1// SPDX-License-Identifier: GPL-2.0-only
2// Copyright (c) 2018-2021 Intel Corporation
3
4#include <linux/auxiliary_bus.h>
5#include <linux/bitfield.h>
6#include <linux/bitops.h>
7#include <linux/devm-helpers.h>
8#include <linux/hwmon.h>
9#include <linux/jiffies.h>
10#include <linux/module.h>
11#include <linux/peci.h>
12#include <linux/peci-cpu.h>
13#include <linux/units.h>
14#include <linux/workqueue.h>
15
16#include "common.h"
17
18#define DIMM_MASK_CHECK_DELAY_JIFFIES msecs_to_jiffies(5000)
19
20/* Max number of channel ranks and DIMM index per channel */
21#define CHAN_RANK_MAX_ON_HSX 8
22#define DIMM_IDX_MAX_ON_HSX 3
23#define CHAN_RANK_MAX_ON_BDX 4
24#define DIMM_IDX_MAX_ON_BDX 3
25#define CHAN_RANK_MAX_ON_BDXD 2
26#define DIMM_IDX_MAX_ON_BDXD 2
27#define CHAN_RANK_MAX_ON_SKX 6
28#define DIMM_IDX_MAX_ON_SKX 2
29#define CHAN_RANK_MAX_ON_ICX 8
30#define DIMM_IDX_MAX_ON_ICX 2
31#define CHAN_RANK_MAX_ON_ICXD 4
32#define DIMM_IDX_MAX_ON_ICXD 2
33#define CHAN_RANK_MAX_ON_SPR 8
34#define DIMM_IDX_MAX_ON_SPR 2
35
36#define CHAN_RANK_MAX CHAN_RANK_MAX_ON_HSX
37#define DIMM_IDX_MAX DIMM_IDX_MAX_ON_HSX
38#define DIMM_NUMS_MAX (CHAN_RANK_MAX * DIMM_IDX_MAX)
39
40#define CPU_SEG_MASK GENMASK(23, 16)
41#define GET_CPU_SEG(x) (((x) & CPU_SEG_MASK) >> 16)
42#define CPU_BUS_MASK GENMASK(7, 0)
43#define GET_CPU_BUS(x) ((x) & CPU_BUS_MASK)
44
45#define DIMM_TEMP_MAX GENMASK(15, 8)
46#define DIMM_TEMP_CRIT GENMASK(23, 16)
47#define GET_TEMP_MAX(x) (((x) & DIMM_TEMP_MAX) >> 8)
48#define GET_TEMP_CRIT(x) (((x) & DIMM_TEMP_CRIT) >> 16)
49
50#define NO_DIMM_RETRY_COUNT_MAX 120
51
52struct peci_dimmtemp;
53
54struct dimm_info {
55 int chan_rank_max;
56 int dimm_idx_max;
57 u8 min_peci_revision;
58 int (*read_thresholds)(struct peci_dimmtemp *priv, int dimm_order,
59 int chan_rank, u32 *data);
60};
61
62struct peci_dimm_thresholds {
63 long temp_max;
64 long temp_crit;
65 struct peci_sensor_state state;
66};
67
68enum peci_dimm_threshold_type {
69 temp_max_type,
70 temp_crit_type,
71};
72
73struct peci_dimmtemp {
74 struct peci_device *peci_dev;
75 struct device *dev;
76 const char *name;
77 const struct dimm_info *gen_info;
78 struct delayed_work detect_work;
79 struct {
80 struct peci_sensor_data temp;
81 struct peci_dimm_thresholds thresholds;
82 } dimm[DIMM_NUMS_MAX];
83 char **dimmtemp_label;
84 DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX);
85 u8 no_dimm_retry_count;
86};
87
88static u8 __dimm_temp(u32 reg, int dimm_order)
89{
90 return (reg >> (dimm_order * 8)) & 0xff;
91}
92
93static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no, long *val)
94{
95 int dimm_order = dimm_no % priv->gen_info->dimm_idx_max;
96 int chan_rank = dimm_no / priv->gen_info->dimm_idx_max;
97 int ret = 0;
98 u32 data;
99
100 mutex_lock(&priv->dimm[dimm_no].temp.state.lock);
101 if (!peci_sensor_need_update(state: &priv->dimm[dimm_no].temp.state))
102 goto skip_update;
103
104 ret = peci_pcs_read(device: priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, param: chan_rank, data: &data);
105 if (ret)
106 goto unlock;
107
108 priv->dimm[dimm_no].temp.value = __dimm_temp(reg: data, dimm_order) * MILLIDEGREE_PER_DEGREE;
109
110 peci_sensor_mark_updated(state: &priv->dimm[dimm_no].temp.state);
111
112skip_update:
113 *val = priv->dimm[dimm_no].temp.value;
114unlock:
115 mutex_unlock(lock: &priv->dimm[dimm_no].temp.state.lock);
116 return ret;
117}
118
119static int update_thresholds(struct peci_dimmtemp *priv, int dimm_no)
120{
121 int dimm_order = dimm_no % priv->gen_info->dimm_idx_max;
122 int chan_rank = dimm_no / priv->gen_info->dimm_idx_max;
