1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * The input core |
4 | * |
5 | * Copyright (c) 1999-2002 Vojtech Pavlik |
6 | */ |
7 | |
8 | |
9 | #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt |
10 | |
11 | #include <linux/init.h> |
12 | #include <linux/types.h> |
13 | #include <linux/idr.h> |
14 | #include <linux/input/mt.h> |
15 | #include <linux/module.h> |
16 | #include <linux/slab.h> |
17 | #include <linux/random.h> |
18 | #include <linux/major.h> |
19 | #include <linux/proc_fs.h> |
20 | #include <linux/sched.h> |
21 | #include <linux/seq_file.h> |
22 | #include <linux/pm.h> |
23 | #include <linux/poll.h> |
24 | #include <linux/device.h> |
25 | #include <linux/kstrtox.h> |
26 | #include <linux/mutex.h> |
27 | #include <linux/rcupdate.h> |
28 | #include "input-compat.h" |
29 | #include "input-core-private.h" |
30 | #include "input-poller.h" |
31 | |
32 | MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>" ); |
33 | MODULE_DESCRIPTION("Input core" ); |
34 | MODULE_LICENSE("GPL" ); |
35 | |
36 | #define INPUT_MAX_CHAR_DEVICES 1024 |
37 | #define INPUT_FIRST_DYNAMIC_DEV 256 |
38 | static DEFINE_IDA(input_ida); |
39 | |
40 | static LIST_HEAD(input_dev_list); |
41 | static LIST_HEAD(input_handler_list); |
42 | |
43 | /* |
44 | * input_mutex protects access to both input_dev_list and input_handler_list. |
45 | * This also causes input_[un]register_device and input_[un]register_handler |
46 | * be mutually exclusive which simplifies locking in drivers implementing |
47 | * input handlers. |
48 | */ |
49 | static DEFINE_MUTEX(input_mutex); |
50 | |
51 | static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; |
52 | |
53 | static const unsigned int input_max_code[EV_CNT] = { |
54 | [EV_KEY] = KEY_MAX, |
55 | [EV_REL] = REL_MAX, |
56 | [EV_ABS] = ABS_MAX, |
57 | [EV_MSC] = MSC_MAX, |
58 | [EV_SW] = SW_MAX, |
59 | [EV_LED] = LED_MAX, |
60 | [EV_SND] = SND_MAX, |
61 | [EV_FF] = FF_MAX, |
62 | }; |
63 | |
64 | static inline int is_event_supported(unsigned int code, |
65 | unsigned long *bm, unsigned int max) |
66 | { |
67 | return code <= max && test_bit(code, bm); |
68 | } |
69 | |
70 | static int input_defuzz_abs_event(int value, int old_val, int fuzz) |
71 | { |
72 | if (fuzz) { |
73 | if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) |
74 | return old_val; |
75 | |
76 | if (value > old_val - fuzz && value < old_val + fuzz) |
77 | return (old_val * 3 + value) / 4; |
78 | |
79 | if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) |
80 | return (old_val + value) / 2; |
81 | } |
82 | |
83 | return value; |
84 | } |
85 | |
86 | static void input_start_autorepeat(struct input_dev *dev, int code) |
87 | { |
88 | if (test_bit(EV_REP, dev->evbit) && |
89 | dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && |
90 | dev->timer.function) { |
91 | dev->repeat_key = code; |
92 | mod_timer(timer: &dev->timer, |
93 | expires: jiffies + msecs_to_jiffies(m: dev->rep[REP_DELAY])); |
94 | } |
95 | } |
96 | |
97 | static void input_stop_autorepeat(struct input_dev *dev) |
98 | { |
99 | timer_delete(timer: &dev->timer); |
100 | } |
101 | |
102 | /* |
103 | * Pass values first through all filters and then, if event has not been |
104 | * filtered out, through all open handles. This order is achieved by placing |
105 | * filters at the head of the list of handles attached to the device, and |
106 | * placing regular handles at the tail of the list. |
107 | * |
108 | * This function is called with dev->event_lock held and interrupts disabled. |
109 | */ |
110 | static void input_pass_values(struct input_dev *dev, |
111 | struct input_value *vals, unsigned int count) |
112 | { |
113 | struct input_handle *handle; |
114 | struct input_value *v; |
115 | |
116 | lockdep_assert_held(&dev->event_lock); |
117 | |
118 | scoped_guard(rcu) { |
119 | handle = rcu_dereference(dev->grab); |
120 | if (handle) { |
121 | count = handle->handle_events(handle, vals, count); |
122 | break; |
123 | } |
124 | |
125 | list_for_each_entry_rcu(handle, &dev->h_list, d_node) { |
126 | if (handle->open) { |
127 | count = handle->handle_events(handle, vals, |
128 | count); |
129 | if (!count) |
130 | break; |
131 | } |
132 | } |
133 | } |
134 | |
135 | /* trigger auto repeat for key events */ |
136 | if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { |
137 | for (v = vals; v != vals + count; v++) { |
138 | if (v->type == EV_KEY && v->value != 2) { |
139 | if (v->value) |
140 | input_start_autorepeat(dev, code: v->code); |
141 | else |
142 | input_stop_autorepeat(dev); |
143 | } |
144 | } |
145 | } |
146 | } |
147 | |
148 | #define INPUT_IGNORE_EVENT 0 |
149 | #define INPUT_PASS_TO_HANDLERS 1 |
150 | #define INPUT_PASS_TO_DEVICE 2 |
151 | #define INPUT_SLOT 4 |
152 | #define INPUT_FLUSH 8 |
153 | #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) |
154 | |
155 | static int input_handle_abs_event(struct input_dev *dev, |
156 | unsigned int code, int *pval) |
157 | { |
158 | struct input_mt *mt = dev->mt; |
159 | bool is_new_slot = false; |
160 | bool is_mt_event; |
161 | int *pold; |
162 | |
163 | if (code == ABS_MT_SLOT) { |
164 | /* |
165 | * "Stage" the event; we'll flush it later, when we |
166 | * get actual touch data. |
167 | */ |
168 | if (mt && *pval >= 0 && *pval < mt->num_slots) |
169 | mt->slot = *pval; |
170 | |
171 | return INPUT_IGNORE_EVENT; |
172 | } |
173 | |
174 | is_mt_event = input_is_mt_value(axis: code); |
175 | |
176 | if (!is_mt_event) { |
177 | pold = &dev->absinfo[code].value; |
178 | } else if (mt) { |
179 | pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; |
180 | is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value; |
181 | } else { |
182 | /* |
183 | * Bypass filtering for multi-touch events when |
184 | * not employing slots. |
185 | */ |
186 | pold = NULL; |
187 | } |
188 | |
189 | if (pold) { |
190 | *pval = input_defuzz_abs_event(value: *pval, old_val: *pold, |
191 | fuzz: dev->absinfo[code].fuzz); |
192 | if (*pold == *pval) |
193 | return INPUT_IGNORE_EVENT; |
194 | |
195 | *pold = *pval; |
196 | } |
197 | |
198 | /* Flush pending "slot" event */ |
199 | if (is_new_slot) { |
200 | dev->absinfo[ABS_MT_SLOT].value = mt->slot; |
201 | return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; |
202 | } |
203 | |
204 | return INPUT_PASS_TO_HANDLERS; |
205 | } |
206 | |
207 | static int input_get_disposition(struct input_dev *dev, |
208 | unsigned int type, unsigned int code, int *pval) |
209 | { |
210 | int disposition = INPUT_IGNORE_EVENT; |
211 | int value = *pval; |
212 | |
213 | /* filter-out events from inhibited devices */ |
214 | if (dev->inhibited) |
215 | return INPUT_IGNORE_EVENT; |
216 | |
217 | switch (type) { |
218 | |
219 | case EV_SYN: |
220 | switch (code) { |
221 | case SYN_CONFIG: |
222 | disposition = INPUT_PASS_TO_ALL; |
223 | break; |
224 | |
225 | case SYN_REPORT: |
226 | disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; |
227 | break; |
228 | case SYN_MT_REPORT: |
229 | disposition = INPUT_PASS_TO_HANDLERS; |
230 | break; |
231 | } |
232 | break; |
233 | |
234 | case EV_KEY: |
235 | if (is_event_supported(code, bm: dev->keybit, KEY_MAX)) { |
236 | |
237 | /* auto-repeat bypasses state updates */ |
238 | if (value == 2) { |
239 | disposition = INPUT_PASS_TO_HANDLERS; |
240 | break; |
241 | } |
242 | |
243 | if (!!test_bit(code, dev->key) != !!value) { |
244 | |
245 | __change_bit(code, dev->key); |
246 | disposition = INPUT_PASS_TO_HANDLERS; |
247 | } |
248 | } |
249 | break; |
250 | |
251 | case EV_SW: |
252 | if (is_event_supported(code, bm: dev->swbit, SW_MAX) && |
253 | !!test_bit(code, dev->sw) != !!value) { |
254 | |
255 | __change_bit(code, dev->sw); |
256 | disposition = INPUT_PASS_TO_HANDLERS; |
257 | } |
258 | break; |
259 | |
260 | case EV_ABS: |
261 | if (is_event_supported(code, bm: dev->absbit, ABS_MAX)) |
262 | disposition = input_handle_abs_event(dev, code, pval: &value); |
263 | |
264 | break; |
265 | |
266 | case EV_REL: |
267 | if (is_event_supported(code, bm: dev->relbit, REL_MAX) && value) |
268 | disposition = INPUT_PASS_TO_HANDLERS; |
269 | |
270 | break; |
271 | |
272 | case EV_MSC: |
273 | if (is_event_supported(code, bm: dev->mscbit, MSC_MAX)) |
274 | disposition = INPUT_PASS_TO_ALL; |
275 | |
276 | break; |
277 | |
278 | case EV_LED: |
279 | if (is_event_supported(code, bm: dev->ledbit, LED_MAX) && |
280 | !!test_bit(code, dev->led) != !!value) { |
281 | |
282 | __change_bit(code, dev->led); |
283 | disposition = INPUT_PASS_TO_ALL; |
284 | } |
285 | break; |
286 | |
287 | case EV_SND: |
288 | if (is_event_supported(code, bm: dev->sndbit, SND_MAX)) { |
289 | |
290 | if (!!test_bit(code, dev->snd) != !!value) |
291 | __change_bit(code, dev->snd); |
292 | disposition = INPUT_PASS_TO_ALL; |
293 | } |
294 | break; |
295 | |
296 | case EV_REP: |
297 | if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { |
298 | dev->rep[code] = value; |
299 | disposition = INPUT_PASS_TO_ALL; |
300 | } |
301 | break; |
302 | |
303 | case EV_FF: |
304 | if (value >= 0) |
305 | disposition = INPUT_PASS_TO_ALL; |
306 | break; |
307 | |
308 | case EV_PWR: |
309 | disposition = INPUT_PASS_TO_ALL; |
310 | break; |
311 | } |
312 | |
313 | *pval = value; |
314 | return disposition; |
315 | } |
316 | |
317 | static void input_event_dispose(struct input_dev *dev, int disposition, |
318 | unsigned int type, unsigned int code, int value) |
319 | { |
320 | if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) |
321 | dev->event(dev, type, code, value); |
322 | |
323 | if (disposition & INPUT_PASS_TO_HANDLERS) { |
324 | struct input_value *v; |
325 | |
326 | if (disposition & INPUT_SLOT) { |
327 | v = &dev->vals[dev->num_vals++]; |
328 | v->type = EV_ABS; |
329 | v->code = ABS_MT_SLOT; |
330 | v->value = dev->mt->slot; |
331 | } |
332 | |
333 | v = &dev->vals[dev->num_vals++]; |
334 | v->type = type; |
335 | v->code = code; |
336 | v->value = value; |
337 | } |
338 | |
339 | if (disposition & INPUT_FLUSH) { |
340 | if (dev->num_vals >= 2) |
341 | input_pass_values(dev, vals: dev->vals, count: dev->num_vals); |
342 | dev->num_vals = 0; |
343 | /* |
344 | * Reset the timestamp on flush so we won't end up |
345 | * with a stale one. Note we only need to reset the |
346 | * monolithic one as we use its presence when deciding |
347 | * whether to generate a synthetic timestamp. |
348 | */ |
349 | dev->timestamp[INPUT_CLK_MONO] = ktime_set(secs: 0, nsecs: 0); |
350 | } else if (dev->num_vals >= dev->max_vals - 2) { |
351 | dev->vals[dev->num_vals++] = input_value_sync; |
352 | input_pass_values(dev, vals: dev->vals, count: dev->num_vals); |
353 | dev->num_vals = 0; |
354 | } |
355 | } |
356 | |
357 | void input_handle_event(struct input_dev *dev, |
358 | unsigned int type, unsigned int code, int value) |
359 | { |
360 | int disposition; |
361 | |
362 | lockdep_assert_held(&dev->event_lock); |
363 | |
364 | disposition = input_get_disposition(dev, type, code, pval: &value); |
365 | if (disposition != INPUT_IGNORE_EVENT) { |
366 | if (type != EV_SYN) |
367 | add_input_randomness(type, code, value); |
368 | |
369 | input_event_dispose(dev, disposition, type, code, value); |
370 | } |
371 | } |
372 | |
373 | /** |
374 | * input_event() - report new input event |
375 | * @dev: device that generated the event |
376 | * @type: type of the event |
377 | * @code: event code |
378 | * @value: value of the event |
379 | * |
380 | * This function should be used by drivers implementing various input |
381 | * devices to report input events. See also input_inject_event(). |
382 | * |
383 | * NOTE: input_event() may be safely used right after input device was |
384 | * allocated with input_allocate_device(), even before it is registered |
