM90_HAVE_TEMP3) {
1290 val = lm90_select_remote_channel(data, second: true);
1291 if (val < 0)
1292 return val;
1293
1294 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1295 regl: data->reg_remote_ext, is_volatile: true);
1296 if (val < 0) {
1297 lm90_select_remote_channel(data, second: false);
1298 return val;
1299 }
1300 data->temp[REMOTE2_TEMP] = val;
1301
1302 lm90_select_remote_channel(data, second: false);
1303 }
1304
1305 val = lm90_update_alarms_locked(data, force: false);
1306 if (val < 0)
1307 return val;
1308
1309 data->last_updated = jiffies;
1310 data->valid = true;
1311 }
1312
1313 return 0;
1314}
1315
1316static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1317{
1318 switch (index) {
1319 case REMOTE_TEMP:
1320 if (data->reg_remote_ext)
1321 return data->resolution;
1322 return 8;
1323 case REMOTE_OFFSET:
1324 case REMOTE2_OFFSET:
1325 case REMOTE2_TEMP:
1326 return data->resolution;
1327 case LOCAL_TEMP:
1328 if (data->reg_local_ext)
1329 return data->resolution;
1330 return 8;
1331 case REMOTE_LOW:
1332 case REMOTE_HIGH:
1333 case REMOTE2_LOW:
1334 case REMOTE2_HIGH:
1335 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1336 return data->resolution;
1337 return 8;
1338 default:
1339 return 8;
1340 }
1341}
1342
1343static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1344{
1345 int val;
1346
1347 if (flags & LM90_HAVE_EXTENDED_TEMP)
1348 val = regval - 0x4000;
1349 else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1350 val = regval;
1351 else
1352 val = (s16)regval;
1353
1354 return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1355}
1356
1357static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1358{
1359 int temp = lm90_temp_from_reg(flags: data->flags, regval: data->temp[index],
1360 resolution: lm90_temp_get_resolution(data, index));
1361
1362 /* +16 degrees offset for remote temperature on LM99 */
1363 if (data->kind == lm99 && channel)
1364 temp += 16000;
1365
1366 return temp;
1367}
1368
1369static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1370{
1371 int fraction = resolution > 8 ?
1372 1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1373
1374 if (flags & LM90_HAVE_EXTENDED_TEMP) {
1375 val = clamp_val(val, -64000, 191000 + fraction);
1376 val += 64000;
1377 } else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1378 val = clamp_val(val, 0, 255000 + fraction);
1379 } else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1380 val = clamp_val(val, 0, 127000 + fraction);
1381 } else {
1382 val = clamp_val(val, -128000, 127000 + fraction);
1383 }
1384
1385 return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1386}
1387
1388static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1389{
1390 static const u8 regs[] = {
1391 [LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1392 [LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1393 [LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1394 [REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1395 [LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1396 [REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1397 [REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1398 [REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1399 [REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1400 [REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1401 [REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1402 [REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1403 };
1404 struct i2c_client *client = data->client;
1405 u8 regh = regs[index];
1406 u8 regl = 0;
1407 int err;
1408
1409 if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1410 if (index == REMOTE_LOW || index == REMOTE2_LOW)
1411 regl = LM90_REG_REMOTE_LOWL;
1412 else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1413 regl = LM90_REG_REMOTE_HIGHL;
1414 }
1415
1416 /* +16 degrees offset for remote temperature on LM99 */
1417 if (data->kind == lm99 && channel) {
1418 /* prevent integer underflow */
1419 val = max(val, -128000l);
1420 val -= 16000;
1421 }
1422
1423 data->temp[index] = lm90_temp_to_reg(flags: data->flags, val,
1424 resolution: lm90_temp_get_resolution(data, index));
1425
1426 if (channel > 1)
1427 lm90_select_remote_channel(data, second: true);
1428
1429 err = lm90_write16(client, regh, regl, val: data->temp[index]);
1430
1431 if (channel > 1)
1432 lm90_select_remote_channel(data, second: false);
1433
1434 return err;
1435}
1436
1437static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1438{
1439 int temp = lm90_get_temp(data, index, channel);
1440
1441 return temp - data->temp_hyst * 1000;
1442}
1443
1444static int lm90_set_temphyst(struct lm90_data *data, long val)
1445{
1446 int temp = lm90_get_temp(data, index: LOCAL_CRIT, channel: 0);
1447
1448 /* prevent integer overflow/underflow */
1449 val = clamp_val(val, -128000l, 255000l);
1450 data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1451
1452 return lm90_write_reg(client: data->client, LM90_REG_TCRIT_HYST, val: data->temp_hyst);
1453}
1454
1455static int lm90_get_temp_offset(struct lm90_data *data, int index)
1456{
1457 int res = lm90_temp_get_resolution(data, index);
1458
1459 return lm90_temp_from_reg(flags: 0, regval: data->temp[index], resolution: res);
1460}
1461
1462static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1463{
1464 int err;
1465
1466 val = lm90_temp_to_reg(flags: 0, val, resolution: lm90_temp_get_resolution(data, index));
1467
1468 /* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1469 if (channel > 1)
1470 lm90_select_remote_channel(data, second: true);
1471
1472 err = lm90_write16(client: data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1473
1474 if (channel > 1)
1475 lm90_select_remote_channel(data, second: false);
1476
1477 if (err)
1478 return err;
1479
1480 data->temp[index] = val;