123 u32 data;
124 int ret;
125
126 if (!peci_sensor_need_update(state: &priv->dimm[dimm_no].thresholds.state))
127 return 0;
128
129 ret = priv->gen_info->read_thresholds(priv, dimm_order, chan_rank, &data);
130 if (ret == -ENODATA) /* Use default or previous value */
131 return 0;
132 if (ret)
133 return ret;
134
135 priv->dimm[dimm_no].thresholds.temp_max = GET_TEMP_MAX(data) * MILLIDEGREE_PER_DEGREE;
136 priv->dimm[dimm_no].thresholds.temp_crit = GET_TEMP_CRIT(data) * MILLIDEGREE_PER_DEGREE;
137
138 peci_sensor_mark_updated(state: &priv->dimm[dimm_no].thresholds.state);
139
140 return 0;
141}
142
143static int get_dimm_thresholds(struct peci_dimmtemp *priv, enum peci_dimm_threshold_type type,
144 int dimm_no, long *val)
145{
146 int ret;
147
148 mutex_lock(&priv->dimm[dimm_no].thresholds.state.lock);
149 ret = update_thresholds(priv, dimm_no);
150 if (ret)
151 goto unlock;
152
153 switch (type) {
154 case temp_max_type:
155 *val = priv->dimm[dimm_no].thresholds.temp_max;
156 break;
157 case temp_crit_type:
158 *val = priv->dimm[dimm_no].thresholds.temp_crit;
159 break;
160 default:
161 ret = -EOPNOTSUPP;
162 break;
163 }
164unlock:
165 mutex_unlock(lock: &priv->dimm[dimm_no].thresholds.state.lock);
166
167 return ret;
168}
169
170static int dimmtemp_read_string(struct device *dev,
171 enum hwmon_sensor_types type,
172 u32 attr, int channel, const char **str)
173{
174 struct peci_dimmtemp *priv = dev_get_drvdata(dev);
175
176 if (attr != hwmon_temp_label)
177 return -EOPNOTSUPP;
178
179 *str = (const char *)priv->dimmtemp_label[channel];
180
181 return 0;
182}
183
184static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type,
185 u32 attr, int channel, long *val)
186{
187 struct peci_dimmtemp *priv = dev_get_drvdata(dev);
188
189 switch (attr) {
190 case hwmon_temp_input:
191 return get_dimm_temp(priv, dimm_no: channel, val);
192 case hwmon_temp_max:
193 return get_dimm_thresholds(priv, type: temp_max_type, dimm_no: channel, val);
194 case hwmon_temp_crit:
195 return get_dimm_thresholds(priv, type: temp_crit_type, dimm_no: channel, val);
196 default:
197 break;
198 }
199
200 return -EOPNOTSUPP;
201}
202
203static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type,
204 u32 attr, int channel)
205{
206 const struct peci_dimmtemp *priv = data;
207
208 if (test_bit(channel, priv->dimm_mask))
209 return 0444;
210
211 return 0;
212}
213
214static const struct hwmon_ops peci_dimmtemp_ops = {
215 .is_visible = dimmtemp_is_visible,
216 .read_string = dimmtemp_read_string,
217 .read = dimmtemp_read,
218};
219
220static int check_populated_dimms(struct peci_dimmtemp *priv)
221{
222 int chan_rank_max = priv->gen_info->chan_rank_max;
223 int dimm_idx_max = priv->gen_info->dimm_idx_max;
224 DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX);
225 DECLARE_BITMAP(chan_rank_empty, CHAN_RANK_MAX);
226
227 int chan_rank, dimm_idx, ret, i;
228 u32 pcs;
229
230 if (chan_rank_max * dimm_idx_max > DIMM_NUMS_MAX) {
231 WARN_ONCE(1, "Unsupported number of DIMMs - chan_rank_max: %d, dimm_idx_max: %d",
232 chan_rank_max, dimm_idx_max);
233 return -EINVAL;
234 }
235
236 bitmap_zero(dst: dimm_mask, DIMM_NUMS_MAX);
237 bitmap_zero(dst: chan_rank_empty, CHAN_RANK_MAX);
238
239 for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) {
240 ret = peci_pcs_read(device: priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, param: chan_rank, data: &pcs);
241 if (ret) {
242 /*
243 * Overall, we expect either success or -EINVAL in
244 * order to determine whether DIMM is populated or not.