385 | * with input_register_device(), but the event will not reach any of the |
386 | * input handlers. Such early invocation of input_event() may be used |
387 | * to 'seed' initial state of a switch or initial position of absolute |
388 | * axis, etc. |
389 | */ |
390 | void input_event(struct input_dev *dev, |
391 | unsigned int type, unsigned int code, int value) |
392 | { |
393 | if (is_event_supported(code: type, bm: dev->evbit, EV_MAX)) { |
394 | guard(spinlock_irqsave)(l: &dev->event_lock); |
395 | input_handle_event(dev, type, code, value); |
396 | } |
397 | } |
398 | EXPORT_SYMBOL(input_event); |
399 | |
400 | /** |
401 | * input_inject_event() - send input event from input handler |
402 | * @handle: input handle to send event through |
403 | * @type: type of the event |
404 | * @code: event code |
405 | * @value: value of the event |
406 | * |
407 | * Similar to input_event() but will ignore event if device is |
408 | * "grabbed" and handle injecting event is not the one that owns |
409 | * the device. |
410 | */ |
411 | void input_inject_event(struct input_handle *handle, |
412 | unsigned int type, unsigned int code, int value) |
413 | { |
414 | struct input_dev *dev = handle->dev; |
415 | struct input_handle *grab; |
416 | |
417 | if (is_event_supported(code: type, bm: dev->evbit, EV_MAX)) { |
418 | guard(spinlock_irqsave)(l: &dev->event_lock); |
419 | guard(rcu)(); |
420 | |
421 | grab = rcu_dereference(dev->grab); |
422 | if (!grab || grab == handle) |
423 | input_handle_event(dev, type, code, value); |
424 | |
425 | } |
426 | } |
427 | EXPORT_SYMBOL(input_inject_event); |
428 | |
429 | /** |
430 | * input_alloc_absinfo - allocates array of input_absinfo structs |
431 | * @dev: the input device emitting absolute events |
432 | * |
433 | * If the absinfo struct the caller asked for is already allocated, this |
434 | * functions will not do anything. |
435 | */ |
436 | void input_alloc_absinfo(struct input_dev *dev) |
437 | { |
438 | if (dev->absinfo) |
439 | return; |
440 | |
441 | dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); |
442 | if (!dev->absinfo) { |
443 | dev_err(dev->dev.parent ?: &dev->dev, |
444 | "%s: unable to allocate memory\n" , __func__); |
445 | /* |
446 | * We will handle this allocation failure in |
447 | * input_register_device() when we refuse to register input |
448 | * device with ABS bits but without absinfo. |
449 | */ |
450 | } |
451 | } |
452 | EXPORT_SYMBOL(input_alloc_absinfo); |
453 | |
454 | void input_set_abs_params(struct input_dev *dev, unsigned int axis, |
455 | int min, int max, int fuzz, int flat) |
456 | { |
457 | struct input_absinfo *absinfo; |
458 | |
459 | __set_bit(EV_ABS, dev->evbit); |
460 | __set_bit(axis, dev->absbit); |
461 | |
462 | input_alloc_absinfo(dev); |
463 | if (!dev->absinfo) |
464 | return; |
465 | |
466 | absinfo = &dev->absinfo[axis]; |
467 | absinfo->minimum = min; |
468 | absinfo->maximum = max; |
469 | absinfo->fuzz = fuzz; |
470 | absinfo->flat = flat; |
471 | } |
472 | EXPORT_SYMBOL(input_set_abs_params); |
473 | |
474 | /** |
475 | * input_copy_abs - Copy absinfo from one input_dev to another |
476 | * @dst: Destination input device to copy the abs settings to |
477 | * @dst_axis: ABS_* value selecting the destination axis |
478 | * @src: Source input device to copy the abs settings from |
479 | * @src_axis: ABS_* value selecting the source axis |
480 | * |
481 | * Set absinfo for the selected destination axis by copying it from |
482 | * the specified source input device's source axis. |
483 | * This is useful to e.g. setup a pen/stylus input-device for combined |
484 | * touchscreen/pen hardware where the pen uses the same coordinates as |
485 | * the touchscreen. |
486 | */ |
487 | void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, |
488 | const struct input_dev *src, unsigned int src_axis) |
489 | { |
490 | /* src must have EV_ABS and src_axis set */ |
491 | if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && |
492 | test_bit(src_axis, src->absbit)))) |
493 | return; |
494 | |
495 | /* |
496 | * input_alloc_absinfo() may have failed for the source. Our caller is |
497 | * expected to catch this when registering the input devices, which may |
498 | * happen after the input_copy_abs() call. |
499 | */ |
500 | if (!src->absinfo) |
501 | return; |
502 | |
503 | input_set_capability(dev: dst, EV_ABS, code: dst_axis); |
504 | if (!dst->absinfo) |
505 | return; |
506 | |
507 | dst->absinfo[dst_axis] = src->absinfo[src_axis]; |
508 | } |
509 | EXPORT_SYMBOL(input_copy_abs); |
510 | |
511 | /** |
512 | * input_grab_device - grabs device for exclusive use |
513 | * @handle: input handle that wants to own the device |
514 | * |
515 | * When a device is grabbed by an input handle all events generated by |
516 | * the device are delivered only to this handle. Also events injected |
517 | * by other input handles are ignored while device is grabbed. |
518 | */ |
519 | int input_grab_device(struct input_handle *handle) |
520 | { |
521 | struct input_dev *dev = handle->dev; |
522 | |
523 | scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) { |
524 | if (dev->grab) |
525 | return -EBUSY; |
526 | |
527 | rcu_assign_pointer(dev->grab, handle); |
528 | } |
529 | |
530 | return 0; |
531 | } |
532 | EXPORT_SYMBOL(input_grab_device); |
533 | |
534 | static void __input_release_device(struct input_handle *handle) |
535 | { |
536 | struct input_dev *dev = handle->dev; |
537 | struct input_handle *grabber; |
538 | |
539 | grabber = rcu_dereference_protected(dev->grab, |
540 | lockdep_is_held(&dev->mutex)); |
541 | if (grabber == handle) { |
542 | rcu_assign_pointer(dev->grab, NULL); |
543 | /* Make sure input_pass_values() notices that grab is gone */ |
544 | synchronize_rcu(); |
545 | |
546 | list_for_each_entry(handle, &dev->h_list, d_node) |
547 | if (handle->open && handle->handler->start) |
548 | handle->handler->start(handle); |
549 | } |
550 | } |
551 | |
552 | /** |
553 | * input_release_device - release previously grabbed device |
554 | * @handle: input handle that owns the device |
555 | * |
556 | * Releases previously grabbed device so that other input handles can |
557 | * start receiving input events. Upon release all handlers attached |
558 | * to the device have their start() method called so they have a change |
559 | * to synchronize device state with the rest of the system. |
560 | */ |
561 | void input_release_device(struct input_handle *handle) |
562 | { |
563 | struct input_dev *dev = handle->dev; |
564 | |
565 | guard(mutex)(T: &dev->mutex); |
566 | __input_release_device(handle); |
567 | } |
568 | EXPORT_SYMBOL(input_release_device); |
569 | |
570 | /** |
571 | * input_open_device - open input device |
572 | * @handle: handle through which device is being accessed |
573 | * |
574 | * This function should be called by input handlers when they |
575 | * want to start receive events from given input device. |
576 | */ |
577 | int input_open_device(struct input_handle *handle) |
578 | { |
579 | struct input_dev *dev = handle->dev; |
580 | int error; |
581 | |
582 | scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) { |
583 | if (dev->going_away) |
584 | return -ENODEV; |
585 | |
586 | handle->open++; |
587 | |
588 | if (handle->handler->passive_observer) |
589 | return 0; |
590 | |
591 | if (dev->users++ || dev->inhibited) { |
592 | /* |
593 | * Device is already opened and/or inhibited, |
594 | * so we can exit immediately and report success. |
595 | */ |
596 | return 0; |
597 | } |
598 | |
599 | if (dev->open) { |
600 | error = dev->open(dev); |
601 | if (error) { |
602 | dev->users--; |
603 | handle->open--; |
604 | /* |
605 | * Make sure we are not delivering any more |
606 | * events through this handle. |
607 | */ |
608 | synchronize_rcu(); |
609 | return error; |
610 | } |
611 | } |
612 | |
613 | if (dev->poller) |
614 | input_dev_poller_start(poller: dev->poller); |
615 | } |
616 | |
617 | return 0; |
618 | } |
619 | EXPORT_SYMBOL(input_open_device); |
620 | |
621 | int input_flush_device(struct input_handle *handle, struct file *file) |
622 | { |
623 | struct input_dev *dev = handle->dev; |
624 | |
625 | scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) { |
626 | if (dev->flush) |
627 | return dev->flush(dev, file); |
628 | } |
629 | |
630 | return 0; |
631 | } |
632 | EXPORT_SYMBOL(input_flush_device); |
633 | |
634 | /** |
635 | * input_close_device - close input device |
636 | * @handle: handle through which device is being accessed |
637 | * |
638 | * This function should be called by input handlers when they |
639 | * want to stop receive events from given input device. |
640 | */ |
641 | void input_close_device(struct input_handle *handle) |
642 | { |
643 | struct input_dev *dev = handle->dev; |
644 | |
645 | guard(mutex)(T: &dev->mutex); |
646 | |
647 | __input_release_device(handle); |
648 | |
649 | if (!handle->handler->passive_observer) { |
650 | if (!--dev->users && !dev->inhibited) { |
651 | if (dev->poller) |
652 | input_dev_poller_stop(poller: dev->poller); |
653 | if (dev->close) |
654 | dev->close(dev); |
655 | } |
656 | } |
657 | |
658 | if (!--handle->open) { |
659 | /* |
660 | * synchronize_rcu() makes sure that input_pass_values() |
661 | * completed and that no more input events are delivered |
662 | * through this handle |
663 | */ |
664 | synchronize_rcu(); |
665 | } |
666 | } |
667 | EXPORT_SYMBOL(input_close_device); |
668 | |
669 | /* |
670 | * Simulate keyup events for all keys that are marked as pressed. |
671 | * The function must be called with dev->event_lock held. |
672 | */ |
673 | static bool input_dev_release_keys(struct input_dev *dev) |
674 | { |
675 | bool need_sync = false; |
676 | int code; |
677 | |
678 | lockdep_assert_held(&dev->event_lock); |
679 | |
680 | if (is_event_supported(EV_KEY, bm: dev->evbit, EV_MAX)) { |
681 | for_each_set_bit(code, dev->key, KEY_CNT) { |
682 | input_handle_event(dev, EV_KEY, code, value: 0); |
683 | need_sync = true; |
684 | } |
685 | } |
686 | |
687 | return need_sync; |
688 | } |
689 | |
690 | /* |
691 | * Prepare device for unregistering |
692 | */ |
693 | static void input_disconnect_device(struct input_dev *dev) |
694 | { |
695 | struct input_handle *handle; |
696 | |
697 | /* |
698 | * Mark device as going away. Note that we take dev->mutex here |
699 | * not to protect access to dev->going_away but rather to ensure |
700 | * that there are no threads in the middle of input_open_device() |
701 | */ |
702 | scoped_guard(mutex, &dev->mutex) |
703 | dev->going_away = true; |
704 | |
705 | guard(spinlock_irq)(l: &dev->event_lock); |
706 | |
707 | /* |
708 | * Simulate keyup events for all pressed keys so that handlers |
709 | * are not left with "stuck" keys. The driver may continue |
710 | * generate events even after we done here but they will not |
711 | * reach any handlers. |
712 | */ |
713 | if (input_dev_release_keys(dev)) |
714 | input_handle_event(dev, EV_SYN, SYN_REPORT, value: 1); |
715 | |
716 | list_for_each_entry(handle, &dev->h_list, d_node) |
717 | handle->open = 0; |
718 | } |
719 | |
720 | /** |
721 | * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry |
722 | * @ke: keymap entry containing scancode to be converted. |
723 | * @scancode: pointer to the location where converted scancode should |
724 | * be stored. |
725 | * |
726 | * This function is used to convert scancode stored in &struct keymap_entry |
727 | * into scalar form understood by legacy keymap handling methods. These |
728 | * methods expect scancodes to be represented as 'unsigned int'. |
729 | */ |
730 | int input_scancode_to_scalar(const struct input_keymap_entry *ke, |
731 | unsigned int *scancode) |
