1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * The input core |
4 | * |
5 | * Copyright (c) 1999-2002 Vojtech Pavlik |
6 | */ |
7 | |
8 | |
9 | #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt |
10 | |
11 | #include <linux/init.h> |
12 | #include <linux/types.h> |
13 | #include <linux/idr.h> |
14 | #include <linux/input/mt.h> |
15 | #include <linux/module.h> |
16 | #include <linux/slab.h> |
17 | #include <linux/random.h> |
18 | #include <linux/major.h> |
19 | #include <linux/proc_fs.h> |
20 | #include <linux/sched.h> |
21 | #include <linux/seq_file.h> |
22 | #include <linux/pm.h> |
23 | #include <linux/poll.h> |
24 | #include <linux/device.h> |
25 | #include <linux/kstrtox.h> |
26 | #include <linux/mutex.h> |
27 | #include <linux/rcupdate.h> |
28 | #include "input-compat.h" |
29 | #include "input-core-private.h" |
30 | #include "input-poller.h" |
31 | |
32 | MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); |
33 | MODULE_DESCRIPTION("Input core"); |
34 | MODULE_LICENSE("GPL"); |
35 | |
36 | #define INPUT_MAX_CHAR_DEVICES 1024 |
37 | #define INPUT_FIRST_DYNAMIC_DEV 256 |
38 | static DEFINE_IDA(input_ida); |
39 | |
40 | static LIST_HEAD(input_dev_list); |
41 | static LIST_HEAD(input_handler_list); |
42 | |
43 | /* |
44 | * input_mutex protects access to both input_dev_list and input_handler_list. |
45 | * This also causes input_[un]register_device and input_[un]register_handler |
46 | * be mutually exclusive which simplifies locking in drivers implementing |
47 | * input handlers. |
48 | */ |
49 | static DEFINE_MUTEX(input_mutex); |
50 | |
51 | static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; |
52 | |
53 | static const unsigned int input_max_code[EV_CNT] = { |
54 | [EV_KEY] = KEY_MAX, |
55 | [EV_REL] = REL_MAX, |
56 | [EV_ABS] = ABS_MAX, |
57 | [EV_MSC] = MSC_MAX, |
58 | [EV_SW] = SW_MAX, |
59 | [EV_LED] = LED_MAX, |
60 | [EV_SND] = SND_MAX, |
61 | [EV_FF] = FF_MAX, |
62 | }; |
63 | |
64 | static inline int is_event_supported(unsigned int code, |
65 | unsigned long *bm, unsigned int max) |
66 | { |
67 | return code <= max && test_bit(code, bm); |
68 | } |
69 | |
70 | static int input_defuzz_abs_event(int value, int old_val, int fuzz) |
71 | { |
72 | if (fuzz) { |
73 | if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) |
74 | return old_val; |
75 | |
76 | if (value > old_val - fuzz && value < old_val + fuzz) |
77 | return (old_val * 3 + value) / 4; |
78 | |
79 | if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) |
80 | return (old_val + value) / 2; |
81 | } |
82 | |
83 | return value; |
84 | } |
85 | |
86 | static void input_start_autorepeat(struct input_dev *dev, int code) |
87 | { |
88 | if (test_bit(EV_REP, dev->evbit) && |
89 | dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && |
90 | dev->timer.function) { |
91 | dev->repeat_key = code; |
92 | mod_timer(timer: &dev->timer, |
93 | expires: jiffies + msecs_to_jiffies(m: dev->rep[REP_DELAY])); |
94 | } |
95 | } |
96 | |
97 | static void input_stop_autorepeat(struct input_dev *dev) |
98 | { |
99 | del_timer(timer: &dev->timer); |
100 | } |
101 | |
102 | /* |
103 | * Pass event first through all filters and then, if event has not been |
104 | * filtered out, through all open handles. This function is called with |
105 | * dev->event_lock held and interrupts disabled. |
106 | */ |
107 | static unsigned int input_to_handler(struct input_handle *handle, |
108 | struct input_value *vals, unsigned int count) |
109 | { |
110 | struct input_handler *handler = handle->handler; |
111 | struct input_value *end = vals; |
112 | struct input_value *v; |
113 | |
114 | if (handler->filter) { |
115 | for (v = vals; v != vals + count; v++) { |
116 | if (handler->filter(handle, v->type, v->code, v->value)) |
117 | continue; |
118 | if (end != v) |
119 | *end = *v; |
120 | end++; |
121 | } |
122 | count = end - vals; |
123 | } |
124 | |
125 | if (!count) |
126 | return 0; |
127 | |
128 | if (handler->events) |
129 | handler->events(handle, vals, count); |
130 | else if (handler->event) |
131 | for (v = vals; v != vals + count; v++) |
132 | handler->event(handle, v->type, v->code, v->value); |
133 | |
134 | return count; |
135 | } |
136 | |
137 | /* |
138 | * Pass values first through all filters and then, if event has not been |
139 | * filtered out, through all open handles. This function is called with |
140 | * dev->event_lock held and interrupts disabled. |
141 | */ |
142 | static void input_pass_values(struct input_dev *dev, |
143 | struct input_value *vals, unsigned int count) |
144 | { |
145 | struct input_handle *handle; |
146 | struct input_value *v; |
147 | |
148 | lockdep_assert_held(&dev->event_lock); |
149 | |
150 | if (!count) |
151 | return; |
152 | |
153 | rcu_read_lock(); |
154 | |
155 | handle = rcu_dereference(dev->grab); |
156 | if (handle) { |
157 | count = input_to_handler(handle, vals, count); |
158 | } else { |
159 | list_for_each_entry_rcu(handle, &dev->h_list, d_node) |
160 | if (handle->open) { |
161 | count = input_to_handler(handle, vals, count); |
162 | if (!count) |
163 | break; |
164 | } |
165 | } |
166 | |
167 | rcu_read_unlock(); |
168 | |
169 | /* trigger auto repeat for key events */ |
170 | if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { |
171 | for (v = vals; v != vals + count; v++) { |
172 | if (v->type == EV_KEY && v->value != 2) { |
173 | if (v->value) |
174 | input_start_autorepeat(dev, code: v->code); |
175 | else |
176 | input_stop_autorepeat(dev); |
177 | } |
178 | } |
179 | } |
180 | } |
181 | |
182 | #define INPUT_IGNORE_EVENT 0 |
183 | #define INPUT_PASS_TO_HANDLERS 1 |
184 | #define INPUT_PASS_TO_DEVICE 2 |
185 | #define INPUT_SLOT 4 |
186 | #define INPUT_FLUSH 8 |
187 | #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) |
188 | |
189 | static int input_handle_abs_event(struct input_dev *dev, |
190 | unsigned int code, int *pval) |
191 | { |
192 | struct input_mt *mt = dev->mt; |
193 | bool is_new_slot = false; |
194 | bool is_mt_event; |
195 | int *pold; |
196 | |
197 | if (code == ABS_MT_SLOT) { |
198 | /* |
199 | * "Stage" the event; we'll flush it later, when we |
200 | * get actual touch data. |
201 | */ |
202 | if (mt && *pval >= 0 && *pval < mt->num_slots) |
203 | mt->slot = *pval; |
204 | |
205 | return INPUT_IGNORE_EVENT; |
206 | } |
207 | |
208 | is_mt_event = input_is_mt_value(axis: code); |
209 | |
210 | if (!is_mt_event) { |
211 | pold = &dev->absinfo[code].value; |
212 | } else if (mt) { |
213 | pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; |
214 | is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value; |
215 | } else { |
216 | /* |
217 | * Bypass filtering for multi-touch events when |
218 | * not employing slots. |
219 | */ |
220 | pold = NULL; |
221 | } |
222 | |
223 | if (pold) { |
224 | *pval = input_defuzz_abs_event(value: *pval, old_val: *pold, |
225 | fuzz: dev->absinfo[code].fuzz); |
226 | if (*pold == *pval) |
227 | return INPUT_IGNORE_EVENT; |
228 | |
229 | *pold = *pval; |
230 | } |
231 | |
232 | /* Flush pending "slot" event */ |
233 | if (is_new_slot) { |
234 | dev->absinfo[ABS_MT_SLOT].value = mt->slot; |
235 | return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; |
236 | } |
237 | |
238 | return INPUT_PASS_TO_HANDLERS; |
239 | } |
240 | |
241 | static int input_get_disposition(struct input_dev *dev, |
242 | unsigned int type, unsigned int code, int *pval) |
243 | { |
244 | int disposition = INPUT_IGNORE_EVENT; |
245 | int value = *pval; |
246 | |
247 | /* filter-out events from inhibited devices */ |
248 | if (dev->inhibited) |
249 | return INPUT_IGNORE_EVENT; |
250 | |
251 | switch (type) { |
252 | |
253 | case EV_SYN: |
254 | switch (code) { |
255 | case SYN_CONFIG: |
256 | disposition = INPUT_PASS_TO_ALL; |
257 | break; |
258 | |
259 | case SYN_REPORT: |
260 | disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; |
261 | break; |
262 | case SYN_MT_REPORT: |
263 | disposition = INPUT_PASS_TO_HANDLERS; |
264 | break; |
265 | } |
266 | break; |
267 | |
268 | case EV_KEY: |
269 | if (is_event_supported(code, bm: dev->keybit, KEY_MAX)) { |
270 | |
271 | /* auto-repeat bypasses state updates */ |
272 | if (value == 2) { |
273 | disposition = INPUT_PASS_TO_HANDLERS; |
274 | break; |
275 | } |
276 | |
277 | if (!!test_bit(code, dev->key) != !!value) { |
278 | |
279 | __change_bit(code, dev->key); |
280 | disposition = INPUT_PASS_TO_HANDLERS; |
281 | } |
282 | } |
283 | break; |
284 | |
285 | case EV_SW: |
286 | if (is_event_supported(code, bm: dev->swbit, SW_MAX) && |
287 | !!test_bit(code, dev->sw) != !!value) { |
288 | |
289 | __change_bit(code, dev->sw); |
290 | disposition = INPUT_PASS_TO_HANDLERS; |
291 | } |
292 | break; |
293 | |
294 | case EV_ABS: |
295 | if (is_event_supported(code, bm: dev->absbit, ABS_MAX)) |
296 | disposition = input_handle_abs_event(dev, code, pval: &value); |
297 | |
298 | break; |
299 | |
300 | case EV_REL: |
301 | if (is_event_supported(code, bm: dev->relbit, REL_MAX) && value) |
302 | disposition = INPUT_PASS_TO_HANDLERS; |
303 | |
304 | break; |
305 | |
306 | case EV_MSC: |
307 | if (is_event_supported(code, bm: dev->mscbit, MSC_MAX)) |
308 | disposition = INPUT_PASS_TO_ALL; |
309 | |
310 | break; |
311 | |
312 | case EV_LED: |
313 | if (is_event_supported(code, bm: dev->ledbit, LED_MAX) && |
314 | !!test_bit(code, dev->led) != !!value) { |
315 | |
316 | __change_bit(code, dev->led); |
317 | disposition = INPUT_PASS_TO_ALL; |
318 | } |
319 | break; |
320 | |
321 | case EV_SND: |
322 | if (is_event_supported(code, bm: dev->sndbit, SND_MAX)) { |
323 | |
324 | if (!!test_bit(code, dev->snd) != !!value) |
325 | __change_bit(code, dev->snd); |
326 | disposition = INPUT_PASS_TO_ALL; |
327 | } |
328 | break; |
329 | |
330 | case EV_REP: |
331 | if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { |
332 | dev->rep[code] = value; |
333 | disposition = INPUT_PASS_TO_ALL; |
334 | } |
335 | break; |
336 | |
337 | case EV_FF: |
338 | if (value >= 0) |
339 | disposition = INPUT_PASS_TO_ALL; |
340 | break; |
341 | |
342 | case EV_PWR: |
343 | disposition = INPUT_PASS_TO_ALL; |
344 | break; |
345 | } |
346 | |
347 | *pval = value; |
348 | return disposition; |
349 | } |
350 | |
351 | static void input_event_dispose(struct input_dev *dev, int disposition, |
352 | unsigned int type, unsigned int code, int value) |
353 | { |
354 | if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) |
355 | dev->event(dev, type, code, value); |
356 | |
357 | if (!dev->vals) |
358 | return; |
359 | |
360 | if (disposition & INPUT_PASS_TO_HANDLERS) { |
361 | struct input_value *v; |
362 | |
363 | if (disposition & INPUT_SLOT) { |
364 | v = &dev->vals[dev->num_vals++]; |
365 | v->type = EV_ABS; |
366 | v->code = ABS_MT_SLOT; |
367 | v->value = dev->mt->slot; |
368 | } |
369 | |
370 | v = &dev->vals[dev->num_vals++]; |
371 | v->type = type; |
372 | v->code = code; |
373 | v->value = value; |
374 | } |
375 | |
376 | if (disposition & INPUT_FLUSH) { |
377 | if (dev->num_vals >= 2) |
378 | input_pass_values(dev, vals: dev->vals, count: dev->num_vals); |
379 | dev->num_vals = 0; |
380 | /* |
381 | * Reset the timestamp on flush so we won't end up |
382 | * with a stale one. Note we only need to reset the |
383 | * monolithic one as we use its presence when deciding |
384 | * whether to generate a synthetic timestamp. |
385 | */ |
386 | dev->timestamp[INPUT_CLK_MONO] = ktime_set(secs: 0, nsecs: 0); |
387 | } else if (dev->num_vals >= dev->max_vals - 2) { |
388 | dev->vals[dev->num_vals++] = input_value_sync; |
