1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * linux/drivers/mmc/core/core.c |
4 | * |
5 | * Copyright (C) 2003-2004 Russell King, All Rights Reserved. |
6 | * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. |
7 | * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. |
8 | * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. |
9 | */ |
10 | #include <linux/module.h> |
11 | #include <linux/init.h> |
12 | #include <linux/interrupt.h> |
13 | #include <linux/completion.h> |
14 | #include <linux/device.h> |
15 | #include <linux/delay.h> |
16 | #include <linux/pagemap.h> |
17 | #include <linux/err.h> |
18 | #include <linux/leds.h> |
19 | #include <linux/scatterlist.h> |
20 | #include <linux/log2.h> |
21 | #include <linux/pm_runtime.h> |
22 | #include <linux/pm_wakeup.h> |
23 | #include <linux/suspend.h> |
24 | #include <linux/fault-inject.h> |
25 | #include <linux/random.h> |
26 | #include <linux/slab.h> |
27 | #include <linux/of.h> |
28 | |
29 | #include <linux/mmc/card.h> |
30 | #include <linux/mmc/host.h> |
31 | #include <linux/mmc/mmc.h> |
32 | #include <linux/mmc/sd.h> |
33 | #include <linux/mmc/slot-gpio.h> |
34 | |
35 | #define CREATE_TRACE_POINTS |
36 | #include <trace/events/mmc.h> |
37 | |
38 | #include "core.h" |
39 | #include "card.h" |
40 | #include "crypto.h" |
41 | #include "bus.h" |
42 | #include "host.h" |
43 | #include "sdio_bus.h" |
44 | #include "pwrseq.h" |
45 | |
46 | #include "mmc_ops.h" |
47 | #include "sd_ops.h" |
48 | #include "sdio_ops.h" |
49 | |
50 | /* The max erase timeout, used when host->max_busy_timeout isn't specified */ |
51 | #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ |
52 | #define SD_DISCARD_TIMEOUT_MS (250) |
53 | |
54 | static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; |
55 | |
56 | /* |
57 | * Enabling software CRCs on the data blocks can be a significant (30%) |
58 | * performance cost, and for other reasons may not always be desired. |
59 | * So we allow it to be disabled. |
60 | */ |
61 | bool use_spi_crc = 1; |
62 | module_param(use_spi_crc, bool, 0); |
63 | |
64 | static int mmc_schedule_delayed_work(struct delayed_work *work, |
65 | unsigned long delay) |
66 | { |
67 | /* |
68 | * We use the system_freezable_wq, because of two reasons. |
69 | * First, it allows several works (not the same work item) to be |
70 | * executed simultaneously. Second, the queue becomes frozen when |
71 | * userspace becomes frozen during system PM. |
72 | */ |
73 | return queue_delayed_work(wq: system_freezable_wq, dwork: work, delay); |
74 | } |
75 | |
76 | #ifdef CONFIG_FAIL_MMC_REQUEST |
77 | |
78 | /* |
79 | * Internal function. Inject random data errors. |
80 | * If mmc_data is NULL no errors are injected. |
81 | */ |
82 | static void mmc_should_fail_request(struct mmc_host *host, |
83 | struct mmc_request *mrq) |
84 | { |
85 | struct mmc_command *cmd = mrq->cmd; |
86 | struct mmc_data *data = mrq->data; |
87 | static const int data_errors[] = { |
88 | -ETIMEDOUT, |
89 | -EILSEQ, |
90 | -EIO, |
91 | }; |
92 | |
93 | if (!data) |
94 | return; |
95 | |
96 | if ((cmd && cmd->error) || data->error || |
97 | !should_fail(attr: &host->fail_mmc_request, size: data->blksz * data->blocks)) |
98 | return; |
99 | |
100 | data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))]; |
101 | data->bytes_xfered = get_random_u32_below(ceil: data->bytes_xfered >> 9) << 9; |
102 | } |
103 | |
104 | #else /* CONFIG_FAIL_MMC_REQUEST */ |
105 | |
106 | static inline void mmc_should_fail_request(struct mmc_host *host, |
107 | struct mmc_request *mrq) |
108 | { |
109 | } |
110 | |
111 | #endif /* CONFIG_FAIL_MMC_REQUEST */ |
112 | |
113 | static inline void mmc_complete_cmd(struct mmc_request *mrq) |
114 | { |
115 | if (mrq->cap_cmd_during_tfr && !completion_done(x: &mrq->cmd_completion)) |
116 | complete_all(&mrq->cmd_completion); |
117 | } |
118 | |
119 | void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) |
120 | { |
121 | if (!mrq->cap_cmd_during_tfr) |
122 | return; |
123 | |
124 | mmc_complete_cmd(mrq); |
125 | |
126 | pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", |
127 | mmc_hostname(host), mrq->cmd->opcode); |
128 | } |
129 | EXPORT_SYMBOL(mmc_command_done); |
130 | |
131 | /** |
132 | * mmc_request_done - finish processing an MMC request |
133 | * @host: MMC host which completed request |
134 | * @mrq: MMC request which request |
135 | * |
136 | * MMC drivers should call this function when they have completed |
137 | * their processing of a request. |
138 | */ |
139 | void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) |
140 | { |
141 | struct mmc_command *cmd = mrq->cmd; |
142 | int err = cmd->error; |
143 | |
144 | /* Flag re-tuning needed on CRC errors */ |
145 | if (!mmc_op_tuning(opcode: cmd->opcode) && |
146 | !host->retune_crc_disable && |
147 | (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || |
148 | (mrq->data && mrq->data->error == -EILSEQ) || |
149 | (mrq->stop && mrq->stop->error == -EILSEQ))) |
150 | mmc_retune_needed(host); |
151 | |
152 | if (err && cmd->retries && mmc_host_is_spi(host)) { |
153 | if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) |
154 | cmd->retries = 0; |
155 | } |
156 | |
157 | if (host->ongoing_mrq == mrq) |
158 | host->ongoing_mrq = NULL; |
159 | |
160 | mmc_complete_cmd(mrq); |
161 | |
162 | trace_mmc_request_done(host, mrq); |
163 | |
164 | /* |
165 | * We list various conditions for the command to be considered |
166 | * properly done: |
167 | * |
168 | * - There was no error, OK fine then |
169 | * - We are not doing some kind of retry |
170 | * - The card was removed (...so just complete everything no matter |
171 | * if there are errors or retries) |
172 | */ |
173 | if (!err || !cmd->retries || mmc_card_removed(host->card)) { |
174 | mmc_should_fail_request(host, mrq); |
175 | |
176 | if (!host->ongoing_mrq) |
177 | led_trigger_event(trigger: host->led, event: LED_OFF); |
178 | |
179 | if (mrq->sbc) { |
180 | pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", |
181 | mmc_hostname(host), mrq->sbc->opcode, |
182 | mrq->sbc->error, |
183 | mrq->sbc->resp[0], mrq->sbc->resp[1], |
184 | mrq->sbc->resp[2], mrq->sbc->resp[3]); |
185 | } |
186 | |
187 | pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", |
188 | mmc_hostname(host), cmd->opcode, err, |
189 | cmd->resp[0], cmd->resp[1], |
190 | cmd->resp[2], cmd->resp[3]); |
191 | |
192 | if (mrq->data) { |
193 | pr_debug("%s: %d bytes transferred: %d\n", |
194 | mmc_hostname(host), |
195 | mrq->data->bytes_xfered, mrq->data->error); |
196 | } |
197 | |
198 | if (mrq->stop) { |
199 | pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", |
200 | mmc_hostname(host), mrq->stop->opcode, |
201 | mrq->stop->error, |
202 | mrq->stop->resp[0], mrq->stop->resp[1], |