732 | { |
733 | switch (ke->len) { |
734 | case 1: |
735 | *scancode = *((u8 *)ke->scancode); |
736 | break; |
737 | |
738 | case 2: |
739 | *scancode = *((u16 *)ke->scancode); |
740 | break; |
741 | |
742 | case 4: |
743 | *scancode = *((u32 *)ke->scancode); |
744 | break; |
745 | |
746 | default: |
747 | return -EINVAL; |
748 | } |
749 | |
750 | return 0; |
751 | } |
752 | EXPORT_SYMBOL(input_scancode_to_scalar); |
753 | |
754 | /* |
755 | * Those routines handle the default case where no [gs]etkeycode() is |
756 | * defined. In this case, an array indexed by the scancode is used. |
757 | */ |
758 | |
759 | static unsigned int input_fetch_keycode(struct input_dev *dev, |
760 | unsigned int index) |
761 | { |
762 | switch (dev->keycodesize) { |
763 | case 1: |
764 | return ((u8 *)dev->keycode)[index]; |
765 | |
766 | case 2: |
767 | return ((u16 *)dev->keycode)[index]; |
768 | |
769 | default: |
770 | return ((u32 *)dev->keycode)[index]; |
771 | } |
772 | } |
773 | |
774 | static int input_default_getkeycode(struct input_dev *dev, |
775 | struct input_keymap_entry *ke) |
776 | { |
777 | unsigned int index; |
778 | int error; |
779 | |
780 | if (!dev->keycodesize) |
781 | return -EINVAL; |
782 | |
783 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) |
784 | index = ke->index; |
785 | else { |
786 | error = input_scancode_to_scalar(ke, &index); |
787 | if (error) |
788 | return error; |
789 | } |
790 | |
791 | if (index >= dev->keycodemax) |
792 | return -EINVAL; |
793 | |
794 | ke->keycode = input_fetch_keycode(dev, index); |
795 | ke->index = index; |
796 | ke->len = sizeof(index); |
797 | memcpy(ke->scancode, &index, sizeof(index)); |
798 | |
799 | return 0; |
800 | } |
801 | |
802 | static int input_default_setkeycode(struct input_dev *dev, |
803 | const struct input_keymap_entry *ke, |
804 | unsigned int *old_keycode) |
805 | { |
806 | unsigned int index; |
807 | int error; |
808 | int i; |
809 | |
810 | if (!dev->keycodesize) |
811 | return -EINVAL; |
812 | |
813 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
814 | index = ke->index; |
815 | } else { |
816 | error = input_scancode_to_scalar(ke, &index); |
817 | if (error) |
818 | return error; |
819 | } |
820 | |
821 | if (index >= dev->keycodemax) |
822 | return -EINVAL; |
823 | |
824 | if (dev->keycodesize < sizeof(ke->keycode) && |
825 | (ke->keycode >> (dev->keycodesize * 8))) |
826 | return -EINVAL; |
827 | |
828 | switch (dev->keycodesize) { |
829 | case 1: { |
830 | u8 *k = (u8 *)dev->keycode; |
831 | *old_keycode = k[index]; |
832 | k[index] = ke->keycode; |
833 | break; |
834 | } |
835 | case 2: { |
836 | u16 *k = (u16 *)dev->keycode; |
837 | *old_keycode = k[index]; |
838 | k[index] = ke->keycode; |
839 | break; |
840 | } |
841 | default: { |
842 | u32 *k = (u32 *)dev->keycode; |
843 | *old_keycode = k[index]; |
844 | k[index] = ke->keycode; |
845 | break; |
846 | } |
847 | } |
848 | |
849 | if (*old_keycode <= KEY_MAX) { |
850 | __clear_bit(*old_keycode, dev->keybit); |
851 | for (i = 0; i < dev->keycodemax; i++) { |
852 | if (input_fetch_keycode(dev, index: i) == *old_keycode) { |
853 | __set_bit(*old_keycode, dev->keybit); |
854 | /* Setting the bit twice is useless, so break */ |
855 | break; |
856 | } |
857 | } |
858 | } |
859 | |
860 | __set_bit(ke->keycode, dev->keybit); |
861 | return 0; |
862 | } |
863 | |
864 | /** |
865 | * input_get_keycode - retrieve keycode currently mapped to a given scancode |
866 | * @dev: input device which keymap is being queried |
867 | * @ke: keymap entry |
868 | * |
869 | * This function should be called by anyone interested in retrieving current |
870 | * keymap. Presently evdev handlers use it. |
871 | */ |
872 | int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) |
873 | { |
874 | guard(spinlock_irqsave)(l: &dev->event_lock); |
875 | |
876 | return dev->getkeycode(dev, ke); |
877 | } |
878 | EXPORT_SYMBOL(input_get_keycode); |
879 | |
880 | /** |
881 | * input_set_keycode - attribute a keycode to a given scancode |
882 | * @dev: input device which keymap is being updated |
883 | * @ke: new keymap entry |
884 | * |
885 | * This function should be called by anyone needing to update current |
886 | * keymap. Presently keyboard and evdev handlers use it. |
887 | */ |
888 | int input_set_keycode(struct input_dev *dev, |
889 | const struct input_keymap_entry *ke) |
890 | { |
891 | unsigned int old_keycode; |
892 | int error; |
893 | |
894 | if (ke->keycode > KEY_MAX) |
895 | return -EINVAL; |
896 | |
897 | guard(spinlock_irqsave)(l: &dev->event_lock); |
898 | |
899 | error = dev->setkeycode(dev, ke, &old_keycode); |
900 | if (error) |
901 | return error; |
902 | |
903 | /* Make sure KEY_RESERVED did not get enabled. */ |
904 | __clear_bit(KEY_RESERVED, dev->keybit); |
905 | |
906 | /* |
907 | * Simulate keyup event if keycode is not present |
908 | * in the keymap anymore |
909 | */ |
910 | if (old_keycode > KEY_MAX) { |
911 | dev_warn(dev->dev.parent ?: &dev->dev, |
912 | "%s: got too big old keycode %#x\n" , |
913 | __func__, old_keycode); |
914 | } else if (test_bit(EV_KEY, dev->evbit) && |
915 | !is_event_supported(code: old_keycode, bm: dev->keybit, KEY_MAX) && |
916 | __test_and_clear_bit(old_keycode, dev->key)) { |
917 | /* |
918 | * We have to use input_event_dispose() here directly instead |
919 | * of input_handle_event() because the key we want to release |
920 | * here is considered no longer supported by the device and |
921 | * input_handle_event() will ignore it. |
922 | */ |
923 | input_event_dispose(dev, INPUT_PASS_TO_HANDLERS, |
924 | EV_KEY, code: old_keycode, value: 0); |
925 | input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH, |
926 | EV_SYN, SYN_REPORT, value: 1); |
927 | } |
928 | |
929 | return 0; |
930 | } |
931 | EXPORT_SYMBOL(input_set_keycode); |
932 | |
933 | bool input_match_device_id(const struct input_dev *dev, |
934 | const struct input_device_id *id) |
935 | { |
936 | if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) |
937 | if (id->bustype != dev->id.bustype) |
938 | return false; |
939 | |
940 | if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) |
941 | if (id->vendor != dev->id.vendor) |
942 | return false; |
943 | |
944 | if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) |
945 | if (id->product != dev->id.product) |
946 | return false; |
947 | |
948 | if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) |
949 | if (id->version != dev->id.version) |
950 | return false; |
951 | |
952 | if (!bitmap_subset(src1: id->evbit, src2: dev->evbit, EV_MAX) || |
953 | !bitmap_subset(src1: id->keybit, src2: dev->keybit, KEY_MAX) || |
954 | !bitmap_subset(src1: id->relbit, src2: dev->relbit, REL_MAX) || |
955 | !bitmap_subset(src1: id->absbit, src2: dev->absbit, ABS_MAX) || |
956 | !bitmap_subset(src1: id->mscbit, src2: dev->mscbit, MSC_MAX) || |
957 | !bitmap_subset(src1: id->ledbit, src2: dev->ledbit, LED_MAX) || |
958 | !bitmap_subset(src1: id->sndbit, src2: dev->sndbit, SND_MAX) || |
959 | !bitmap_subset(src1: id->ffbit, src2: dev->ffbit, FF_MAX) || |
960 | !bitmap_subset(src1: id->swbit, src2: dev->swbit, SW_MAX) || |
961 | !bitmap_subset(src1: id->propbit, src2: dev->propbit, INPUT_PROP_MAX)) { |
962 | return false; |
963 | } |
964 | |
965 | return true; |
966 | } |
967 | EXPORT_SYMBOL(input_match_device_id); |
968 | |
969 | static const struct input_device_id *input_match_device(struct input_handler *handler, |
970 | struct input_dev *dev) |
971 | { |
972 | const struct input_device_id *id; |
973 | |
974 | for (id = handler->id_table; id->flags || id->driver_info; id++) { |
975 | if (input_match_device_id(dev, id) && |
976 | (!handler->match || handler->match(handler, dev))) { |
977 | return id; |
978 | } |
979 | } |
980 | |
981 | return NULL; |
982 | } |
983 | |
984 | static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) |
985 | { |
986 | const struct input_device_id *id; |
987 | int error; |
988 | |
989 | id = input_match_device(handler, dev); |
990 | if (!id) |
991 | return -ENODEV; |
992 | |
993 | error = handler->connect(handler, dev, id); |
994 | if (error && error != -ENODEV) |
995 | pr_err("failed to attach handler %s to device %s, error: %d\n" , |
996 | handler->name, kobject_name(&dev->dev.kobj), error); |
997 | |
998 | return error; |
999 | } |
1000 | |
1001 | #ifdef CONFIG_COMPAT |
1002 | |
1003 | static int input_bits_to_string(char *buf, int buf_size, |
1004 | unsigned long bits, bool skip_empty) |
1005 | { |
1006 | int len = 0; |
1007 | |
1008 | if (in_compat_syscall()) { |
1009 | u32 dword = bits >> 32; |
1010 | if (dword || !skip_empty) |
1011 | len += snprintf(buf, size: buf_size, fmt: "%x " , dword); |
1012 | |
1013 | dword = bits & 0xffffffffUL; |
1014 | if (dword || !skip_empty || len) |
1015 | len += snprintf(buf: buf + len, max(buf_size - len, 0), |
1016 | fmt: "%x" , dword); |
1017 | } else { |
1018 | if (bits || !skip_empty) |
1019 | len += snprintf(buf, size: buf_size, fmt: "%lx" , bits); |
1020 | } |
1021 | |
1022 | return len; |
1023 | } |
1024 | |
1025 | #else /* !CONFIG_COMPAT */ |
1026 | |
1027 | static int input_bits_to_string(char *buf, int buf_size, |
1028 | unsigned long bits, bool skip_empty) |
1029 | { |
1030 | return bits || !skip_empty ? |
1031 | snprintf(buf, buf_size, "%lx" , bits) : 0; |
1032 | } |
1033 | |
1034 | #endif |
1035 | |
1036 | #ifdef CONFIG_PROC_FS |
1037 | |
1038 | static struct proc_dir_entry *proc_bus_input_dir; |
1039 | static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); |
1040 | static int input_devices_state; |
1041 | |
1042 | static inline void input_wakeup_procfs_readers(void) |
1043 | { |
1044 | input_devices_state++; |
1045 | wake_up(&input_devices_poll_wait); |
1046 | } |
1047 | |
1048 | struct input_seq_state { |
1049 | unsigned short pos; |
1050 | bool mutex_acquired; |
1051 | int input_devices_state; |
1052 | }; |
1053 | |
1054 | static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) |
1055 | { |
1056 | struct seq_file *seq = file->private_data; |
1057 | struct input_seq_state *state = seq->private; |
1058 | |
1059 | poll_wait(filp: file, wait_address: &input_devices_poll_wait, p: wait); |
1060 | if (state->input_devices_state != input_devices_state) { |
1061 | state->input_devices_state = input_devices_state; |
1062 | return EPOLLIN | EPOLLRDNORM; |
1063 | } |
1064 | |
1065 | return 0; |
1066 | } |
1067 | |
1068 | static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) |
1069 | { |
1070 | struct input_seq_state *state = seq->private; |
1071 | int error; |
1072 | |
1073 | error = mutex_lock_interruptible(&input_mutex); |
1074 | if (error) { |
1075 | state->mutex_acquired = false; |
1076 | return ERR_PTR(error); |
1077 | } |
1078 | |
1079 | state->mutex_acquired = true; |
1080 | |
1081 | return seq_list_start(head: &input_dev_list, pos: *pos); |
1082 | } |
1083 | |
1084 | static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
1085 | { |
1086 | return seq_list_next(v, head: &input_dev_list, ppos: pos); |
1087 | } |
1088 | |
1089 | static void input_seq_stop(struct seq_file *seq, void *v) |
1090 | { |
1091 | struct input_seq_state *state = seq->private; |
1092 | |
1093 | if (state->mutex_acquired) |
1094 | mutex_unlock(lock: &input_mutex); |
1095 | } |
1096 | |
1097 | static void input_seq_print_bitmap(struct seq_file *seq, const char *name, |
1098 | unsigned long *bitmap, int max) |
1099 | { |
1100 | int i; |
1101 | bool skip_empty = true; |
1102 | char buf[18]; |
1103 | |
1104 | seq_printf(m: seq, fmt: "B: %s=" , name); |
1105 | |
1106 | for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
1107 | if (input_bits_to_string(buf, buf_size: sizeof(buf), |
1108 | bits: bitmap[i], skip_empty)) { |
1109 | skip_empty = false; |