389 | input_pass_values(dev, vals: dev->vals, count: dev->num_vals); |
390 | dev->num_vals = 0; |
391 | } |
392 | } |
393 | |
394 | void input_handle_event(struct input_dev *dev, |
395 | unsigned int type, unsigned int code, int value) |
396 | { |
397 | int disposition; |
398 | |
399 | lockdep_assert_held(&dev->event_lock); |
400 | |
401 | disposition = input_get_disposition(dev, type, code, pval: &value); |
402 | if (disposition != INPUT_IGNORE_EVENT) { |
403 | if (type != EV_SYN) |
404 | add_input_randomness(type, code, value); |
405 | |
406 | input_event_dispose(dev, disposition, type, code, value); |
407 | } |
408 | } |
409 | |
410 | /** |
411 | * input_event() - report new input event |
412 | * @dev: device that generated the event |
413 | * @type: type of the event |
414 | * @code: event code |
415 | * @value: value of the event |
416 | * |
417 | * This function should be used by drivers implementing various input |
418 | * devices to report input events. See also input_inject_event(). |
419 | * |
420 | * NOTE: input_event() may be safely used right after input device was |
421 | * allocated with input_allocate_device(), even before it is registered |
422 | * with input_register_device(), but the event will not reach any of the |
423 | * input handlers. Such early invocation of input_event() may be used |
424 | * to 'seed' initial state of a switch or initial position of absolute |
425 | * axis, etc. |
426 | */ |
427 | void input_event(struct input_dev *dev, |
428 | unsigned int type, unsigned int code, int value) |
429 | { |
430 | unsigned long flags; |
431 | |
432 | if (is_event_supported(code: type, bm: dev->evbit, EV_MAX)) { |
433 | |
434 | spin_lock_irqsave(&dev->event_lock, flags); |
435 | input_handle_event(dev, type, code, value); |
436 | spin_unlock_irqrestore(lock: &dev->event_lock, flags); |
437 | } |
438 | } |
439 | EXPORT_SYMBOL(input_event); |
440 | |
441 | /** |
442 | * input_inject_event() - send input event from input handler |
443 | * @handle: input handle to send event through |
444 | * @type: type of the event |
445 | * @code: event code |
446 | * @value: value of the event |
447 | * |
448 | * Similar to input_event() but will ignore event if device is |
449 | * "grabbed" and handle injecting event is not the one that owns |
450 | * the device. |
451 | */ |
452 | void input_inject_event(struct input_handle *handle, |
453 | unsigned int type, unsigned int code, int value) |
454 | { |
455 | struct input_dev *dev = handle->dev; |
456 | struct input_handle *grab; |
457 | unsigned long flags; |
458 | |
459 | if (is_event_supported(code: type, bm: dev->evbit, EV_MAX)) { |
460 | spin_lock_irqsave(&dev->event_lock, flags); |
461 | |
462 | rcu_read_lock(); |
463 | grab = rcu_dereference(dev->grab); |
464 | if (!grab || grab == handle) |
465 | input_handle_event(dev, type, code, value); |
466 | rcu_read_unlock(); |
467 | |
468 | spin_unlock_irqrestore(lock: &dev->event_lock, flags); |
469 | } |
470 | } |
471 | EXPORT_SYMBOL(input_inject_event); |
472 | |
473 | /** |
474 | * input_alloc_absinfo - allocates array of input_absinfo structs |
475 | * @dev: the input device emitting absolute events |
476 | * |
477 | * If the absinfo struct the caller asked for is already allocated, this |
478 | * functions will not do anything. |
479 | */ |
480 | void input_alloc_absinfo(struct input_dev *dev) |
481 | { |
482 | if (dev->absinfo) |
483 | return; |
484 | |
485 | dev->absinfo = kcalloc(ABS_CNT, size: sizeof(*dev->absinfo), GFP_KERNEL); |
486 | if (!dev->absinfo) { |
487 | dev_err(dev->dev.parent ?: &dev->dev, |
488 | "%s: unable to allocate memory\n", __func__); |
489 | /* |
490 | * We will handle this allocation failure in |
491 | * input_register_device() when we refuse to register input |
492 | * device with ABS bits but without absinfo. |
493 | */ |
494 | } |
495 | } |
496 | EXPORT_SYMBOL(input_alloc_absinfo); |
497 | |
498 | void input_set_abs_params(struct input_dev *dev, unsigned int axis, |
499 | int min, int max, int fuzz, int flat) |
500 | { |
501 | struct input_absinfo *absinfo; |
502 | |
503 | __set_bit(EV_ABS, dev->evbit); |
504 | __set_bit(axis, dev->absbit); |
505 | |
506 | input_alloc_absinfo(dev); |
507 | if (!dev->absinfo) |
508 | return; |
509 | |
510 | absinfo = &dev->absinfo[axis]; |
511 | absinfo->minimum = min; |
512 | absinfo->maximum = max; |
513 | absinfo->fuzz = fuzz; |
514 | absinfo->flat = flat; |
515 | } |
516 | EXPORT_SYMBOL(input_set_abs_params); |
517 | |
518 | /** |
519 | * input_copy_abs - Copy absinfo from one input_dev to another |
520 | * @dst: Destination input device to copy the abs settings to |
521 | * @dst_axis: ABS_* value selecting the destination axis |
522 | * @src: Source input device to copy the abs settings from |
523 | * @src_axis: ABS_* value selecting the source axis |
524 | * |
525 | * Set absinfo for the selected destination axis by copying it from |
526 | * the specified source input device's source axis. |
527 | * This is useful to e.g. setup a pen/stylus input-device for combined |
528 | * touchscreen/pen hardware where the pen uses the same coordinates as |
529 | * the touchscreen. |
530 | */ |
531 | void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, |
532 | const struct input_dev *src, unsigned int src_axis) |
533 | { |
534 | /* src must have EV_ABS and src_axis set */ |
535 | if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && |
536 | test_bit(src_axis, src->absbit)))) |
537 | return; |
538 | |
539 | /* |
540 | * input_alloc_absinfo() may have failed for the source. Our caller is |
541 | * expected to catch this when registering the input devices, which may |
542 | * happen after the input_copy_abs() call. |
543 | */ |
544 | if (!src->absinfo) |
545 | return; |
546 | |
547 | input_set_capability(dev: dst, EV_ABS, code: dst_axis); |
548 | if (!dst->absinfo) |
549 | return; |
550 | |
551 | dst->absinfo[dst_axis] = src->absinfo[src_axis]; |
552 | } |
553 | EXPORT_SYMBOL(input_copy_abs); |
554 | |
555 | /** |
556 | * input_grab_device - grabs device for exclusive use |
557 | * @handle: input handle that wants to own the device |
558 | * |
559 | * When a device is grabbed by an input handle all events generated by |
560 | * the device are delivered only to this handle. Also events injected |
561 | * by other input handles are ignored while device is grabbed. |
562 | */ |
563 | int input_grab_device(struct input_handle *handle) |
564 | { |
565 | struct input_dev *dev = handle->dev; |
566 | int retval; |
567 | |
568 | retval = mutex_lock_interruptible(&dev->mutex); |
569 | if (retval) |
570 | return retval; |
571 | |
572 | if (dev->grab) { |
573 | retval = -EBUSY; |
574 | goto out; |
575 | } |
576 | |
577 | rcu_assign_pointer(dev->grab, handle); |
578 | |
579 | out: |
580 | mutex_unlock(lock: &dev->mutex); |
581 | return retval; |
582 | } |
583 | EXPORT_SYMBOL(input_grab_device); |
584 | |
585 | static void __input_release_device(struct input_handle *handle) |
586 | { |
587 | struct input_dev *dev = handle->dev; |
588 | struct input_handle *grabber; |
589 | |
590 | grabber = rcu_dereference_protected(dev->grab, |
591 | lockdep_is_held(&dev->mutex)); |
592 | if (grabber == handle) { |
593 | rcu_assign_pointer(dev->grab, NULL); |
594 | /* Make sure input_pass_values() notices that grab is gone */ |
595 | synchronize_rcu(); |
596 | |
597 | list_for_each_entry(handle, &dev->h_list, d_node) |
598 | if (handle->open && handle->handler->start) |
599 | handle->handler->start(handle); |
600 | } |
601 | } |
602 | |
603 | /** |
604 | * input_release_device - release previously grabbed device |
605 | * @handle: input handle that owns the device |
606 | * |
607 | * Releases previously grabbed device so that other input handles can |
608 | * start receiving input events. Upon release all handlers attached |
609 | * to the device have their start() method called so they have a change |
610 | * to synchronize device state with the rest of the system. |
611 | */ |
612 | void input_release_device(struct input_handle *handle) |
613 | { |
614 | struct input_dev *dev = handle->dev; |
615 | |
616 | mutex_lock(&dev->mutex); |
617 | __input_release_device(handle); |
618 | mutex_unlock(lock: &dev->mutex); |
619 | } |
620 | EXPORT_SYMBOL(input_release_device); |
621 | |
622 | /** |
623 | * input_open_device - open input device |
624 | * @handle: handle through which device is being accessed |
625 | * |
626 | * This function should be called by input handlers when they |
627 | * want to start receive events from given input device. |
628 | */ |
629 | int input_open_device(struct input_handle *handle) |
630 | { |
631 | struct input_dev *dev = handle->dev; |
632 | int retval; |
633 | |
634 | retval = mutex_lock_interruptible(&dev->mutex); |
635 | if (retval) |
636 | return retval; |
637 | |
638 | if (dev->going_away) { |
639 | retval = -ENODEV; |
640 | goto out; |
641 | } |
642 | |
643 | handle->open++; |
644 | |
645 | if (dev->users++ || dev->inhibited) { |
646 | /* |
647 | * Device is already opened and/or inhibited, |
648 | * so we can exit immediately and report success. |
649 | */ |
650 | goto out; |
651 | } |
652 | |
653 | if (dev->open) { |
654 | retval = dev->open(dev); |
655 | if (retval) { |
656 | dev->users--; |
657 | handle->open--; |
658 | /* |
659 | * Make sure we are not delivering any more events |
660 | * through this handle |
661 | */ |
662 | synchronize_rcu(); |
663 | goto out; |
664 | } |
665 | } |
666 | |
667 | if (dev->poller) |
668 | input_dev_poller_start(poller: dev->poller); |
669 | |
670 | out: |
671 | mutex_unlock(lock: &dev->mutex); |
672 | return retval; |
673 | } |
674 | EXPORT_SYMBOL(input_open_device); |
675 | |
676 | int input_flush_device(struct input_handle *handle, struct file *file) |
677 | { |
678 | struct input_dev *dev = handle->dev; |
679 | int retval; |
680 | |
681 | retval = mutex_lock_interruptible(&dev->mutex); |
682 | if (retval) |
683 | return retval; |
684 | |
685 | if (dev->flush) |
686 | retval = dev->flush(dev, file); |
687 | |
688 | mutex_unlock(lock: &dev->mutex); |
689 | return retval; |
690 | } |
691 | EXPORT_SYMBOL(input_flush_device); |
692 | |
693 | /** |
694 | * input_close_device - close input device |
695 | * @handle: handle through which device is being accessed |
696 | * |
697 | * This function should be called by input handlers when they |
698 | * want to stop receive events from given input device. |
699 | */ |
700 | void input_close_device(struct input_handle *handle) |
701 | { |
702 | struct input_dev *dev = handle->dev; |
703 | |
704 | mutex_lock(&dev->mutex); |
705 | |
706 | __input_release_device(handle); |
707 | |
708 | if (!--dev->users && !dev->inhibited) { |
709 | if (dev->poller) |
710 | input_dev_poller_stop(poller: dev->poller); |
711 | if (dev->close) |
712 | dev->close(dev); |
713 | } |
714 | |
715 | if (!--handle->open) { |
716 | /* |
717 | * synchronize_rcu() makes sure that input_pass_values() |
718 | * completed and that no more input events are delivered |
719 | * through this handle |
720 | */ |
721 | synchronize_rcu(); |
722 | } |
723 | |
724 | mutex_unlock(lock: &dev->mutex); |
725 | } |
726 | EXPORT_SYMBOL(input_close_device); |
727 | |
728 | /* |
729 | * Simulate keyup events for all keys that are marked as pressed. |
730 | * The function must be called with dev->event_lock held. |
731 | */ |
732 | static bool input_dev_release_keys(struct input_dev *dev) |
733 | { |
734 | bool need_sync = false; |
735 | int code; |
736 | |
737 | lockdep_assert_held(&dev->event_lock); |
738 | |
