| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * sgp40.c - Support for Sensirion SGP40 Gas Sensor |
| 4 | * |
| 5 | * Copyright (C) 2021 Andreas Klinger <ak@it-klinger.de> |
| 6 | * |
| 7 | * I2C slave address: 0x59 |
| 8 | * |
| 9 | * Datasheet can be found here: |
| 10 | * https://www.sensirion.com/file/datasheet_sgp40 |
| 11 | * |
| 12 | * There are two functionalities supported: |
| 13 | * |
| 14 | * 1) read raw logarithmic resistance value from sensor |
| 15 | * --> useful to pass it to the algorithm of the sensor vendor for |
| 16 | * measuring deteriorations and improvements of air quality. |
| 17 | * It can be read from the attribute in_resistance_raw. |
| 18 | * |
| 19 | * 2) calculate an estimated absolute voc index (in_concentration_input) |
| 20 | * with 0 - 500 index points) for measuring the air quality. |
| 21 | * For this purpose the value of the resistance for which the voc index |
| 22 | * will be 250 can be set up using in_resistance_calibbias (default 30000). |
| 23 | * |
| 24 | * The voc index is calculated as: |
| 25 | * x = (in_resistance_raw - in_resistance_calibbias) * 0.65 |
| 26 | * in_concentration_input = 500 / (1 + e^x) |
| 27 | * |
| 28 | * Compensation values of relative humidity and temperature can be set up |
| 29 | * by writing to the out values of temp and humidityrelative. |
| 30 | */ |
| 31 | |
| 32 | #include <linux/delay.h> |
| 33 | #include <linux/crc8.h> |
| 34 | #include <linux/module.h> |
| 35 | #include <linux/mutex.h> |
| 36 | #include <linux/i2c.h> |
| 37 | #include <linux/iio/iio.h> |
| 38 | |
| 39 | /* |
| 40 | * floating point calculation of voc is done as integer |
| 41 | * where numbers are multiplied by 1 << SGP40_CALC_POWER |
| 42 | */ |
| 43 | #define SGP40_CALC_POWER 14 |
| 44 | |
| 45 | #define SGP40_CRC8_POLYNOMIAL 0x31 |
| 46 | #define SGP40_CRC8_INIT 0xff |
| 47 | |
| 48 | DECLARE_CRC8_TABLE(sgp40_crc8_table); |
| 49 | |
| 50 | struct sgp40_data { |
| 51 | struct device *dev; |
| 52 | struct i2c_client *client; |
| 53 | int rht; |
| 54 | int temp; |
| 55 | int res_calibbias; |
| 56 | /* Prevent concurrent access to rht, tmp, calibbias */ |
| 57 | struct mutex lock; |
| 58 | }; |
| 59 | |
| 60 | struct sgp40_tg_measure { |
| 61 | u8 command[2]; |
| 62 | __be16 rht_ticks; |
| 63 | u8 rht_crc; |
| 64 | __be16 temp_ticks; |
| 65 | u8 temp_crc; |
| 66 | } __packed; |
| 67 | |
| 68 | struct sgp40_tg_result { |
| 69 | __be16 res_ticks; |
| 70 | u8 res_crc; |
| 71 | } __packed; |
| 72 | |
| 73 | static const struct iio_chan_spec sgp40_channels[] = { |
| 74 | { |
| 75 | .type = IIO_CONCENTRATION, |
| 76 | .channel2 = IIO_MOD_VOC, |
| 77 | .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), |
| 78 | }, |
| 79 | { |
| 80 | .type = IIO_RESISTANCE, |
| 81 | .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | |
| 82 | BIT(IIO_CHAN_INFO_CALIBBIAS), |
| 83 | }, |
| 84 | { |
| 85 | .type = IIO_TEMP, |
| 86 | .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), |
| 87 | .output = 1, |
| 88 | }, |
| 89 | { |
| 90 | .type = IIO_HUMIDITYRELATIVE, |
| 91 | .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), |
| 92 | .output = 1, |
| 93 | }, |
| 94 | }; |
| 95 | |
| 96 | /* |
| 97 | * taylor approximation of e^x: |