203 | mrq->stop->resp[2], mrq->stop->resp[3]); |
204 | } |
205 | } |
206 | /* |
207 | * Request starter must handle retries - see |
208 | * mmc_wait_for_req_done(). |
209 | */ |
210 | if (mrq->done) |
211 | mrq->done(mrq); |
212 | } |
213 | |
214 | EXPORT_SYMBOL(mmc_request_done); |
215 | |
216 | static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
217 | { |
218 | int err; |
219 | |
220 | /* Assumes host controller has been runtime resumed by mmc_claim_host */ |
221 | err = mmc_retune(host); |
222 | if (err) { |
223 | mrq->cmd->error = err; |
224 | mmc_request_done(host, mrq); |
225 | return; |
226 | } |
227 | |
228 | /* |
229 | * For sdio rw commands we must wait for card busy otherwise some |
230 | * sdio devices won't work properly. |
231 | * And bypass I/O abort, reset and bus suspend operations. |
232 | */ |
233 | if (sdio_is_io_busy(opcode: mrq->cmd->opcode, arg: mrq->cmd->arg) && |
234 | host->ops->card_busy) { |
235 | int tries = 500; /* Wait aprox 500ms at maximum */ |
236 | |
237 | while (host->ops->card_busy(host) && --tries) |
238 | mmc_delay(ms: 1); |
239 | |
240 | if (tries == 0) { |
241 | mrq->cmd->error = -EBUSY; |
242 | mmc_request_done(host, mrq); |
243 | return; |
244 | } |
245 | } |
246 | |
247 | if (mrq->cap_cmd_during_tfr) { |
248 | host->ongoing_mrq = mrq; |
249 | /* |
250 | * Retry path could come through here without having waiting on |
251 | * cmd_completion, so ensure it is reinitialised. |
252 | */ |
253 | reinit_completion(x: &mrq->cmd_completion); |
254 | } |
255 | |
256 | trace_mmc_request_start(host, mrq); |
257 | |
258 | if (host->cqe_on) |
259 | host->cqe_ops->cqe_off(host); |
260 | |
261 | host->ops->request(host, mrq); |
262 | } |
263 | |
264 | static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, |
265 | bool cqe) |
266 | { |
267 | if (mrq->sbc) { |
268 | pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", |
269 | mmc_hostname(host), mrq->sbc->opcode, |
270 | mrq->sbc->arg, mrq->sbc->flags); |
271 | } |
272 | |
273 | if (mrq->cmd) { |
274 | pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", |
275 | mmc_hostname(host), cqe ? "CQE direct ": "", |
276 | mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); |
277 | } else if (cqe) { |
278 | pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", |
279 | mmc_hostname(host), mrq->tag, mrq->data->blk_addr); |
280 | } |
281 | |
282 | if (mrq->data) { |
283 | pr_debug("%s: blksz %d blocks %d flags %08x " |
284 | "tsac %d ms nsac %d\n", |
285 | mmc_hostname(host), mrq->data->blksz, |
286 | mrq->data->blocks, mrq->data->flags, |
287 | mrq->data->timeout_ns / 1000000, |
288 | mrq->data->timeout_clks); |
289 | } |
290 | |
291 | if (mrq->stop) { |
292 | pr_debug("%s: CMD%u arg %08x flags %08x\n", |
293 | mmc_hostname(host), mrq->stop->opcode, |
294 | mrq->stop->arg, mrq->stop->flags); |
295 | } |
296 | } |
297 | |
298 | static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) |
299 | { |
300 | unsigned int i, sz = 0; |
301 | struct scatterlist *sg; |
302 | |
303 | if (mrq->cmd) { |
304 | mrq->cmd->error = 0; |
305 | mrq->cmd->mrq = mrq; |
306 | mrq->cmd->data = mrq->data; |
307 | } |
308 | if (mrq->sbc) { |
309 | mrq->sbc->error = 0; |
310 | mrq->sbc->mrq = mrq; |
311 | } |
312 | if (mrq->data) { |
313 | if (mrq->data->blksz > host->max_blk_size || |
314 | mrq->data->blocks > host->max_blk_count || |
315 | mrq->data->blocks * mrq->data->blksz > host->max_req_size) |
316 | return -EINVAL; |
317 | |
318 | for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) |
319 | sz += sg->length; |
320 | if (sz != mrq->data->blocks * mrq->data->blksz) |
321 | return -EINVAL; |
322 | |
323 | mrq->data->error = 0; |
324 | mrq->data->mrq = mrq; |
325 | if (mrq->stop) { |
326 | mrq->data->stop = mrq->stop; |
327 | mrq->stop->error = 0; |
328 | mrq->stop->mrq = mrq; |
329 | } |
330 | } |
331 | |
332 | return 0; |
333 | } |
334 | |
335 | int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) |
336 | { |
337 | int err; |
338 | |
339 | init_completion(x: &mrq->cmd_completion); |
340 | |
341 | mmc_retune_hold(host); |
342 | |
343 | if (mmc_card_removed(host->card)) |
344 | return -ENOMEDIUM; |
345 | |
346 | mmc_mrq_pr_debug(host, mrq, cqe: false); |
347 | |
348 | WARN_ON(!host->claimed); |
349 | |
350 | err = mmc_mrq_prep(host, mrq); |
351 | if (err) |
352 | return err; |
353 | |
354 | led_trigger_event(trigger: host->led, event: LED_FULL); |
355 | __mmc_start_request(host, mrq); |
356 | |
357 | return 0; |
358 | } |
359 | EXPORT_SYMBOL(mmc_start_request); |
360 | |
361 | static void mmc_wait_done(struct mmc_request *mrq) |
362 | { |
363 | complete(&mrq->completion); |
364 | } |
365 | |
366 | static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) |
367 | { |
368 | struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); |
369 | |
370 | /* |
371 | * If there is an ongoing transfer, wait for the command line to become |
372 | * available. |
373 | */ |
374 | if (ongoing_mrq && !completion_done(x: &ongoing_mrq->cmd_completion)) |
375 | wait_for_completion(&ongoing_mrq->cmd_completion); |
376 | } |
377 | |
378 | static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) |
379 | { |
380 | int err; |
381 | |
382 | mmc_wait_ongoing_tfr_cmd(host); |
383 | |
384 | init_completion(x: &mrq->completion); |
385 | mrq->done = mmc_wait_done; |
386 | |
387 | err = mmc_start_request(host, mrq); |
388 | if (err) { |
389 | mrq->cmd->error = err; |
390 | mmc_complete_cmd(mrq); |
391 | complete(&mrq->completion); |
392 | } |
393 | |
394 | return err; |
395 | } |
396 | |
397 | void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) |
398 | { |
399 | struct mmc_command *cmd; |
400 | |
401 | while (1) { |
402 | wait_for_completion(&mrq->completion); |
403 | |
404 | cmd = mrq->cmd; |
405 | |
406 | if (!cmd->error || !cmd->retries || |
407 | mmc_card_removed(host->card)) |
408 | break; |
409 | |
410 | mmc_retune_recheck(host); |
411 | |
412 | pr_debug("%s: req failed (CMD%u): %d, retrying...\n", |
413 | mmc_hostname(host), cmd->opcode, cmd->error); |
414 | cmd->retries--; |
415 | cmd->error = 0; |
416 | __mmc_start_request(host, mrq); |
417 | } |
418 | |
419 | mmc_retune_release(host); |
420 | } |
421 | EXPORT_SYMBOL(mmc_wait_for_req_done); |
422 | |
423 | /* |
424 | * mmc_cqe_start_req - Start a CQE request. |
425 | * @host: MMC host to start the request |
426 | * @mrq: request to start |
427 | * |
428 | * Start the request, re-tuning if needed and it is possible. Returns an error |
429 | * code if the request fails to start or -EBUSY if CQE is busy. |
430 | */ |
431 | int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) |
432 | { |
433 | int err; |
434 | |
435 | /* |
436 | * CQE cannot process re-tuning commands. Caller must hold retuning |