739 | if (is_event_supported(EV_KEY, bm: dev->evbit, EV_MAX)) { |
740 | for_each_set_bit(code, dev->key, KEY_CNT) { |
741 | input_handle_event(dev, EV_KEY, code, value: 0); |
742 | need_sync = true; |
743 | } |
744 | } |
745 | |
746 | return need_sync; |
747 | } |
748 | |
749 | /* |
750 | * Prepare device for unregistering |
751 | */ |
752 | static void input_disconnect_device(struct input_dev *dev) |
753 | { |
754 | struct input_handle *handle; |
755 | |
756 | /* |
757 | * Mark device as going away. Note that we take dev->mutex here |
758 | * not to protect access to dev->going_away but rather to ensure |
759 | * that there are no threads in the middle of input_open_device() |
760 | */ |
761 | mutex_lock(&dev->mutex); |
762 | dev->going_away = true; |
763 | mutex_unlock(lock: &dev->mutex); |
764 | |
765 | spin_lock_irq(lock: &dev->event_lock); |
766 | |
767 | /* |
768 | * Simulate keyup events for all pressed keys so that handlers |
769 | * are not left with "stuck" keys. The driver may continue |
770 | * generate events even after we done here but they will not |
771 | * reach any handlers. |
772 | */ |
773 | if (input_dev_release_keys(dev)) |
774 | input_handle_event(dev, EV_SYN, SYN_REPORT, value: 1); |
775 | |
776 | list_for_each_entry(handle, &dev->h_list, d_node) |
777 | handle->open = 0; |
778 | |
779 | spin_unlock_irq(lock: &dev->event_lock); |
780 | } |
781 | |
782 | /** |
783 | * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry |
784 | * @ke: keymap entry containing scancode to be converted. |
785 | * @scancode: pointer to the location where converted scancode should |
786 | * be stored. |
787 | * |
788 | * This function is used to convert scancode stored in &struct keymap_entry |
789 | * into scalar form understood by legacy keymap handling methods. These |
790 | * methods expect scancodes to be represented as 'unsigned int'. |
791 | */ |
792 | int input_scancode_to_scalar(const struct input_keymap_entry *ke, |
793 | unsigned int *scancode) |
794 | { |
795 | switch (ke->len) { |
796 | case 1: |
797 | *scancode = *((u8 *)ke->scancode); |
798 | break; |
799 | |
800 | case 2: |
801 | *scancode = *((u16 *)ke->scancode); |
802 | break; |
803 | |
804 | case 4: |
805 | *scancode = *((u32 *)ke->scancode); |
806 | break; |
807 | |
808 | default: |
809 | return -EINVAL; |
810 | } |
811 | |
812 | return 0; |
813 | } |
814 | EXPORT_SYMBOL(input_scancode_to_scalar); |
815 | |
816 | /* |
817 | * Those routines handle the default case where no [gs]etkeycode() is |
818 | * defined. In this case, an array indexed by the scancode is used. |
819 | */ |
820 | |
821 | static unsigned int input_fetch_keycode(struct input_dev *dev, |
822 | unsigned int index) |
823 | { |
824 | switch (dev->keycodesize) { |
825 | case 1: |
826 | return ((u8 *)dev->keycode)[index]; |
827 | |
828 | case 2: |
829 | return ((u16 *)dev->keycode)[index]; |
830 | |
831 | default: |
832 | return ((u32 *)dev->keycode)[index]; |
833 | } |
834 | } |
835 | |
836 | static int input_default_getkeycode(struct input_dev *dev, |
837 | struct input_keymap_entry *ke) |
838 | { |
839 | unsigned int index; |
840 | int error; |
841 | |
842 | if (!dev->keycodesize) |
843 | return -EINVAL; |
844 | |
845 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) |
846 | index = ke->index; |
847 | else { |
848 | error = input_scancode_to_scalar(ke, &index); |
849 | if (error) |
850 | return error; |
851 | } |
852 | |
853 | if (index >= dev->keycodemax) |
854 | return -EINVAL; |
855 | |
856 | ke->keycode = input_fetch_keycode(dev, index); |
857 | ke->index = index; |
858 | ke->len = sizeof(index); |
859 | memcpy(ke->scancode, &index, sizeof(index)); |
860 | |
861 | return 0; |
862 | } |
863 | |
864 | static int input_default_setkeycode(struct input_dev *dev, |
865 | const struct input_keymap_entry *ke, |
866 | unsigned int *old_keycode) |
867 | { |
868 | unsigned int index; |
869 | int error; |
870 | int i; |
871 | |
872 | if (!dev->keycodesize) |
873 | return -EINVAL; |
874 | |
875 | if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
876 | index = ke->index; |
877 | } else { |
878 | error = input_scancode_to_scalar(ke, &index); |
879 | if (error) |
880 | return error; |
881 | } |
882 | |
883 | if (index >= dev->keycodemax) |
884 | return -EINVAL; |
885 | |
886 | if (dev->keycodesize < sizeof(ke->keycode) && |
887 | (ke->keycode >> (dev->keycodesize * 8))) |
888 | return -EINVAL; |
889 | |
890 | switch (dev->keycodesize) { |
891 | case 1: { |
892 | u8 *k = (u8 *)dev->keycode; |
893 | *old_keycode = k[index]; |
894 | k[index] = ke->keycode; |
895 | break; |
896 | } |
897 | case 2: { |
898 | u16 *k = (u16 *)dev->keycode; |
899 | *old_keycode = k[index]; |
900 | k[index] = ke->keycode; |
901 | break; |
902 | } |
903 | default: { |
904 | u32 *k = (u32 *)dev->keycode; |
905 | *old_keycode = k[index]; |
906 | k[index] = ke->keycode; |
907 | break; |
908 | } |
909 | } |
910 | |
911 | if (*old_keycode <= KEY_MAX) { |
912 | __clear_bit(*old_keycode, dev->keybit); |
913 | for (i = 0; i < dev->keycodemax; i++) { |
914 | if (input_fetch_keycode(dev, index: i) == *old_keycode) { |
915 | __set_bit(*old_keycode, dev->keybit); |
916 | /* Setting the bit twice is useless, so break */ |
917 | break; |
918 | } |
919 | } |
920 | } |
921 | |
922 | __set_bit(ke->keycode, dev->keybit); |
923 | return 0; |
924 | } |
925 | |
926 | /** |
927 | * input_get_keycode - retrieve keycode currently mapped to a given scancode |
928 | * @dev: input device which keymap is being queried |
929 | * @ke: keymap entry |
930 | * |
931 | * This function should be called by anyone interested in retrieving current |
932 | * keymap. Presently evdev handlers use it. |
933 | */ |
934 | int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) |
935 | { |
936 | unsigned long flags; |
937 | int retval; |
938 | |
939 | spin_lock_irqsave(&dev->event_lock, flags); |
940 | retval = dev->getkeycode(dev, ke); |
941 | spin_unlock_irqrestore(lock: &dev->event_lock, flags); |
942 | |
943 | return retval; |
944 | } |
945 | EXPORT_SYMBOL(input_get_keycode); |
946 | |
947 | /** |
948 | * input_set_keycode - attribute a keycode to a given scancode |
949 | * @dev: input device which keymap is being updated |
950 | * @ke: new keymap entry |
951 | * |
952 | * This function should be called by anyone needing to update current |
953 | * keymap. Presently keyboard and evdev handlers use it. |
954 | */ |
955 | int input_set_keycode(struct input_dev *dev, |
956 | const struct input_keymap_entry *ke) |
957 | { |
958 | unsigned long flags; |
959 | unsigned int old_keycode; |
960 | int retval; |
961 | |
962 | if (ke->keycode > KEY_MAX) |
963 | return -EINVAL; |
964 | |
965 | spin_lock_irqsave(&dev->event_lock, flags); |
966 | |
967 | retval = dev->setkeycode(dev, ke, &old_keycode); |
968 | if (retval) |
969 | goto out; |
970 | |
971 | /* Make sure KEY_RESERVED did not get enabled. */ |
972 | __clear_bit(KEY_RESERVED, dev->keybit); |
973 | |
974 | /* |
975 | * Simulate keyup event if keycode is not present |
976 | * in the keymap anymore |
977 | */ |
978 | if (old_keycode > KEY_MAX) { |
979 | dev_warn(dev->dev.parent ?: &dev->dev, |
980 | "%s: got too big old keycode %#x\n", |
981 | __func__, old_keycode); |
982 | } else if (test_bit(EV_KEY, dev->evbit) && |
983 | !is_event_supported(code: old_keycode, bm: dev->keybit, KEY_MAX) && |
984 | __test_and_clear_bit(old_keycode, dev->key)) { |
985 | /* |
986 | * We have to use input_event_dispose() here directly instead |
987 | * of input_handle_event() because the key we want to release |
988 | * here is considered no longer supported by the device and |
989 | * input_handle_event() will ignore it. |
990 | */ |
991 | input_event_dispose(dev, INPUT_PASS_TO_HANDLERS, |
992 | EV_KEY, code: old_keycode, value: 0); |
993 | input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH, |
994 | EV_SYN, SYN_REPORT, value: 1); |
995 | } |
996 | |
997 | out: |
998 | spin_unlock_irqrestore(lock: &dev->event_lock, flags); |
999 | |
1000 | return retval; |
1001 | } |
1002 | EXPORT_SYMBOL(input_set_keycode); |
1003 | |
1004 | bool input_match_device_id(const struct input_dev *dev, |
1005 | const struct input_device_id *id) |
1006 | { |
1007 | if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) |
1008 | if (id->bustype != dev->id.bustype) |
1009 | return false; |
1010 | |
1011 | if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) |
1012 | if (id->vendor != dev->id.vendor) |
1013 | return false; |
1014 | |
1015 | if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) |
1016 | if (id->product != dev->id.product) |
1017 | return false; |
1018 | |
1019 | if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) |
1020 | if (id->version != dev->id.version) |
1021 | return false; |
1022 | |
1023 | if (!bitmap_subset(src1: id->evbit, src2: dev->evbit, EV_MAX) || |
1024 | !bitmap_subset(src1: id->keybit, src2: dev->keybit, KEY_MAX) || |
1025 | !bitmap_subset(src1: id->relbit, src2: dev->relbit, REL_MAX) || |
1026 | !bitmap_subset(src1: id->absbit, src2: dev->absbit, ABS_MAX) || |
1027 | !bitmap_subset(src1: id->mscbit, src2: dev->mscbit, MSC_MAX) || |
1028 | !bitmap_subset(src1: id->ledbit, src2: dev->ledbit, LED_MAX) || |
1029 | !bitmap_subset(src1: id->sndbit, src2: dev->sndbit, SND_MAX) || |
1030 | !bitmap_subset(src1: id->ffbit, src2: dev->ffbit, FF_MAX) || |
1031 | !bitmap_subset(src1: id->swbit, src2: dev->swbit, SW_MAX) || |
1032 | !bitmap_subset(src1: id->propbit, src2: dev->propbit, INPUT_PROP_MAX)) { |
1033 | return false; |
1034 | } |
1035 | |
1036 | return true; |
1037 | } |
1038 | EXPORT_SYMBOL(input_match_device_id); |
1039 | |
1040 | static const struct input_device_id *input_match_device(struct input_handler *handler, |
1041 | struct input_dev *dev) |
1042 | { |
1043 | const struct input_device_id *id; |
1044 | |
1045 | for (id = handler->id_table; id->flags || id->driver_info; id++) { |
1046 | if (input_match_device_id(dev, id) && |
1047 | (!handler->match || handler->match(handler, dev))) { |
1048 | return id; |
1049 | } |
1050 | } |
1051 | |
1052 | return NULL; |
1053 | } |
1054 | |
1055 | static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) |
1056 | { |
1057 | const struct input_device_id *id; |
1058 | int error; |
1059 | |
1060 | id = input_match_device(handler, dev); |
1061 | if (!id) |
1062 | return -ENODEV; |
1063 | |
1064 | error = handler->connect(handler, dev, id); |
1065 | if (error && error != -ENODEV) |
1066 | pr_err("failed to attach handler %s to device %s, error: %d\n", |
1067 | handler->name, kobject_name(&dev->dev.kobj), error); |
1068 | |
1069 | return error; |
1070 | } |
1071 | |
1072 | #ifdef CONFIG_COMPAT |
1073 | |
1074 | static int input_bits_to_string(char *buf, int buf_size, |
1075 | unsigned long bits, bool skip_empty) |
1076 | { |
1077 | int len = 0; |
1078 | |
1079 | if (in_compat_syscall()) { |
1080 | u32 dword = bits >> 32; |
1081 | if (dword || !skip_empty) |
1082 | len += snprintf(buf, size: buf_size, fmt: "%x ", dword); |
1083 | |
1084 | dword = bits & 0xffffffffUL; |
1085 | if (dword || !skip_empty || len) |
1086 | len += snprintf(buf: buf + len, max(buf_size - len, 0), |
1087 | fmt: "%x", dword); |
1088 | } else { |
1089 | if (bits || !skip_empty) |
1090 | len += snprintf(buf, size: buf_size, fmt: "%lx", bits); |
1091 | } |
1092 | |
1093 | return len; |
1094 | } |
1095 | |
1096 | #else /* !CONFIG_COMPAT */ |
1097 | |
1098 | static int input_bits_to_string(char *buf, int buf_size, |
1099 | unsigned long bits, bool skip_empty) |
1100 | { |