| 98 | * y = 1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24 + ... + x^n / n! |
| 99 | * |
| 100 | * Because we are calculating x real value multiplied by 2^power we get |
| 101 | * an additional 2^power^n to divide for every element. For a reasonable |
| 102 | * precision this would overflow after a few iterations. Therefore we |
| 103 | * divide the x^n part whenever its about to overflow (xmax). |
| 104 | */ |
| 105 | |
| 106 | static u32 sgp40_exp(int exp, u32 power, u32 rounds) |
| 107 | { |
| 108 | u32 x, y, xp; |
| 109 | u32 factorial, divider, xmax; |
| 110 | int sign = 1; |
| 111 | int i; |
| 112 | |
| 113 | if (exp == 0) |
| 114 | return 1 << power; |
| 115 | else if (exp < 0) { |
| 116 | sign = -1; |
| 117 | exp *= -1; |
| 118 | } |
| 119 | |
| 120 | xmax = 0x7FFFFFFF / exp; |
| 121 | x = exp; |
| 122 | xp = 1; |
| 123 | factorial = 1; |
| 124 | y = 1 << power; |
| 125 | divider = 0; |
| 126 | |
| 127 | for (i = 1; i <= rounds; i++) { |
| 128 | xp *= x; |
| 129 | factorial *= i; |
| 130 | y += (xp >> divider) / factorial; |
| 131 | divider += power; |
| 132 | /* divide when next multiplication would overflow */ |
| 133 | if (xp >= xmax) { |
| 134 | xp >>= power; |
| 135 | divider -= power; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | if (sign == -1) |
| 140 | return (1 << (power * 2)) / y; |
| 141 | else |
| 142 | return y; |
| 143 | } |
| 144 | |
| 145 | static int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc) |
| 146 | { |
| 147 | int x; |
| 148 | u32 exp = 0; |
| 149 | |
| 150 | /* we calculate as a multiple of 16384 (2^14) */ |
| 151 | mutex_lock(&data->lock); |
| 152 | x = ((int)resistance_raw - data->res_calibbias) * 106; |
| 153 | mutex_unlock(lock: &data->lock); |
| 154 | |
| 155 | /* voc = 500 / (1 + e^x) */ |
| 156 | exp = sgp40_exp(exp: x, SGP40_CALC_POWER, rounds: 18); |
| 157 | *voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp)); |
| 158 | |
| 159 | dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n" , |
| 160 | resistance_raw, data->res_calibbias, x, exp, *voc); |
| 161 | |
| 162 | return 0; |
| 163 | } |
| 164 | |
| 165 | static int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw) |
| 166 | { |
| 167 | int ret; |
| 168 | struct i2c_client *client = data->client; |
| 169 | u32 ticks; |
| 170 | u16 ticks16; |
| 171 | u8 crc; |
| 172 | struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}}; |
| 173 | struct sgp40_tg_result tgres; |
| 174 | |
| 175 | mutex_lock(&data->lock); |
| 176 | |
| 177 | ticks = (data->rht / 10) * 65535 / 10000; |
| 178 | ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between 0 .. 100 %rH */ |
| 179 | tg.rht_ticks = cpu_to_be16(ticks16); |
| 180 | tg.rht_crc = crc8(table: sgp40_crc8_table, pdata: (u8 *)&tg.rht_ticks, nbytes: 2, SGP40_CRC8_INIT); |
| 181 | |
| 182 | ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500; |
| 183 | ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between -45 .. +130 °C */ |
| 184 | tg.temp_ticks = cpu_to_be16(ticks16); |
| 185 | tg.temp_crc = crc8(table: sgp40_crc8_table, pdata: (u8 *)&tg.temp_ticks, nbytes: 2, SGP40_CRC8_INIT); |
| 186 | |
| 187 | mutex_unlock(lock: &data->lock); |
| 188 | |