437 | * while CQE is in use. Re-tuning can happen here only when CQE has no |
438 | * active requests i.e. this is the first. Note, re-tuning will call |
439 | * ->cqe_off(). |
440 | */ |
441 | err = mmc_retune(host); |
442 | if (err) |
443 | goto out_err; |
444 | |
445 | mrq->host = host; |
446 | |
447 | mmc_mrq_pr_debug(host, mrq, cqe: true); |
448 | |
449 | err = mmc_mrq_prep(host, mrq); |
450 | if (err) |
451 | goto out_err; |
452 | |
453 | err = host->cqe_ops->cqe_request(host, mrq); |
454 | if (err) |
455 | goto out_err; |
456 | |
457 | trace_mmc_request_start(host, mrq); |
458 | |
459 | return 0; |
460 | |
461 | out_err: |
462 | if (mrq->cmd) { |
463 | pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", |
464 | mmc_hostname(host), mrq->cmd->opcode, err); |
465 | } else { |
466 | pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", |
467 | mmc_hostname(host), mrq->tag, err); |
468 | } |
469 | return err; |
470 | } |
471 | EXPORT_SYMBOL(mmc_cqe_start_req); |
472 | |
473 | /** |
474 | * mmc_cqe_request_done - CQE has finished processing an MMC request |
475 | * @host: MMC host which completed request |
476 | * @mrq: MMC request which completed |
477 | * |
478 | * CQE drivers should call this function when they have completed |
479 | * their processing of a request. |
480 | */ |
481 | void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) |
482 | { |
483 | mmc_should_fail_request(host, mrq); |
484 | |
485 | /* Flag re-tuning needed on CRC errors */ |
486 | if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || |
487 | (mrq->data && mrq->data->error == -EILSEQ)) |
488 | mmc_retune_needed(host); |
489 | |
490 | trace_mmc_request_done(host, mrq); |
491 | |
492 | if (mrq->cmd) { |
493 | pr_debug("%s: CQE req done (direct CMD%u): %d\n", |
494 | mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); |
495 | } else { |
496 | pr_debug("%s: CQE transfer done tag %d\n", |
497 | mmc_hostname(host), mrq->tag); |
498 | } |
499 | |
500 | if (mrq->data) { |
501 | pr_debug("%s: %d bytes transferred: %d\n", |
502 | mmc_hostname(host), |
503 | mrq->data->bytes_xfered, mrq->data->error); |
504 | } |
505 | |
506 | mrq->done(mrq); |
507 | } |
508 | EXPORT_SYMBOL(mmc_cqe_request_done); |
509 | |
510 | /** |
511 | * mmc_cqe_post_req - CQE post process of a completed MMC request |
512 | * @host: MMC host |
513 | * @mrq: MMC request to be processed |
514 | */ |
515 | void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) |
516 | { |
517 | if (host->cqe_ops->cqe_post_req) |
518 | host->cqe_ops->cqe_post_req(host, mrq); |
519 | } |
520 | EXPORT_SYMBOL(mmc_cqe_post_req); |
521 | |
522 | /* Arbitrary 1 second timeout */ |
523 | #define MMC_CQE_RECOVERY_TIMEOUT 1000 |
524 | |
525 | /* |
526 | * mmc_cqe_recovery - Recover from CQE errors. |
527 | * @host: MMC host to recover |
528 | * |
529 | * Recovery consists of stopping CQE, stopping eMMC, discarding the queue |
530 | * in eMMC, and discarding the queue in CQE. CQE must call |
531 | * mmc_cqe_request_done() on all requests. An error is returned if the eMMC |
532 | * fails to discard its queue. |
533 | */ |
534 | int mmc_cqe_recovery(struct mmc_host *host) |
535 | { |
536 | struct mmc_command cmd; |
537 | int err; |
538 | |
539 | mmc_retune_hold_now(host); |
540 | |
541 | /* |
542 | * Recovery is expected seldom, if at all, but it reduces performance, |
543 | * so make sure it is not completely silent. |
544 | */ |
545 | pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); |
546 | |
547 | host->cqe_ops->cqe_recovery_start(host); |
548 | |
549 | memset(&cmd, 0, sizeof(cmd)); |
550 | cmd.opcode = MMC_STOP_TRANSMISSION; |
551 | cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; |
552 | cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ |
553 | cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; |
554 | mmc_wait_for_cmd(host, cmd: &cmd, MMC_CMD_RETRIES); |
555 | |
556 | mmc_poll_for_busy(card: host->card, MMC_CQE_RECOVERY_TIMEOUT, retry_crc_err: true, busy_cmd: MMC_BUSY_IO); |
557 | |
558 | memset(&cmd, 0, sizeof(cmd)); |
559 | cmd.opcode = MMC_CMDQ_TASK_MGMT; |
560 | cmd.arg = 1; /* Discard entire queue */ |
561 | cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; |
562 | cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ |
563 | cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; |
564 | err = mmc_wait_for_cmd(host, cmd: &cmd, MMC_CMD_RETRIES); |
565 | |
566 | host->cqe_ops->cqe_recovery_finish(host); |
567 | |
568 | if (err) |
569 | err = mmc_wait_for_cmd(host, cmd: &cmd, MMC_CMD_RETRIES); |
570 | |
571 | mmc_retune_release(host); |
572 | |
573 | return err; |
574 | } |
575 | EXPORT_SYMBOL(mmc_cqe_recovery); |
576 | |
577 | /** |
578 | * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done |
579 | * @host: MMC host |
580 | * @mrq: MMC request |
581 | * |
582 | * mmc_is_req_done() is used with requests that have |
583 | * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after |
584 | * starting a request and before waiting for it to complete. That is, |
585 | * either in between calls to mmc_start_req(), or after mmc_wait_for_req() |
586 | * and before mmc_wait_for_req_done(). If it is called at other times the |
587 | * result is not meaningful. |
588 | */ |
589 | bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) |
590 | { |
591 | return completion_done(x: &mrq->completion); |
592 | } |
593 | EXPORT_SYMBOL(mmc_is_req_done); |
594 | |
595 | /** |
596 | * mmc_wait_for_req - start a request and wait for completion |
597 | * @host: MMC host to start command |
598 | * @mrq: MMC request to start |
599 | * |
600 | * Start a new MMC custom command request for a host, and wait |
601 | * for the command to complete. In the case of 'cap_cmd_during_tfr' |
602 | * requests, the transfer is ongoing and the caller can issue further |
603 | * commands that do not use the data lines, and then wait by calling |
604 | * mmc_wait_for_req_done(). |
605 | * Does not attempt to parse the response. |
606 | */ |
607 | void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) |
608 | { |
609 | __mmc_start_req(host, mrq); |
610 | |
611 | if (!mrq->cap_cmd_during_tfr) |
612 | mmc_wait_for_req_done(host, mrq); |
613 | } |
614 | EXPORT_SYMBOL(mmc_wait_for_req); |
615 | |
616 | /** |
617 | * mmc_wait_for_cmd - start a command and wait for completion |
618 | * @host: MMC host to start command |
619 | * @cmd: MMC command to start |
620 | * @retries: maximum number of retries |
621 | * |
622 | * Start a new MMC command for a host, and wait for the command |
623 | * to complete. Return any error that occurred while the command |
624 | * was executing. Do not attempt to parse the response. |
625 | */ |
626 | int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) |
627 | { |
628 | struct mmc_request mrq = {}; |