1101 | return bits || !skip_empty ? |
1102 | snprintf(buf, buf_size, "%lx", bits) : 0; |
1103 | } |
1104 | |
1105 | #endif |
1106 | |
1107 | #ifdef CONFIG_PROC_FS |
1108 | |
1109 | static struct proc_dir_entry *proc_bus_input_dir; |
1110 | static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); |
1111 | static int input_devices_state; |
1112 | |
1113 | static inline void input_wakeup_procfs_readers(void) |
1114 | { |
1115 | input_devices_state++; |
1116 | wake_up(&input_devices_poll_wait); |
1117 | } |
1118 | |
1119 | static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) |
1120 | { |
1121 | poll_wait(filp: file, wait_address: &input_devices_poll_wait, p: wait); |
1122 | if (file->f_version != input_devices_state) { |
1123 | file->f_version = input_devices_state; |
1124 | return EPOLLIN | EPOLLRDNORM; |
1125 | } |
1126 | |
1127 | return 0; |
1128 | } |
1129 | |
1130 | union input_seq_state { |
1131 | struct { |
1132 | unsigned short pos; |
1133 | bool mutex_acquired; |
1134 | }; |
1135 | void *p; |
1136 | }; |
1137 | |
1138 | static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) |
1139 | { |
1140 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1141 | int error; |
1142 | |
1143 | /* We need to fit into seq->private pointer */ |
1144 | BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); |
1145 | |
1146 | error = mutex_lock_interruptible(&input_mutex); |
1147 | if (error) { |
1148 | state->mutex_acquired = false; |
1149 | return ERR_PTR(error); |
1150 | } |
1151 | |
1152 | state->mutex_acquired = true; |
1153 | |
1154 | return seq_list_start(head: &input_dev_list, pos: *pos); |
1155 | } |
1156 | |
1157 | static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
1158 | { |
1159 | return seq_list_next(v, head: &input_dev_list, ppos: pos); |
1160 | } |
1161 | |
1162 | static void input_seq_stop(struct seq_file *seq, void *v) |
1163 | { |
1164 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1165 | |
1166 | if (state->mutex_acquired) |
1167 | mutex_unlock(lock: &input_mutex); |
1168 | } |
1169 | |
1170 | static void input_seq_print_bitmap(struct seq_file *seq, const char *name, |
1171 | unsigned long *bitmap, int max) |
1172 | { |
1173 | int i; |
1174 | bool skip_empty = true; |
1175 | char buf[18]; |
1176 | |
1177 | seq_printf(m: seq, fmt: "B: %s=", name); |
1178 | |
1179 | for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
1180 | if (input_bits_to_string(buf, buf_size: sizeof(buf), |
1181 | bits: bitmap[i], skip_empty)) { |
1182 | skip_empty = false; |
1183 | seq_printf(m: seq, fmt: "%s%s", buf, i > 0 ? " ": ""); |
1184 | } |
1185 | } |
1186 | |
1187 | /* |
1188 | * If no output was produced print a single 0. |
1189 | */ |
1190 | if (skip_empty) |
1191 | seq_putc(m: seq, c: '0'); |
1192 | |
1193 | seq_putc(m: seq, c: '\n'); |
1194 | } |
1195 | |
1196 | static int input_devices_seq_show(struct seq_file *seq, void *v) |
1197 | { |
1198 | struct input_dev *dev = container_of(v, struct input_dev, node); |
1199 | const char *path = kobject_get_path(kobj: &dev->dev.kobj, GFP_KERNEL); |
1200 | struct input_handle *handle; |
1201 | |
1202 | seq_printf(m: seq, fmt: "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", |
1203 | dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); |
1204 | |
1205 | seq_printf(m: seq, fmt: "N: Name=\"%s\"\n", dev->name ? dev->name : ""); |
1206 | seq_printf(m: seq, fmt: "P: Phys=%s\n", dev->phys ? dev->phys : ""); |
1207 | seq_printf(m: seq, fmt: "S: Sysfs=%s\n", path ? path : ""); |
1208 | seq_printf(m: seq, fmt: "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); |
1209 | seq_puts(m: seq, s: "H: Handlers="); |
1210 | |
1211 | list_for_each_entry(handle, &dev->h_list, d_node) |
1212 | seq_printf(m: seq, fmt: "%s ", handle->name); |
1213 | seq_putc(m: seq, c: '\n'); |
1214 | |
1215 | input_seq_print_bitmap(seq, name: "PROP", bitmap: dev->propbit, INPUT_PROP_MAX); |
1216 | |
1217 | input_seq_print_bitmap(seq, name: "EV", bitmap: dev->evbit, EV_MAX); |
1218 | if (test_bit(EV_KEY, dev->evbit)) |
1219 | input_seq_print_bitmap(seq, name: "KEY", bitmap: dev->keybit, KEY_MAX); |
1220 | if (test_bit(EV_REL, dev->evbit)) |
1221 | input_seq_print_bitmap(seq, name: "REL", bitmap: dev->relbit, REL_MAX); |
1222 | if (test_bit(EV_ABS, dev->evbit)) |
1223 | input_seq_print_bitmap(seq, name: "ABS", bitmap: dev->absbit, ABS_MAX); |
1224 | if (test_bit(EV_MSC, dev->evbit)) |
1225 | input_seq_print_bitmap(seq, name: "MSC", bitmap: dev->mscbit, MSC_MAX); |
1226 | if (test_bit(EV_LED, dev->evbit)) |
1227 | input_seq_print_bitmap(seq, name: "LED", bitmap: dev->ledbit, LED_MAX); |
1228 | if (test_bit(EV_SND, dev->evbit)) |
1229 | input_seq_print_bitmap(seq, name: "SND", bitmap: dev->sndbit, SND_MAX); |
1230 | if (test_bit(EV_FF, dev->evbit)) |
1231 | input_seq_print_bitmap(seq, name: "FF", bitmap: dev->ffbit, FF_MAX); |
1232 | if (test_bit(EV_SW, dev->evbit)) |
1233 | input_seq_print_bitmap(seq, name: "SW", bitmap: dev->swbit, SW_MAX); |
1234 | |
1235 | seq_putc(m: seq, c: '\n'); |
1236 | |
1237 | kfree(objp: path); |
1238 | return 0; |
1239 | } |
1240 | |
1241 | static const struct seq_operations input_devices_seq_ops = { |
1242 | .start = input_devices_seq_start, |
1243 | .next = input_devices_seq_next, |
1244 | .stop = input_seq_stop, |
1245 | .show = input_devices_seq_show, |
1246 | }; |
1247 | |
1248 | static int input_proc_devices_open(struct inode *inode, struct file *file) |
1249 | { |
1250 | return seq_open(file, &input_devices_seq_ops); |
1251 | } |
1252 | |
1253 | static const struct proc_ops input_devices_proc_ops = { |
1254 | .proc_open = input_proc_devices_open, |
1255 | .proc_poll = input_proc_devices_poll, |
1256 | .proc_read = seq_read, |
1257 | .proc_lseek = seq_lseek, |
1258 | .proc_release = seq_release, |
1259 | }; |
1260 | |
1261 | static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) |
1262 | { |
1263 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1264 | int error; |
1265 | |
1266 | /* We need to fit into seq->private pointer */ |
1267 | BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); |
1268 | |
1269 | error = mutex_lock_interruptible(&input_mutex); |
1270 | if (error) { |
1271 | state->mutex_acquired = false; |
1272 | return ERR_PTR(error); |
1273 | } |
1274 | |
1275 | state->mutex_acquired = true; |
1276 | state->pos = *pos; |
1277 | |
1278 | return seq_list_start(head: &input_handler_list, pos: *pos); |
1279 | } |
1280 | |
1281 | static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
1282 | { |
1283 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1284 | |
1285 | state->pos = *pos + 1; |
1286 | return seq_list_next(v, head: &input_handler_list, ppos: pos); |
1287 | } |
1288 | |
1289 | static int input_handlers_seq_show(struct seq_file *seq, void *v) |
1290 | { |
1291 | struct input_handler *handler = container_of(v, struct input_handler, node); |
1292 | union input_seq_state *state = (union input_seq_state *)&seq->private; |
1293 | |
1294 | seq_printf(m: seq, fmt: "N: Number=%u Name=%s", state->pos, handler->name); |
1295 | if (handler->filter) |
1296 | seq_puts(m: seq, s: " (filter)"); |
1297 | if (handler->legacy_minors) |
1298 | seq_printf(m: seq, fmt: " Minor=%d", handler->minor); |
1299 | seq_putc(m: seq, c: '\n'); |
1300 | |
1301 | return 0; |
1302 | } |
1303 | |
1304 | static const struct seq_operations input_handlers_seq_ops = { |
1305 | .start = input_handlers_seq_start, |
1306 | .next = input_handlers_seq_next, |
1307 | .stop = input_seq_stop, |
1308 | .show = input_handlers_seq_show, |
1309 | }; |
1310 | |
1311 | static int input_proc_handlers_open(struct inode *inode, struct file *file) |
1312 | { |
1313 | return seq_open(file, &input_handlers_seq_ops); |
1314 | } |
1315 | |
1316 | static const struct proc_ops input_handlers_proc_ops = { |
1317 | .proc_open = input_proc_handlers_open, |
1318 | .proc_read = seq_read, |
1319 | .proc_lseek = seq_lseek, |
1320 | .proc_release = seq_release, |
1321 | }; |
1322 | |
1323 | static int __init input_proc_init(void) |
1324 | { |
1325 | struct proc_dir_entry *entry; |
1326 | |
1327 | proc_bus_input_dir = proc_mkdir("bus/input", NULL); |
1328 | if (!proc_bus_input_dir) |
1329 | return -ENOMEM; |
1330 | |
1331 | entry = proc_create(name: "devices", mode: 0, parent: proc_bus_input_dir, |
1332 | proc_ops: &input_devices_proc_ops); |
1333 | if (!entry) |
1334 | goto fail1; |
1335 | |
1336 | entry = proc_create(name: "handlers", mode: 0, parent: proc_bus_input_dir, |
1337 | proc_ops: &input_handlers_proc_ops); |
1338 | if (!entry) |
1339 | goto fail2; |
1340 | |
1341 | return 0; |
1342 | |
1343 | fail2: remove_proc_entry("devices", proc_bus_input_dir); |
1344 | fail1: remove_proc_entry("bus/input", NULL); |
1345 | return -ENOMEM; |
1346 | } |
1347 | |
1348 | static void input_proc_exit(void) |
1349 | { |
1350 | remove_proc_entry("devices", proc_bus_input_dir); |
1351 | remove_proc_entry("handlers", proc_bus_input_dir); |
1352 | remove_proc_entry("bus/input", NULL); |
1353 | } |
1354 | |
1355 | #else /* !CONFIG_PROC_FS */ |
1356 | static inline void input_wakeup_procfs_readers(void) { } |
1357 | static inline int input_proc_init(void) { return 0; } |
1358 | static inline void input_proc_exit(void) { } |
1359 | #endif |
1360 | |
1361 | #define INPUT_DEV_STRING_ATTR_SHOW(name) \ |
1362 | static ssize_t input_dev_show_##name(struct device *dev, \ |
1363 | struct device_attribute *attr, \ |
1364 | char *buf) \ |
1365 | { \ |
1366 | struct input_dev *input_dev = to_input_dev(dev); \ |
1367 | \ |
1368 | return sysfs_emit(buf, "%s\n", \ |
1369 | input_dev->name ? input_dev->name : ""); \ |
1370 | } \ |
1371 | static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) |
1372 | |
1373 | INPUT_DEV_STRING_ATTR_SHOW(name); |
1374 | INPUT_DEV_STRING_ATTR_SHOW(phys); |
1375 | INPUT_DEV_STRING_ATTR_SHOW(uniq); |
1376 | |
1377 | static int input_print_modalias_bits(char *buf, int size, |
1378 | char name, const unsigned long *bm, |
1379 | unsigned int min_bit, unsigned int max_bit) |
1380 | { |
1381 | int len = 0, i; |
1382 | |
1383 | len += snprintf(buf, max(size, 0), fmt: "%c", name); |
1384 | for (i = min_bit; i < max_bit; i++) |
1385 | if (bm[BIT_WORD(i)] & BIT_MASK(i)) |
1386 | len += snprintf(buf: buf + len, max(size - len, 0), fmt: "%X,", i); |
1387 | return len; |
1388 | } |
1389 | |
1390 | static int input_print_modalias(char *buf, int size, const struct input_dev *id, |
1391 | int add_cr) |
1392 | { |
1393 | int len; |
1394 | |
1395 | len = snprintf(buf, max(size, 0), |
1396 | fmt: "input:b%04Xv%04Xp%04Xe%04X-", |
1397 | id->id.bustype, id->id.vendor, |
1398 | id->id.product, id->id.version); |
1399 | |
1400 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1401 | name: 'e', bm: id->evbit, min_bit: 0, EV_MAX); |
1402 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1403 | name: 'k', bm: id->keybit, KEY_MIN_INTERESTING, KEY_MAX); |
1404 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1405 | name: 'r', bm: id->relbit, min_bit: 0, REL_MAX); |
1406 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1407 | name: 'a', bm: id->absbit, min_bit: 0, ABS_MAX); |
1408 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1409 | name: 'm', bm: id->mscbit, min_bit: 0, MSC_MAX); |
1410 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1411 | name: 'l', bm: id->ledbit, min_bit: 0, LED_MAX); |
1412 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1413 | name: 's', bm: id->sndbit, min_bit: 0, SND_MAX); |
1414 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1415 | name: 'f', bm: id->ffbit, min_bit: 0, FF_MAX); |