1481
1482 return 0;
1483}
1484
1485static const u8 lm90_temp_index[MAX_CHANNELS] = {
1486 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1487};
1488
1489static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1490 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1491};
1492
1493static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1494 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1495};
1496
1497static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1498 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1499};
1500
1501static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1502 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1503};
1504
1505static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1506 -1, REMOTE_OFFSET, REMOTE2_OFFSET
1507};
1508
1509static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1510static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1511static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1512static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1513static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1514static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1515
1516static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1517{
1518 struct lm90_data *data = dev_get_drvdata(dev);
1519 int err;
1520 u16 bit;
1521
1522 mutex_lock(&data->update_lock);
1523 err = lm90_update_device(dev);
1524 mutex_unlock(lock: &data->update_lock);
1525 if (err)
1526 return err;
1527
1528 switch (attr) {
1529 case hwmon_temp_input:
1530 *val = lm90_get_temp(data, index: lm90_temp_index[channel], channel);
1531 break;
1532 case hwmon_temp_min_alarm:
1533 case hwmon_temp_max_alarm:
1534 case hwmon_temp_crit_alarm:
1535 case hwmon_temp_emergency_alarm:
1536 case hwmon_temp_fault:
1537 switch (attr) {
1538 case hwmon_temp_min_alarm:
1539 bit = lm90_min_alarm_bits[channel];
1540 break;
1541 case hwmon_temp_max_alarm:
1542 bit = lm90_max_alarm_bits[channel];
1543 break;
1544 case hwmon_temp_crit_alarm:
1545 if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1546 bit = lm90_crit_alarm_bits_swapped[channel];
1547 else
1548 bit = lm90_crit_alarm_bits[channel];
1549 break;
1550 case hwmon_temp_emergency_alarm:
1551 bit = lm90_emergency_alarm_bits[channel];
1552 break;
1553 case hwmon_temp_fault:
1554 bit = lm90_fault_bits[channel];
1555 break;
1556 }
1557 *val = !!(data->alarms & bit);
1558 data->alarms &= ~bit;
1559 data->alarms |= data->current_alarms;
1560 break;
1561 case hwmon_temp_min:
1562 *val = lm90_get_temp(data, index: lm90_temp_min_index[channel], channel);
1563 break;
1564 case hwmon_temp_max:
1565 *val = lm90_get_temp(data, index: lm90_temp_max_index[channel], channel);
1566 break;
1567 case hwmon_temp_crit:
1568 *val = lm90_get_temp(data, index: lm90_temp_crit_index[channel], channel);
1569 break;
1570 case hwmon_temp_crit_hyst:
1571 *val = lm90_get_temphyst(data, index: lm90_temp_crit_index[channel], channel);
1572 break;
1573 case hwmon_temp_emergency:
1574 *val = lm90_get_temp(data, index: lm90_temp_emerg_index[channel], channel);
1575 break;
1576 case hwmon_temp_emergency_hyst:
1577 *val = lm90_get_temphyst(data, index: lm90_temp_emerg_index[channel], channel);
1578 break;
1579 case hwmon_temp_offset:
1580 *val = lm90_get_temp_offset(data, index: lm90_temp_offset_index[channel]);
1581 break;
1582 default:
1583 return -EOPNOTSUPP;
1584 }
1585 return 0;
1586}
1587
1588static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1589{
1590 struct lm90_data *data = dev_get_drvdata(dev);
1591 int err;
1592
1593 mutex_lock(&data->update_lock);
1594
1595 err = lm90_update_device(dev);
1596 if (err)
1597 goto error;
1598
1599 switch (attr) {
1600 case hwmon_temp_min:
1601 err = lm90_set_temp(data, index: lm90_temp_min_index[channel],
1602 channel, val);
1603 break;
1604 case hwmon_temp_max:
1605 err = lm90_set_temp(data, index: lm90_temp_max_index[channel],
1606 channel, val);
1607 break;
1608 case hwmon_temp_crit:
1609 err = lm90_set_temp(data, index: lm90_temp_crit_index[channel],
1610 channel, val);
1611 break;
1612 case hwmon_temp_crit_hyst:
1613 err = lm90_set_temphyst(data, val);
1614 break;
1615 case hwmon_temp_emergency:
1616 err = lm90_set_temp(data, index: lm90_temp_emerg_index[channel],
1617 channel, val);
1618 break;
1619 case hwmon_temp_offset:
1620 err = lm90_set_temp_offset(data, index: lm90_temp_offset_index[channel],
1621 channel, val);
1622 break;
1623 default:
1624 err = -EOPNOTSUPP;
1625 break;
1626 }
1627error:
1628 mutex_unlock(lock: &data->update_lock);
1629
1630 return err;
1631}
1632
1633static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1634{
1635 switch (attr) {
1636 case hwmon_temp_input:
1637 case hwmon_temp_min_alarm:
1638 case hwmon_temp_max_alarm:
1639 case hwmon_temp_crit_alarm:
1640 case hwmon_temp_emergency_alarm:
1641 case hwmon_temp_emergency_hyst:
1642 case hwmon_temp_fault:
1643 case hwmon_temp_label:
1644 return 0444;
1645 case hwmon_temp_min:
1646 case hwmon_temp_max:
1647 case hwmon_temp_crit:
1648 case hwmon_temp_emergency:
1649 case hwmon_temp_offset:
1650 return 0644;
1651 case hwmon_temp_crit_hyst:
1652 if (channel == 0)
1653 return 0644;
1654 return 0444;
1655 default:
1656 return 0;
1657 }
1658}
1659
1660static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1661{
1662 struct lm90_data *data = dev_get_drvdata(dev);
1663 int err;
1664
1665 mutex_lock(&data->update_lock);
1666 err = lm90_update_device(dev);
1667 mutex_unlock(lock: &data->update_lock);
1668 if (err)
1669 return err;
1670
1671 switch (attr) {
1672 case hwmon_chip_update_interval:
1673 *val = data->update_interval;
1674 break;
1675 case hwmon_chip_alarms:
1676 *val = data->alarms;
1677 break;
1678 case hwmon_chip_temp_samples:
1679 if (data->faultqueue_mask) {
1680 *val = (data->config & data->faultqueue_mask) ?