629 | |
630 | WARN_ON(!host->claimed); |
631 | |
632 | memset(cmd->resp, 0, sizeof(cmd->resp)); |
633 | cmd->retries = retries; |
634 | |
635 | mrq.cmd = cmd; |
636 | cmd->data = NULL; |
637 | |
638 | mmc_wait_for_req(host, &mrq); |
639 | |
640 | return cmd->error; |
641 | } |
642 | |
643 | EXPORT_SYMBOL(mmc_wait_for_cmd); |
644 | |
645 | /** |
646 | * mmc_set_data_timeout - set the timeout for a data command |
647 | * @data: data phase for command |
648 | * @card: the MMC card associated with the data transfer |
649 | * |
650 | * Computes the data timeout parameters according to the |
651 | * correct algorithm given the card type. |
652 | */ |
653 | void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) |
654 | { |
655 | unsigned int mult; |
656 | |
657 | /* |
658 | * SDIO cards only define an upper 1 s limit on access. |
659 | */ |
660 | if (mmc_card_sdio(card)) { |
661 | data->timeout_ns = 1000000000; |
662 | data->timeout_clks = 0; |
663 | return; |
664 | } |
665 | |
666 | /* |
667 | * SD cards use a 100 multiplier rather than 10 |
668 | */ |
669 | mult = mmc_card_sd(card) ? 100 : 10; |
670 | |
671 | /* |
672 | * Scale up the multiplier (and therefore the timeout) by |
673 | * the r2w factor for writes. |
674 | */ |
675 | if (data->flags & MMC_DATA_WRITE) |
676 | mult <<= card->csd.r2w_factor; |
677 | |
678 | data->timeout_ns = card->csd.taac_ns * mult; |
679 | data->timeout_clks = card->csd.taac_clks * mult; |
680 | |
681 | /* |
682 | * SD cards also have an upper limit on the timeout. |
683 | */ |
684 | if (mmc_card_sd(card)) { |
685 | unsigned int timeout_us, limit_us; |
686 | |
687 | timeout_us = data->timeout_ns / 1000; |
688 | if (card->host->ios.clock) |
689 | timeout_us += data->timeout_clks * 1000 / |
690 | (card->host->ios.clock / 1000); |
691 | |
692 | if (data->flags & MMC_DATA_WRITE) |
693 | /* |
694 | * The MMC spec "It is strongly recommended |
695 | * for hosts to implement more than 500ms |
696 | * timeout value even if the card indicates |
697 | * the 250ms maximum busy length." Even the |
698 | * previous value of 300ms is known to be |
699 | * insufficient for some cards. |
700 | */ |
701 | limit_us = 3000000; |
702 | else |
703 | limit_us = 100000; |
704 | |
705 | /* |
706 | * SDHC cards always use these fixed values. |
707 | */ |
708 | if (timeout_us > limit_us) { |
709 | data->timeout_ns = limit_us * 1000; |
710 | data->timeout_clks = 0; |
711 | } |
712 | |
713 | /* assign limit value if invalid */ |
714 | if (timeout_us == 0) |
715 | data->timeout_ns = limit_us * 1000; |
716 | } |
717 | |
718 | /* |
719 | * Some cards require longer data read timeout than indicated in CSD. |
720 | * Address this by setting the read timeout to a "reasonably high" |
721 | * value. For the cards tested, 600ms has proven enough. If necessary, |
722 | * this value can be increased if other problematic cards require this. |
723 | */ |
724 | if (mmc_card_long_read_time(c: card) && data->flags & MMC_DATA_READ) { |
725 | data->timeout_ns = 600000000; |
726 | data->timeout_clks = 0; |
727 | } |
728 | |
729 | /* |
730 | * Some cards need very high timeouts if driven in SPI mode. |
731 | * The worst observed timeout was 900ms after writing a |
732 | * continuous stream of data until the internal logic |
733 | * overflowed. |
734 | */ |
735 | if (mmc_host_is_spi(card->host)) { |
736 | if (data->flags & MMC_DATA_WRITE) { |
737 | if (data->timeout_ns < 1000000000) |
738 | data->timeout_ns = 1000000000; /* 1s */ |
739 | } else { |
740 | if (data->timeout_ns < 100000000) |
741 | data->timeout_ns = 100000000; /* 100ms */ |
742 | } |
743 | } |
744 | } |
745 | EXPORT_SYMBOL(mmc_set_data_timeout); |
746 | |
747 | /* |
748 | * Allow claiming an already claimed host if the context is the same or there is |
749 | * no context but the task is the same. |
750 | */ |
751 | static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, |
752 | struct task_struct *task) |
753 | { |
754 | return host->claimer == ctx || |
755 | (!ctx && task && host->claimer->task == task); |
756 | } |
757 | |
758 | static inline void mmc_ctx_set_claimer(struct mmc_host *host, |
759 | struct mmc_ctx *ctx, |
760 | struct task_struct *task) |
761 | { |
762 | if (!host->claimer) { |
763 | if (ctx) |
764 | host->claimer = ctx; |
765 | else |
766 | host->claimer = &host->default_ctx; |
767 | } |
768 | if (task) |
769 | host->claimer->task = task; |
770 | } |
771 | |
772 | /** |
773 | * __mmc_claim_host - exclusively claim a host |
774 | * @host: mmc host to claim |
775 | * @ctx: context that claims the host or NULL in which case the default |
776 | * context will be used |
777 | * @abort: whether or not the operation should be aborted |
778 | * |
779 | * Claim a host for a set of operations. If @abort is non null and |
780 | * dereference a non-zero value then this will return prematurely with |
781 | * that non-zero value without acquiring the lock. Returns zero |
782 | * with the lock held otherwise. |
783 | */ |
784 | int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, |
785 | atomic_t *abort) |
786 | { |
787 | struct task_struct *task = ctx ? NULL : current; |
788 | DECLARE_WAITQUEUE(wait, current); |
789 | unsigned long flags; |
790 | int stop; |
791 | bool pm = false; |
792 | |
793 | might_sleep(); |
794 | |
795 | add_wait_queue(wq_head: &host->wq, wq_entry: &wait); |
796 | spin_lock_irqsave(&host->lock, flags); |
797 | while (1) { |
798 | set_current_state(TASK_UNINTERRUPTIBLE); |
799 | stop = abort ? atomic_read(v: abort) : 0; |
800 | if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) |
801 | break; |
802 | spin_unlock_irqrestore(lock: &host->lock, flags); |
803 | schedule(); |
804 | spin_lock_irqsave(&host->lock, flags); |
805 | } |
806 | set_current_state(TASK_RUNNING); |
807 | if (!stop) { |
808 | host->claimed = 1; |
809 | mmc_ctx_set_claimer(host, ctx, task); |
810 | host->claim_cnt += 1; |
811 | if (host->claim_cnt == 1) |
812 | pm = true; |
813 | } else |
814 | wake_up(&host->wq); |
815 | spin_unlock_irqrestore(lock: &host->lock, flags); |
816 | remove_wait_queue(wq_head: &host->wq, wq_entry: &wait); |
817 | |
818 | if (pm) |
819 | pm_runtime_get_sync(mmc_dev(host)); |
820 | |
821 | return stop; |
822 | } |
823 | EXPORT_SYMBOL(__mmc_claim_host); |
824 | |
825 | /** |
826 | * mmc_release_host - release a host |
827 | * @host: mmc host to release |
828 | * |
829 | * Release a MMC host, allowing others to claim the host |
830 | * for their operations. |
831 | */ |
832 | void mmc_release_host(struct mmc_host *host) |
833 | { |
834 | unsigned long flags; |
835 | |
836 | WARN_ON(!host->claimed); |
837 | |
838 | spin_lock_irqsave(&host->lock, flags); |
839 | if (--host->claim_cnt) { |
840 | /* Release for nested claim */ |
841 | spin_unlock_irqrestore(lock: &host->lock, flags); |