1416 | len += input_print_modalias_bits(buf: buf + len, size: size - len, |
1417 | name: 'w', bm: id->swbit, min_bit: 0, SW_MAX); |
1418 | |
1419 | if (add_cr) |
1420 | len += snprintf(buf: buf + len, max(size - len, 0), fmt: "\n"); |
1421 | |
1422 | return len; |
1423 | } |
1424 | |
1425 | static ssize_t input_dev_show_modalias(struct device *dev, |
1426 | struct device_attribute *attr, |
1427 | char *buf) |
1428 | { |
1429 | struct input_dev *id = to_input_dev(dev); |
1430 | ssize_t len; |
1431 | |
1432 | len = input_print_modalias(buf, PAGE_SIZE, id, add_cr: 1); |
1433 | |
1434 | return min_t(int, len, PAGE_SIZE); |
1435 | } |
1436 | static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); |
1437 | |
1438 | static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, |
1439 | int max, int add_cr); |
1440 | |
1441 | static ssize_t input_dev_show_properties(struct device *dev, |
1442 | struct device_attribute *attr, |
1443 | char *buf) |
1444 | { |
1445 | struct input_dev *input_dev = to_input_dev(dev); |
1446 | int len = input_print_bitmap(buf, PAGE_SIZE, bitmap: input_dev->propbit, |
1447 | INPUT_PROP_MAX, add_cr: true); |
1448 | return min_t(int, len, PAGE_SIZE); |
1449 | } |
1450 | static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); |
1451 | |
1452 | static int input_inhibit_device(struct input_dev *dev); |
1453 | static int input_uninhibit_device(struct input_dev *dev); |
1454 | |
1455 | static ssize_t inhibited_show(struct device *dev, |
1456 | struct device_attribute *attr, |
1457 | char *buf) |
1458 | { |
1459 | struct input_dev *input_dev = to_input_dev(dev); |
1460 | |
1461 | return sysfs_emit(buf, fmt: "%d\n", input_dev->inhibited); |
1462 | } |
1463 | |
1464 | static ssize_t inhibited_store(struct device *dev, |
1465 | struct device_attribute *attr, const char *buf, |
1466 | size_t len) |
1467 | { |
1468 | struct input_dev *input_dev = to_input_dev(dev); |
1469 | ssize_t rv; |
1470 | bool inhibited; |
1471 | |
1472 | if (kstrtobool(s: buf, res: &inhibited)) |
1473 | return -EINVAL; |
1474 | |
1475 | if (inhibited) |
1476 | rv = input_inhibit_device(dev: input_dev); |
1477 | else |
1478 | rv = input_uninhibit_device(dev: input_dev); |
1479 | |
1480 | if (rv != 0) |
1481 | return rv; |
1482 | |
1483 | return len; |
1484 | } |
1485 | |
1486 | static DEVICE_ATTR_RW(inhibited); |
1487 | |
1488 | static struct attribute *input_dev_attrs[] = { |
1489 | &dev_attr_name.attr, |
1490 | &dev_attr_phys.attr, |
1491 | &dev_attr_uniq.attr, |
1492 | &dev_attr_modalias.attr, |
1493 | &dev_attr_properties.attr, |
1494 | &dev_attr_inhibited.attr, |
1495 | NULL |
1496 | }; |
1497 | |
1498 | static const struct attribute_group input_dev_attr_group = { |
1499 | .attrs = input_dev_attrs, |
1500 | }; |
1501 | |
1502 | #define INPUT_DEV_ID_ATTR(name) \ |
1503 | static ssize_t input_dev_show_id_##name(struct device *dev, \ |
1504 | struct device_attribute *attr, \ |
1505 | char *buf) \ |
1506 | { \ |
1507 | struct input_dev *input_dev = to_input_dev(dev); \ |
1508 | return sysfs_emit(buf, "%04x\n", input_dev->id.name); \ |
1509 | } \ |
1510 | static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) |
1511 | |
1512 | INPUT_DEV_ID_ATTR(bustype); |
1513 | INPUT_DEV_ID_ATTR(vendor); |
1514 | INPUT_DEV_ID_ATTR(product); |
1515 | INPUT_DEV_ID_ATTR(version); |
1516 | |
1517 | static struct attribute *input_dev_id_attrs[] = { |
1518 | &dev_attr_bustype.attr, |
1519 | &dev_attr_vendor.attr, |
1520 | &dev_attr_product.attr, |
1521 | &dev_attr_version.attr, |
1522 | NULL |
1523 | }; |
1524 | |
1525 | static const struct attribute_group input_dev_id_attr_group = { |
1526 | .name = "id", |
1527 | .attrs = input_dev_id_attrs, |
1528 | }; |
1529 | |
1530 | static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap, |
1531 | int max, int add_cr) |
1532 | { |
1533 | int i; |
1534 | int len = 0; |
1535 | bool skip_empty = true; |
1536 | |
1537 | for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { |
1538 | len += input_bits_to_string(buf: buf + len, max(buf_size - len, 0), |
1539 | bits: bitmap[i], skip_empty); |
1540 | if (len) { |
1541 | skip_empty = false; |
1542 | if (i > 0) |
1543 | len += snprintf(buf: buf + len, max(buf_size - len, 0), fmt: " "); |
1544 | } |
1545 | } |
1546 | |
1547 | /* |
1548 | * If no output was produced print a single 0. |
1549 | */ |
1550 | if (len == 0) |
1551 | len = snprintf(buf, size: buf_size, fmt: "%d", 0); |
1552 | |
1553 | if (add_cr) |
1554 | len += snprintf(buf: buf + len, max(buf_size - len, 0), fmt: "\n"); |
1555 | |
1556 | return len; |
1557 | } |
1558 | |
1559 | #define INPUT_DEV_CAP_ATTR(ev, bm) \ |
1560 | static ssize_t input_dev_show_cap_##bm(struct device *dev, \ |
1561 | struct device_attribute *attr, \ |
1562 | char *buf) \ |
1563 | { \ |
1564 | struct input_dev *input_dev = to_input_dev(dev); \ |
1565 | int len = input_print_bitmap(buf, PAGE_SIZE, \ |
1566 | input_dev->bm##bit, ev##_MAX, \ |
1567 | true); \ |
1568 | return min_t(int, len, PAGE_SIZE); \ |
1569 | } \ |
1570 | static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) |
1571 | |
1572 | INPUT_DEV_CAP_ATTR(EV, ev); |
1573 | INPUT_DEV_CAP_ATTR(KEY, key); |
1574 | INPUT_DEV_CAP_ATTR(REL, rel); |
1575 | INPUT_DEV_CAP_ATTR(ABS, abs); |
1576 | INPUT_DEV_CAP_ATTR(MSC, msc); |
1577 | INPUT_DEV_CAP_ATTR(LED, led); |
1578 | INPUT_DEV_CAP_ATTR(SND, snd); |
1579 | INPUT_DEV_CAP_ATTR(FF, ff); |
1580 | INPUT_DEV_CAP_ATTR(SW, sw); |
1581 | |
1582 | static struct attribute *input_dev_caps_attrs[] = { |
1583 | &dev_attr_ev.attr, |
1584 | &dev_attr_key.attr, |
1585 | &dev_attr_rel.attr, |
1586 | &dev_attr_abs.attr, |
1587 | &dev_attr_msc.attr, |
1588 | &dev_attr_led.attr, |
1589 | &dev_attr_snd.attr, |
1590 | &dev_attr_ff.attr, |
1591 | &dev_attr_sw.attr, |
1592 | NULL |
1593 | }; |
1594 | |
1595 | static const struct attribute_group input_dev_caps_attr_group = { |
1596 | .name = "capabilities", |
1597 | .attrs = input_dev_caps_attrs, |
1598 | }; |
1599 | |
1600 | static const struct attribute_group *input_dev_attr_groups[] = { |
1601 | &input_dev_attr_group, |
1602 | &input_dev_id_attr_group, |
1603 | &input_dev_caps_attr_group, |
1604 | &input_poller_attribute_group, |
1605 | NULL |
1606 | }; |
1607 | |
1608 | static void input_dev_release(struct device *device) |
1609 | { |
1610 | struct input_dev *dev = to_input_dev(device); |
1611 | |
1612 | input_ff_destroy(dev); |
1613 | input_mt_destroy_slots(dev); |
1614 | kfree(objp: dev->poller); |
1615 | kfree(objp: dev->absinfo); |
1616 | kfree(objp: dev->vals); |
1617 | kfree(objp: dev); |
1618 | |
1619 | module_put(THIS_MODULE); |
1620 | } |
1621 | |
1622 | /* |
1623 | * Input uevent interface - loading event handlers based on |
1624 | * device bitfields. |
1625 | */ |
1626 | static int input_add_uevent_bm_var(struct kobj_uevent_env *env, |
1627 | const char *name, const unsigned long *bitmap, int max) |
1628 | { |
1629 | int len; |
1630 | |
1631 | if (add_uevent_var(env, format: "%s", name)) |
1632 | return -ENOMEM; |
1633 | |
1634 | len = input_print_bitmap(buf: &env->buf[env->buflen - 1], |
1635 | buf_size: sizeof(env->buf) - env->buflen, |
1636 | bitmap, max, add_cr: false); |
1637 | if (len >= (sizeof(env->buf) - env->buflen)) |
1638 | return -ENOMEM; |
1639 | |
1640 | env->buflen += len; |
1641 | return 0; |
1642 | } |
1643 | |
1644 | static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, |
1645 | const struct input_dev *dev) |
1646 | { |
1647 | int len; |
1648 | |
1649 | if (add_uevent_var(env, format: "MODALIAS=")) |
1650 | return -ENOMEM; |
1651 | |
1652 | len = input_print_modalias(buf: &env->buf[env->buflen - 1], |
1653 | size: sizeof(env->buf) - env->buflen, |
1654 | id: dev, add_cr: 0); |
1655 | if (len >= (sizeof(env->buf) - env->buflen)) |
1656 | return -ENOMEM; |
1657 | |
1658 | env->buflen += len; |
1659 | return 0; |
1660 | } |
1661 | |
1662 | #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ |
1663 | do { \ |
1664 | int err = add_uevent_var(env, fmt, val); \ |
1665 | if (err) \ |
1666 | return err; \ |
1667 | } while (0) |
1668 | |
1669 | #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ |
1670 | do { \ |
1671 | int err = input_add_uevent_bm_var(env, name, bm, max); \ |
1672 | if (err) \ |
1673 | return err; \ |
1674 | } while (0) |
1675 | |
1676 | #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ |
1677 | do { \ |
1678 | int err = input_add_uevent_modalias_var(env, dev); \ |
1679 | if (err) \ |
1680 | return err; \ |
1681 | } while (0) |
1682 | |
1683 | static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env) |
1684 | { |
1685 | const struct input_dev *dev = to_input_dev(device); |
1686 | |
1687 | INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", |
1688 | dev->id.bustype, dev->id.vendor, |
1689 | dev->id.product, dev->id.version); |
1690 | if (dev->name) |
1691 | INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); |
1692 | if (dev->phys) |
1693 | INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); |
1694 | if (dev->uniq) |
1695 | INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); |
1696 | |
1697 | INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); |
1698 | |
1699 | INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); |
1700 | if (test_bit(EV_KEY, dev->evbit)) |
1701 | INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); |
1702 | if (test_bit(EV_REL, dev->evbit)) |
1703 | INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); |
1704 | if (test_bit(EV_ABS, dev->evbit)) |
1705 | INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); |
1706 | if (test_bit(EV_MSC, dev->evbit)) |
1707 | INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); |
1708 | if (test_bit(EV_LED, dev->evbit)) |
1709 | INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); |
1710 | if (test_bit(EV_SND, dev->evbit)) |
1711 | INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); |
1712 | if (test_bit(EV_FF, dev->evbit)) |
1713 | INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); |
1714 | if (test_bit(EV_SW, dev->evbit)) |
1715 | INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); |
1716 | |
1717 | INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); |
1718 | |
1719 | return 0; |
1720 | } |
1721 | |
1722 | #define INPUT_DO_TOGGLE(dev, type, bits, on) \ |
1723 | do { \ |
1724 | int i; \ |
1725 | bool active; \ |
1726 | \ |
1727 | if (!test_bit(EV_##type, dev->evbit)) \ |
1728 | break; \ |
1729 | \ |
1730 | for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ |
1731 | active = test_bit(i, dev->bits); \ |
1732 | if (!active && !on) \ |
1733 | continue; \ |
1734 | \ |
1735 | dev->event(dev, EV_##type, i, on ? active : 0); \ |
1736 | } \ |
1737 | } while (0) |
1738 | |
1739 | static void input_dev_toggle(struct input_dev *dev, bool activate) |
1740 | { |
1741 | if (!dev->event) |
1742 | return; |
1743 | |
1744 | INPUT_DO_TOGGLE(dev, LED, led, activate); |
1745 | INPUT_DO_TOGGLE(dev, SND, snd, activate); |
1746 | |
1747 | if (activate && test_bit(EV_REP, dev->evbit)) { |
1748 | dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); |
1749 | dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); |
1750 | } |
1751 | } |
1752 | |
1753 | /** |
1754 | * input_reset_device() - reset/restore the state of input device |
1755 | * @dev: input device whose state needs to be reset |
1756 | * |
1757 | * This function tries to reset the state of an opened input device and |
1758 | * bring internal state and state if the hardware in sync with each other. |