245 * For anything else we fall back to deferring the
246 * detection to be performed at a later point in time.
247 */
248 if (ret == -EINVAL) {
249 bitmap_set(map: chan_rank_empty, start: chan_rank, nbits: 1);
250 continue;
251 }
252
253 return -EAGAIN;
254 }
255
256 for (dimm_idx = 0; dimm_idx < dimm_idx_max; dimm_idx++)
257 if (__dimm_temp(reg: pcs, dimm_order: dimm_idx))
258 bitmap_set(map: dimm_mask, start: chan_rank * dimm_idx_max + dimm_idx, nbits: 1);
259 }
260
261 /*
262 * If we got all -EINVALs, it means that the CPU doesn't have any
263 * DIMMs. Unfortunately, it may also happen at the very start of
264 * host platform boot. Retrying a couple of times lets us make sure
265 * that the state is persistent.
266 */
267 if (bitmap_full(src: chan_rank_empty, nbits: chan_rank_max)) {
268 if (priv->no_dimm_retry_count < NO_DIMM_RETRY_COUNT_MAX) {
269 priv->no_dimm_retry_count++;
270
271 return -EAGAIN;
272 }
273
274 return -ENODEV;
275 }
276
277 /*
278 * It's possible that memory training is not done yet. In this case we
279 * defer the detection to be performed at a later point in time.
280 */
281 if (bitmap_empty(src: dimm_mask, DIMM_NUMS_MAX)) {
282 priv->no_dimm_retry_count = 0;
283 return -EAGAIN;
284 }
285
286 for_each_set_bit(i, dimm_mask, DIMM_NUMS_MAX) {
287 dev_dbg(priv->dev, "Found DIMM%#x\n", i);
288 }
289
290 bitmap_copy(dst: priv->dimm_mask, src: dimm_mask, DIMM_NUMS_MAX);
291
292 return 0;
293}
294
295static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan)
296{
297 int rank = chan / priv->gen_info->dimm_idx_max;
298 int idx = chan % priv->gen_info->dimm_idx_max;
299
300 priv->dimmtemp_label[chan] = devm_kasprintf(dev: priv->dev, GFP_KERNEL,
301 fmt: "DIMM %c%d", 'A' + rank,
302 idx + 1);
303 if (!priv->dimmtemp_label[chan])
304 return -ENOMEM;
305
306 return 0;
307}
308
309static const struct hwmon_channel_info * const peci_dimmtemp_temp_info[] = {
310 HWMON_CHANNEL_INFO(temp,
311 [0 ... DIMM_NUMS_MAX - 1] = HWMON_T_LABEL |
312 HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT),
313 NULL
314};
315
316static const struct hwmon_chip_info peci_dimmtemp_chip_info = {
317 .ops = &peci_dimmtemp_ops,
318 .info = peci_dimmtemp_temp_info,
319};
320
321static int create_dimm_temp_info(struct peci_dimmtemp *priv)
322{
323 int ret, i, channels;
324 struct device *dev;
325
326 /*
327 * We expect to either find populated DIMMs and carry on with creating
328 * sensors, or find out that there are no DIMMs populated.
329 * All other states mean that the platform never reached the state that
330 * allows to check DIMM state - causing us to retry later on.