842 | } else { |
843 | host->claimed = 0; |
844 | host->claimer->task = NULL; |
845 | host->claimer = NULL; |
846 | spin_unlock_irqrestore(lock: &host->lock, flags); |
847 | wake_up(&host->wq); |
848 | pm_runtime_mark_last_busy(mmc_dev(host)); |
849 | if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) |
850 | pm_runtime_put_sync_suspend(mmc_dev(host)); |
851 | else |
852 | pm_runtime_put_autosuspend(mmc_dev(host)); |
853 | } |
854 | } |
855 | EXPORT_SYMBOL(mmc_release_host); |
856 | |
857 | /* |
858 | * This is a helper function, which fetches a runtime pm reference for the |
859 | * card device and also claims the host. |
860 | */ |
861 | void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) |
862 | { |
863 | pm_runtime_get_sync(dev: &card->dev); |
864 | __mmc_claim_host(card->host, ctx, NULL); |
865 | } |
866 | EXPORT_SYMBOL(mmc_get_card); |
867 | |
868 | /* |
869 | * This is a helper function, which releases the host and drops the runtime |
870 | * pm reference for the card device. |
871 | */ |
872 | void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) |
873 | { |
874 | struct mmc_host *host = card->host; |
875 | |
876 | WARN_ON(ctx && host->claimer != ctx); |
877 | |
878 | mmc_release_host(host); |
879 | pm_runtime_mark_last_busy(dev: &card->dev); |
880 | pm_runtime_put_autosuspend(dev: &card->dev); |
881 | } |
882 | EXPORT_SYMBOL(mmc_put_card); |
883 | |
884 | /* |
885 | * Internal function that does the actual ios call to the host driver, |
886 | * optionally printing some debug output. |
887 | */ |
888 | static inline void mmc_set_ios(struct mmc_host *host) |
889 | { |
890 | struct mmc_ios *ios = &host->ios; |
891 | |
892 | pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " |
893 | "width %u timing %u\n", |
894 | mmc_hostname(host), ios->clock, ios->bus_mode, |
895 | ios->power_mode, ios->chip_select, ios->vdd, |
896 | 1 << ios->bus_width, ios->timing); |
897 | |
898 | host->ops->set_ios(host, ios); |
899 | } |
900 | |
901 | /* |
902 | * Control chip select pin on a host. |
903 | */ |
904 | void mmc_set_chip_select(struct mmc_host *host, int mode) |
905 | { |
906 | host->ios.chip_select = mode; |
907 | mmc_set_ios(host); |
908 | } |
909 | |
910 | /* |
911 | * Sets the host clock to the highest possible frequency that |
912 | * is below "hz". |
913 | */ |
914 | void mmc_set_clock(struct mmc_host *host, unsigned int hz) |
915 | { |
916 | WARN_ON(hz && hz < host->f_min); |
917 | |
918 | if (hz > host->f_max) |
919 | hz = host->f_max; |
920 | |
921 | host->ios.clock = hz; |
922 | mmc_set_ios(host); |
923 | } |
924 | |
925 | int mmc_execute_tuning(struct mmc_card *card) |
926 | { |
927 | struct mmc_host *host = card->host; |
928 | u32 opcode; |
929 | int err; |
930 | |
931 | if (!host->ops->execute_tuning) |
932 | return 0; |
933 | |
934 | if (host->cqe_on) |
935 | host->cqe_ops->cqe_off(host); |
936 | |
937 | if (mmc_card_mmc(card)) |
938 | opcode = MMC_SEND_TUNING_BLOCK_HS200; |
939 | else |
940 | opcode = MMC_SEND_TUNING_BLOCK; |
941 | |
942 | err = host->ops->execute_tuning(host, opcode); |
943 | if (!err) { |
944 | mmc_retune_clear(host); |
945 | mmc_retune_enable(host); |
946 | return 0; |
947 | } |
948 | |
949 | /* Only print error when we don't check for card removal */ |
950 | if (!host->detect_change) { |
951 | pr_err("%s: tuning execution failed: %d\n", |
952 | mmc_hostname(host), err); |
953 | mmc_debugfs_err_stats_inc(host, stat: MMC_ERR_TUNING); |
954 | } |
955 | |
956 | return err; |
957 | } |
958 | |
959 | /* |
960 | * Change the bus mode (open drain/push-pull) of a host. |
961 | */ |
962 | void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) |
963 | { |
964 | host->ios.bus_mode = mode; |
965 | mmc_set_ios(host); |
966 | } |
967 | |
968 | /* |
969 | * Change data bus width of a host. |
970 | */ |
971 | void mmc_set_bus_width(struct mmc_host *host, unsigned int width) |
972 | { |
973 | host->ios.bus_width = width; |
974 | mmc_set_ios(host); |
975 | } |
976 | |
977 | /* |
978 | * Set initial state after a power cycle or a hw_reset. |
979 | */ |
980 | void mmc_set_initial_state(struct mmc_host *host) |
981 | { |
982 | if (host->cqe_on) |
983 | host->cqe_ops->cqe_off(host); |
984 | |
985 | mmc_retune_disable(host); |
986 | |
987 | if (mmc_host_is_spi(host)) |
988 | host->ios.chip_select = MMC_CS_HIGH; |
989 | else |
990 | host->ios.chip_select = MMC_CS_DONTCARE; |
991 | host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; |
992 | host->ios.bus_width = MMC_BUS_WIDTH_1; |
993 | host->ios.timing = MMC_TIMING_LEGACY; |
994 | host->ios.drv_type = 0; |
995 | host->ios.enhanced_strobe = false; |
996 | |
997 | /* |
998 | * Make sure we are in non-enhanced strobe mode before we |
999 | * actually enable it in ext_csd. |
1000 | */ |
1001 | if ((host->caps2 & MMC_CAP2_HS400_ES) && |
1002 | host->ops->hs400_enhanced_strobe) |
1003 | host->ops->hs400_enhanced_strobe(host, &host->ios); |
1004 | |
1005 | mmc_set_ios(host); |
1006 | |
1007 | mmc_crypto_set_initial_state(host); |
1008 | } |
1009 | |
1010 | /** |
1011 | * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number |
1012 | * @vdd: voltage (mV) |
1013 | * @low_bits: prefer low bits in boundary cases |
1014 | * |
1015 | * This function returns the OCR bit number according to the provided @vdd |
1016 | * value. If conversion is not possible a negative errno value returned. |
1017 | * |
1018 | * Depending on the @low_bits flag the function prefers low or high OCR bits |
1019 | * on boundary voltages. For example, |
1020 | * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); |
1021 | * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); |
1022 | * |
1023 | * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). |
1024 | */ |
1025 | static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) |
1026 | { |
1027 | const int max_bit = ilog2(MMC_VDD_35_36); |
1028 | int bit; |
1029 | |
1030 | if (vdd < 1650 || vdd > 3600) |
1031 | return -EINVAL; |
1032 | |
1033 | if (vdd >= 1650 && vdd <= 1950) |
1034 | return ilog2(MMC_VDD_165_195); |
1035 | |
1036 | if (low_bits) |
1037 | vdd -= 1; |
1038 | |
1039 | /* Base 2000 mV, step 100 mV, bit's base 8. */ |
1040 | bit = (vdd - 2000) / 100 + 8; |
1041 | if (bit > max_bit) |
1042 | return max_bit; |
1043 | return bit; |
1044 | } |
1045 | |
1046 | /** |
1047 | * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask |
1048 | * @vdd_min: minimum voltage value (mV) |
1049 | * @vdd_max: maximum voltage value (mV) |
1050 | * |
1051 | * This function returns the OCR mask bits according to the provided @vdd_min |
1052 | * and @vdd_max values. If conversion is not possible the function returns 0. |
1053 | * |
1054 | * Notes wrt boundary cases: |
1055 | * This function sets the OCR bits for all boundary voltages, for example |