1759 | * We mark all keys as released, restore LED state, repeat rate, etc. |
1760 | */ |
1761 | void input_reset_device(struct input_dev *dev) |
1762 | { |
1763 | unsigned long flags; |
1764 | |
1765 | mutex_lock(&dev->mutex); |
1766 | spin_lock_irqsave(&dev->event_lock, flags); |
1767 | |
1768 | input_dev_toggle(dev, activate: true); |
1769 | if (input_dev_release_keys(dev)) |
1770 | input_handle_event(dev, EV_SYN, SYN_REPORT, value: 1); |
1771 | |
1772 | spin_unlock_irqrestore(lock: &dev->event_lock, flags); |
1773 | mutex_unlock(lock: &dev->mutex); |
1774 | } |
1775 | EXPORT_SYMBOL(input_reset_device); |
1776 | |
1777 | static int input_inhibit_device(struct input_dev *dev) |
1778 | { |
1779 | mutex_lock(&dev->mutex); |
1780 | |
1781 | if (dev->inhibited) |
1782 | goto out; |
1783 | |
1784 | if (dev->users) { |
1785 | if (dev->close) |
1786 | dev->close(dev); |
1787 | if (dev->poller) |
1788 | input_dev_poller_stop(poller: dev->poller); |
1789 | } |
1790 | |
1791 | spin_lock_irq(lock: &dev->event_lock); |
1792 | input_mt_release_slots(dev); |
1793 | input_dev_release_keys(dev); |
1794 | input_handle_event(dev, EV_SYN, SYN_REPORT, value: 1); |
1795 | input_dev_toggle(dev, activate: false); |
1796 | spin_unlock_irq(lock: &dev->event_lock); |
1797 | |
1798 | dev->inhibited = true; |
1799 | |
1800 | out: |
1801 | mutex_unlock(lock: &dev->mutex); |
1802 | return 0; |
1803 | } |
1804 | |
1805 | static int input_uninhibit_device(struct input_dev *dev) |
1806 | { |
1807 | int ret = 0; |
1808 | |
1809 | mutex_lock(&dev->mutex); |
1810 | |
1811 | if (!dev->inhibited) |
1812 | goto out; |
1813 | |
1814 | if (dev->users) { |
1815 | if (dev->open) { |
1816 | ret = dev->open(dev); |
1817 | if (ret) |
1818 | goto out; |
1819 | } |
1820 | if (dev->poller) |
1821 | input_dev_poller_start(poller: dev->poller); |
1822 | } |
1823 | |
1824 | dev->inhibited = false; |
1825 | spin_lock_irq(lock: &dev->event_lock); |
1826 | input_dev_toggle(dev, activate: true); |
1827 | spin_unlock_irq(lock: &dev->event_lock); |
1828 | |
1829 | out: |
1830 | mutex_unlock(lock: &dev->mutex); |
1831 | return ret; |
1832 | } |
1833 | |
1834 | static int input_dev_suspend(struct device *dev) |
1835 | { |
1836 | struct input_dev *input_dev = to_input_dev(dev); |
1837 | |
1838 | spin_lock_irq(lock: &input_dev->event_lock); |
1839 | |
1840 | /* |
1841 | * Keys that are pressed now are unlikely to be |
1842 | * still pressed when we resume. |
1843 | */ |
1844 | if (input_dev_release_keys(dev: input_dev)) |
1845 | input_handle_event(dev: input_dev, EV_SYN, SYN_REPORT, value: 1); |
1846 | |
1847 | /* Turn off LEDs and sounds, if any are active. */ |
1848 | input_dev_toggle(dev: input_dev, activate: false); |
1849 | |
1850 | spin_unlock_irq(lock: &input_dev->event_lock); |
1851 | |
1852 | return 0; |
1853 | } |
1854 | |
1855 | static int input_dev_resume(struct device *dev) |
1856 | { |
1857 | struct input_dev *input_dev = to_input_dev(dev); |
1858 | |
1859 | spin_lock_irq(lock: &input_dev->event_lock); |
1860 | |
1861 | /* Restore state of LEDs and sounds, if any were active. */ |
1862 | input_dev_toggle(dev: input_dev, activate: true); |
1863 | |
1864 | spin_unlock_irq(lock: &input_dev->event_lock); |
1865 | |
1866 | return 0; |
1867 | } |
1868 | |
1869 | static int input_dev_freeze(struct device *dev) |
1870 | { |
1871 | struct input_dev *input_dev = to_input_dev(dev); |
1872 | |
1873 | spin_lock_irq(lock: &input_dev->event_lock); |
1874 | |
1875 | /* |
1876 | * Keys that are pressed now are unlikely to be |
1877 | * still pressed when we resume. |
1878 | */ |
1879 | if (input_dev_release_keys(dev: input_dev)) |
1880 | input_handle_event(dev: input_dev, EV_SYN, SYN_REPORT, value: 1); |
1881 | |
1882 | spin_unlock_irq(lock: &input_dev->event_lock); |
1883 | |
1884 | return 0; |
1885 | } |
1886 | |
1887 | static int input_dev_poweroff(struct device *dev) |
1888 | { |
1889 | struct input_dev *input_dev = to_input_dev(dev); |
1890 | |
1891 | spin_lock_irq(lock: &input_dev->event_lock); |
1892 | |
1893 | /* Turn off LEDs and sounds, if any are active. */ |
1894 | input_dev_toggle(dev: input_dev, activate: false); |
1895 | |
1896 | spin_unlock_irq(lock: &input_dev->event_lock); |
1897 | |
1898 | return 0; |
1899 | } |
1900 | |
1901 | static const struct dev_pm_ops input_dev_pm_ops = { |
1902 | .suspend = input_dev_suspend, |
1903 | .resume = input_dev_resume, |
1904 | .freeze = input_dev_freeze, |
1905 | .poweroff = input_dev_poweroff, |
1906 | .restore = input_dev_resume, |
1907 | }; |
1908 | |
1909 | static const struct device_type input_dev_type = { |
1910 | .groups = input_dev_attr_groups, |
1911 | .release = input_dev_release, |
1912 | .uevent = input_dev_uevent, |
1913 | .pm = pm_sleep_ptr(&input_dev_pm_ops), |
1914 | }; |
1915 | |
1916 | static char *input_devnode(const struct device *dev, umode_t *mode) |
1917 | { |
1918 | return kasprintf(GFP_KERNEL, fmt: "input/%s", dev_name(dev)); |
1919 | } |
1920 | |
1921 | const struct class input_class = { |
1922 | .name = "input", |
1923 | .devnode = input_devnode, |
1924 | }; |
1925 | EXPORT_SYMBOL_GPL(input_class); |
1926 | |
1927 | /** |
1928 | * input_allocate_device - allocate memory for new input device |
1929 | * |
1930 | * Returns prepared struct input_dev or %NULL. |
1931 | * |
1932 | * NOTE: Use input_free_device() to free devices that have not been |
1933 | * registered; input_unregister_device() should be used for already |
1934 | * registered devices. |
1935 | */ |
1936 | struct input_dev *input_allocate_device(void) |
1937 | { |
1938 | static atomic_t input_no = ATOMIC_INIT(-1); |
1939 | struct input_dev *dev; |
1940 | |
1941 | dev = kzalloc(size: sizeof(*dev), GFP_KERNEL); |
1942 | if (dev) { |
1943 | dev->dev.type = &input_dev_type; |
1944 | dev->dev.class = &input_class; |
1945 | device_initialize(dev: &dev->dev); |
1946 | mutex_init(&dev->mutex); |
1947 | spin_lock_init(&dev->event_lock); |
1948 | timer_setup(&dev->timer, NULL, 0); |
1949 | INIT_LIST_HEAD(list: &dev->h_list); |
1950 | INIT_LIST_HEAD(list: &dev->node); |
1951 | |
1952 | dev_set_name(dev: &dev->dev, name: "input%lu", |
1953 | (unsigned long)atomic_inc_return(v: &input_no)); |
1954 | |
1955 | __module_get(THIS_MODULE); |
1956 | } |
1957 | |
1958 | return dev; |
1959 | } |
1960 | EXPORT_SYMBOL(input_allocate_device); |
1961 | |
1962 | struct input_devres { |
1963 | struct input_dev *input; |
1964 | }; |
1965 | |
1966 | static int devm_input_device_match(struct device *dev, void *res, void *data) |
1967 | { |
1968 | struct input_devres *devres = res; |
1969 | |
1970 | return devres->input == data; |
1971 | } |
1972 | |
1973 | static void devm_input_device_release(struct device *dev, void *res) |
1974 | { |
1975 | struct input_devres *devres = res; |
1976 | struct input_dev *input = devres->input; |
1977 | |
1978 | dev_dbg(dev, "%s: dropping reference to %s\n", |
1979 | __func__, dev_name(&input->dev)); |
1980 | input_put_device(dev: input); |
1981 | } |
1982 | |
1983 | /** |
1984 | * devm_input_allocate_device - allocate managed input device |
1985 | * @dev: device owning the input device being created |
1986 | * |
1987 | * Returns prepared struct input_dev or %NULL. |
1988 | * |
1989 | * Managed input devices do not need to be explicitly unregistered or |
1990 | * freed as it will be done automatically when owner device unbinds from |
1991 | * its driver (or binding fails). Once managed input device is allocated, |
1992 | * it is ready to be set up and registered in the same fashion as regular |
1993 | * input device. There are no special devm_input_device_[un]register() |
1994 | * variants, regular ones work with both managed and unmanaged devices, |
1995 | * should you need them. In most cases however, managed input device need |
1996 | * not be explicitly unregistered or freed. |
1997 | * |
1998 | * NOTE: the owner device is set up as parent of input device and users |
1999 | * should not override it. |
2000 | */ |
2001 | struct input_dev *devm_input_allocate_device(struct device *dev) |
2002 | { |
2003 | struct input_dev *input; |
2004 | struct input_devres *devres; |
2005 | |
2006 | devres = devres_alloc(devm_input_device_release, |
2007 | sizeof(*devres), GFP_KERNEL); |
2008 | if (!devres) |
2009 | return NULL; |
2010 | |
2011 | input = input_allocate_device(); |
2012 | if (!input) { |
2013 | devres_free(res: devres); |
2014 | return NULL; |
2015 | } |
2016 | |
2017 | input->dev.parent = dev; |
2018 | input->devres_managed = true; |
2019 | |
2020 | devres->input = input; |
2021 | devres_add(dev, res: devres); |
2022 | |
2023 | return input; |
2024 | } |
2025 | EXPORT_SYMBOL(devm_input_allocate_device); |
2026 | |
2027 | /** |
2028 | * input_free_device - free memory occupied by input_dev structure |
2029 | * @dev: input device to free |
2030 | * |
2031 | * This function should only be used if input_register_device() |
2032 | * was not called yet or if it failed. Once device was registered |
2033 | * use input_unregister_device() and memory will be freed once last |
2034 | * reference to the device is dropped. |
2035 | * |
2036 | * Device should be allocated by input_allocate_device(). |
2037 | * |
2038 | * NOTE: If there are references to the input device then memory |
2039 | * will not be freed until last reference is dropped. |
2040 | */ |
2041 | void input_free_device(struct input_dev *dev) |
2042 | { |
2043 | if (dev) { |
2044 | if (dev->devres_managed) |
2045 | WARN_ON(devres_destroy(dev->dev.parent, |
2046 | devm_input_device_release, |
2047 | devm_input_device_match, |
2048 | dev)); |
2049 | input_put_device(dev); |
2050 | } |
2051 | } |
2052 | EXPORT_SYMBOL(input_free_device); |
2053 | |
2054 | /** |
2055 | * input_set_timestamp - set timestamp for input events |
2056 | * @dev: input device to set timestamp for |
2057 | * @timestamp: the time at which the event has occurred |
2058 | * in CLOCK_MONOTONIC |
2059 | * |
2060 | * This function is intended to provide to the input system a more |
2061 | * accurate time of when an event actually occurred. The driver should |
2062 | * call this function as soon as a timestamp is acquired ensuring |
2063 | * clock conversions in input_set_timestamp are done correctly. |
2064 | * |
2065 | * The system entering suspend state between timestamp acquisition and |
2066 | * calling input_set_timestamp can result in inaccurate conversions. |
2067 | */ |
2068 | void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) |
2069 | { |
2070 | dev->timestamp[INPUT_CLK_MONO] = timestamp; |
2071 | dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(mono: timestamp); |
2072 | dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(tmono: timestamp, |
2073 | offs: TK_OFFS_BOOT); |
2074 | } |
2075 | EXPORT_SYMBOL(input_set_timestamp); |
2076 | |
2077 | /** |
2078 | * input_get_timestamp - get timestamp for input events |
2079 | * @dev: input device to get timestamp from |
2080 | * |
2081 | * A valid timestamp is a timestamp of non-zero value. |
2082 | */ |
2083 | ktime_t *input_get_timestamp(struct input_dev *dev) |
2084 | { |
2085 | const ktime_t invalid_timestamp = ktime_set(secs: 0, nsecs: 0); |
2086 | |
2087 | if (!ktime_compare(cmp1: dev->timestamp[INPUT_CLK_MONO], cmp2: invalid_timestamp)) |
2088 | input_set_timestamp(dev, ktime_get()); |
2089 | |
2090 | return dev->timestamp; |
2091 | } |
2092 | EXPORT_SYMBOL(input_get_timestamp); |
2093 | |
2094 | /** |
2095 | * input_set_capability - mark device as capable of a certain event |
2096 | * @dev: device that is capable of emitting or accepting event |