1110 | seq_printf(m: seq, fmt: "%s%s" , buf, i > 0 ? " " : "" ); |
1111 | } |
1112 | } |
1113 | |
1114 | /* |
1115 | * If no output was produced print a single 0. |
1116 | */ |
1117 | if (skip_empty) |
1118 | seq_putc(m: seq, c: '0'); |
1119 | |
1120 | seq_putc(m: seq, c: '\n'); |
1121 | } |
1122 | |
1123 | static int input_devices_seq_show(struct seq_file *seq, void *v) |
1124 | { |
1125 | struct input_dev *dev = container_of(v, struct input_dev, node); |
1126 | const char *path = kobject_get_path(kobj: &dev->dev.kobj, GFP_KERNEL); |
1127 | struct input_handle *handle; |
1128 | |
1129 | seq_printf(m: seq, fmt: "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n" , |
1130 | dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); |
1131 | |
1132 | seq_printf(m: seq, fmt: "N: Name=\"%s\"\n" , dev->name ? dev->name : "" ); |
1133 | seq_printf(m: seq, fmt: "P: Phys=%s\n" , dev->phys ? dev->phys : "" ); |
1134 | seq_printf(m: seq, fmt: "S: Sysfs=%s\n" , path ? path : "" ); |
1135 | seq_printf(m: seq, fmt: "U: Uniq=%s\n" , dev->uniq ? dev->uniq : "" ); |
1136 | seq_puts(m: seq, s: "H: Handlers=" ); |
1137 | |
1138 | list_for_each_entry(handle, &dev->h_list, d_node) |
1139 | seq_printf(m: seq, fmt: "%s " , handle->name); |
1140 | seq_putc(m: seq, c: '\n'); |
1141 | |
1142 | input_seq_print_bitmap(seq, name: "PROP" , bitmap: dev->propbit, INPUT_PROP_MAX); |
1143 | |
1144 | input_seq_print_bitmap(seq, name: "EV" , bitmap: dev->evbit, EV_MAX); |
1145 | if (test_bit(EV_KEY, dev->evbit)) |
1146 | input_seq_print_bitmap(seq, name: "KEY" , bitmap: dev->keybit, KEY_MAX); |
1147 | if (test_bit(EV_REL, dev->evbit)) |
1148 | input_seq_print_bitmap(seq, name: "REL" , bitmap: dev->relbit, REL_MAX); |
1149 | if (test_bit(EV_ABS, dev->evbit)) |
1150 | input_seq_print_bitmap(seq, name: "ABS" , bitmap: dev->absbit, ABS_MAX); |
1151 | if (test_bit(EV_MSC, dev->evbit)) |
1152 | input_seq_print_bitmap(seq, name: "MSC" , bitmap: dev->mscbit, MSC_MAX); |
1153 | if (test_bit(EV_LED, dev->evbit)) |
1154 | input_seq_print_bitmap(seq, name: "LED" , bitmap: dev->ledbit, LED_MAX); |
1155 | if (test_bit(EV_SND, dev->evbit)) |
1156 | input_seq_print_bitmap(seq, name: "SND" , bitmap: dev->sndbit, SND_MAX); |
1157 | if (test_bit(EV_FF, dev->evbit)) |
1158 | input_seq_print_bitmap(seq, name: "FF" , bitmap: dev->ffbit, FF_MAX); |
1159 | if (test_bit(EV_SW, dev->evbit)) |
1160 | input_seq_print_bitmap(seq, name: "SW" , bitmap: dev->swbit, SW_MAX); |
1161 | |
1162 | seq_putc(m: seq, c: '\n'); |
1163 | |
1164 | kfree(objp: path); |
1165 | return 0; |
1166 | } |
1167 | |
1168 | static const struct seq_operations input_devices_seq_ops = { |
1169 | .start = input_devices_seq_start, |
1170 | .next = input_devices_seq_next, |
1171 | .stop = input_seq_stop, |
1172 | .show = input_devices_seq_show, |
1173 | }; |
1174 | |
1175 | static int input_proc_devices_open(struct inode *inode, struct file *file) |
1176 | { |
1177 | return seq_open_private(file, &input_devices_seq_ops, |
1178 | sizeof(struct input_seq_state)); |
1179 | } |
1180 | |
1181 | static const struct proc_ops input_devices_proc_ops = { |
1182 | .proc_open = input_proc_devices_open, |
1183 | .proc_poll = input_proc_devices_poll, |
1184 | .proc_read = seq_read, |
1185 | .proc_lseek = seq_lseek, |
1186 | .proc_release = seq_release_private, |
1187 | }; |
1188 | |
1189 | static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) |
1190 | { |
1191 | struct input_seq_state *state = seq->private; |
1192 | int error; |
1193 | |
1194 | error = mutex_lock_interruptible(&input_mutex); |
1195 | if (error) { |
1196 | state->mutex_acquired = false; |
1197 | return ERR_PTR(error); |
1198 | } |
1199 | |
1200 | state->mutex_acquired = true; |
1201 | state->pos = *pos; |
1202 | |
1203 | return seq_list_start(head: &input_handler_list, pos: *pos); |
1204 | } |
1205 | |
1206 | static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
1207 | { |
1208 | struct input_seq_state *state = seq->private; |
1209 | |
1210 | state->pos = *pos + 1; |
1211 | return seq_list_next(v, head: &input_handler_list, ppos: pos); |
1212 | } |
1213 | |
1214 | static int input_handlers_seq_show(struct seq_file *seq, void *v) |
1215 | { |
1216 | struct input_handler *handler = container_of(v, struct input_handler, node); |
1217 | struct input_seq_state *state = seq->private; |
1218 | |
1219 | seq_printf(m: seq, fmt: "N: Number=%u Name=%s" , state->pos, handler->name); |
1220 | if (handler->filter) |
1221 | seq_puts(m: seq, s: " (filter)" ); |
1222 | if (handler->legacy_minors) |
1223 | seq_printf(m: seq, fmt: " Minor=%d" , handler->minor); |
1224 | seq_putc(m: seq, c: '\n'); |
1225 | |
1226 | return 0; |
1227 | } |
1228 | |
1229 | static const struct seq_operations input_handlers_seq_ops = { |
1230 | .start = input_handlers_seq_start, |
1231 | .next = input_handlers_seq_next, |
1232 | .stop = input_seq_stop, |
1233 | .show = input_handlers_seq_show, |
1234 | }; |
1235 | |
1236 | static int input_proc_handlers_open(struct inode *inode, struct file *file) |
1237 | { |
1238 | return seq_open_private(file, &input_handlers_seq_ops, |
1239 | sizeof(struct input_seq_state)); |
1240 | } |
1241 | |
1242 | static const struct proc_ops input_handlers_proc_ops = { |
1243 | .proc_open = input_proc_handlers_open, |
1244 | .proc_read = seq_read, |
1245 | .proc_lseek = seq_lseek, |
1246 | .proc_release = seq_release_private, |
1247 | }; |
1248 | |
1249 | static int __init input_proc_init(void) |
1250 | { |
1251 | struct proc_dir_entry *entry; |
1252 | |
1253 | proc_bus_input_dir = proc_mkdir("bus/input" , NULL); |
1254 | if (!proc_bus_input_dir) |
1255 | return -ENOMEM; |
1256 | |
1257 | entry = proc_create(name: "devices" , mode: 0, parent: proc_bus_input_dir, |
1258 | proc_ops: &input_devices_proc_ops); |
1259 | if (!entry) |
1260 | goto fail1; |
1261 | |
1262 | entry = proc_create(name: "handlers" , mode: 0, parent: proc_bus_input_dir, |
1263 | proc_ops: &input_handlers_proc_ops); |
1264 | if (!entry) |
1265 | goto fail2; |
1266 | |
1267 | return 0; |
1268 | |
1269 | fail2: remove_proc_entry("devices" , proc_bus_input_dir); |
1270 | fail1: remove_proc_entry("bus/input" , NULL); |
1271 | return -ENOMEM; |
1272 | } |
1273 | |
1274 | static void input_proc_exit(void) |
1275 | { |
1276 | remove_proc_entry("devices" , proc_bus_input_dir); |
1277 | remove_proc_entry("handlers" , proc_bus_input_dir); |
1278 | remove_proc_entry("bus/input" , NULL); |
1279 | } |
1280 | |
1281 | #else /* !CONFIG_PROC_FS */ |
1282 | static inline void input_wakeup_procfs_readers(void) { } |
1283 | static inline int input_proc_init(void) { return 0; } |
1284 | static inline void input_proc_exit(void) { } |
1285 | #endif |
1286 | |
1287 | #define INPUT_DEV_STRING_ATTR_SHOW(name) \ |
1288 | static ssize_t input_dev_show_##name(struct device *dev, \ |
1289 | struct device_attribute *attr, \ |
1290 | char *buf) \ |
1291 | { \ |
1292 | struct input_dev *input_dev = to_input_dev(dev); \ |
1293 | \ |
1294 | return sysfs_emit(buf, "%s\n", \ |
1295 | input_dev->name ? input_dev->name : ""); \ |
1296 | } \ |
1297 | static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) |
1298 | |
1299 | INPUT_DEV_STRING_ATTR_SHOW(name); |
1300 | INPUT_DEV_STRING_ATTR_SHOW(phys); |
1301 | INPUT_DEV_STRING_ATTR_SHOW(uniq); |
1302 | |
1303 | static int input_print_modalias_bits(char *buf, int size, |
1304 | char name, const unsigned long *bm, |
1305 | unsigned int min_bit, unsigned int max_bit) |
1306 | { |
1307 | int bit = min_bit; |
1308 | int len = 0; |
1309 | |
1310 | len += snprintf(buf, max(size, 0), fmt: "%c" , name); |
1311 | for_each_set_bit_from(bit, bm, max_bit) |
1312 | len += snprintf(buf: buf + len, max(size - len, 0), fmt: "%X," , bit); |
1313 | return len; |
1314 | } |
1315 | |
1316 | static int input_print_modalias_parts(char *buf, int size, int full_len, |
1317 | const struct input_dev *id) |
1318 | { |
1319 | int len, klen, remainder, space; |
1320 | |
1321 | len = snprintf(buf, max(size, 0), |
1322 | fmt: "input:b%04Xv%04Xp%04Xe%04X-" , |
1323 | id->id.bustype, id->id.vendor, |
1324 | id->id.product, id->id.version); |
1325 | |
1326 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1327 | name: 'e', bm: id->evbit, min_bit: 0, EV_MAX); |
1328 | |
1329 | /* |
1330 | * Calculate the remaining space in the buffer making sure we |
1331 | * have place for the terminating 0. |
1332 | */ |
1333 | space = max(size - (len + 1), 0); |
1334 | |
1335 | klen = input_print_modalias_bits(buf: buf + len, size: size - len, |
1336 | name: 'k', bm: id->keybit, KEY_MIN_INTERESTING, KEY_MAX); |
1337 | len += klen; |
1338 | |
1339 | /* |
1340 | * If we have more data than we can fit in the buffer, check |
1341 | * if we can trim key data to fit in the rest. We will indicate |
1342 | * that key data is incomplete by adding "+" sign at the end, like |
1343 | * this: * "k1,2,3,45,+,". |
1344 | * |
1345 | * Note that we shortest key info (if present) is "k+," so we |
1346 | * can only try to trim if key data is longer than that. |
1347 | */ |
1348 | if (full_len && size < full_len + 1 && klen > 3) { |
1349 | remainder = full_len - len; |
1350 | /* |
1351 | * We can only trim if we have space for the remainder |
1352 | * and also for at least "k+," which is 3 more characters. |
1353 | */ |
1354 | if (remainder <= space - 3) { |
1355 | /* |
1356 | * We are guaranteed to have 'k' in the buffer, so |
1357 | * we need at least 3 additional bytes for storing |
1358 | * "+," in addition to the remainder. |
1359 | */ |
1360 | for (int i = size - 1 - remainder - 3; i >= 0; i--) { |
1361 | if (buf[i] == 'k' || buf[i] == ',') { |
1362 | strcpy(p: buf + i + 1, q: "+," ); |
1363 | len = i + 3; /* Not counting '\0' */ |
1364 | break; |
1365 | } |
1366 | } |
1367 | } |
1368 | } |
1369 | |
1370 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1371 | name: 'r', bm: id->relbit, min_bit: 0, REL_MAX); |
1372 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1373 | name: 'a', bm: id->absbit, min_bit: 0, ABS_MAX); |
1374 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1375 | name: 'm', bm: id->mscbit, min_bit: 0, MSC_MAX); |
1376 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1377 | name: 'l', bm: id->ledbit, min_bit: 0, LED_MAX); |
1378 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1379 | name: 's', bm: id->sndbit, min_bit: 0, SND_MAX); |
1380 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1381 | name: 'f', bm: id->ffbit, min_bit: 0, FF_MAX); |
1382 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1383 | name: 'w', bm: id->swbit, min_bit: 0, SW_MAX); |
1384 | |
1385 | return len; |
1386 | } |
1387 | |
1388 | static int input_print_modalias(char *buf, int size, const struct input_dev *id) |
1389 | { |
1390 | int full_len; |
1391 | |
1392 | /* |
1393 | * Printing is done in 2 passes: first one figures out total length |
1394 | * needed for the modalias string, second one will try to trim key |
1395 | * data in case when buffer is too small for the entire modalias. |
1396 | * If the buffer is too small regardless, it will fill as much as it |
1397 | * can (without trimming key data) into the buffer and leave it to |
1398 | * the caller to figure out what to do with the result. |
1399 | */ |
1400 | full_len = input_print_modalias_parts(NULL, size: 0, full_len: 0, id); |
1401 | return input_print_modalias_parts(buf, size, full_len, id); |
1402 | } |
1403 | |
1404 | static ssize_t input_dev_show_modalias(struct device *dev, |
1405 | struct device_attribute *attr, |
1406 | char *buf) |
1407 | { |
1408 | struct input_dev *id = to_input_dev(dev); |
1409 | ssize_t len; |
1410 | |
1411 | len = input_print_modalias(buf, PAGE_SIZE, id); |
1412 | if (len < PAGE_SIZE - 2) |