1681 data->faultqueue_depth : 1;
1682 } else {
1683 switch (data->conalert & 0x0e) {
1684 case 0x0:
1685 default:
1686 *val = 1;
1687 break;
1688 case 0x2:
1689 *val = 2;
1690 break;
1691 case 0x6:
1692 *val = 3;
1693 break;
1694 case 0xe:
1695 *val = 4;
1696 break;
1697 }
1698 }
1699 break;
1700 default:
1701 return -EOPNOTSUPP;
1702 }
1703
1704 return 0;
1705}
1706
1707static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1708{
1709 struct lm90_data *data = dev_get_drvdata(dev);
1710 struct i2c_client *client = data->client;
1711 int err;
1712
1713 mutex_lock(&data->update_lock);
1714
1715 err = lm90_update_device(dev);
1716 if (err)
1717 goto error;
1718
1719 switch (attr) {
1720 case hwmon_chip_update_interval:
1721 err = lm90_set_convrate(client, data,
1722 clamp_val(val, 0, 100000));
1723 break;
1724 case hwmon_chip_temp_samples:
1725 err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1726 break;
1727 default:
1728 err = -EOPNOTSUPP;
1729 break;
1730 }
1731error:
1732 mutex_unlock(lock: &data->update_lock);
1733
1734 return err;
1735}
1736
1737static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1738{
1739 switch (attr) {
1740 case hwmon_chip_update_interval:
1741 case hwmon_chip_temp_samples:
1742 return 0644;
1743 case hwmon_chip_alarms:
1744 return 0444;
1745 default:
1746 return 0;
1747 }
1748}
1749
1750static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1751 u32 attr, int channel, long *val)
1752{
1753 switch (type) {
1754 case hwmon_chip:
1755 return lm90_chip_read(dev, attr, channel, val);
1756 case hwmon_temp:
1757 return lm90_temp_read(dev, attr, channel, val);
1758 default:
1759 return -EOPNOTSUPP;
1760 }
1761}
1762
1763static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1764 u32 attr, int channel, const char **str)
1765{
1766 struct lm90_data *data = dev_get_drvdata(dev);
1767
1768 *str = data->channel_label[channel];
1769
1770 return 0;
1771}
1772
1773static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1774 u32 attr, int channel, long val)
1775{
1776 switch (type) {
1777 case hwmon_chip:
1778 return lm90_chip_write(dev, attr, channel, val);
1779 case hwmon_temp:
1780 return lm90_temp_write(dev, attr, channel, val);
1781 default:
1782 return -EOPNOTSUPP;
1783 }
1784}
1785
1786static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1787 u32 attr, int channel)
1788{
1789 switch (type) {
1790 case hwmon_chip:
1791 return lm90_chip_is_visible(data, attr, channel);
1792 case hwmon_temp:
1793 return lm90_temp_is_visible(data, attr, channel);
1794 default:
1795 return 0;
1796 }
1797}
1798
1799static const char *lm90_detect_lm84(struct i2c_client *client)
1800{
1801 static const u8 regs[] = {
1802 LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1803 LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1804 };
1805 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1806 int reg1, reg2, reg3, reg4;
1807 bool nonzero = false;
1808 u8 ff = 0xff;
1809 int i;
1810
1811 if (status < 0 || (status & 0xab))
1812 return NULL;
1813
1814 /*
1815 * For LM84, undefined registers return the most recent value.
1816 * Repeat several times, each time checking against a different
1817 * (presumably) existing register.
1818 */
1819 for (i = 0; i < ARRAY_SIZE(regs); i++) {
1820 reg1 = i2c_smbus_read_byte_data(client, command: regs[i]);
1821 reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1822 reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1823 reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1824
1825 if (reg1 < 0)
1826 return NULL;
1827
1828 /* If any register has a different value, this is not an LM84 */
1829 if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1830 return NULL;
1831
1832 nonzero |= reg1 || reg2 || reg3 || reg4;
1833 ff &= reg1;
1834 }
1835 /*
1836 * If all registers always returned 0 or 0xff, all bets are off,
1837 * and we can not make any predictions about the chip type.
1838 */
1839 return nonzero && ff != 0xff ? "lm84" : NULL;
1840}
1841
1842static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1843{
1844 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1845 int llo, rlo, lhi, rhi;
1846
1847 if (status < 0 || (status & 0x03))
1848 return NULL;
1849
1850 if (config1 & 0x3f)
1851 return NULL;
1852
1853 /*
1854 * Fail if unsupported registers return anything but 0xff.
1855 * The calling code already checked man_id and chip_id.
1856 * A byte read operation repeats the most recent read operation
1857 * and should also return 0xff.
1858 */
1859 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1860 i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1861 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1862 i2c_smbus_read_byte(client) != 0xff)
1863 return NULL;
1864
1865 llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1866 rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1867
1868 lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1869 rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1870
1871 if (llo < 0 || rlo < 0)
1872 return NULL;
1873
1874 /*
1875 * A byte read operation repeats the most recent read and should
1876 * return the same value.
1877 */
1878 if (i2c_smbus_read_byte(client) != rhi)
1879 return NULL;
1880
1881 /*
1882 * The following two checks are marginal since the checked values
1883 * are strictly speaking valid.
1884 */
1885
1886 /* fail for negative high limits; this also catches read errors */
1887 if ((s8)lhi < 0 || (s8)rhi < 0)
1888 return NULL;
1889
1890 /* fail if low limits are larger than or equal to high limits */
1891 if ((s8)llo >= lhi || (s8)rlo >= rhi)
1892 return NULL;
1893
1894 if (i2c_check_functionality(adap: client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1895 /*
1896 * Word read operations return 0xff in second byte
1897 */
1898 if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1899 0xffff)
1900 return NULL;
1901 if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1902 (config1 | 0xff00))
1903 return NULL;
1904 if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1905 (lhi | 0xff00))
1906 return NULL;
1907 }
1908
1909 return "max1617";
1910}
1911
1912static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1913 int config1, int convrate)
1914{
1915 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1916 int address = client->addr;
1917 const char *name = NULL;
1918
1919 if (config2 < 0)
1920 return NULL;
1921
1922 if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1923 return NULL;
1924
1925 if (address != 0x4c && address != 0x4d)
1926 return NULL;
1927
1928 switch (chip_id & 0xf0) {
1929 case 0x10: /* LM86 */
1930 if (address == 0x4c)
1931 name = "lm86";
1932 break;
1933 case 0x20: /* LM90 */
1934 if (address == 0x4c)
1935 name = "lm90";
1936 break;
1937 case 0x30: /* LM89/LM99 */
1938 name = "lm99"; /* detect LM89 as LM99 */
1939 break;
1940 default:
1941 break;
1942 }
1943
1944 return name;
1945}
1946
1947static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1948 int convrate)
1949{
1950 int address = client->addr;
1951 const char *name = NULL;
1952
1953 switch (chip_id) {
1954 case 0xca: /* NCT218 */
1955 if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1956 convrate <= 0x0a)
1957 name = "nct218";
1958 break;
1959 default:
1960 break;
1961 }
1962 return name;
1963}
1964
1965static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1966 int chip_id, int config1, int convrate)
1967{
1968 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1969 int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1970 int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1971 int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1972 int address = client->addr;
1973 const char *name = NULL;
1974
1975 if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1976 return NULL;
1977
1978 /*
1979 * The following chips should be detected by this function. Known
1980 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1981 * for most of the chips, yet appear to return a well defined value.
1982 * Register 0xff is undocumented for some of the chips. Register 0x3f
1983 * is undocumented for all chips, but also returns a well defined value.
1984 * Values are as reported from real chips unless mentioned otherwise.