1056 | * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | |
1057 | * MMC_VDD_34_35 mask. |
1058 | */ |
1059 | u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) |
1060 | { |
1061 | u32 mask = 0; |
1062 | |
1063 | if (vdd_max < vdd_min) |
1064 | return 0; |
1065 | |
1066 | /* Prefer high bits for the boundary vdd_max values. */ |
1067 | vdd_max = mmc_vdd_to_ocrbitnum(vdd: vdd_max, low_bits: false); |
1068 | if (vdd_max < 0) |
1069 | return 0; |
1070 | |
1071 | /* Prefer low bits for the boundary vdd_min values. */ |
1072 | vdd_min = mmc_vdd_to_ocrbitnum(vdd: vdd_min, low_bits: true); |
1073 | if (vdd_min < 0) |
1074 | return 0; |
1075 | |
1076 | /* Fill the mask, from max bit to min bit. */ |
1077 | while (vdd_max >= vdd_min) |
1078 | mask |= 1 << vdd_max--; |
1079 | |
1080 | return mask; |
1081 | } |
1082 | |
1083 | static int mmc_of_get_func_num(struct device_node *node) |
1084 | { |
1085 | u32 reg; |
1086 | int ret; |
1087 | |
1088 | ret = of_property_read_u32(np: node, propname: "reg", out_value: ®); |
1089 | if (ret < 0) |
1090 | return ret; |
1091 | |
1092 | return reg; |
1093 | } |
1094 | |
1095 | struct device_node *mmc_of_find_child_device(struct mmc_host *host, |
1096 | unsigned func_num) |
1097 | { |
1098 | struct device_node *node; |
1099 | |
1100 | if (!host->parent || !host->parent->of_node) |
1101 | return NULL; |
1102 | |
1103 | for_each_child_of_node(host->parent->of_node, node) { |
1104 | if (mmc_of_get_func_num(node) == func_num) |
1105 | return node; |
1106 | } |
1107 | |
1108 | return NULL; |
1109 | } |
1110 | |
1111 | /* |
1112 | * Mask off any voltages we don't support and select |
1113 | * the lowest voltage |
1114 | */ |
1115 | u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) |
1116 | { |
1117 | int bit; |
1118 | |
1119 | /* |
1120 | * Sanity check the voltages that the card claims to |
1121 | * support. |
1122 | */ |
1123 | if (ocr & 0x7F) { |
1124 | dev_warn(mmc_dev(host), |
1125 | "card claims to support voltages below defined range\n"); |
1126 | ocr &= ~0x7F; |
1127 | } |
1128 | |
1129 | ocr &= host->ocr_avail; |
1130 | if (!ocr) { |
1131 | dev_warn(mmc_dev(host), "no support for card's volts\n"); |
1132 | return 0; |
1133 | } |
1134 | |
1135 | if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { |
1136 | bit = ffs(ocr) - 1; |
1137 | ocr &= 3 << bit; |
1138 | mmc_power_cycle(host, ocr); |
1139 | } else { |
1140 | bit = fls(x: ocr) - 1; |
1141 | /* |
1142 | * The bit variable represents the highest voltage bit set in |
1143 | * the OCR register. |
1144 | * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V), |
1145 | * we must shift the mask '3' with (bit - 1). |
1146 | */ |
1147 | ocr &= 3 << (bit - 1); |
1148 | if (bit != host->ios.vdd) |
1149 | dev_warn(mmc_dev(host), "exceeding card's volts\n"); |
1150 | } |
1151 | |
1152 | return ocr; |
1153 | } |
1154 | |
1155 | int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) |
1156 | { |
1157 | int err = 0; |
1158 | int old_signal_voltage = host->ios.signal_voltage; |
1159 | |
1160 | host->ios.signal_voltage = signal_voltage; |
1161 | if (host->ops->start_signal_voltage_switch) |
1162 | err = host->ops->start_signal_voltage_switch(host, &host->ios); |
1163 | |
1164 | if (err) |
1165 | host->ios.signal_voltage = old_signal_voltage; |
1166 | |
1167 | return err; |
1168 | |
1169 | } |
1170 | |
1171 | void mmc_set_initial_signal_voltage(struct mmc_host *host) |
1172 | { |
1173 | /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ |
1174 | if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) |
1175 | dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); |
1176 | else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) |
1177 | dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); |
1178 | else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) |
1179 | dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); |
1180 | } |
1181 | |
1182 | int mmc_host_set_uhs_voltage(struct mmc_host *host) |
1183 | { |
1184 | u32 clock; |
1185 | |
1186 | /* |
1187 | * During a signal voltage level switch, the clock must be gated |
1188 | * for 5 ms according to the SD spec |
1189 | */ |
1190 | clock = host->ios.clock; |
1191 | host->ios.clock = 0; |
1192 | mmc_set_ios(host); |
1193 | |
1194 | if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) |
1195 | return -EAGAIN; |
1196 | |
1197 | /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ |
1198 | mmc_delay(ms: 10); |
1199 | host->ios.clock = clock; |
1200 | mmc_set_ios(host); |
1201 | |
1202 | return 0; |
1203 | } |
1204 | |
1205 | int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) |
1206 | { |
1207 | struct mmc_command cmd = {}; |
1208 | int err = 0; |
1209 | |
1210 | /* |
1211 | * If we cannot switch voltages, return failure so the caller |
1212 | * can continue without UHS mode |
1213 | */ |
1214 | if (!host->ops->start_signal_voltage_switch) |
1215 | return -EPERM; |
1216 | if (!host->ops->card_busy) |
1217 | pr_warn("%s: cannot verify signal voltage switch\n", |
1218 | mmc_hostname(host)); |
1219 | |
1220 | cmd.opcode = SD_SWITCH_VOLTAGE; |
1221 | cmd.arg = 0; |
1222 | cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; |
1223 | |
1224 | err = mmc_wait_for_cmd(host, &cmd, 0); |
1225 | if (err) |
1226 | goto power_cycle; |
1227 | |
1228 | if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) |
1229 | return -EIO; |
1230 | |
1231 | /* |
1232 | * The card should drive cmd and dat[0:3] low immediately |
1233 | * after the response of cmd11, but wait 1 ms to be sure |
1234 | */ |
1235 | mmc_delay(ms: 1); |
1236 | if (host->ops->card_busy && !host->ops->card_busy(host)) { |
1237 | err = -EAGAIN; |
1238 | goto power_cycle; |
1239 | } |
1240 | |
1241 | if (mmc_host_set_uhs_voltage(host)) { |
1242 | /* |
1243 | * Voltages may not have been switched, but we've already |
1244 | * sent CMD11, so a power cycle is required anyway |
1245 | */ |
1246 | err = -EAGAIN; |
1247 | goto power_cycle; |
1248 | } |
1249 | |
1250 | /* Wait for at least 1 ms according to spec */ |
1251 | mmc_delay(ms: 1); |
1252 | |
1253 | /* |
1254 | * Failure to switch is indicated by the card holding |
1255 | * dat[0:3] low |
1256 | */ |
1257 | if (host->ops->card_busy && host->ops->card_busy(host)) |
1258 | err = -EAGAIN; |
1259 | |
1260 | power_cycle: |
1261 | if (err) { |
1262 | pr_debug("%s: Signal voltage switch failed, " |
1263 | "power cycling card\n", mmc_hostname(host)); |
1264 | mmc_power_cycle(host, ocr); |
1265 | } |
1266 | |
1267 | return err; |
1268 | } |
1269 | |
1270 | /* |
1271 | * Select timing parameters for host. |
1272 | */ |
1273 | void mmc_set_timing(struct mmc_host *host, unsigned int timing) |
1274 | { |
1275 | host->ios.timing = timing; |
1276 | mmc_set_ios(host); |