1413 | len += snprintf(buf: buf + len, PAGE_SIZE - len, fmt: "\n" ); |
1414 | |
1415 | return min_t(int, len, PAGE_SIZE); |
1416 | } |
1417 | static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); |
1418 | |
1419 | static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, |
1420 | int max, int add_cr); |
1421 | |
1422 | static ssize_t input_dev_show_properties(struct device *dev, |
1423 | struct device_attribute *attr, |
1424 | char *buf) |
1425 | { |
1426 | struct input_dev *input_dev = to_input_dev(dev); |
1427 | int len = input_print_bitmap(buf, PAGE_SIZE, bitmap: input_dev->propbit, |
1428 | INPUT_PROP_MAX, add_cr: true); |
1429 | return min_t(int, len, PAGE_SIZE); |
1430 | } |
1431 | static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); |
1432 | |
1433 | static int input_inhibit_device(struct input_dev *dev); |
1434 | static int input_uninhibit_device(struct input_dev *dev); |
1435 | |
1436 | static ssize_t inhibited_show(struct device *dev, |
1437 | struct device_attribute *attr, |
1438 | char *buf) |
1439 | { |
1440 | struct input_dev *input_dev = to_input_dev(dev); |
1441 | |
1442 | return sysfs_emit(buf, fmt: "%d\n" , input_dev->inhibited); |
1443 | } |
1444 | |
1445 | static ssize_t inhibited_store(struct device *dev, |
1446 | struct device_attribute *attr, const char *buf, |
1447 | size_t len) |
1448 | { |
1449 | struct input_dev *input_dev = to_input_dev(dev); |
1450 | ssize_t rv; |
1451 | bool inhibited; |
1452 | |
1453 | if (kstrtobool(s: buf, res: &inhibited)) |
1454 | return -EINVAL; |
1455 | |
1456 | if (inhibited) |
1457 | rv = input_inhibit_device(dev: input_dev); |
1458 | else |
1459 | rv = input_uninhibit_device(dev: input_dev); |
1460 | |
1461 | if (rv != 0) |
1462 | return rv; |
1463 | |
1464 | return len; |
1465 | } |
1466 | |
1467 | static DEVICE_ATTR_RW(inhibited); |
1468 | |
1469 | static struct attribute *input_dev_attrs[] = { |
1470 | &dev_attr_name.attr, |
1471 | &dev_attr_phys.attr, |
1472 | &dev_attr_uniq.attr, |
1473 | &dev_attr_modalias.attr, |
1474 | &dev_attr_properties.attr, |
1475 | &dev_attr_inhibited.attr, |
1476 | NULL |
1477 | }; |
1478 | |
1479 | static const struct attribute_group input_dev_attr_group = { |
1480 | .attrs = input_dev_attrs, |
1481 | }; |
1482 | |
1483 | #define INPUT_DEV_ID_ATTR(name) \ |
1484 | static ssize_t input_dev_show_id_##name(struct device *dev, \ |
1485 | struct device_attribute *attr, \ |
1486 | char *buf) \ |
1487 | { \ |
1488 | struct input_dev *input_dev = to_input_dev(dev); \ |
1489 | return sysfs_emit(buf, "%04x\n", input_dev->id.name); \ |
1490 | } \ |
1491 | static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) |
1492 | |
1493 | INPUT_DEV_ID_ATTR(bustype); |
1494 | INPUT_DEV_ID_ATTR(vendor); |
1495 | INPUT_DEV_ID_ATTR(product); |
1496 | INPUT_DEV_ID_ATTR(version); |
1497 | |
1498 | static struct attribute *input_dev_id_attrs[] = { |
1499 | &dev_attr_bustype.attr, |
1500 | &dev_attr_vendor.attr, |
1501 | &dev_attr_product.attr, |
1502 | &dev_attr_version.attr, |
1503 | NULL |
1504 | }; |
1505 | |
1506 | static const struct attribute_group input_dev_id_attr_group = { |
1507 | .name = "id" , |
1508 | .attrs = input_dev_id_attrs, |
1509 | }; |
1510 | |
1511 | static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, |
1512 | int max, int add_cr) |
1513 | { |
1514 | int i; |
1515 | int len = 0; |
1516 | bool skip_empty = true; |
1517 | |
1518 | for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
1519 | len += input_bits_to_string(buf: buf + len, max(buf_size - len, 0), |
1520 | bits: bitmap[i], skip_empty); |
1521 | if (len) { |
1522 | skip_empty = false; |
1523 | if (i > 0) |
1524 | len += snprintf(buf: buf + len, max(buf_size - len, 0), fmt: " " ); |
1525 | } |
1526 | } |
1527 | |
1528 | /* |
1529 | * If no output was produced print a single 0. |
1530 | */ |
1531 | if (len == 0) |
1532 | len = snprintf(buf, size: buf_size, fmt: "%d" , 0); |
1533 | |
1534 | if (add_cr) |
1535 | len += snprintf(buf: buf + len, max(buf_size - len, 0), fmt: "\n" ); |
1536 | |
1537 | return len; |
1538 | } |
1539 | |
1540 | #define INPUT_DEV_CAP_ATTR(ev, bm) \ |
1541 | static ssize_t input_dev_show_cap_##bm(struct device *dev, \ |
1542 | struct device_attribute *attr, \ |
1543 | char *buf) \ |
1544 | { \ |
1545 | struct input_dev *input_dev = to_input_dev(dev); \ |
1546 | int len = input_print_bitmap(buf, PAGE_SIZE, \ |
1547 | input_dev->bm##bit, ev##_MAX, \ |
1548 | true); \ |
1549 | return min_t(int, len, PAGE_SIZE); \ |
1550 | } \ |
1551 | static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) |
1552 | |
1553 | INPUT_DEV_CAP_ATTR(EV, ev); |
1554 | INPUT_DEV_CAP_ATTR(KEY, key); |
1555 | INPUT_DEV_CAP_ATTR(REL, rel); |
1556 | INPUT_DEV_CAP_ATTR(ABS, abs); |
1557 | INPUT_DEV_CAP_ATTR(MSC, msc); |
1558 | INPUT_DEV_CAP_ATTR(LED, led); |
1559 | INPUT_DEV_CAP_ATTR(SND, snd); |
1560 | INPUT_DEV_CAP_ATTR(FF, ff); |
1561 | INPUT_DEV_CAP_ATTR(SW, sw); |
1562 | |
1563 | static struct attribute *input_dev_caps_attrs[] = { |
1564 | &dev_attr_ev.attr, |
1565 | &dev_attr_key.attr, |
1566 | &dev_attr_rel.attr, |
1567 | &dev_attr_abs.attr, |
1568 | &dev_attr_msc.attr, |
1569 | &dev_attr_led.attr, |
1570 | &dev_attr_snd.attr, |
1571 | &dev_attr_ff.attr, |
1572 | &dev_attr_sw.attr, |
1573 | NULL |
1574 | }; |
1575 | |
1576 | static const struct attribute_group input_dev_caps_attr_group = { |
1577 | .name = "capabilities" , |
1578 | .attrs = input_dev_caps_attrs, |
1579 | }; |
1580 | |
1581 | static const struct attribute_group *input_dev_attr_groups[] = { |
1582 | &input_dev_attr_group, |
1583 | &input_dev_id_attr_group, |
1584 | &input_dev_caps_attr_group, |
1585 | &input_poller_attribute_group, |
1586 | NULL |
1587 | }; |
1588 | |
1589 | static void input_dev_release(struct device *device) |
1590 | { |
1591 | struct input_dev *dev = to_input_dev(device); |
1592 | |
1593 | input_ff_destroy(dev); |
1594 | input_mt_destroy_slots(dev); |
1595 | kfree(objp: dev->poller); |
1596 | kfree(objp: dev->absinfo); |
1597 | kfree(objp: dev->vals); |
1598 | kfree(objp: dev); |
1599 | |
1600 | module_put(THIS_MODULE); |
1601 | } |
1602 | |
1603 | /* |
1604 | * Input uevent interface - loading event handlers based on |
1605 | * device bitfields. |
1606 | */ |
1607 | static int input_add_uevent_bm_var(struct kobj_uevent_env *env, |
1608 | const char *name, const unsigned long *bitmap, int max) |
1609 | { |
1610 | int len; |
1611 | |
1612 | if (add_uevent_var(env, format: "%s" , name)) |
1613 | return -ENOMEM; |
1614 | |
1615 | len = input_print_bitmap(buf: &env->buf[env->buflen - 1], |
1616 | buf_size: sizeof(env->buf) - env->buflen, |
1617 | bitmap, max, add_cr: false); |
1618 | if (len >= (sizeof(env->buf) - env->buflen)) |
1619 | return -ENOMEM; |
1620 | |
1621 | env->buflen += len; |
1622 | return 0; |
1623 | } |
1624 | |
1625 | /* |
1626 | * This is a pretty gross hack. When building uevent data the driver core |
1627 | * may try adding more environment variables to kobj_uevent_env without |
1628 | * telling us, so we have no idea how much of the buffer we can use to |
1629 | * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially |
1630 | * reduce amount of memory we will use for the modalias environment variable. |
1631 | * |
1632 | * The potential additions are: |
1633 | * |
1634 | * SEQNUM=18446744073709551615 - (%llu - 28 bytes) |
1635 | * HOME=/ (6 bytes) |
1636 | * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes) |
1637 | * |
1638 | * 68 bytes total. Allow extra buffer - 96 bytes |
1639 | */ |
1640 | #define 96 |
1641 | |
1642 | static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, |
1643 | const struct input_dev *dev) |
1644 | { |
1645 | int len; |
1646 | |
1647 | if (add_uevent_var(env, format: "MODALIAS=" )) |
1648 | return -ENOMEM; |
1649 | |
1650 | len = input_print_modalias(buf: &env->buf[env->buflen - 1], |
1651 | size: (int)sizeof(env->buf) - env->buflen - |
1652 | UEVENT_ENV_EXTRA_LEN, |
1653 | id: dev); |
1654 | if (len >= ((int)sizeof(env->buf) - env->buflen - |
1655 | UEVENT_ENV_EXTRA_LEN)) |
1656 | return -ENOMEM; |
1657 | |
1658 | env->buflen += len; |
1659 | return 0; |
1660 | } |
1661 | |
1662 | #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ |
1663 | do { \ |
1664 | int err = add_uevent_var(env, fmt, val); \ |
1665 | if (err) \ |
1666 | return err; \ |
1667 | } while (0) |
1668 | |
1669 | #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ |
1670 | do { \ |
1671 | int err = input_add_uevent_bm_var(env, name, bm, max); \ |
1672 | if (err) \ |
1673 | return err; \ |
1674 | } while (0) |
1675 | |
1676 | #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ |
1677 | do { \ |
1678 | int err = input_add_uevent_modalias_var(env, dev); \ |
1679 | if (err) \ |
1680 | return err; \ |
1681 | } while (0) |
1682 | |
1683 | static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env) |
1684 | { |
1685 | const struct input_dev *dev = to_input_dev(device); |
1686 | |
1687 | INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x" , |
1688 | dev->id.bustype, dev->id.vendor, |
1689 | dev->id.product, dev->id.version); |
1690 | if (dev->name) |
1691 | INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"" , dev->name); |
1692 | if (dev->phys) |
1693 | INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"" , dev->phys); |
1694 | if (dev->uniq) |
1695 | INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"" , dev->uniq); |
1696 | |
1697 | INPUT_ADD_HOTPLUG_BM_VAR("PROP=" , dev->propbit, INPUT_PROP_MAX); |
1698 | |
1699 | INPUT_ADD_HOTPLUG_BM_VAR("EV=" , dev->evbit, EV_MAX); |
1700 | if (test_bit(EV_KEY, dev->evbit)) |
1701 | INPUT_ADD_HOTPLUG_BM_VAR("KEY=" , dev->keybit, KEY_MAX); |
1702 | if (test_bit(EV_REL, dev->evbit)) |
1703 | INPUT_ADD_HOTPLUG_BM_VAR("REL=" , dev->relbit, REL_MAX); |
1704 | if (test_bit(EV_ABS, dev->evbit)) |
1705 | INPUT_ADD_HOTPLUG_BM_VAR("ABS=" , dev->absbit, ABS_MAX); |
1706 | if (test_bit(EV_MSC, dev->evbit)) |
1707 | INPUT_ADD_HOTPLUG_BM_VAR("MSC=" , dev->mscbit, MSC_MAX); |
1708 | if (test_bit(EV_LED, dev->evbit)) |
1709 | INPUT_ADD_HOTPLUG_BM_VAR("LED=" , dev->ledbit, LED_MAX); |
1710 | if (test_bit(EV_SND, dev->evbit)) |
1711 | INPUT_ADD_HOTPLUG_BM_VAR("SND=" , dev->sndbit, SND_MAX); |
1712 | if (test_bit(EV_FF, dev->evbit)) |
1713 | INPUT_ADD_HOTPLUG_BM_VAR("FF=" , dev->ffbit, FF_MAX); |
1714 | if (test_bit(EV_SW, dev->evbit)) |
1715 | INPUT_ADD_HOTPLUG_BM_VAR("SW=" , dev->swbit, SW_MAX); |
1716 | |
1717 | INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); |
1718 | |
1719 | return 0; |
1720 | } |
1721 | |
1722 | #define INPUT_DO_TOGGLE(dev, type, bits, on) \ |
1723 | do { \ |
1724 | int i; \ |
1725 | bool active; \ |
1726 | \ |
1727 | if (!test_bit(EV_##type, dev->evbit)) \ |
1728 | break; \ |
1729 | \ |
1730 | for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ |
1731 | active = test_bit(i, dev->bits); \ |
1732 | if (!active && !on) \ |
1733 | continue; \ |
1734 | \ |
1735 | dev->event(dev, EV_##type, i, on ? active : 0); \ |
1736 | } \ |
1737 | } while (0) |
1738 | |
1739 | static void input_dev_toggle(struct input_dev *dev, bool activate) |
1740 | { |
1741 | if (!dev->event) |
1742 | return; |
1743 | |
1744 | INPUT_DO_TOGGLE(dev, LED, led, activate); |
1745 | INPUT_DO_TOGGLE(dev, SND, snd, activate); |
1746 | |
1747 | if (activate && test_bit(EV_REP, dev->evbit)) { |
1748 | dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); |
1749 | dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); |
1750 | } |
1751 | } |
1752 | |
1753 | /** |
1754 | * input_reset_device() - reset/restore the state of input device |
1755 | * @dev: input device whose state needs to be reset |
1756 | * |
1757 | * This function tries to reset the state of an opened input device and |