1985 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1986 * but not for register 0x3f.
1987 *
1988 * Chip Register
1989 * 3d 3e 3f fe ff Notes
1990 * ----------------------------------------------------------
1991 * adm1020 00 00 00 41 39
1992 * adm1021 00 00 00 41 03
1993 * adm1021a 00 00 00 41 3c
1994 * adm1023 00 00 00 41 3c same as adm1021a
1995 * adm1032 00 00 00 41 42
1996 *
1997 * adt7421 21 41 04 41 04
1998 * adt7461 00 00 00 41 51
1999 * adt7461a 61 41 05 41 57
2000 * adt7481 81 41 02 41 62
2001 * adt7482 - - - 41 65 datasheet
2002 * 82 41 05 41 75 real chip
2003 * adt7483 83 41 04 41 94
2004 *
2005 * nct72 61 41 07 41 55
2006 * nct210 00 00 00 41 3f
2007 * nct214 61 41 08 41 5a
2008 * nct1008 - - - 41 57 datasheet rev. 3
2009 * 61 41 06 41 54 real chip
2010 *
2011 * nvt210 - - - 41 - datasheet
2012 * nvt211 - - - 41 - datasheet
2013 */
2014 switch (chip_id) {
2015 case 0x00 ... 0x03: /* ADM1021 */
2016 case 0x05 ... 0x0f:
2017 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2018 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2019 name = "adm1021";
2020 break;
2021 case 0x04: /* ADT7421 (undocumented) */
2022 if (man_id2 == 0x41 && chip_id2 == 0x21 &&
2023 (address == 0x4c || address == 0x4d) &&
2024 (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
2025 name = "adt7421";
2026 break;
2027 case 0x30 ... 0x38: /* ADM1021A, ADM1023 */
2028 case 0x3a ... 0x3e:
2029 /*
2030 * ADM1021A and compatible chips will be mis-detected as
2031 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
2032 * found to have a Chip ID of 0x3c.
2033 * ADM1021A does not officially support low byte registers
2034 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
2035 * Official support for the temperature offset high byte
2036 * register (0x11) was added to revision F of the ADM1021A
2037 * datasheet.
2038 * It is currently unknown if there is a means to distinguish
2039 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
2040 * which differ in functionality from ADM1023.
2041 */
2042 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2043 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2044 name = "adm1023";
2045 break;
2046 case 0x39: /* ADM1020 (undocumented) */
2047 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2048 (address == 0x4c || address == 0x4d || address == 0x4e) &&
2049 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2050 name = "adm1020";
2051 break;
2052 case 0x3f: /* NCT210 */
2053 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2054 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2055 name = "nct210";
2056 break;
2057 case 0x40 ... 0x4f: /* ADM1032 */
2058 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2059 (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2060 convrate <= 0x0a)
2061 name = "adm1032";
2062 break;
2063 case 0x51: /* ADT7461 */
2064 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2065 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2066 convrate <= 0x0a)
2067 name = "adt7461";
2068 break;
2069 case 0x54: /* NCT1008 */
2070 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2071 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2072 convrate <= 0x0a)
2073 name = "nct1008";
2074 break;
2075 case 0x55: /* NCT72 */
2076 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2077 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2078 convrate <= 0x0a)
2079 name = "nct72";
2080 break;
2081 case 0x57: /* ADT7461A, NCT1008 (datasheet rev. 3) */
2082 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2083 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2084 convrate <= 0x0a)
2085 name = "adt7461a";
2086 break;
2087 case 0x5a: /* NCT214 */
2088 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2089 common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2090 name = "nct214";
2091 break;
2092 case 0x62: /* ADT7481, undocumented */
2093 if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2094 (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2095 !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2096 name = "adt7481";
2097 }
2098 break;
2099 case 0x65: /* ADT7482, datasheet */
2100 case 0x75: /* ADT7482, real chip */
2101 if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2102 address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2103 convrate <= 0x0a)
2104 name = "adt7482";
2105 break;
2106 case 0x94: /* ADT7483 */
2107 if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2108 common_address &&
2109 ((address >= 0x18 && address <= 0x1a) ||
2110 (address >= 0x29 && address <= 0x2b) ||
2111 (address >= 0x4c && address <= 0x4e)) &&
2112 !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2113 name = "adt7483a";
2114 break;
2115 default:
2116 break;
2117 }
2118
2119 return name;
2120}
2121
2122static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2123 int chip_id, int config1, int convrate)
2124{
2125 int man_id, emerg, emerg2, status2;
2126 int address = client->addr;
2127 const char *name = NULL;
2128
2129 switch (chip_id) {
2130 case 0x01:
2131 if (!common_address)
2132 break;
2133
2134 /*
2135 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2136 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2137 * exists, both readings will reflect the same value. Otherwise,
2138 * the readings will be different.
2139 */
2140 emerg = i2c_smbus_read_byte_data(client,
2141 MAX6659_REG_REMOTE_EMERG);
2142 man_id = i2c_smbus_read_byte_data(client,
2143 LM90_REG_MAN_ID);
2144 emerg2 = i2c_smbus_read_byte_data(client,
2145 MAX6659_REG_REMOTE_EMERG);
2146 status2 = i2c_smbus_read_byte_data(client,
2147 MAX6696_REG_STATUS2);
2148 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2149 return NULL;
2150
2151 /*
2152 * Even though MAX6695 and MAX6696 do not have a chip ID
2153 * register, reading it returns 0x01. Bit 4 of the config1
2154 * register is unused and should return zero when read. Bit 0 of
2155 * the status2 register is unused and should return zero when
2156 * read.
2157 *
2158 * MAX6695 and MAX6696 have an additional set of temperature
2159 * limit registers. We can detect those chips by checking if
2160 * one of those registers exists.
2161 */
2162 if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2163 convrate <= 0x07)
2164 name = "max6696";
2165 /*
2166 * The chip_id register of the MAX6680 and MAX6681 holds the
2167 * revision of the chip. The lowest bit of the config1 register
2168 * is unused and should return zero when read, so should the
2169 * second to last bit of config1 (software reset). Register
2170 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2171 * should differ from emerg2, and emerg2 should match man_id
2172 * since it does not exist.
2173 */
2174 else if (!(config1 & 0x03) && convrate <= 0x07 &&
2175 emerg2 == man_id && emerg2 != status2)
2176 name = "max6680";
2177 /*
2178 * MAX1617A does not have any extended registers (register
2179 * address 0x10 or higher) except for manufacturer and
2180 * device ID registers. Unlike other chips of this series,
2181 * unsupported registers were observed to return a fixed value
2182 * of 0x01.