2097 | * @type: type of the event (EV_KEY, EV_REL, etc...) |
2098 | * @code: event code |
2099 | * |
2100 | * In addition to setting up corresponding bit in appropriate capability |
2101 | * bitmap the function also adjusts dev->evbit. |
2102 | */ |
2103 | void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) |
2104 | { |
2105 | if (type < EV_CNT && input_max_code[type] && |
2106 | code > input_max_code[type]) { |
2107 | pr_err("%s: invalid code %u for type %u\n", __func__, code, |
2108 | type); |
2109 | dump_stack(); |
2110 | return; |
2111 | } |
2112 | |
2113 | switch (type) { |
2114 | case EV_KEY: |
2115 | __set_bit(code, dev->keybit); |
2116 | break; |
2117 | |
2118 | case EV_REL: |
2119 | __set_bit(code, dev->relbit); |
2120 | break; |
2121 | |
2122 | case EV_ABS: |
2123 | input_alloc_absinfo(dev); |
2124 | __set_bit(code, dev->absbit); |
2125 | break; |
2126 | |
2127 | case EV_MSC: |
2128 | __set_bit(code, dev->mscbit); |
2129 | break; |
2130 | |
2131 | case EV_SW: |
2132 | __set_bit(code, dev->swbit); |
2133 | break; |
2134 | |
2135 | case EV_LED: |
2136 | __set_bit(code, dev->ledbit); |
2137 | break; |
2138 | |
2139 | case EV_SND: |
2140 | __set_bit(code, dev->sndbit); |
2141 | break; |
2142 | |
2143 | case EV_FF: |
2144 | __set_bit(code, dev->ffbit); |
2145 | break; |
2146 | |
2147 | case EV_PWR: |
2148 | /* do nothing */ |
2149 | break; |
2150 | |
2151 | default: |
2152 | pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); |
2153 | dump_stack(); |
2154 | return; |
2155 | } |
2156 | |
2157 | __set_bit(type, dev->evbit); |
2158 | } |
2159 | EXPORT_SYMBOL(input_set_capability); |
2160 | |
2161 | static unsigned int input_estimate_events_per_packet(struct input_dev *dev) |
2162 | { |
2163 | int mt_slots; |
2164 | int i; |
2165 | unsigned int events; |
2166 | |
2167 | if (dev->mt) { |
2168 | mt_slots = dev->mt->num_slots; |
2169 | } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { |
2170 | mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - |
2171 | dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, |
2172 | mt_slots = clamp(mt_slots, 2, 32); |
2173 | } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { |
2174 | mt_slots = 2; |
2175 | } else { |
2176 | mt_slots = 0; |
2177 | } |
2178 | |
2179 | events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ |
2180 | |
2181 | if (test_bit(EV_ABS, dev->evbit)) |
2182 | for_each_set_bit(i, dev->absbit, ABS_CNT) |
2183 | events += input_is_mt_axis(axis: i) ? mt_slots : 1; |
2184 | |
2185 | if (test_bit(EV_REL, dev->evbit)) |
2186 | events += bitmap_weight(src: dev->relbit, REL_CNT); |
2187 | |
2188 | /* Make room for KEY and MSC events */ |
2189 | events += 7; |
2190 | |
2191 | return events; |
2192 | } |
2193 | |
2194 | #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ |
2195 | do { \ |
2196 | if (!test_bit(EV_##type, dev->evbit)) \ |
2197 | memset(dev->bits##bit, 0, \ |
2198 | sizeof(dev->bits##bit)); \ |
2199 | } while (0) |
2200 | |
2201 | static void input_cleanse_bitmasks(struct input_dev *dev) |
2202 | { |
2203 | INPUT_CLEANSE_BITMASK(dev, KEY, key); |
2204 | INPUT_CLEANSE_BITMASK(dev, REL, rel); |
2205 | INPUT_CLEANSE_BITMASK(dev, ABS, abs); |
2206 | INPUT_CLEANSE_BITMASK(dev, MSC, msc); |
2207 | INPUT_CLEANSE_BITMASK(dev, LED, led); |
2208 | INPUT_CLEANSE_BITMASK(dev, SND, snd); |
2209 | INPUT_CLEANSE_BITMASK(dev, FF, ff); |
2210 | INPUT_CLEANSE_BITMASK(dev, SW, sw); |
2211 | } |
2212 | |
2213 | static void __input_unregister_device(struct input_dev *dev) |
2214 | { |
2215 | struct input_handle *handle, *next; |
2216 | |
2217 | input_disconnect_device(dev); |
2218 | |
2219 | mutex_lock(&input_mutex); |
2220 | |
2221 | list_for_each_entry_safe(handle, next, &dev->h_list, d_node) |
2222 | handle->handler->disconnect(handle); |
2223 | WARN_ON(!list_empty(&dev->h_list)); |
2224 | |
2225 | del_timer_sync(timer: &dev->timer); |
2226 | list_del_init(entry: &dev->node); |
2227 | |
2228 | input_wakeup_procfs_readers(); |
2229 | |
2230 | mutex_unlock(lock: &input_mutex); |
2231 | |
2232 | device_del(dev: &dev->dev); |
2233 | } |
2234 | |
2235 | static void devm_input_device_unregister(struct device *dev, void *res) |
2236 | { |
2237 | struct input_devres *devres = res; |
2238 | struct input_dev *input = devres->input; |
2239 | |
2240 | dev_dbg(dev, "%s: unregistering device %s\n", |
2241 | __func__, dev_name(&input->dev)); |
2242 | __input_unregister_device(dev: input); |
2243 | } |
2244 | |
2245 | /* |
2246 | * Generate software autorepeat event. Note that we take |
2247 | * dev->event_lock here to avoid racing with input_event |
2248 | * which may cause keys get "stuck". |
2249 | */ |
2250 | static void input_repeat_key(struct timer_list *t) |
2251 | { |
2252 | struct input_dev *dev = from_timer(dev, t, timer); |
2253 | unsigned long flags; |
2254 | |
2255 | spin_lock_irqsave(&dev->event_lock, flags); |
2256 | |
2257 | if (!dev->inhibited && |
2258 | test_bit(dev->repeat_key, dev->key) && |
2259 | is_event_supported(code: dev->repeat_key, bm: dev->keybit, KEY_MAX)) { |
2260 | |
2261 | input_set_timestamp(dev, ktime_get()); |
2262 | input_handle_event(dev, EV_KEY, code: dev->repeat_key, value: 2); |
2263 | input_handle_event(dev, EV_SYN, SYN_REPORT, value: 1); |
2264 | |
2265 | if (dev->rep[REP_PERIOD]) |
2266 | mod_timer(timer: &dev->timer, expires: jiffies + |
2267 | msecs_to_jiffies(m: dev->rep[REP_PERIOD])); |
2268 | } |
2269 | |
2270 | spin_unlock_irqrestore(lock: &dev->event_lock, flags); |
2271 | } |
2272 | |
2273 | /** |
2274 | * input_enable_softrepeat - enable software autorepeat |
2275 | * @dev: input device |
2276 | * @delay: repeat delay |
2277 | * @period: repeat period |
2278 | * |
2279 | * Enable software autorepeat on the input device. |
2280 | */ |
2281 | void input_enable_softrepeat(struct input_dev *dev, int delay, int period) |
2282 | { |
2283 | dev->timer.function = input_repeat_key; |
2284 | dev->rep[REP_DELAY] = delay; |
2285 | dev->rep[REP_PERIOD] = period; |
2286 | } |
2287 | EXPORT_SYMBOL(input_enable_softrepeat); |
2288 | |
2289 | bool input_device_enabled(struct input_dev *dev) |
2290 | { |
2291 | lockdep_assert_held(&dev->mutex); |
2292 | |
2293 | return !dev->inhibited && dev->users > 0; |
2294 | } |
2295 | EXPORT_SYMBOL_GPL(input_device_enabled); |
2296 | |
2297 | /** |
2298 | * input_register_device - register device with input core |
2299 | * @dev: device to be registered |
2300 | * |
2301 | * This function registers device with input core. The device must be |
2302 | * allocated with input_allocate_device() and all it's capabilities |
2303 | * set up before registering. |
2304 | * If function fails the device must be freed with input_free_device(). |
2305 | * Once device has been successfully registered it can be unregistered |
2306 | * with input_unregister_device(); input_free_device() should not be |
2307 | * called in this case. |
2308 | * |
2309 | * Note that this function is also used to register managed input devices |
2310 | * (ones allocated with devm_input_allocate_device()). Such managed input |
2311 | * devices need not be explicitly unregistered or freed, their tear down |
2312 | * is controlled by the devres infrastructure. It is also worth noting |
2313 | * that tear down of managed input devices is internally a 2-step process: |
2314 | * registered managed input device is first unregistered, but stays in |
2315 | * memory and can still handle input_event() calls (although events will |
2316 | * not be delivered anywhere). The freeing of managed input device will |
2317 | * happen later, when devres stack is unwound to the point where device |
2318 | * allocation was made. |
2319 | */ |
2320 | int input_register_device(struct input_dev *dev) |
2321 | { |
2322 | struct input_devres *devres = NULL; |
2323 | struct input_handler *handler; |
2324 | unsigned int packet_size; |
2325 | const char *path; |
2326 | int error; |
2327 | |
2328 | if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { |
2329 | dev_err(&dev->dev, |
2330 | "Absolute device without dev->absinfo, refusing to register\n"); |
2331 | return -EINVAL; |
2332 | } |
2333 | |
2334 | if (dev->devres_managed) { |
2335 | devres = devres_alloc(devm_input_device_unregister, |
2336 | sizeof(*devres), GFP_KERNEL); |
2337 | if (!devres) |
2338 | return -ENOMEM; |
2339 | |
2340 | devres->input = dev; |
2341 | } |
2342 | |
2343 | /* Every input device generates EV_SYN/SYN_REPORT events. */ |
2344 | __set_bit(EV_SYN, dev->evbit); |
2345 | |
2346 | /* KEY_RESERVED is not supposed to be transmitted to userspace. */ |
2347 | __clear_bit(KEY_RESERVED, dev->keybit); |
2348 | |
2349 | /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ |
2350 | input_cleanse_bitmasks(dev); |
2351 | |
2352 | packet_size = input_estimate_events_per_packet(dev); |
2353 | if (dev->hint_events_per_packet < packet_size) |
2354 | dev->hint_events_per_packet = packet_size; |
2355 | |
2356 | dev->max_vals = dev->hint_events_per_packet + 2; |
2357 | dev->vals = kcalloc(n: dev->max_vals, size: sizeof(*dev->vals), GFP_KERNEL); |
2358 | if (!dev->vals) { |
2359 | error = -ENOMEM; |
2360 | goto err_devres_free; |
2361 | } |
2362 | |
2363 | /* |
2364 | * If delay and period are pre-set by the driver, then autorepeating |
2365 | * is handled by the driver itself and we don't do it in input.c. |
2366 | */ |
2367 | if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) |
2368 | input_enable_softrepeat(dev, 250, 33); |
2369 | |
2370 | if (!dev->getkeycode) |
2371 | dev->getkeycode = input_default_getkeycode; |
2372 | |
2373 | if (!dev->setkeycode) |
2374 | dev->setkeycode = input_default_setkeycode; |
2375 | |
2376 | if (dev->poller) |
2377 | input_dev_poller_finalize(poller: dev->poller); |
2378 | |
2379 | error = device_add(dev: &dev->dev); |
2380 | if (error) |
2381 | goto err_free_vals; |
2382 | |
2383 | path = kobject_get_path(kobj: &dev->dev.kobj, GFP_KERNEL); |
2384 | pr_info("%s as %s\n", |
2385 | dev->name ? dev->name : "Unspecified device", |
2386 | path ? path : "N/A"); |
2387 | kfree(objp: path); |
2388 | |
2389 | error = mutex_lock_interruptible(&input_mutex); |
2390 | if (error) |
2391 | goto err_device_del; |
2392 | |
2393 | list_add_tail(new: &dev->node, head: &input_dev_list); |
2394 | |
2395 | list_for_each_entry(handler, &input_handler_list, node) |
2396 | input_attach_handler(dev, handler); |
2397 | |
2398 | input_wakeup_procfs_readers(); |
2399 | |
2400 | mutex_unlock(lock: &input_mutex); |
2401 | |
2402 | if (dev->devres_managed) { |
2403 | dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", |
2404 | __func__, dev_name(&dev->dev)); |
2405 | devres_add(dev: dev->dev.parent, res: devres); |
2406 | } |
2407 | return 0; |
2408 | |
2409 | err_device_del: |
2410 | device_del(dev: &dev->dev); |
2411 | err_free_vals: |
2412 | kfree(objp: dev->vals); |
2413 | dev->vals = NULL; |
2414 | err_devres_free: |
2415 | devres_free(res: devres); |
2416 | return error; |
2417 | } |
2418 | EXPORT_SYMBOL(input_register_device); |
2419 | |
2420 | /** |
2421 | * input_unregister_device - unregister previously registered device |
2422 | * @dev: device to be unregistered |
2423 | * |
2424 | * This function unregisters an input device. Once device is unregistered |
2425 | * the caller should not try to access it as it may get freed at any moment. |
2426 | */ |
2427 | void input_unregister_device(struct input_dev *dev) |
2428 | { |
2429 | if (dev->devres_managed) { |
2430 | WARN_ON(devres_destroy(dev->dev.parent, |
2431 | devm_input_device_unregister, |