1758 | * bring internal state and state if the hardware in sync with each other. |
1759 | * We mark all keys as released, restore LED state, repeat rate, etc. |
1760 | */ |
1761 | void input_reset_device(struct input_dev *dev) |
1762 | { |
1763 | guard(mutex)(T: &dev->mutex); |
1764 | guard(spinlock_irqsave)(l: &dev->event_lock); |
1765 | |
1766 | input_dev_toggle(dev, activate: true); |
1767 | if (input_dev_release_keys(dev)) |
1768 | input_handle_event(dev, EV_SYN, SYN_REPORT, value: 1); |
1769 | } |
1770 | EXPORT_SYMBOL(input_reset_device); |
1771 | |
1772 | static int input_inhibit_device(struct input_dev *dev) |
1773 | { |
1774 | guard(mutex)(T: &dev->mutex); |
1775 | |
1776 | if (dev->inhibited) |
1777 | return 0; |
1778 | |
1779 | if (dev->users) { |
1780 | if (dev->close) |
1781 | dev->close(dev); |
1782 | if (dev->poller) |
1783 | input_dev_poller_stop(poller: dev->poller); |
1784 | } |
1785 | |
1786 | scoped_guard(spinlock_irq, &dev->event_lock) { |
1787 | input_mt_release_slots(dev); |
1788 | input_dev_release_keys(dev); |
1789 | input_handle_event(dev, EV_SYN, SYN_REPORT, value: 1); |
1790 | input_dev_toggle(dev, activate: false); |
1791 | } |
1792 | |
1793 | dev->inhibited = true; |
1794 | |
1795 | return 0; |
1796 | } |
1797 | |
1798 | static int input_uninhibit_device(struct input_dev *dev) |
1799 | { |
1800 | int error; |
1801 | |
1802 | guard(mutex)(T: &dev->mutex); |
1803 | |
1804 | if (!dev->inhibited) |
1805 | return 0; |
1806 | |
1807 | if (dev->users) { |
1808 | if (dev->open) { |
1809 | error = dev->open(dev); |
1810 | if (error) |
1811 | return error; |
1812 | } |
1813 | if (dev->poller) |
1814 | input_dev_poller_start(poller: dev->poller); |
1815 | } |
1816 | |
1817 | dev->inhibited = false; |
1818 | |
1819 | scoped_guard(spinlock_irq, &dev->event_lock) |
1820 | input_dev_toggle(dev, activate: true); |
1821 | |
1822 | return 0; |
1823 | } |
1824 | |
1825 | static int input_dev_suspend(struct device *dev) |
1826 | { |
1827 | struct input_dev *input_dev = to_input_dev(dev); |
1828 | |
1829 | guard(spinlock_irq)(l: &input_dev->event_lock); |
1830 | |
1831 | /* |
1832 | * Keys that are pressed now are unlikely to be |
1833 | * still pressed when we resume. |
1834 | */ |
1835 | if (input_dev_release_keys(dev: input_dev)) |
1836 | input_handle_event(dev: input_dev, EV_SYN, SYN_REPORT, value: 1); |
1837 | |
1838 | /* Turn off LEDs and sounds, if any are active. */ |
1839 | input_dev_toggle(dev: input_dev, activate: false); |
1840 | |
1841 | return 0; |
1842 | } |
1843 | |
1844 | static int input_dev_resume(struct device *dev) |
1845 | { |
1846 | struct input_dev *input_dev = to_input_dev(dev); |
1847 | |
1848 | guard(spinlock_irq)(l: &input_dev->event_lock); |
1849 | |
1850 | /* Restore state of LEDs and sounds, if any were active. */ |
1851 | input_dev_toggle(dev: input_dev, activate: true); |
1852 | |
1853 | return 0; |
1854 | } |
1855 | |
1856 | static int input_dev_freeze(struct device *dev) |
1857 | { |
1858 | struct input_dev *input_dev = to_input_dev(dev); |
1859 | |
1860 | guard(spinlock_irq)(l: &input_dev->event_lock); |
1861 | |
1862 | /* |
1863 | * Keys that are pressed now are unlikely to be |
1864 | * still pressed when we resume. |
1865 | */ |
1866 | if (input_dev_release_keys(dev: input_dev)) |
1867 | input_handle_event(dev: input_dev, EV_SYN, SYN_REPORT, value: 1); |
1868 | |
1869 | return 0; |
1870 | } |
1871 | |
1872 | static int input_dev_poweroff(struct device *dev) |
1873 | { |
1874 | struct input_dev *input_dev = to_input_dev(dev); |
1875 | |
1876 | guard(spinlock_irq)(l: &input_dev->event_lock); |
1877 | |
1878 | /* Turn off LEDs and sounds, if any are active. */ |
1879 | input_dev_toggle(dev: input_dev, activate: false); |
1880 | |
1881 | return 0; |
1882 | } |
1883 | |
1884 | static const struct dev_pm_ops input_dev_pm_ops = { |
1885 | .suspend = input_dev_suspend, |
1886 | .resume = input_dev_resume, |
1887 | .freeze = input_dev_freeze, |
1888 | .poweroff = input_dev_poweroff, |
1889 | .restore = input_dev_resume, |
1890 | }; |
1891 | |
1892 | static const struct device_type input_dev_type = { |
1893 | .groups = input_dev_attr_groups, |
1894 | .release = input_dev_release, |
1895 | .uevent = input_dev_uevent, |
1896 | .pm = pm_sleep_ptr(&input_dev_pm_ops), |
1897 | }; |
1898 | |
1899 | static char *input_devnode(const struct device *dev, umode_t *mode) |
1900 | { |
1901 | return kasprintf(GFP_KERNEL, fmt: "input/%s" , dev_name(dev)); |
1902 | } |
1903 | |
1904 | const struct class input_class = { |
1905 | .name = "input" , |
1906 | .devnode = input_devnode, |
1907 | }; |
1908 | EXPORT_SYMBOL_GPL(input_class); |
1909 | |
1910 | /** |
1911 | * input_allocate_device - allocate memory for new input device |
1912 | * |
1913 | * Returns prepared struct input_dev or %NULL. |
1914 | * |
1915 | * NOTE: Use input_free_device() to free devices that have not been |
1916 | * registered; input_unregister_device() should be used for already |
1917 | * registered devices. |
1918 | */ |
1919 | struct input_dev *input_allocate_device(void) |
1920 | { |
1921 | static atomic_t input_no = ATOMIC_INIT(-1); |
1922 | struct input_dev *dev; |
1923 | |
1924 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
1925 | if (!dev) |
1926 | return NULL; |
1927 | |
1928 | /* |
1929 | * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare, |
1930 | * see input_estimate_events_per_packet(). We will tune the number |
1931 | * when we register the device. |
1932 | */ |
1933 | dev->max_vals = 10; |
1934 | dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); |
1935 | if (!dev->vals) { |
1936 | kfree(objp: dev); |
1937 | return NULL; |
1938 | } |
1939 | |
1940 | mutex_init(&dev->mutex); |
1941 | spin_lock_init(&dev->event_lock); |
1942 | timer_setup(&dev->timer, NULL, 0); |
1943 | INIT_LIST_HEAD(list: &dev->h_list); |
1944 | INIT_LIST_HEAD(list: &dev->node); |
1945 | |
1946 | dev->dev.type = &input_dev_type; |
1947 | dev->dev.class = &input_class; |
1948 | device_initialize(dev: &dev->dev); |
1949 | /* |
1950 | * From this point on we can no longer simply "kfree(dev)", we need |
1951 | * to use input_free_device() so that device core properly frees its |
1952 | * resources associated with the input device. |
1953 | */ |
1954 | |
1955 | dev_set_name(dev: &dev->dev, name: "input%lu" , |
1956 | (unsigned long)atomic_inc_return(v: &input_no)); |
1957 | |
1958 | __module_get(THIS_MODULE); |
1959 | |
1960 | return dev; |
1961 | } |
1962 | EXPORT_SYMBOL(input_allocate_device); |
1963 | |
1964 | struct input_devres { |
1965 | struct input_dev *input; |
1966 | }; |
1967 | |
1968 | static int devm_input_device_match(struct device *dev, void *res, void *data) |
1969 | { |
1970 | struct input_devres *devres = res; |
1971 | |
1972 | return devres->input == data; |
1973 | } |
1974 | |
1975 | static void devm_input_device_release(struct device *dev, void *res) |
1976 | { |
1977 | struct input_devres *devres = res; |
1978 | struct input_dev *input = devres->input; |
1979 | |
1980 | dev_dbg(dev, "%s: dropping reference to %s\n" , |
1981 | __func__, dev_name(&input->dev)); |
1982 | input_put_device(dev: input); |
1983 | } |
1984 | |
1985 | /** |
1986 | * devm_input_allocate_device - allocate managed input device |
1987 | * @dev: device owning the input device being created |
1988 | * |
1989 | * Returns prepared struct input_dev or %NULL. |
1990 | * |
1991 | * Managed input devices do not need to be explicitly unregistered or |
1992 | * freed as it will be done automatically when owner device unbinds from |
1993 | * its driver (or binding fails). Once managed input device is allocated, |
1994 | * it is ready to be set up and registered in the same fashion as regular |
1995 | * input device. There are no special devm_input_device_[un]register() |
1996 | * variants, regular ones work with both managed and unmanaged devices, |
1997 | * should you need them. In most cases however, managed input device need |
1998 | * not be explicitly unregistered or freed. |
1999 | * |
2000 | * NOTE: the owner device is set up as parent of input device and users |
2001 | * should not override it. |
2002 | */ |
2003 | struct input_dev *devm_input_allocate_device(struct device *dev) |
2004 | { |
2005 | struct input_dev *input; |
2006 | struct input_devres *devres; |
2007 | |
2008 | devres = devres_alloc(devm_input_device_release, |
2009 | sizeof(*devres), GFP_KERNEL); |
2010 | if (!devres) |
2011 | return NULL; |
2012 | |
2013 | input = input_allocate_device(); |
2014 | if (!input) { |
2015 | devres_free(res: devres); |
2016 | return NULL; |
2017 | } |
2018 | |
2019 | input->dev.parent = dev; |
2020 | input->devres_managed = true; |
2021 | |
2022 | devres->input = input; |
2023 | devres_add(dev, res: devres); |
2024 | |
2025 | return input; |
2026 | } |
2027 | EXPORT_SYMBOL(devm_input_allocate_device); |
2028 | |
2029 | /** |
2030 | * input_free_device - free memory occupied by input_dev structure |
2031 | * @dev: input device to free |
2032 | * |
2033 | * This function should only be used if input_register_device() |
2034 | * was not called yet or if it failed. Once device was registered |
2035 | * use input_unregister_device() and memory will be freed once last |
2036 | * reference to the device is dropped. |
2037 | * |
2038 | * Device should be allocated by input_allocate_device(). |
2039 | * |
2040 | * NOTE: If there are references to the input device then memory |
2041 | * will not be freed until last reference is dropped. |
2042 | */ |
2043 | void input_free_device(struct input_dev *dev) |
2044 | { |
2045 | if (dev) { |
2046 | if (dev->devres_managed) |
2047 | WARN_ON(devres_destroy(dev->dev.parent, |
2048 | devm_input_device_release, |
2049 | devm_input_device_match, |
2050 | dev)); |
2051 | input_put_device(dev); |
2052 | } |
2053 | } |
2054 | EXPORT_SYMBOL(input_free_device); |
2055 | |
2056 | /** |
2057 | * input_set_timestamp - set timestamp for input events |
2058 | * @dev: input device to set timestamp for |
2059 | * @timestamp: the time at which the event has occurred |
2060 | * in CLOCK_MONOTONIC |
2061 | * |
2062 | * This function is intended to provide to the input system a more |
2063 | * accurate time of when an event actually occurred. The driver should |
2064 | * call this function as soon as a timestamp is acquired ensuring |
2065 | * clock conversions in input_set_timestamp are done correctly. |
2066 | * |
2067 | * The system entering suspend state between timestamp acquisition and |
2068 | * calling input_set_timestamp can result in inaccurate conversions. |
2069 | */ |
2070 | void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) |
2071 | { |
2072 | dev->timestamp[INPUT_CLK_MONO] = timestamp; |
2073 | dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(mono: timestamp); |
2074 | dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(tmono: timestamp, |
2075 | offs: TK_OFFS_BOOT); |
2076 | } |
2077 | EXPORT_SYMBOL(input_set_timestamp); |
2078 | |
2079 | /** |
2080 | * input_get_timestamp - get timestamp for input events |
2081 | * @dev: input device to get timestamp from |
2082 | * |
2083 | * A valid timestamp is a timestamp of non-zero value. |
2084 | */ |
2085 | ktime_t *input_get_timestamp(struct input_dev *dev) |
2086 | { |
2087 | const ktime_t invalid_timestamp = ktime_set(secs: 0, nsecs: 0); |
2088 | |
2089 | if (!ktime_compare(cmp1: dev->timestamp[INPUT_CLK_MONO], cmp2: invalid_timestamp)) |
2090 | input_set_timestamp(dev, ktime_get()); |
2091 | |
2092 | return dev->timestamp; |
2093 | } |
2094 | EXPORT_SYMBOL(input_get_timestamp); |
2095 | |
2096 | /** |
2097 | * input_set_capability - mark device as capable of a certain event |