2183 * Note: Multiple chips with different markings labeled as
2184 * "MAX1617" (no "A") were observed to report manufacturer ID
2185 * 0x4d and device ID 0x01. It is unknown if other variants of
2186 * MAX1617/MAX617A with different behavior exist. The detection
2187 * code below works for those chips.
2188 */
2189 else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2190 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2191 name = "max1617";
2192 break;
2193 case 0x08:
2194 /*
2195 * The chip_id of the MAX6654 holds the revision of the chip.
2196 * The lowest 3 bits of the config1 register are unused and
2197 * should return zero when read.
2198 */
2199 if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2200 name = "max6654";
2201 break;
2202 case 0x09:
2203 /*
2204 * The chip_id of the MAX6690 holds the revision of the chip.
2205 * The lowest 3 bits of the config1 register are unused and
2206 * should return zero when read.
2207 * Note that MAX6654 and MAX6690 are practically the same chips.
2208 * The only diference is the rated accuracy. Rev. 1 of the
2209 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2210 * MAX6654 was observed to have a chip ID of 0x09.
2211 */
2212 if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2213 name = "max6690";
2214 break;
2215 case 0x4d:
2216 /*
2217 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2218 * register. Reading from that address will return the last
2219 * read value, which in our case is those of the man_id
2220 * register, or 0x4d.
2221 * MAX6642 does not have a conversion rate register, nor low
2222 * limit registers. Reading from those registers returns the
2223 * last read value.
2224 *
2225 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2226 * a low nibble, so the value will be those of the previous
2227 * read, so in our case again those of the man_id register.
2228 * MAX6659 has a third set of upper temperature limit registers.
2229 * Those registers also return values on MAX6657 and MAX6658,
2230 * thus the only way to detect MAX6659 is by its address.
2231 * For this reason it will be mis-detected as MAX6657 if its
2232 * address is 0x4c.
2233 */
2234 if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2235 !(config1 & 0x0f)) {
2236 int regval;
2237
2238 /*
2239 * We know that this is not a MAX6657/58/59 because its
2240 * configuration register has the wrong value and it does
2241 * not appear to have a conversion rate register.
2242 */
2243
2244 /* re-read manufacturer ID to have a good baseline */
2245 if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2246 break;
2247
2248 /* check various non-existing registers */
2249 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2250 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2251 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2252 break;
2253
2254 /* check for unused status register bits */
2255 regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2256 if (regval < 0 || (regval & 0x2b))
2257 break;
2258
2259 /* re-check unsupported registers */
2260 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2261 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2262 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2263 break;
2264
2265 name = "max6642";
2266 } else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2267 (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2268 if (address == 0x4c)
2269 name = "max6657";
2270 else
2271 name = "max6659";
2272 }
2273 break;
2274 case 0x59:
2275 /*
2276 * The chip_id register of the MAX6646/6647/6649 holds the
2277 * revision of the chip. The lowest 6 bits of the config1
2278 * register are unused and should return zero when read.
2279 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2280 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2281 * and MAX6649 is at address 0x4c. A slight difference between
2282 * the two sets of chips is that the remote temperature register
2283 * reports different values if the DXP pin is open or shorted.
2284 * We can use that information to help distinguish between the
2285 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2286 * diode is connected, but there isn't really anything we can
2287 * do about that.
2288 */
2289 if (!(config1 & 0x3f) && convrate <= 0x07) {
2290 int temp;
2291
2292 switch (address) {
2293 case 0x4c:
2294 /*
2295 * MAX6649 reports an external temperature
2296 * value of 0xff if DXP is open or shorted.
2297 * MAX6648 reports 0x80 in that case.
2298 */
2299 temp = i2c_smbus_read_byte_data(client,
2300 LM90_REG_REMOTE_TEMPH);
2301 if (temp == 0x80)
2302 name = "max6648";
2303 else
2304 name = "max6649";
2305 break;
2306 case 0x4d:
2307 name = "max6646";
2308 break;
2309 case 0x4e:
2310 name = "max6647";
2311 break;
2312 default:
2313 break;
2314 }
2315 }
2316 break;
2317 default:
2318 break;
2319 }
2320
2321 return name;
2322}
2323
2324static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2325 int config1, int convrate)
2326{
2327 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2328 int address = client->addr;
2329 const char *name = NULL;
2330
2331 if (config2 < 0)
2332 return NULL;
2333
2334 if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2335 if (chip_id == 0x01 && convrate <= 0x09) {
2336 /* W83L771W/G */
2337 name = "w83l771";
2338 } else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2339 /* W83L771AWG/ASG */
2340 name = "w83l771";
2341 }
2342 }
2343 return name;
2344}
2345
2346static const char *lm90_detect_nuvoton_50(struct i2c_client *client, int chip_id,
2347 int config1, int convrate)
2348{
2349 int chip_id2 = i2c_smbus_read_byte_data(client, NCT7716_REG_CHIP_ID);
2350 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2351 int address = client->addr;
2352 const char *name = NULL;
2353
2354 if (chip_id2 < 0 || config2 < 0)
2355 return NULL;
2356
2357 if (chip_id2 != 0x50 || convrate > 0x08)
2358 return NULL;
2359
2360 switch (chip_id) {
2361 case 0x90:
2362 if (address == 0x48 && !(config1 & 0x3e) && !(config2 & 0xfe))
2363 name = "nct7717";
2364 break;
2365 case 0x91:
2366 if ((address == 0x48 || address == 0x49) && !(config1 & 0x3e) &&
2367 !(config2 & 0xfe))
2368 name = "nct7716";
2369 else if (address == 0x4c && !(config1 & 0x38) && !(config2 & 0xf8))
2370 name = "nct7718";
2371 break;
2372 default:
2373 break;
2374 }
2375 return name;
2376}
2377
2378static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2379 int chip_id, int config1, int convrate)
2380{
2381 int address = client->addr;
2382 const char *name = NULL;
2383 int config2;
2384
2385 switch (chip_id) {
2386 case 0x00:
2387 config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2388 if (config2 < 0)
2389 return NULL;
2390 if (address >= 0x48 && address <= 0x4f &&
2391 !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2392 name = "sa56004";
2393 break;
2394 case 0x80:
2395 if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2396 name = "ne1618";
2397 break;
2398 default:
2399 break;
2400 }
2401 return name;
2402}
2403
2404static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2405 int config1, int convrate)
2406{
2407 int address = client->addr;
2408
2409 /*
2410 * According to the datasheet, G781 is supposed to be at I2C Address
2411 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2412 * address 0x4d and have a chip ID of 0x03. However, when support
2413 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2414 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2415 * chip ID 0x03.