1277 | } |
1278 | |
1279 | /* |
1280 | * Select appropriate driver type for host. |
1281 | */ |
1282 | void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) |
1283 | { |
1284 | host->ios.drv_type = drv_type; |
1285 | mmc_set_ios(host); |
1286 | } |
1287 | |
1288 | int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, |
1289 | int card_drv_type, int *drv_type) |
1290 | { |
1291 | struct mmc_host *host = card->host; |
1292 | int host_drv_type = SD_DRIVER_TYPE_B; |
1293 | |
1294 | *drv_type = 0; |
1295 | |
1296 | if (!host->ops->select_drive_strength) |
1297 | return 0; |
1298 | |
1299 | /* Use SD definition of driver strength for hosts */ |
1300 | if (host->caps & MMC_CAP_DRIVER_TYPE_A) |
1301 | host_drv_type |= SD_DRIVER_TYPE_A; |
1302 | |
1303 | if (host->caps & MMC_CAP_DRIVER_TYPE_C) |
1304 | host_drv_type |= SD_DRIVER_TYPE_C; |
1305 | |
1306 | if (host->caps & MMC_CAP_DRIVER_TYPE_D) |
1307 | host_drv_type |= SD_DRIVER_TYPE_D; |
1308 | |
1309 | /* |
1310 | * The drive strength that the hardware can support |
1311 | * depends on the board design. Pass the appropriate |
1312 | * information and let the hardware specific code |
1313 | * return what is possible given the options |
1314 | */ |
1315 | return host->ops->select_drive_strength(card, max_dtr, |
1316 | host_drv_type, |
1317 | card_drv_type, |
1318 | drv_type); |
1319 | } |
1320 | |
1321 | /* |
1322 | * Apply power to the MMC stack. This is a two-stage process. |
1323 | * First, we enable power to the card without the clock running. |
1324 | * We then wait a bit for the power to stabilise. Finally, |
1325 | * enable the bus drivers and clock to the card. |
1326 | * |
1327 | * We must _NOT_ enable the clock prior to power stablising. |
1328 | * |
1329 | * If a host does all the power sequencing itself, ignore the |
1330 | * initial MMC_POWER_UP stage. |
1331 | */ |
1332 | void mmc_power_up(struct mmc_host *host, u32 ocr) |
1333 | { |
1334 | if (host->ios.power_mode == MMC_POWER_ON) |
1335 | return; |
1336 | |
1337 | mmc_pwrseq_pre_power_on(host); |
1338 | |
1339 | host->ios.vdd = fls(x: ocr) - 1; |
1340 | host->ios.power_mode = MMC_POWER_UP; |
1341 | /* Set initial state and call mmc_set_ios */ |
1342 | mmc_set_initial_state(host); |
1343 | |
1344 | mmc_set_initial_signal_voltage(host); |
1345 | |
1346 | /* |
1347 | * This delay should be sufficient to allow the power supply |
1348 | * to reach the minimum voltage. |
1349 | */ |
1350 | mmc_delay(ms: host->ios.power_delay_ms); |
1351 | |
1352 | mmc_pwrseq_post_power_on(host); |
1353 | |
1354 | host->ios.clock = host->f_init; |
1355 | |
1356 | host->ios.power_mode = MMC_POWER_ON; |
1357 | mmc_set_ios(host); |
1358 | |
1359 | /* |
1360 | * This delay must be at least 74 clock sizes, or 1 ms, or the |
1361 | * time required to reach a stable voltage. |
1362 | */ |
1363 | mmc_delay(ms: host->ios.power_delay_ms); |
1364 | } |
1365 | |
1366 | void mmc_power_off(struct mmc_host *host) |
1367 | { |
1368 | if (host->ios.power_mode == MMC_POWER_OFF) |
1369 | return; |
1370 | |
1371 | mmc_pwrseq_power_off(host); |
1372 | |
1373 | host->ios.clock = 0; |
1374 | host->ios.vdd = 0; |
1375 | |
1376 | host->ios.power_mode = MMC_POWER_OFF; |
1377 | /* Set initial state and call mmc_set_ios */ |
1378 | mmc_set_initial_state(host); |
1379 | |
1380 | /* |
1381 | * Some configurations, such as the 802.11 SDIO card in the OLPC |
1382 | * XO-1.5, require a short delay after poweroff before the card |
1383 | * can be successfully turned on again. |
1384 | */ |
1385 | mmc_delay(ms: 1); |
1386 | } |
1387 | |
1388 | void mmc_power_cycle(struct mmc_host *host, u32 ocr) |
1389 | { |
1390 | mmc_power_off(host); |
1391 | /* Wait at least 1 ms according to SD spec */ |
1392 | mmc_delay(ms: 1); |
1393 | mmc_power_up(host, ocr); |
1394 | } |
1395 | |
1396 | /* |
1397 | * Assign a mmc bus handler to a host. Only one bus handler may control a |
1398 | * host at any given time. |
1399 | */ |
1400 | void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) |
1401 | { |
1402 | host->bus_ops = ops; |
1403 | } |
1404 | |
1405 | /* |
1406 | * Remove the current bus handler from a host. |
1407 | */ |
1408 | void mmc_detach_bus(struct mmc_host *host) |
1409 | { |
1410 | host->bus_ops = NULL; |
1411 | } |
1412 | |
1413 | void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) |
1414 | { |
1415 | /* |
1416 | * Prevent system sleep for 5s to allow user space to consume the |
1417 | * corresponding uevent. This is especially useful, when CD irq is used |
1418 | * as a system wakeup, but doesn't hurt in other cases. |
1419 | */ |
1420 | if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL)) |
1421 | __pm_wakeup_event(ws: host->ws, msec: 5000); |
1422 | |
1423 | host->detect_change = 1; |
1424 | mmc_schedule_delayed_work(work: &host->detect, delay); |
1425 | } |
1426 | |
1427 | /** |
1428 | * mmc_detect_change - process change of state on a MMC socket |
1429 | * @host: host which changed state. |
1430 | * @delay: optional delay to wait before detection (jiffies) |
1431 | * |
1432 | * MMC drivers should call this when they detect a card has been |
1433 | * inserted or removed. The MMC layer will confirm that any |
1434 | * present card is still functional, and initialize any newly |
1435 | * inserted. |
1436 | */ |
1437 | void mmc_detect_change(struct mmc_host *host, unsigned long delay) |
1438 | { |
1439 | _mmc_detect_change(host, delay, cd_irq: true); |
1440 | } |
1441 | EXPORT_SYMBOL(mmc_detect_change); |
1442 | |
1443 | void mmc_init_erase(struct mmc_card *card) |
1444 | { |
1445 | unsigned int sz; |
1446 | |
1447 | if (is_power_of_2(n: card->erase_size)) |
1448 | card->erase_shift = ffs(card->erase_size) - 1; |
1449 | else |
1450 | card->erase_shift = 0; |
1451 | |
1452 | /* |
1453 | * It is possible to erase an arbitrarily large area of an SD or MMC |
1454 | * card. That is not desirable because it can take a long time |
1455 | * (minutes) potentially delaying more important I/O, and also the |
1456 | * timeout calculations become increasingly hugely over-estimated. |
1457 | * Consequently, 'pref_erase' is defined as a guide to limit erases |
1458 | * to that size and alignment. |
1459 | * |
1460 | * For SD cards that define Allocation Unit size, limit erases to one |
1461 | * Allocation Unit at a time. |
1462 | * For MMC, have a stab at ai good value and for modern cards it will |
1463 | * end up being 4MiB. Note that if the value is too small, it can end |
1464 | * up taking longer to erase. Also note, erase_size is already set to |
1465 | * High Capacity Erase Size if available when this function is called. |
1466 | */ |
1467 | if (mmc_card_sd(card) && card->ssr.au) { |
1468 | card->pref_erase = card->ssr.au; |
1469 | card->erase_shift = ffs(card->ssr.au) - 1; |