331 */
332 ret = check_populated_dimms(priv);
333 if (ret == -ENODEV) {
334 dev_dbg(priv->dev, "No DIMMs found\n");
335 return 0;
336 } else if (ret) {
337 schedule_delayed_work(dwork: &priv->detect_work, DIMM_MASK_CHECK_DELAY_JIFFIES);
338 dev_dbg(priv->dev, "Deferred populating DIMM temp info\n");
339 return ret;
340 }
341
342 channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max;
343
344 priv->dimmtemp_label = devm_kzalloc(dev: priv->dev, size: channels * sizeof(char *), GFP_KERNEL);
345 if (!priv->dimmtemp_label)
346 return -ENOMEM;
347
348 for_each_set_bit(i, priv->dimm_mask, DIMM_NUMS_MAX) {
349 ret = create_dimm_temp_label(priv, chan: i);
350 if (ret)
351 return ret;
352 mutex_init(&priv->dimm[i].thresholds.state.lock);
353 mutex_init(&priv->dimm[i].temp.state.lock);
354 }
355
356 dev = devm_hwmon_device_register_with_info(dev: priv->dev, name: priv->name, drvdata: priv,
357 info: &peci_dimmtemp_chip_info, NULL);
358 if (IS_ERR(ptr: dev)) {
359 dev_err(priv->dev, "Failed to register hwmon device\n");
360 return PTR_ERR(ptr: dev);
361 }
362
363 dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name);
364
365 return 0;
366}
367
368static void create_dimm_temp_info_delayed(struct work_struct *work)
369{
370 struct peci_dimmtemp *priv = container_of(to_delayed_work(work),
371 struct peci_dimmtemp,
372 detect_work);
373 int ret;
374
375 ret = create_dimm_temp_info(priv);
376 if (ret && ret != -EAGAIN)
377 dev_err(priv->dev, "Failed to populate DIMM temp info\n");
378}
379
380static int peci_dimmtemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id)
381{
382 struct device *dev = &adev->dev;
383 struct peci_device *peci_dev = to_peci_device(d: dev->parent);
384 struct peci_dimmtemp *priv;
385 int ret;
386
387 priv = devm_kzalloc(dev, size: sizeof(*priv), GFP_KERNEL);
388 if (!priv)
389 return -ENOMEM;
390
391 priv->name = devm_kasprintf(dev, GFP_KERNEL, fmt: "peci_dimmtemp.cpu%d",
392 peci_dev->info.socket_id);
393 if (!priv->name)
394 return -ENOMEM;
395
396 priv->dev = dev;
397 priv->peci_dev = peci_dev;
398 priv->gen_info = (const struct dimm_info *)id->driver_data;
399
400 /*
401 * This is just a sanity check. Since we're using commands that are
402 * guaranteed to be supported on a given platform, we should never see
403 * revision lower than expected.
404 */
405 if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision)
406 dev_warn(priv->dev,
407 "Unexpected PECI revision %#x, some features may be unavailable\n",
408 peci_dev->info.peci_revision);
409
410 ret = devm_delayed_work_autocancel(dev: priv->dev, w: &priv->detect_work,
411 worker: create_dimm_temp_info_delayed);
412 if (ret)
413 return ret;
414
415 ret = create_dimm_temp_info(priv);
416 if (ret && ret != -EAGAIN) {
417 dev_err(dev, "Failed to populate DIMM temp info\n");
418 return ret;
419 }
420
421 return 0;
422}
423
424static int
425read_thresholds_hsx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
426{
427 u8 dev, func;
428 u16 reg;
429 int ret;
430
431 /*
432 * Device 20, Function 0: IMC 0 channel 0 -> rank 0
433 * Device 20, Function 1: IMC 0 channel 1 -> rank 1
434 * Device 21, Function 0: IMC 0 channel 2 -> rank 2
435 * Device 21, Function 1: IMC 0 channel 3 -> rank 3
436 * Device 23, Function 0: IMC 1 channel 0 -> rank 4
437 * Device 23, Function 1: IMC 1 channel 1 -> rank 5
438 * Device 24, Function 0: IMC 1 channel 2 -> rank 6
439 * Device 24, Function 1: IMC 1 channel 3 -> rank 7
440 */
441 dev = 20 + chan_rank / 2 + chan_rank / 4;
442 func = chan_rank % 2;
443 reg = 0x120 + dimm_order * 4;