2416 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2417 * addresses.
2418 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2419 * datasheet is not available. Extensive testing suggests that
2420 * the chip appears to be fully compatible with G781.
2421 * Available register dumps show that G751 also reports manufacturer
2422 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2423 * support those registers. This makes chip detection somewhat
2424 * vulnerable. To improve detection quality, read the offset low byte
2425 * and alert fault queue registers and verify that only expected bits
2426 * are set.
2427 */
2428 if ((chip_id == 0x01 || chip_id == 0x03) &&
2429 (address == 0x4c || address == 0x4d) &&
2430 !(config1 & 0x3f) && convrate <= 0x08) {
2431 int reg;
2432
2433 reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2434 if (reg < 0 || reg & 0x1f)
2435 return NULL;
2436 reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2437 if (reg < 0 || reg & 0xf1)
2438 return NULL;
2439
2440 return "g781";
2441 }
2442
2443 return NULL;
2444}
2445
2446static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2447 int chip_id, int config1, int convrate)
2448{
2449 if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2450 /* THMC10: Unsupported registers return 0xff */
2451 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2452 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2453 return "thmc10";
2454 }
2455 return NULL;
2456}
2457
2458static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2459 int config1, int convrate)
2460{
2461 int address = client->addr;
2462 const char *name = NULL;
2463
2464 if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2465 int local_ext, conalert, chen, dfc;
2466
2467 local_ext = i2c_smbus_read_byte_data(client,
2468 TMP451_REG_LOCAL_TEMPL);
2469 conalert = i2c_smbus_read_byte_data(client,
2470 TMP451_REG_CONALERT);
2471 chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2472 dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2473
2474 if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2475 (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2476 if (address == 0x4c && !(chen & 0x03))
2477 name = "tmp451";
2478 else if (address >= 0x48 && address <= 0x4f)
2479 name = "tmp461";
2480 }
2481 }
2482
2483 return name;
2484}
2485
2486/* Return 0 if detection is successful, -ENODEV otherwise */
2487static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2488{
2489 struct i2c_adapter *adapter = client->adapter;
2490 int man_id, chip_id, config1, convrate, lhigh;
2491 const char *name = NULL;
2492 int address = client->addr;
2493 bool common_address =
2494 (address >= 0x18 && address <= 0x1a) ||
2495 (address >= 0x29 && address <= 0x2b) ||
2496 (address >= 0x4c && address <= 0x4e);
2497
2498 if (!i2c_check_functionality(adap: adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2499 return -ENODEV;
2500
2501 /*
2502 * Get well defined register value for chips with neither man_id nor
2503 * chip_id registers.
2504 */
2505 lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2506
2507 /* detection and identification */
2508 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2509 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2510 config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2511 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2512 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2513 return -ENODEV;
2514
2515 /* Bail out immediately if all register report the same value */
2516 if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2517 return -ENODEV;
2518
2519 /*
2520 * If reading man_id and chip_id both return the same value as lhigh,
2521 * the chip may not support those registers and return the most recent read
2522 * value. Check again with a different register and handle accordingly.
2523 */
2524 if (man_id == lhigh && chip_id == lhigh) {
2525 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2526 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2527 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2528 if (convrate < 0 || man_id < 0 || chip_id < 0)
2529 return -ENODEV;
2530 if (man_id == convrate && chip_id == convrate)
2531 man_id = -1;
2532 }
2533 switch (man_id) {
2534 case -1: /* Chip does not support man_id / chip_id */
2535 if (common_address && !convrate && !(config1 & 0x7f))
2536 name = lm90_detect_lm84(client);
2537 break;
2538 case 0x01: /* National Semiconductor */
2539 name = lm90_detect_national(client, chip_id, config1, convrate);
2540 break;
2541 case 0x1a: /* ON */
2542 name = lm90_detect_on(client, chip_id, config1, convrate);
2543 break;
2544 case 0x23: /* Genesys Logic */
2545 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2546 name = "gl523sm";
2547 break;
2548 case 0x41: /* Analog Devices */
2549 name = lm90_detect_analog(client, common_address, chip_id, config1,
2550 convrate);
2551 break;
2552 case 0x47: /* GMT */
2553 name = lm90_detect_gmt(client, chip_id, config1, convrate);
2554 break;
2555 case 0x49: /* TI */
2556 name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2557 break;
2558 case 0x4d: /* Maxim Integrated */
2559 name = lm90_detect_maxim(client, common_address, chip_id,
2560 config1, convrate);
2561 break;
2562 case 0x50:
2563 name = lm90_detect_nuvoton_50(client, chip_id, config1, convrate);
2564 break;
2565 case 0x54: /* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2566 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2567 name = "mc1066";
2568 break;
2569 case 0x55: /* TI */
2570 name = lm90_detect_ti(client, chip_id, config1, convrate);
2571 break;
2572 case 0x5c: /* Winbond/Nuvoton */
2573 name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2574 break;
2575 case 0xa1: /* NXP Semiconductor/Philips */
2576 name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2577 break;
2578 case 0xff: /* MAX1617, G767, NE1617 */
2579 if (common_address && chip_id == 0xff && convrate < 8)
2580 name = lm90_detect_max1617(client, config1);
2581 break;
2582 default:
2583 break;
2584 }
2585
2586 if (!name) { /* identification failed */
2587 dev_dbg(&adapter->dev,
2588 "Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2589 client->addr, man_id, chip_id);
2590 return -ENODEV;
2591 }
2592
2593 strscpy(info->type, name, I2C_NAME_SIZE);
2594
2595 return 0;
2596}
2597
2598static void lm90_restore_conf(void *_data)
2599{
2600 struct lm90_data *data = _data;
2601 struct i2c_client *client = data->client;
2602
2603 cancel_delayed_work_sync(dwork: &data->alert_work);
2604 cancel_work_sync(work: &data->report_work);
2605
2606 /* Restore initial configuration */
2607 if (data->flags & LM90_HAVE_CONVRATE)
2608 lm90_write_convrate(data, val: data->convrate_orig);
2609 lm90_write_reg(client, LM90_REG_CONFIG1, val: data->config_orig);
2610}
2611
2612static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2613{
2614 struct device_node *np = client->dev.of_node;
2615 int config, convrate;
2616
2617 if (data->flags & LM90_HAVE_CONVRATE) {
2618 convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2619 if (convrate < 0)
2620 return convrate;
2621 data->convrate_orig = convrate;
2622 lm90_set_convrate(client, data, interval: 500); /* 500ms; 2Hz conversion rate */
2623 } else {
2624 data->update_interval = 500;
2625 }
2626
2627 /*
2628 * Start the conversions.