2098 | * @dev: device that is capable of emitting or accepting event |
2099 | * @type: type of the event (EV_KEY, EV_REL, etc...) |
2100 | * @code: event code |
2101 | * |
2102 | * In addition to setting up corresponding bit in appropriate capability |
2103 | * bitmap the function also adjusts dev->evbit. |
2104 | */ |
2105 | void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) |
2106 | { |
2107 | if (type < EV_CNT && input_max_code[type] && |
2108 | code > input_max_code[type]) { |
2109 | pr_err("%s: invalid code %u for type %u\n" , __func__, code, |
2110 | type); |
2111 | dump_stack(); |
2112 | return; |
2113 | } |
2114 | |
2115 | switch (type) { |
2116 | case EV_KEY: |
2117 | __set_bit(code, dev->keybit); |
2118 | break; |
2119 | |
2120 | case EV_REL: |
2121 | __set_bit(code, dev->relbit); |
2122 | break; |
2123 | |
2124 | case EV_ABS: |
2125 | input_alloc_absinfo(dev); |
2126 | __set_bit(code, dev->absbit); |
2127 | break; |
2128 | |
2129 | case EV_MSC: |
2130 | __set_bit(code, dev->mscbit); |
2131 | break; |
2132 | |
2133 | case EV_SW: |
2134 | __set_bit(code, dev->swbit); |
2135 | break; |
2136 | |
2137 | case EV_LED: |
2138 | __set_bit(code, dev->ledbit); |
2139 | break; |
2140 | |
2141 | case EV_SND: |
2142 | __set_bit(code, dev->sndbit); |
2143 | break; |
2144 | |
2145 | case EV_FF: |
2146 | __set_bit(code, dev->ffbit); |
2147 | break; |
2148 | |
2149 | case EV_PWR: |
2150 | /* do nothing */ |
2151 | break; |
2152 | |
2153 | default: |
2154 | pr_err("%s: unknown type %u (code %u)\n" , __func__, type, code); |
2155 | dump_stack(); |
2156 | return; |
2157 | } |
2158 | |
2159 | __set_bit(type, dev->evbit); |
2160 | } |
2161 | EXPORT_SYMBOL(input_set_capability); |
2162 | |
2163 | static unsigned int input_estimate_events_per_packet(struct input_dev *dev) |
2164 | { |
2165 | int mt_slots; |
2166 | int i; |
2167 | unsigned int events; |
2168 | |
2169 | if (dev->mt) { |
2170 | mt_slots = dev->mt->num_slots; |
2171 | } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { |
2172 | mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - |
2173 | dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1; |
2174 | mt_slots = clamp(mt_slots, 2, 32); |
2175 | } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { |
2176 | mt_slots = 2; |
2177 | } else { |
2178 | mt_slots = 0; |
2179 | } |
2180 | |
2181 | events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ |
2182 | |
2183 | if (test_bit(EV_ABS, dev->evbit)) |
2184 | for_each_set_bit(i, dev->absbit, ABS_CNT) |
2185 | events += input_is_mt_axis(axis: i) ? mt_slots : 1; |
2186 | |
2187 | if (test_bit(EV_REL, dev->evbit)) |
2188 | events += bitmap_weight(src: dev->relbit, REL_CNT); |
2189 | |
2190 | /* Make room for KEY and MSC events */ |
2191 | events += 7; |
2192 | |
2193 | return events; |
2194 | } |
2195 | |
2196 | #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ |
2197 | do { \ |
2198 | if (!test_bit(EV_##type, dev->evbit)) \ |
2199 | memset(dev->bits##bit, 0, \ |
2200 | sizeof(dev->bits##bit)); \ |
2201 | } while (0) |
2202 | |
2203 | static void input_cleanse_bitmasks(struct input_dev *dev) |
2204 | { |
2205 | INPUT_CLEANSE_BITMASK(dev, KEY, key); |
2206 | INPUT_CLEANSE_BITMASK(dev, REL, rel); |
2207 | INPUT_CLEANSE_BITMASK(dev, ABS, abs); |
2208 | INPUT_CLEANSE_BITMASK(dev, MSC, msc); |
2209 | INPUT_CLEANSE_BITMASK(dev, LED, led); |
2210 | INPUT_CLEANSE_BITMASK(dev, SND, snd); |
2211 | INPUT_CLEANSE_BITMASK(dev, FF, ff); |
2212 | INPUT_CLEANSE_BITMASK(dev, SW, sw); |
2213 | } |
2214 | |
2215 | static void __input_unregister_device(struct input_dev *dev) |
2216 | { |
2217 | struct input_handle *handle, *next; |
2218 | |
2219 | input_disconnect_device(dev); |
2220 | |
2221 | scoped_guard(mutex, &input_mutex) { |
2222 | list_for_each_entry_safe(handle, next, &dev->h_list, d_node) |
2223 | handle->handler->disconnect(handle); |
2224 | WARN_ON(!list_empty(&dev->h_list)); |
2225 | |
2226 | timer_delete_sync(timer: &dev->timer); |
2227 | list_del_init(entry: &dev->node); |
2228 | |
2229 | input_wakeup_procfs_readers(); |
2230 | } |
2231 | |
2232 | device_del(dev: &dev->dev); |
2233 | } |
2234 | |
2235 | static void devm_input_device_unregister(struct device *dev, void *res) |
2236 | { |
2237 | struct input_devres *devres = res; |
2238 | struct input_dev *input = devres->input; |
2239 | |
2240 | dev_dbg(dev, "%s: unregistering device %s\n" , |
2241 | __func__, dev_name(&input->dev)); |
2242 | __input_unregister_device(dev: input); |
2243 | } |
2244 | |
2245 | /* |
2246 | * Generate software autorepeat event. Note that we take |
2247 | * dev->event_lock here to avoid racing with input_event |
2248 | * which may cause keys get "stuck". |
2249 | */ |
2250 | static void input_repeat_key(struct timer_list *t) |
2251 | { |
2252 | struct input_dev *dev = timer_container_of(dev, t, timer); |
2253 | |
2254 | guard(spinlock_irqsave)(l: &dev->event_lock); |
2255 | |
2256 | if (!dev->inhibited && |
2257 | test_bit(dev->repeat_key, dev->key) && |
2258 | is_event_supported(code: dev->repeat_key, bm: dev->keybit, KEY_MAX)) { |
2259 | |
2260 | input_set_timestamp(dev, ktime_get()); |
2261 | input_handle_event(dev, EV_KEY, code: dev->repeat_key, value: 2); |
2262 | input_handle_event(dev, EV_SYN, SYN_REPORT, value: 1); |
2263 | |
2264 | if (dev->rep[REP_PERIOD]) |
2265 | mod_timer(timer: &dev->timer, expires: jiffies + |
2266 | msecs_to_jiffies(m: dev->rep[REP_PERIOD])); |
2267 | } |
2268 | } |
2269 | |
2270 | /** |
2271 | * input_enable_softrepeat - enable software autorepeat |
2272 | * @dev: input device |
2273 | * @delay: repeat delay |
2274 | * @period: repeat period |
2275 | * |
2276 | * Enable software autorepeat on the input device. |
2277 | */ |
2278 | void input_enable_softrepeat(struct input_dev *dev, int delay, int period) |
2279 | { |
2280 | dev->timer.function = input_repeat_key; |
2281 | dev->rep[REP_DELAY] = delay; |
2282 | dev->rep[REP_PERIOD] = period; |
2283 | } |
2284 | EXPORT_SYMBOL(input_enable_softrepeat); |
2285 | |
2286 | bool input_device_enabled(struct input_dev *dev) |
2287 | { |
2288 | lockdep_assert_held(&dev->mutex); |
2289 | |
2290 | return !dev->inhibited && dev->users > 0; |
2291 | } |
2292 | EXPORT_SYMBOL_GPL(input_device_enabled); |
2293 | |
2294 | static int input_device_tune_vals(struct input_dev *dev) |
2295 | { |
2296 | struct input_value *vals; |
2297 | unsigned int packet_size; |
2298 | unsigned int max_vals; |
2299 | |
2300 | packet_size = input_estimate_events_per_packet(dev); |
2301 | if (dev->hint_events_per_packet < packet_size) |
2302 | dev->hint_events_per_packet = packet_size; |
2303 | |
2304 | max_vals = dev->hint_events_per_packet + 2; |
2305 | if (dev->max_vals >= max_vals) |
2306 | return 0; |
2307 | |
2308 | vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL); |
2309 | if (!vals) |
2310 | return -ENOMEM; |
2311 | |
2312 | scoped_guard(spinlock_irq, &dev->event_lock) { |
2313 | dev->max_vals = max_vals; |
2314 | swap(dev->vals, vals); |
2315 | } |
2316 | |
2317 | /* Because of swap() above, this frees the old vals memory */ |
2318 | kfree(objp: vals); |
2319 | |
2320 | return 0; |
2321 | } |
2322 | |
2323 | /** |
2324 | * input_register_device - register device with input core |
2325 | * @dev: device to be registered |
2326 | * |
2327 | * This function registers device with input core. The device must be |
2328 | * allocated with input_allocate_device() and all it's capabilities |
2329 | * set up before registering. |
2330 | * If function fails the device must be freed with input_free_device(). |
2331 | * Once device has been successfully registered it can be unregistered |
2332 | * with input_unregister_device(); input_free_device() should not be |
2333 | * called in this case. |
2334 | * |
2335 | * Note that this function is also used to register managed input devices |
2336 | * (ones allocated with devm_input_allocate_device()). Such managed input |
2337 | * devices need not be explicitly unregistered or freed, their tear down |
2338 | * is controlled by the devres infrastructure. It is also worth noting |
2339 | * that tear down of managed input devices is internally a 2-step process: |
2340 | * registered managed input device is first unregistered, but stays in |
2341 | * memory and can still handle input_event() calls (although events will |
2342 | * not be delivered anywhere). The freeing of managed input device will |
2343 | * happen later, when devres stack is unwound to the point where device |
2344 | * allocation was made. |
2345 | */ |
2346 | int input_register_device(struct input_dev *dev) |
2347 | { |
2348 | struct input_devres *devres = NULL; |
2349 | struct input_handler *handler; |
2350 | const char *path; |
2351 | int error; |
2352 | |
2353 | if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { |
2354 | dev_err(&dev->dev, |
2355 | "Absolute device without dev->absinfo, refusing to register\n" ); |
2356 | return -EINVAL; |
2357 | } |
2358 | |
2359 | if (dev->devres_managed) { |
2360 | devres = devres_alloc(devm_input_device_unregister, |
2361 | sizeof(*devres), GFP_KERNEL); |
2362 | if (!devres) |
2363 | return -ENOMEM; |
2364 | |
2365 | devres->input = dev; |
2366 | } |
2367 | |
2368 | /* Every input device generates EV_SYN/SYN_REPORT events. */ |
2369 | __set_bit(EV_SYN, dev->evbit); |
2370 | |
2371 | /* KEY_RESERVED is not supposed to be transmitted to userspace. */ |
2372 | __clear_bit(KEY_RESERVED, dev->keybit); |
2373 | |
2374 | /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ |
2375 | input_cleanse_bitmasks(dev); |
2376 | |
2377 | error = input_device_tune_vals(dev); |
2378 | if (error) |
2379 | goto err_devres_free; |
2380 | |
2381 | /* |
2382 | * If delay and period are pre-set by the driver, then autorepeating |
2383 | * is handled by the driver itself and we don't do it in input.c. |
2384 | */ |
2385 | if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) |
2386 | input_enable_softrepeat(dev, 250, 33); |
2387 | |
2388 | if (!dev->getkeycode) |
2389 | dev->getkeycode = input_default_getkeycode; |
2390 | |
2391 | if (!dev->setkeycode) |
2392 | dev->setkeycode = input_default_setkeycode; |
2393 | |
2394 | if (dev->poller) |
2395 | input_dev_poller_finalize(poller: dev->poller); |
2396 | |
2397 | error = device_add(dev: &dev->dev); |
2398 | if (error) |
2399 | goto err_devres_free; |
2400 | |
2401 | path = kobject_get_path(kobj: &dev->dev.kobj, GFP_KERNEL); |
2402 | pr_info("%s as %s\n" , |
2403 | dev->name ? dev->name : "Unspecified device" , |
2404 | path ? path : "N/A" ); |
2405 | kfree(objp: path); |
2406 | |
2407 | error = -EINTR; |
2408 | scoped_cond_guard(mutex_intr, goto err_device_del, &input_mutex) { |
2409 | list_add_tail(new: &dev->node, head: &input_dev_list); |
2410 | |
2411 | list_for_each_entry(handler, &input_handler_list, node) |
2412 | input_attach_handler(dev, handler); |
2413 | |
2414 | input_wakeup_procfs_readers(); |
2415 | } |
2416 | |
2417 | if (dev->devres_managed) { |
2418 | dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n" , |
2419 | __func__, dev_name(&dev->dev)); |
2420 | devres_add(dev: dev->dev.parent, res: devres); |
2421 | } |
2422 | return 0; |
2423 | |
2424 | err_device_del: |
2425 | device_del(dev: &dev->dev); |
2426 | err_devres_free: |
2427 | devres_free(res: devres); |
2428 | return error; |
2429 | } |
2430 | EXPORT_SYMBOL(input_register_device); |
2431 | |
2432 | /** |
2433 | * input_unregister_device - unregister previously registered device |
2434 | * @dev: device to be unregistered |
2435 | * |
2436 | * This function unregisters an input device. Once device is unregistered |
2437 | * the caller should not try to access it as it may get freed at any moment. |
2438 | */ |
2439 | void input_unregister_device(struct input_dev *dev) |