| 189 | ret = i2c_master_send(client, buf: (const char *)&tg, count: sizeof(tg)); |
| 190 | if (ret != sizeof(tg)) { |
| 191 | dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n" , ret, sizeof(tg)); |
| 192 | return -EIO; |
| 193 | } |
| 194 | msleep(msecs: 30); |
| 195 | |
| 196 | ret = i2c_master_recv(client, buf: (u8 *)&tgres, count: sizeof(tgres)); |
| 197 | if (ret < 0) |
| 198 | return ret; |
| 199 | if (ret != sizeof(tgres)) { |
| 200 | dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n" , ret, sizeof(tgres)); |
| 201 | return -EIO; |
| 202 | } |
| 203 | |
| 204 | crc = crc8(table: sgp40_crc8_table, pdata: (u8 *)&tgres.res_ticks, nbytes: 2, SGP40_CRC8_INIT); |
| 205 | if (crc != tgres.res_crc) { |
| 206 | dev_err(data->dev, "CRC error while measure-raw\n" ); |
| 207 | return -EIO; |
| 208 | } |
| 209 | |
| 210 | *resistance_raw = be16_to_cpu(tgres.res_ticks); |
| 211 | |
| 212 | return 0; |
| 213 | } |
| 214 | |
| 215 | static int sgp40_read_raw(struct iio_dev *indio_dev, |
| 216 | struct iio_chan_spec const *chan, int *val, |
| 217 | int *val2, long mask) |
| 218 | { |
| 219 | struct sgp40_data *data = iio_priv(indio_dev); |
| 220 | int ret, voc; |
| 221 | u16 resistance_raw; |
| 222 | |
| 223 | switch (mask) { |
| 224 | case IIO_CHAN_INFO_RAW: |
| 225 | switch (chan->type) { |
| 226 | case IIO_RESISTANCE: |
| 227 | ret = sgp40_measure_resistance_raw(data, resistance_raw: &resistance_raw); |
| 228 | if (ret) |
| 229 | return ret; |
| 230 | |
| 231 | *val = resistance_raw; |
| 232 | return IIO_VAL_INT; |
| 233 | case IIO_TEMP: |
| 234 | mutex_lock(&data->lock); |
| 235 | *val = data->temp; |
| 236 | mutex_unlock(lock: &data->lock); |
| 237 | return IIO_VAL_INT; |
| 238 | case IIO_HUMIDITYRELATIVE: |
| 239 | mutex_lock(&data->lock); |
| 240 | *val = data->rht; |
| 241 | mutex_unlock(lock: &data->lock); |
| 242 | return IIO_VAL_INT; |
| 243 | default: |
| 244 | return -EINVAL; |
| 245 | } |
| 246 | case IIO_CHAN_INFO_PROCESSED: |
| 247 | ret = sgp40_measure_resistance_raw(data, resistance_raw: &resistance_raw); |
| 248 | if (ret) |
| 249 | return ret; |
| 250 | |
| 251 | ret = sgp40_calc_voc(data, resistance_raw, voc: &voc); |
| 252 | if (ret) |
| 253 | return ret; |
| 254 | |
| 255 | *val = voc / (1 << SGP40_CALC_POWER); |
| 256 | /* |
| 257 | * calculation should fit into integer, where: |
| 258 | * voc <= (500 * 2^SGP40_CALC_POWER) = 8192000 |
| 259 | * (with SGP40_CALC_POWER = 14) |
| 260 | */ |
| 261 | *val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12)); |
| 262 | dev_dbg(data->dev, "voc: %d val: %d.%06d\n" , voc, *val, *val2); |
| 263 | return IIO_VAL_INT_PLUS_MICRO; |
| 264 | case IIO_CHAN_INFO_CALIBBIAS: |
| 265 | mutex_lock(&data->lock); |
| 266 | *val = data->res_calibbias; |
| 267 | mutex_unlock(lock: &data->lock); |
| 268 | return IIO_VAL_INT; |
| 269 | default: |
| 270 | return -EINVAL; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | static int sgp40_write_raw(struct iio_dev *indio_dev, |
| 275 | struct iio_chan_spec const *chan, int val, |
| 276 | int val2, long mask) |
| 277 | { |
| 278 | struct sgp40_data *data = iio_priv(indio_dev); |
| 279 | |
| 280 | switch (mask) { |
| 281 | case IIO_CHAN_INFO_RAW: |
| 282 | switch (chan->type) { |