444
445 ret = peci_pci_local_read(device: priv->peci_dev, bus: 1, dev, func, reg, data);
446 if (ret)
447 return ret;
448
449 return 0;
450}
451
452static int
453read_thresholds_bdxd(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
454{
455 u8 dev, func;
456 u16 reg;
457 int ret;
458
459 /*
460 * Device 10, Function 2: IMC 0 channel 0 -> rank 0
461 * Device 10, Function 6: IMC 0 channel 1 -> rank 1
462 * Device 12, Function 2: IMC 1 channel 0 -> rank 2
463 * Device 12, Function 6: IMC 1 channel 1 -> rank 3
464 */
465 dev = 10 + chan_rank / 2 * 2;
466 func = (chan_rank % 2) ? 6 : 2;
467 reg = 0x120 + dimm_order * 4;
468
469 ret = peci_pci_local_read(device: priv->peci_dev, bus: 2, dev, func, reg, data);
470 if (ret)
471 return ret;
472
473 return 0;
474}
475
476static int
477read_thresholds_skx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
478{
479 u8 dev, func;
480 u16 reg;
481 int ret;
482
483 /*
484 * Device 10, Function 2: IMC 0 channel 0 -> rank 0
485 * Device 10, Function 6: IMC 0 channel 1 -> rank 1
486 * Device 11, Function 2: IMC 0 channel 2 -> rank 2
487 * Device 12, Function 2: IMC 1 channel 0 -> rank 3
488 * Device 12, Function 6: IMC 1 channel 1 -> rank 4
489 * Device 13, Function 2: IMC 1 channel 2 -> rank 5
490 */
491 dev = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0);
492 func = chan_rank % 3 == 1 ? 6 : 2;
493 reg = 0x120 + dimm_order * 4;
494
495 ret = peci_pci_local_read(device: priv->peci_dev, bus: 2, dev, func, reg, data);
496 if (ret)
497 return ret;
498
499 return 0;
500}
501
502static int
503read_thresholds_icx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
504{
505 u32 reg_val;
506 u64 offset;
507 int ret;
508 u8 dev;
509
510 ret = peci_ep_pci_local_read(device: priv->peci_dev, seg: 0, bus: 13, dev: 0, func: 2, reg: 0xd4, data: &reg_val);
511 if (ret || !(reg_val & BIT(31)))
512 return -ENODATA; /* Use default or previous value */
513
514 ret = peci_ep_pci_local_read(device: priv->peci_dev, seg: 0, bus: 13, dev: 0, func: 2, reg: 0xd0, data: &reg_val);
515 if (ret)
516 return -ENODATA; /* Use default or previous value */
517
518 /*
519 * Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0
520 * Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1
521 * Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2
522 * Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3
523 * Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4
524 * Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5
525 * Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6
526 * Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7
527 */
528 dev = 26 + chan_rank / 2;
529 offset = 0x224e0 + dimm_order * 4 + (chan_rank % 2) * 0x4000;
530
531 ret = peci_mmio_read(device: priv->peci_dev, bar: 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val),
532 dev, func: 0, address: offset, data);
533 if (ret)
534 return ret;
535
536 return 0;
537}
538
539static int
540read_thresholds_spr(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data)
541{
542 u32 reg_val;
543 u64 offset;
544 int ret;
545 u8 dev;
546
547 ret = peci_ep_pci_local_read(device: priv->peci_dev, seg: 0, bus: 30, dev: 0, func: 2, reg: 0xd4, data: &reg_val);
548 if (ret || !(reg_val & BIT(31)))
549 return -ENODATA; /* Use default or previous value */
550
551 ret = peci_ep_pci_local_read(device: priv->peci_dev, seg: 0, bus: 30, dev: 0, func: 2, reg: 0xd0, data: &reg_val);
552 if (ret)
553 return -ENODATA; /* Use default or previous value */
554
555 /*
556 * Device 26, Offset 219a8: IMC 0 channel 0 -> rank 0