2432 | devm_input_device_match, |
2433 | dev)); |
2434 | __input_unregister_device(dev); |
2435 | /* |
2436 | * We do not do input_put_device() here because it will be done |
2437 | * when 2nd devres fires up. |
2438 | */ |
2439 | } else { |
2440 | __input_unregister_device(dev); |
2441 | input_put_device(dev); |
2442 | } |
2443 | } |
2444 | EXPORT_SYMBOL(input_unregister_device); |
2445 | |
2446 | /** |
2447 | * input_register_handler - register a new input handler |
2448 | * @handler: handler to be registered |
2449 | * |
2450 | * This function registers a new input handler (interface) for input |
2451 | * devices in the system and attaches it to all input devices that |
2452 | * are compatible with the handler. |
2453 | */ |
2454 | int input_register_handler(struct input_handler *handler) |
2455 | { |
2456 | struct input_dev *dev; |
2457 | int error; |
2458 | |
2459 | error = mutex_lock_interruptible(&input_mutex); |
2460 | if (error) |
2461 | return error; |
2462 | |
2463 | INIT_LIST_HEAD(list: &handler->h_list); |
2464 | |
2465 | list_add_tail(new: &handler->node, head: &input_handler_list); |
2466 | |
2467 | list_for_each_entry(dev, &input_dev_list, node) |
2468 | input_attach_handler(dev, handler); |
2469 | |
2470 | input_wakeup_procfs_readers(); |
2471 | |
2472 | mutex_unlock(lock: &input_mutex); |
2473 | return 0; |
2474 | } |
2475 | EXPORT_SYMBOL(input_register_handler); |
2476 | |
2477 | /** |
2478 | * input_unregister_handler - unregisters an input handler |
2479 | * @handler: handler to be unregistered |
2480 | * |
2481 | * This function disconnects a handler from its input devices and |
2482 | * removes it from lists of known handlers. |
2483 | */ |
2484 | void input_unregister_handler(struct input_handler *handler) |
2485 | { |
2486 | struct input_handle *handle, *next; |
2487 | |
2488 | mutex_lock(&input_mutex); |
2489 | |
2490 | list_for_each_entry_safe(handle, next, &handler->h_list, h_node) |
2491 | handler->disconnect(handle); |
2492 | WARN_ON(!list_empty(&handler->h_list)); |
2493 | |
2494 | list_del_init(entry: &handler->node); |
2495 | |
2496 | input_wakeup_procfs_readers(); |
2497 | |
2498 | mutex_unlock(lock: &input_mutex); |
2499 | } |
2500 | EXPORT_SYMBOL(input_unregister_handler); |
2501 | |
2502 | /** |
2503 | * input_handler_for_each_handle - handle iterator |
2504 | * @handler: input handler to iterate |
2505 | * @data: data for the callback |
2506 | * @fn: function to be called for each handle |
2507 | * |
2508 | * Iterate over @bus's list of devices, and call @fn for each, passing |
2509 | * it @data and stop when @fn returns a non-zero value. The function is |
2510 | * using RCU to traverse the list and therefore may be using in atomic |
2511 | * contexts. The @fn callback is invoked from RCU critical section and |
2512 | * thus must not sleep. |
2513 | */ |
2514 | int input_handler_for_each_handle(struct input_handler *handler, void *data, |
2515 | int (*fn)(struct input_handle *, void *)) |
2516 | { |
2517 | struct input_handle *handle; |
2518 | int retval = 0; |
2519 | |
2520 | rcu_read_lock(); |
2521 | |
2522 | list_for_each_entry_rcu(handle, &handler->h_list, h_node) { |
2523 | retval = fn(handle, data); |
2524 | if (retval) |
2525 | break; |
2526 | } |
2527 | |
2528 | rcu_read_unlock(); |
2529 | |
2530 | return retval; |
2531 | } |
2532 | EXPORT_SYMBOL(input_handler_for_each_handle); |
2533 | |
2534 | /** |
2535 | * input_register_handle - register a new input handle |
2536 | * @handle: handle to register |
2537 | * |
2538 | * This function puts a new input handle onto device's |
2539 | * and handler's lists so that events can flow through |
2540 | * it once it is opened using input_open_device(). |
2541 | * |
2542 | * This function is supposed to be called from handler's |
2543 | * connect() method. |
2544 | */ |
2545 | int input_register_handle(struct input_handle *handle) |
2546 | { |
2547 | struct input_handler *handler = handle->handler; |
2548 | struct input_dev *dev = handle->dev; |
2549 | int error; |
2550 | |
2551 | /* |
2552 | * We take dev->mutex here to prevent race with |
2553 | * input_release_device(). |
2554 | */ |
2555 | error = mutex_lock_interruptible(&dev->mutex); |
2556 | if (error) |
2557 | return error; |
2558 | |
2559 | /* |
2560 | * Filters go to the head of the list, normal handlers |
2561 | * to the tail. |
2562 | */ |
2563 | if (handler->filter) |
2564 | list_add_rcu(new: &handle->d_node, head: &dev->h_list); |
2565 | else |
2566 | list_add_tail_rcu(new: &handle->d_node, head: &dev->h_list); |
2567 | |
2568 | mutex_unlock(lock: &dev->mutex); |
2569 | |
2570 | /* |
2571 | * Since we are supposed to be called from ->connect() |
2572 | * which is mutually exclusive with ->disconnect() |
2573 | * we can't be racing with input_unregister_handle() |
2574 | * and so separate lock is not needed here. |
2575 | */ |
2576 | list_add_tail_rcu(new: &handle->h_node, head: &handler->h_list); |
2577 | |
2578 | if (handler->start) |
2579 | handler->start(handle); |
2580 | |
2581 | return 0; |
2582 | } |
2583 | EXPORT_SYMBOL(input_register_handle); |
2584 | |
2585 | /** |
2586 | * input_unregister_handle - unregister an input handle |
2587 | * @handle: handle to unregister |
2588 | * |
2589 | * This function removes input handle from device's |
2590 | * and handler's lists. |
2591 | * |
2592 | * This function is supposed to be called from handler's |
2593 | * disconnect() method. |
2594 | */ |
2595 | void input_unregister_handle(struct input_handle *handle) |
2596 | { |
2597 | struct input_dev *dev = handle->dev; |
2598 | |
2599 | list_del_rcu(entry: &handle->h_node); |
2600 | |
2601 | /* |
2602 | * Take dev->mutex to prevent race with input_release_device(). |
2603 | */ |
2604 | mutex_lock(&dev->mutex); |
2605 | list_del_rcu(entry: &handle->d_node); |
2606 | mutex_unlock(lock: &dev->mutex); |
2607 | |
2608 | synchronize_rcu(); |
2609 | } |
2610 | EXPORT_SYMBOL(input_unregister_handle); |
2611 | |
2612 | /** |
2613 | * input_get_new_minor - allocates a new input minor number |
2614 | * @legacy_base: beginning or the legacy range to be searched |
2615 | * @legacy_num: size of legacy range |
2616 | * @allow_dynamic: whether we can also take ID from the dynamic range |
2617 | * |
2618 | * This function allocates a new device minor for from input major namespace. |
2619 | * Caller can request legacy minor by specifying @legacy_base and @legacy_num |
2620 | * parameters and whether ID can be allocated from dynamic range if there are |
2621 | * no free IDs in legacy range. |
2622 | */ |
2623 | int input_get_new_minor(int legacy_base, unsigned int legacy_num, |
2624 | bool allow_dynamic) |
2625 | { |
2626 | /* |
2627 | * This function should be called from input handler's ->connect() |
2628 | * methods, which are serialized with input_mutex, so no additional |
2629 | * locking is needed here. |
2630 | */ |
2631 | if (legacy_base >= 0) { |
2632 | int minor = ida_alloc_range(&input_ida, min: legacy_base, |
2633 | max: legacy_base + legacy_num - 1, |
2634 | GFP_KERNEL); |
2635 | if (minor >= 0 || !allow_dynamic) |
2636 | return minor; |
2637 | } |
2638 | |
2639 | return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV, |
2640 | INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL); |
2641 | } |
2642 | EXPORT_SYMBOL(input_get_new_minor); |
2643 | |
2644 | /** |
2645 | * input_free_minor - release previously allocated minor |
2646 | * @minor: minor to be released |
2647 | * |
2648 | * This function releases previously allocated input minor so that it can be |
2649 | * reused later. |
2650 | */ |
2651 | void input_free_minor(unsigned int minor) |
2652 | { |
2653 | ida_free(&input_ida, id: minor); |
2654 | } |
2655 | EXPORT_SYMBOL(input_free_minor); |
2656 | |
2657 | static int __init input_init(void) |
2658 | { |
2659 | int err; |
2660 | |
2661 | err = class_register(class: &input_class); |
2662 | if (err) { |
2663 | pr_err("unable to register input_dev class\n"); |
2664 | return err; |
2665 | } |
2666 | |
2667 | err = input_proc_init(); |
2668 | if (err) |
2669 | goto fail1; |
2670 | |
2671 | err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), |
2672 | INPUT_MAX_CHAR_DEVICES, "input"); |
2673 | if (err) { |
2674 | pr_err("unable to register char major %d", INPUT_MAJOR); |
2675 | goto fail2; |
2676 | } |
2677 | |
2678 | return 0; |
2679 | |
2680 | fail2: input_proc_exit(); |
2681 | fail1: class_unregister(class: &input_class); |
2682 | return err; |
2683 | } |
2684 | |
2685 | static void __exit input_exit(void) |
2686 | { |
2687 | input_proc_exit(); |
2688 | unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), |
2689 | INPUT_MAX_CHAR_DEVICES); |
2690 | class_unregister(class: &input_class); |
2691 | } |
2692 | |
2693 | subsys_initcall(input_init); |
2694 | module_exit(input_exit); |
2695 |
Definitions
- input_ida
- input_dev_list
- input_handler_list
- input_mutex
- input_value_sync
- input_max_code
- is_event_supported
- input_defuzz_abs_event
- input_start_autorepeat
- input_stop_autorepeat
- input_to_handler
- input_pass_values
- input_handle_abs_event
- input_get_disposition
- input_event_dispose
- input_handle_event
- input_event
- input_inject_event
- input_alloc_absinfo
- input_set_abs_params
- input_copy_abs
- input_grab_device
- __input_release_device
- input_release_device
- input_open_device
- input_flush_device
- input_close_device
- input_dev_release_keys
- input_disconnect_device
- input_scancode_to_scalar
- input_fetch_keycode
- input_default_getkeycode
- input_default_setkeycode
- input_get_keycode
- input_set_keycode
- input_match_device_id
- input_match_device
- input_attach_handler
- input_bits_to_string
- proc_bus_input_dir
- input_devices_poll_wait
- input_devices_state
- input_wakeup_procfs_readers
- input_proc_devices_poll
- input_seq_state
- input_devices_seq_start
- input_devices_seq_next
- input_seq_stop
- input_seq_print_bitmap
- input_devices_seq_show
- input_devices_seq_ops
- input_proc_devices_open
- input_devices_proc_ops
- input_handlers_seq_start
- input_handlers_seq_next
- input_handlers_seq_show
- input_handlers_seq_ops
- input_proc_handlers_open
- input_handlers_proc_ops
- input_proc_init
- input_proc_exit
- input_print_modalias_bits
- input_print_modalias
- input_dev_show_modalias
- input_dev_show_properties
- inhibited_show
- inhibited_store
- input_dev_attrs
- input_dev_attr_group
- input_dev_id_attrs
- input_dev_id_attr_group
- input_print_bitmap
- input_dev_caps_attrs
- input_dev_caps_attr_group
- input_dev_attr_groups
- input_dev_release
- input_add_uevent_bm_var
- input_add_uevent_modalias_var
- input_dev_uevent
- input_dev_toggle
- input_reset_device
- input_inhibit_device
- input_uninhibit_device
- input_dev_suspend
- input_dev_resume
- input_dev_freeze
- input_dev_poweroff
- input_dev_pm_ops
- input_dev_type
- input_devnode
- input_class
- input_allocate_device
- input_devres
- devm_input_device_match
- devm_input_device_release
- devm_input_allocate_device
- input_free_device
- input_set_timestamp
- input_get_timestamp
- input_set_capability
- input_estimate_events_per_packet
- input_cleanse_bitmasks
- __input_unregister_device
- devm_input_device_unregister
- input_repeat_key
- input_enable_softrepeat
- input_device_enabled
- input_register_device
- input_unregister_device
- input_register_handler
- input_unregister_handler
- input_handler_for_each_handle
- input_register_handle
- input_unregister_handle
- input_get_new_minor
- input_free_minor
- input_init
Improve your Profiling and Debugging skills
Find out more