| 283 | case IIO_TEMP: |
| 284 | if ((val < -45000) || (val > 130000)) |
| 285 | return -EINVAL; |
| 286 | |
| 287 | mutex_lock(&data->lock); |
| 288 | data->temp = val; |
| 289 | mutex_unlock(lock: &data->lock); |
| 290 | return 0; |
| 291 | case IIO_HUMIDITYRELATIVE: |
| 292 | if ((val < 0) || (val > 100000)) |
| 293 | return -EINVAL; |
| 294 | |
| 295 | mutex_lock(&data->lock); |
| 296 | data->rht = val; |
| 297 | mutex_unlock(lock: &data->lock); |
| 298 | return 0; |
| 299 | default: |
| 300 | return -EINVAL; |
| 301 | } |
| 302 | case IIO_CHAN_INFO_CALIBBIAS: |
| 303 | if ((val < 20000) || (val > 52768)) |
| 304 | return -EINVAL; |
| 305 | |
| 306 | mutex_lock(&data->lock); |
| 307 | data->res_calibbias = val; |
| 308 | mutex_unlock(lock: &data->lock); |
| 309 | return 0; |
| 310 | } |
| 311 | return -EINVAL; |
| 312 | } |
| 313 | |
| 314 | static const struct iio_info sgp40_info = { |
| 315 | .read_raw = sgp40_read_raw, |
| 316 | .write_raw = sgp40_write_raw, |
| 317 | }; |
| 318 | |
| 319 | static int sgp40_probe(struct i2c_client *client) |
| 320 | { |
| 321 | const struct i2c_device_id *id = i2c_client_get_device_id(client); |
| 322 | struct device *dev = &client->dev; |
| 323 | struct iio_dev *indio_dev; |
| 324 | struct sgp40_data *data; |
| 325 | int ret; |
| 326 | |
| 327 | indio_dev = devm_iio_device_alloc(parent: dev, sizeof_priv: sizeof(*data)); |
| 328 | if (!indio_dev) |
| 329 | return -ENOMEM; |
| 330 | |
| 331 | data = iio_priv(indio_dev); |
| 332 | data->client = client; |
| 333 | data->dev = dev; |
| 334 | |
| 335 | crc8_populate_msb(table: sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL); |
| 336 | |
| 337 | mutex_init(&data->lock); |
| 338 | |
| 339 | /* set default values */ |
| 340 | data->rht = 50000; /* 50 % */ |
| 341 | data->temp = 25000; /* 25 °C */ |
| 342 | data->res_calibbias = 30000; /* resistance raw value for voc index of 250 */ |
| 343 | |
| 344 | indio_dev->info = &sgp40_info; |
| 345 | indio_dev->name = id->name; |
| 346 | indio_dev->modes = INDIO_DIRECT_MODE; |
| 347 | indio_dev->channels = sgp40_channels; |
| 348 | indio_dev->num_channels = ARRAY_SIZE(sgp40_channels); |
| 349 | |
| 350 | ret = devm_iio_device_register(dev, indio_dev); |
| 351 | if (ret) |
| 352 | dev_err(dev, "failed to register iio device\n" ); |
| 353 | |
| 354 | return ret; |
| 355 | } |
| 356 | |
| 357 | static const struct i2c_device_id sgp40_id[] = { |
| 358 | { "sgp40" }, |
| 359 | { } |
| 360 | }; |
| 361 | |
| 362 | MODULE_DEVICE_TABLE(i2c, sgp40_id); |
| 363 | |
| 364 | static const struct of_device_id sgp40_dt_ids[] = { |
| 365 | { .compatible = "sensirion,sgp40" }, |
| 366 | { } |
| 367 | }; |
| 368 | |
| 369 | MODULE_DEVICE_TABLE(of, sgp40_dt_ids); |
| 370 | |
| 371 | static struct i2c_driver sgp40_driver = { |
| 372 | .driver = { |
| 373 | .name = "sgp40" , |
| 374 | .of_match_table = sgp40_dt_ids, |
| 375 | }, |
| 376 | .probe = sgp40_probe, |
| 377 | .id_table = sgp40_id, |
| 378 | }; |
| 379 | module_i2c_driver(sgp40_driver); |
| 380 | |
| 381 | MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>" ); |
| 382 | MODULE_DESCRIPTION("Sensirion SGP40 gas sensor" ); |
| 383 | MODULE_LICENSE("GPL v2" ); |
| 384 | |