2629 */
2630 config = lm90_read_reg(client, LM90_REG_CONFIG1);
2631 if (config < 0)
2632 return config;
2633 data->config_orig = config;
2634 data->config = config;
2635
2636 /* Check Temperature Range Select */
2637 if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2638 if (of_property_read_bool(np, propname: "ti,extended-range-enable"))
2639 config |= 0x04;
2640 if (!(config & 0x04))
2641 data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2642 }
2643
2644 /*
2645 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2646 * 0.125 degree resolution) and range (0x08, extend range
2647 * to -64 degree) mode for the remote temperature sensor.
2648 * Note that expeciments with an actual chip do not show a difference
2649 * if bit 3 is set or not.
2650 */
2651 if (data->kind == max6680)
2652 config |= 0x18;
2653
2654 /*
2655 * Put MAX6654 into extended range (0x20, extend minimum range from
2656 * 0 degrees to -64 degrees). Note that extended resolution is not
2657 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2658 * slower, which is intentionally not done by default.
2659 */
2660 if (data->kind == max6654)
2661 config |= 0x20;
2662
2663 /*
2664 * Select external channel 0 for devices with three sensors
2665 */
2666 if (data->flags & LM90_HAVE_TEMP3)
2667 config &= ~0x08;
2668
2669 /*
2670 * Interrupt is enabled by default on reset, but it may be disabled
2671 * by bootloader, unmask it.
2672 */
2673 if (client->irq)
2674 config &= ~0x80;
2675
2676 config &= 0xBF; /* run */
2677 lm90_update_confreg(data, config);
2678
2679 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2680}
2681
2682static bool lm90_is_tripped(struct i2c_client *client)
2683{
2684 struct lm90_data *data = i2c_get_clientdata(client);
2685 int ret;
2686
2687 ret = lm90_update_alarms(data, force: true);
2688 if (ret < 0)
2689 return false;
2690
2691 return !!data->current_alarms;
2692}
2693
2694static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2695{
2696 struct i2c_client *client = dev_id;
2697
2698 if (lm90_is_tripped(client))
2699 return IRQ_HANDLED;
2700 else
2701 return IRQ_NONE;
2702}
2703
2704static int lm90_probe_channel_from_dt(struct i2c_client *client,
2705 struct device_node *child,
2706 struct lm90_data *data)
2707{
2708 u32 id;
2709 s32 val;
2710 int err;
2711 struct device *dev = &client->dev;
2712
2713 err = of_property_read_u32(np: child, propname: "reg", out_value: &id);
2714 if (err) {
2715 dev_err(dev, "missing reg property of %pOFn\n", child);
2716 return err;
2717 }
2718
2719 if (id >= MAX_CHANNELS) {
2720 dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2721 return -EINVAL;
2722 }
2723
2724 err = of_property_read_string(np: child, propname: "label", out_string: &data->channel_label[id]);
2725 if (err == -ENODATA || err == -EILSEQ) {
2726 dev_err(dev, "invalid label property in %pOFn\n", child);
2727 return err;
2728 }
2729
2730 if (data->channel_label[id])
2731 data->channel_config[id] |= HWMON_T_LABEL;
2732
2733 err = of_property_read_s32(np: child, propname: "temperature-offset-millicelsius", out_value: &val);
2734 if (!err) {
2735 if (id == 0) {
2736 dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2737 return -EINVAL;
2738 }
2739
2740 err = lm90_set_temp_offset(data, index: lm90_temp_offset_index[id], channel: id, val);
2741 if (err) {
2742 dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2743 val, id, err);
2744 return err;
2745 }
2746 }
2747
2748 return 0;
2749}
2750
2751static int lm90_parse_dt_channel_info(struct i2c_client *client,
2752 struct lm90_data *data)
2753{
2754 int err;
2755 struct device *dev = &client->dev;
2756 const struct device_node *np = dev->of_node;
2757
2758 for_each_child_of_node_scoped(np, child) {
2759 if (strcmp(child->name, "channel"))
2760 continue;
2761
2762 err = lm90_probe_channel_from_dt(client, child, data);
2763 if (err)
2764 return err;
2765 }
2766
2767 return 0;
2768}
2769
2770static const struct hwmon_ops lm90_ops = {
2771 .is_visible = lm90_is_visible,
2772 .read = lm90_read,
2773 .read_string = lm90_read_string,
2774 .write = lm90_write,
2775};
2776
2777static int lm90_probe(struct i2c_client *client)
2778{
2779 struct device *dev = &client->dev;
2780 struct i2c_adapter *adapter = client->adapter;
2781 struct hwmon_channel_info *info;
2782 struct device *hwmon_dev;
2783 struct lm90_data *data;
2784 int err;
2785
2786 err = devm_regulator_get_enable(dev, id: "vcc");
2787 if (err)
2788 return dev_err_probe(dev, err, fmt: "Failed to enable regulator\n");
2789
2790 data = devm_kzalloc(dev, size: sizeof(struct lm90_data), GFP_KERNEL);
2791 if (!data)
2792 return -ENOMEM;
2793
2794 data->client = client;
2795 i2c_set_clientdata(client, data);
2796 mutex_init(&data->update_lock);
2797 INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2798 INIT_WORK(&data->report_work, lm90_report_alarms);
2799
2800 /* Set the device type */
2801 data->kind = (uintptr_t)i2c_get_match_data(client);
2802
2803 /*
2804 * Different devices have different alarm bits triggering the
2805 * ALERT# output
2806 */
2807 data->alert_alarms = lm90_params[data->kind].alert_alarms;
2808 data->resolution = lm90_params[data->kind].resolution ? : 11;
2809
2810 /* Set chip capabilities */
2811 data->flags = lm90_params[data->kind].flags;
2812
2813 if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2814 !i2c_check_functionality(adap: adapter, I2C_FUNC_SMBUS_PEC))
2815 data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2816
2817 if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2818 !i2c_check_functionality(adap: adapter, I2C_FUNC_SMBUS_BYTE))
2819 data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2820
2821 data->chip.ops = &lm90_ops;
2822 data->chip.info = data->info;
2823
2824 data->info[0] = &data->chip_info;
2825 info = &data->chip_info;
2826 info->type = hwmon_chip;