2440 | { |
2441 | if (dev->devres_managed) { |
2442 | WARN_ON(devres_destroy(dev->dev.parent, |
2443 | devm_input_device_unregister, |
2444 | devm_input_device_match, |
2445 | dev)); |
2446 | __input_unregister_device(dev); |
2447 | /* |
2448 | * We do not do input_put_device() here because it will be done |
2449 | * when 2nd devres fires up. |
2450 | */ |
2451 | } else { |
2452 | __input_unregister_device(dev); |
2453 | input_put_device(dev); |
2454 | } |
2455 | } |
2456 | EXPORT_SYMBOL(input_unregister_device); |
2457 | |
2458 | static int input_handler_check_methods(const struct input_handler *handler) |
2459 | { |
2460 | int count = 0; |
2461 | |
2462 | if (handler->filter) |
2463 | count++; |
2464 | if (handler->events) |
2465 | count++; |
2466 | if (handler->event) |
2467 | count++; |
2468 | |
2469 | if (count > 1) { |
2470 | pr_err("%s: only one event processing method can be defined (%s)\n" , |
2471 | __func__, handler->name); |
2472 | return -EINVAL; |
2473 | } |
2474 | |
2475 | return 0; |
2476 | } |
2477 | |
2478 | /** |
2479 | * input_register_handler - register a new input handler |
2480 | * @handler: handler to be registered |
2481 | * |
2482 | * This function registers a new input handler (interface) for input |
2483 | * devices in the system and attaches it to all input devices that |
2484 | * are compatible with the handler. |
2485 | */ |
2486 | int input_register_handler(struct input_handler *handler) |
2487 | { |
2488 | struct input_dev *dev; |
2489 | int error; |
2490 | |
2491 | error = input_handler_check_methods(handler); |
2492 | if (error) |
2493 | return error; |
2494 | |
2495 | scoped_cond_guard(mutex_intr, return -EINTR, &input_mutex) { |
2496 | INIT_LIST_HEAD(list: &handler->h_list); |
2497 | |
2498 | list_add_tail(new: &handler->node, head: &input_handler_list); |
2499 | |
2500 | list_for_each_entry(dev, &input_dev_list, node) |
2501 | input_attach_handler(dev, handler); |
2502 | |
2503 | input_wakeup_procfs_readers(); |
2504 | } |
2505 | |
2506 | return 0; |
2507 | } |
2508 | EXPORT_SYMBOL(input_register_handler); |
2509 | |
2510 | /** |
2511 | * input_unregister_handler - unregisters an input handler |
2512 | * @handler: handler to be unregistered |
2513 | * |
2514 | * This function disconnects a handler from its input devices and |
2515 | * removes it from lists of known handlers. |
2516 | */ |
2517 | void input_unregister_handler(struct input_handler *handler) |
2518 | { |
2519 | struct input_handle *handle, *next; |
2520 | |
2521 | guard(mutex)(T: &input_mutex); |
2522 | |
2523 | list_for_each_entry_safe(handle, next, &handler->h_list, h_node) |
2524 | handler->disconnect(handle); |
2525 | WARN_ON(!list_empty(&handler->h_list)); |
2526 | |
2527 | list_del_init(entry: &handler->node); |
2528 | |
2529 | input_wakeup_procfs_readers(); |
2530 | } |
2531 | EXPORT_SYMBOL(input_unregister_handler); |
2532 | |
2533 | /** |
2534 | * input_handler_for_each_handle - handle iterator |
2535 | * @handler: input handler to iterate |
2536 | * @data: data for the callback |
2537 | * @fn: function to be called for each handle |
2538 | * |
2539 | * Iterate over @bus's list of devices, and call @fn for each, passing |
2540 | * it @data and stop when @fn returns a non-zero value. The function is |
2541 | * using RCU to traverse the list and therefore may be using in atomic |
2542 | * contexts. The @fn callback is invoked from RCU critical section and |
2543 | * thus must not sleep. |
2544 | */ |
2545 | int input_handler_for_each_handle(struct input_handler *handler, void *data, |
2546 | int (*fn)(struct input_handle *, void *)) |
2547 | { |
2548 | struct input_handle *handle; |
2549 | int retval; |
2550 | |
2551 | guard(rcu)(); |
2552 | |
2553 | list_for_each_entry_rcu(handle, &handler->h_list, h_node) { |
2554 | retval = fn(handle, data); |
2555 | if (retval) |
2556 | return retval; |
2557 | } |
2558 | |
2559 | return 0; |
2560 | } |
2561 | EXPORT_SYMBOL(input_handler_for_each_handle); |
2562 | |
2563 | /* |
2564 | * An implementation of input_handle's handle_events() method that simply |
2565 | * invokes handler->event() method for each event one by one. |
2566 | */ |
2567 | static unsigned int input_handle_events_default(struct input_handle *handle, |
2568 | struct input_value *vals, |
2569 | unsigned int count) |
2570 | { |
2571 | struct input_handler *handler = handle->handler; |
2572 | struct input_value *v; |
2573 | |
2574 | for (v = vals; v != vals + count; v++) |
2575 | handler->event(handle, v->type, v->code, v->value); |
2576 | |
2577 | return count; |
2578 | } |
2579 | |
2580 | /* |
2581 | * An implementation of input_handle's handle_events() method that invokes |
2582 | * handler->filter() method for each event one by one and removes events |
2583 | * that were filtered out from the "vals" array. |
2584 | */ |
2585 | static unsigned int input_handle_events_filter(struct input_handle *handle, |
2586 | struct input_value *vals, |
2587 | unsigned int count) |
2588 | { |
2589 | struct input_handler *handler = handle->handler; |
2590 | struct input_value *end = vals; |
2591 | struct input_value *v; |
2592 | |
2593 | for (v = vals; v != vals + count; v++) { |
2594 | if (handler->filter(handle, v->type, v->code, v->value)) |
2595 | continue; |
2596 | if (end != v) |
2597 | *end = *v; |
2598 | end++; |
2599 | } |
2600 | |
2601 | return end - vals; |
2602 | } |
2603 | |
2604 | /* |
2605 | * An implementation of input_handle's handle_events() method that does nothing. |
2606 | */ |
2607 | static unsigned int input_handle_events_null(struct input_handle *handle, |
2608 | struct input_value *vals, |
2609 | unsigned int count) |
2610 | { |
2611 | return count; |
2612 | } |
2613 | |
2614 | /* |
2615 | * Sets up appropriate handle->event_handler based on the input_handler |
2616 | * associated with the handle. |
2617 | */ |
2618 | static void input_handle_setup_event_handler(struct input_handle *handle) |
2619 | { |
2620 | struct input_handler *handler = handle->handler; |
2621 | |
2622 | if (handler->filter) |
2623 | handle->handle_events = input_handle_events_filter; |
2624 | else if (handler->event) |
2625 | handle->handle_events = input_handle_events_default; |
2626 | else if (handler->events) |
2627 | handle->handle_events = handler->events; |
2628 | else |
2629 | handle->handle_events = input_handle_events_null; |
2630 | } |
2631 | |
2632 | /** |
2633 | * input_register_handle - register a new input handle |
2634 | * @handle: handle to register |
2635 | * |
2636 | * This function puts a new input handle onto device's |
2637 | * and handler's lists so that events can flow through |
2638 | * it once it is opened using input_open_device(). |
2639 | * |
2640 | * This function is supposed to be called from handler's |
2641 | * connect() method. |
2642 | */ |
2643 | int input_register_handle(struct input_handle *handle) |
2644 | { |
2645 | struct input_handler *handler = handle->handler; |
2646 | struct input_dev *dev = handle->dev; |
2647 | |
2648 | input_handle_setup_event_handler(handle); |
2649 | /* |
2650 | * We take dev->mutex here to prevent race with |
2651 | * input_release_device(). |
2652 | */ |
2653 | scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) { |
2654 | /* |
2655 | * Filters go to the head of the list, normal handlers |
2656 | * to the tail. |
2657 | */ |
2658 | if (handler->filter) |
2659 | list_add_rcu(new: &handle->d_node, head: &dev->h_list); |
2660 | else |
2661 | list_add_tail_rcu(new: &handle->d_node, head: &dev->h_list); |
2662 | } |
2663 | |
2664 | /* |
2665 | * Since we are supposed to be called from ->connect() |
2666 | * which is mutually exclusive with ->disconnect() |
2667 | * we can't be racing with input_unregister_handle() |
2668 | * and so separate lock is not needed here. |
2669 | */ |
2670 | list_add_tail_rcu(new: &handle->h_node, head: &handler->h_list); |
2671 | |
2672 | if (handler->start) |
2673 | handler->start(handle); |
2674 | |
2675 | return 0; |
2676 | } |
2677 | EXPORT_SYMBOL(input_register_handle); |
2678 | |
2679 | /** |
2680 | * input_unregister_handle - unregister an input handle |
2681 | * @handle: handle to unregister |
2682 | * |
2683 | * This function removes input handle from device's |
2684 | * and handler's lists. |
2685 | * |
2686 | * This function is supposed to be called from handler's |
2687 | * disconnect() method. |
2688 | */ |
2689 | void input_unregister_handle(struct input_handle *handle) |
2690 | { |
2691 | struct input_dev *dev = handle->dev; |
2692 | |
2693 | list_del_rcu(entry: &handle->h_node); |
2694 | |
2695 | /* |
2696 | * Take dev->mutex to prevent race with input_release_device(). |
2697 | */ |
2698 | scoped_guard(mutex, &dev->mutex) |
2699 | list_del_rcu(entry: &handle->d_node); |
2700 | |
2701 | synchronize_rcu(); |
2702 | } |
2703 | EXPORT_SYMBOL(input_unregister_handle); |
2704 | |
2705 | /** |
2706 | * input_get_new_minor - allocates a new input minor number |
2707 | * @legacy_base: beginning or the legacy range to be searched |
2708 | * @legacy_num: size of legacy range |
2709 | * @allow_dynamic: whether we can also take ID from the dynamic range |
2710 | * |
2711 | * This function allocates a new device minor for from input major namespace. |
2712 | * Caller can request legacy minor by specifying @legacy_base and @legacy_num |
2713 | * parameters and whether ID can be allocated from dynamic range if there are |
2714 | * no free IDs in legacy range. |
2715 | */ |
2716 | int input_get_new_minor(int legacy_base, unsigned int legacy_num, |
2717 | bool allow_dynamic) |
2718 | { |
2719 | /* |
2720 | * This function should be called from input handler's ->connect() |
2721 | * methods, which are serialized with input_mutex, so no additional |
2722 | * locking is needed here. |
2723 | */ |
2724 | if (legacy_base >= 0) { |
2725 | int minor = ida_alloc_range(&input_ida, min: legacy_base, |
2726 | max: legacy_base + legacy_num - 1, |
2727 | GFP_KERNEL); |
2728 | if (minor >= 0 || !allow_dynamic) |
2729 | return minor; |
2730 | } |
2731 | |
2732 | return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV, |
2733 | INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL); |
2734 | } |
2735 | EXPORT_SYMBOL(input_get_new_minor); |
2736 | |
2737 | /** |
2738 | * input_free_minor - release previously allocated minor |
2739 | * @minor: minor to be released |
2740 | * |
2741 | * This function releases previously allocated input minor so that it can be |
2742 | * reused later. |
2743 | */ |
2744 | void input_free_minor(unsigned int minor) |
2745 | { |
2746 | ida_free(&input_ida, id: minor); |
2747 | } |
2748 | EXPORT_SYMBOL(input_free_minor); |
2749 | |
2750 | static int __init input_init(void) |
2751 | { |
2752 | int err; |
2753 | |
2754 | err = class_register(class: &input_class); |
2755 | if (err) { |
2756 | pr_err("unable to register input_dev class\n" ); |
2757 | return err; |
2758 | } |
2759 | |
2760 | err = input_proc_init(); |
2761 | if (err) |
2762 | goto fail1; |
2763 | |
2764 | err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), |
2765 | INPUT_MAX_CHAR_DEVICES, "input" ); |
2766 | if (err) { |
2767 | pr_err("unable to register char major %d" , INPUT_MAJOR); |
2768 | goto fail2; |
2769 | } |
2770 | |
2771 | return 0; |
2772 | |
2773 | fail2: input_proc_exit(); |
2774 | fail1: class_unregister(class: &input_class); |
2775 | return err; |
2776 | } |
2777 | |
2778 | static void __exit input_exit(void) |
2779 | { |
2780 | input_proc_exit(); |
2781 | unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), |
2782 | INPUT_MAX_CHAR_DEVICES); |
2783 | class_unregister(class: &input_class); |
2784 | } |
2785 | |
2786 | subsys_initcall(input_init); |
2787 | module_exit(input_exit); |
2788 | |