557 * Device 26, Offset 299a8: IMC 0 channel 1 -> rank 1
558 * Device 27, Offset 219a8: IMC 1 channel 0 -> rank 2
559 * Device 27, Offset 299a8: IMC 1 channel 1 -> rank 3
560 * Device 28, Offset 219a8: IMC 2 channel 0 -> rank 4
561 * Device 28, Offset 299a8: IMC 2 channel 1 -> rank 5
562 * Device 29, Offset 219a8: IMC 3 channel 0 -> rank 6
563 * Device 29, Offset 299a8: IMC 3 channel 1 -> rank 7
564 */
565 dev = 26 + chan_rank / 2;
566 offset = 0x219a8 + dimm_order * 4 + (chan_rank % 2) * 0x8000;
567
568 ret = peci_mmio_read(device: priv->peci_dev, bar: 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val),
569 dev, func: 0, address: offset, data);
570 if (ret)
571 return ret;
572
573 return 0;
574}
575
576static const struct dimm_info dimm_hsx = {
577 .chan_rank_max = CHAN_RANK_MAX_ON_HSX,
578 .dimm_idx_max = DIMM_IDX_MAX_ON_HSX,
579 .min_peci_revision = 0x33,
580 .read_thresholds = &read_thresholds_hsx,
581};
582
583static const struct dimm_info dimm_bdx = {
584 .chan_rank_max = CHAN_RANK_MAX_ON_BDX,
585 .dimm_idx_max = DIMM_IDX_MAX_ON_BDX,
586 .min_peci_revision = 0x33,
587 .read_thresholds = &read_thresholds_hsx,
588};
589
590static const struct dimm_info dimm_bdxd = {
591 .chan_rank_max = CHAN_RANK_MAX_ON_BDXD,
592 .dimm_idx_max = DIMM_IDX_MAX_ON_BDXD,
593 .min_peci_revision = 0x33,
594 .read_thresholds = &read_thresholds_bdxd,
595};
596
597static const struct dimm_info dimm_skx = {
598 .chan_rank_max = CHAN_RANK_MAX_ON_SKX,
599 .dimm_idx_max = DIMM_IDX_MAX_ON_SKX,
600 .min_peci_revision = 0x33,
601 .read_thresholds = &read_thresholds_skx,
602};
603
604static const struct dimm_info dimm_icx = {
605 .chan_rank_max = CHAN_RANK_MAX_ON_ICX,
606 .dimm_idx_max = DIMM_IDX_MAX_ON_ICX,
607 .min_peci_revision = 0x40,
608 .read_thresholds = &read_thresholds_icx,
609};
610
611static const struct dimm_info dimm_icxd = {
612 .chan_rank_max = CHAN_RANK_MAX_ON_ICXD,
613 .dimm_idx_max = DIMM_IDX_MAX_ON_ICXD,
614 .min_peci_revision = 0x40,
615 .read_thresholds = &read_thresholds_icx,
616};
617
618static const struct dimm_info dimm_spr = {
619 .chan_rank_max = CHAN_RANK_MAX_ON_SPR,
620 .dimm_idx_max = DIMM_IDX_MAX_ON_SPR,
621 .min_peci_revision = 0x40,
622 .read_thresholds = &read_thresholds_spr,
623};
624
625static const struct auxiliary_device_id peci_dimmtemp_ids[] = {
626 {
627 .name = "peci_cpu.dimmtemp.hsx",
628 .driver_data = (kernel_ulong_t)&dimm_hsx,
629 },
630 {
631 .name = "peci_cpu.dimmtemp.bdx",
632 .driver_data = (kernel_ulong_t)&dimm_bdx,
633 },
634 {
635 .name = "peci_cpu.dimmtemp.bdxd",
636 .driver_data = (kernel_ulong_t)&dimm_bdxd,
637 },
638 {
639 .name = "peci_cpu.dimmtemp.skx",
640 .driver_data = (kernel_ulong_t)&dimm_skx,
641 },
642 {
643 .name = "peci_cpu.dimmtemp.icx",
644 .driver_data = (kernel_ulong_t)&dimm_icx,
645 },
646 {
647 .name = "peci_cpu.dimmtemp.icxd",
648 .driver_data = (kernel_ulong_t)&dimm_icxd,
649 },
650 {
651 .name = "peci_cpu.dimmtemp.spr",
652 .driver_data = (kernel_ulong_t)&dimm_spr,
653 },
654 { }
655};
656MODULE_DEVICE_TABLE(auxiliary, peci_dimmtemp_ids);
657
658static struct auxiliary_driver peci_dimmtemp_driver = {
659 .probe = peci_dimmtemp_probe,
660 .id_table = peci_dimmtemp_ids,
661};
662
663module_auxiliary_driver(peci_dimmtemp_driver);
664
665MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>");
666MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>");
667MODULE_DESCRIPTION("PECI dimmtemp driver");
668MODULE_LICENSE("GPL");
669MODULE_IMPORT_NS(PECI_CPU);
670

source code of linux/drivers/hwmon/peci/dimmtemp.c