2827 info->config = data->chip_config;
2828
2829 data->chip_config[0] = HWMON_C_REGISTER_TZ;
2830 if (data->flags & LM90_HAVE_ALARMS)
2831 data->chip_config[0] |= HWMON_C_ALARMS;
2832 if (data->flags & LM90_HAVE_CONVRATE)
2833 data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2834 if (data->flags & LM90_HAVE_FAULTQUEUE)
2835 data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2836 if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC))
2837 data->chip_config[0] |= HWMON_C_PEC;
2838 data->info[1] = &data->temp_info;
2839
2840 info = &data->temp_info;
2841 info->type = hwmon_temp;
2842 info->config = data->channel_config;
2843
2844 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2845 HWMON_T_MAX_ALARM;
2846 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2847 HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2848
2849 if (data->flags & LM90_HAVE_LOW) {
2850 data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2851 data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2852 }
2853
2854 if (data->flags & LM90_HAVE_CRIT) {
2855 data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2856 data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2857 }
2858
2859 if (data->flags & LM90_HAVE_OFFSET)
2860 data->channel_config[1] |= HWMON_T_OFFSET;
2861
2862 if (data->flags & LM90_HAVE_EMERGENCY) {
2863 data->channel_config[0] |= HWMON_T_EMERGENCY |
2864 HWMON_T_EMERGENCY_HYST;
2865 data->channel_config[1] |= HWMON_T_EMERGENCY |
2866 HWMON_T_EMERGENCY_HYST;
2867 }
2868
2869 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2870 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2871 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2872 }
2873
2874 if (data->flags & LM90_HAVE_TEMP3) {
2875 data->channel_config[2] = HWMON_T_INPUT |
2876 HWMON_T_MIN | HWMON_T_MAX |
2877 HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2878 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2879 HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2880 if (data->flags & LM90_HAVE_EMERGENCY) {
2881 data->channel_config[2] |= HWMON_T_EMERGENCY |
2882 HWMON_T_EMERGENCY_HYST;
2883 }
2884 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2885 data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2886 if (data->flags & LM90_HAVE_OFFSET)
2887 data->channel_config[2] |= HWMON_T_OFFSET;
2888 }
2889
2890 data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2891 data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2892 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2893 if (data->flags & LM90_HAVE_REMOTE_EXT)
2894 data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2895 data->reg_status2 = lm90_params[data->kind].reg_status2;
2896
2897 /* Set maximum conversion rate */
2898 data->max_convrate = lm90_params[data->kind].max_convrate;
2899
2900 /* Parse device-tree channel information */
2901 if (client->dev.of_node) {
2902 err = lm90_parse_dt_channel_info(client, data);
2903 if (err)
2904 return err;
2905 }
2906
2907 /* Initialize the LM90 chip */
2908 err = lm90_init_client(client, data);
2909 if (err < 0) {
2910 dev_err(dev, "Failed to initialize device\n");
2911 return err;
2912 }
2913
2914 hwmon_dev = devm_hwmon_device_register_with_info(dev, name: client->name,
2915 drvdata: data, info: &data->chip,
2916 NULL);
2917 if (IS_ERR(ptr: hwmon_dev))
2918 return PTR_ERR(ptr: hwmon_dev);
2919
2920 data->hwmon_dev = hwmon_dev;
2921
2922 if (client->irq) {
2923 dev_dbg(dev, "IRQ: %d\n", client->irq);
2924 err = devm_request_threaded_irq(dev, irq: client->irq,
2925 NULL, thread_fn: lm90_irq_thread,
2926 IRQF_ONESHOT, devname: "lm90", dev_id: client);
2927 if (err < 0) {
2928 dev_err(dev, "cannot request IRQ %d\n", client->irq);
2929 return err;
2930 }
2931 }
2932
2933 return 0;
2934}
2935
2936static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2937 unsigned int flag)
2938{
2939 if (type != I2C_PROTOCOL_SMBUS_ALERT)
2940 return;
2941
2942 if (lm90_is_tripped(client)) {
2943 /*
2944 * Disable ALERT# output, because these chips don't implement
2945 * SMBus alert correctly; they should only hold the alert line
2946 * low briefly.
2947 */
2948 struct lm90_data *data = i2c_get_clientdata(client);
2949
2950 if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2951 (data->current_alarms & data->alert_alarms)) {
2952 if (!(data->config & 0x80)) {
2953 dev_dbg(&client->dev, "Disabling ALERT#\n");
2954 lm90_update_confreg(data, config: data->config | 0x80);
2955 }
2956 schedule_delayed_work(dwork: &data->alert_work,
2957 max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2958 }
2959 } else {
2960 dev_dbg(&client->dev, "Everything OK\n");
2961 }
2962}
2963
2964static int lm90_suspend(struct device *dev)
2965{
2966 struct lm90_data *data = dev_get_drvdata(dev);
2967 struct i2c_client *client = data->client;
2968
2969 if (client->irq)
2970 disable_irq(irq: client->irq);
2971
2972 return 0;
2973}
2974
2975static int lm90_resume(struct device *dev)
2976{
2977 struct lm90_data *data = dev_get_drvdata(dev);
2978 struct i2c_client *client = data->client;
2979
2980 if (client->irq)
2981 enable_irq(irq: client->irq);
2982
2983 return 0;
2984}
2985
2986static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2987
2988static struct i2c_driver lm90_driver = {
2989 .class = I2C_CLASS_HWMON,
2990 .driver = {
2991 .name = "lm90",
2992 .of_match_table = of_match_ptr(lm90_of_match),
2993 .pm = pm_sleep_ptr(&lm90_pm_ops),
2994 },
2995 .probe = lm90_probe,
2996 .alert = lm90_alert,
2997 .id_table = lm90_id,
2998 .detect = lm90_detect,
2999 .address_list = normal_i2c,
3000};
3001
3002module_i2c_driver(lm90_driver);
3003
3004MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
3005MODULE_DESCRIPTION("LM90/ADM1032 driver");
3006MODULE_LICENSE("GPL");
3007

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/hwmon/lm90.c