1470 | } else if (card->erase_size) { |
1471 | sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; |
1472 | if (sz < 128) |
1473 | card->pref_erase = 512 * 1024 / 512; |
1474 | else if (sz < 512) |
1475 | card->pref_erase = 1024 * 1024 / 512; |
1476 | else if (sz < 1024) |
1477 | card->pref_erase = 2 * 1024 * 1024 / 512; |
1478 | else |
1479 | card->pref_erase = 4 * 1024 * 1024 / 512; |
1480 | if (card->pref_erase < card->erase_size) |
1481 | card->pref_erase = card->erase_size; |
1482 | else { |
1483 | sz = card->pref_erase % card->erase_size; |
1484 | if (sz) |
1485 | card->pref_erase += card->erase_size - sz; |
1486 | } |
1487 | } else |
1488 | card->pref_erase = 0; |
1489 | } |
1490 | |
1491 | static bool is_trim_arg(unsigned int arg) |
1492 | { |
1493 | return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG; |
1494 | } |
1495 | |
1496 | static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, |
1497 | unsigned int arg, unsigned int qty) |
1498 | { |
1499 | unsigned int erase_timeout; |
1500 | |
1501 | if (arg == MMC_DISCARD_ARG || |
1502 | (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { |
1503 | erase_timeout = card->ext_csd.trim_timeout; |
1504 | } else if (card->ext_csd.erase_group_def & 1) { |
1505 | /* High Capacity Erase Group Size uses HC timeouts */ |
1506 | if (arg == MMC_TRIM_ARG) |
1507 | erase_timeout = card->ext_csd.trim_timeout; |
1508 | else |
1509 | erase_timeout = card->ext_csd.hc_erase_timeout; |
1510 | } else { |
1511 | /* CSD Erase Group Size uses write timeout */ |
1512 | unsigned int mult = (10 << card->csd.r2w_factor); |
1513 | unsigned int timeout_clks = card->csd.taac_clks * mult; |
1514 | unsigned int timeout_us; |
1515 | |
1516 | /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ |
1517 | if (card->csd.taac_ns < 1000000) |
1518 | timeout_us = (card->csd.taac_ns * mult) / 1000; |
1519 | else |
1520 | timeout_us = (card->csd.taac_ns / 1000) * mult; |
1521 | |
1522 | /* |
1523 | * ios.clock is only a target. The real clock rate might be |
1524 | * less but not that much less, so fudge it by multiplying by 2. |
1525 | */ |
1526 | timeout_clks <<= 1; |
1527 | timeout_us += (timeout_clks * 1000) / |
1528 | (card->host->ios.clock / 1000); |
1529 | |
1530 | erase_timeout = timeout_us / 1000; |
1531 | |
1532 | /* |
1533 | * Theoretically, the calculation could underflow so round up |
1534 | * to 1ms in that case. |
1535 | */ |
1536 | if (!erase_timeout) |
1537 | erase_timeout = 1; |
1538 | } |
1539 | |
1540 | /* Multiplier for secure operations */ |
1541 | if (arg & MMC_SECURE_ARGS) { |
1542 | if (arg == MMC_SECURE_ERASE_ARG) |
1543 | erase_timeout *= card->ext_csd.sec_erase_mult; |
1544 | else |
1545 | erase_timeout *= card->ext_csd.sec_trim_mult; |
1546 | } |
1547 | |
1548 | erase_timeout *= qty; |
1549 | |
1550 | /* |
1551 | * Ensure at least a 1 second timeout for SPI as per |
1552 | * 'mmc_set_data_timeout()' |
1553 | */ |
1554 | if (mmc_host_is_spi(card->host) && erase_timeout < 1000) |
1555 | erase_timeout = 1000; |
1556 | |
1557 | return erase_timeout; |
1558 | } |
1559 | |
1560 | static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, |
1561 | unsigned int arg, |
1562 | unsigned int qty) |
1563 | { |
1564 | unsigned int erase_timeout; |
1565 | |
1566 | /* for DISCARD none of the below calculation applies. |
1567 | * the busy timeout is 250msec per discard command. |
1568 | */ |
1569 | if (arg == SD_DISCARD_ARG) |
1570 | return SD_DISCARD_TIMEOUT_MS; |
1571 | |
1572 | if (card->ssr.erase_timeout) { |
1573 | /* Erase timeout specified in SD Status Register (SSR) */ |
1574 | erase_timeout = card->ssr.erase_timeout * qty + |
1575 | card->ssr.erase_offset; |
1576 | } else { |
1577 | /* |
1578 | * Erase timeout not specified in SD Status Register (SSR) so |
1579 | * use 250ms per write block. |
1580 | */ |
1581 | erase_timeout = 250 * qty; |
1582 | } |
1583 | |
1584 | /* Must not be less than 1 second */ |
1585 | if (erase_timeout < 1000) |
1586 | erase_timeout = 1000; |
1587 | |
1588 | return erase_timeout; |
1589 | } |
1590 | |
1591 | static unsigned int mmc_erase_timeout(struct mmc_card *card, |
1592 | unsigned int arg, |
1593 | unsigned int qty) |
1594 | { |
1595 | if (mmc_card_sd(card)) |
1596 | return mmc_sd_erase_timeout(card, arg, qty); |
1597 | else |
1598 | return mmc_mmc_erase_timeout(card, arg, qty); |
1599 | } |
1600 | |
1601 | static int mmc_do_erase(struct mmc_card *card, unsigned int from, |
1602 | unsigned int to, unsigned int arg) |
1603 | { |
1604 | struct mmc_command cmd = {}; |
1605 | unsigned int qty = 0, busy_timeout = 0; |
1606 | bool use_r1b_resp; |
1607 | int err; |
1608 | |
1609 | mmc_retune_hold(host: card->host); |
1610 | |
1611 | /* |
1612 | * qty is used to calculate the erase timeout which depends on how many |
1613 | * erase groups (or allocation units in SD terminology) are affected. |
1614 | * We count erasing part of an erase group as one erase group. |
1615 | * For SD, the allocation units are always a power of 2. For MMC, the |
1616 | * erase group size is almost certainly also power of 2, but it does not |
1617 | * seem to insist on that in the JEDEC standard, so we fall back to |
1618 | * division in that case. SD may not specify an allocation unit size, |
1619 | * in which case the timeout is based on the number of write blocks. |
1620 | * |
1621 | * Note that the timeout for secure trim 2 will only be correct if the |
1622 | * number of erase groups specified is the same as the total of all |
1623 | * preceding secure trim 1 commands. Since the power may have been |
1624 | * lost since the secure trim 1 commands occurred, it is generally |
1625 | * impossible to calculate the secure trim 2 timeout correctly. |
1626 | */ |
1627 | if (card->erase_shift) |
1628 | qty += ((to >> card->erase_shift) - |
1629 | (from >> card->erase_shift)) + 1; |
1630 | else if (mmc_card_sd(card)) |
1631 | qty += to - from + 1; |
1632 | else |
1633 | qty += ((to / card->erase_size) - |
1634 | (from / card->erase_size)) + 1; |
1635 | |
1636 | if (!mmc_card_blockaddr(card)) { |
1637 | from <<= 9; |
1638 | to <<= 9; |
1639 | } |
1640 | |
1641 | if (mmc_card_sd(card)) |
1642 | cmd.opcode = SD_ERASE_WR_BLK_START; |
1643 | else |
1644 | cmd.opcode = MMC_ERASE_GROUP_START; |
1645 | cmd.arg = from; |
1646 | cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
1647 | err = mmc_wait_for_cmd(card->host, &cmd, 0); |
1648 | if (err) { |
1649 | pr_err("mmc_erase: group start error %d, " |
1650 | "status %#x\n", err, cmd.resp[0]); |
1651 | err = -EIO; |
1652 | goto out; |
1653 | } |
1654 | |
1655 | memset(&cmd, 0, sizeof(struct mmc_command)); |
1656 | if (mmc_card_sd(card)) |
1657 | cmd.opcode = SD_ERASE_WR_BLK_END; |
1658 | else |
1659 | cmd.opcode = MMC_ERASE_GROUP_END; |
1660 | cmd.arg = to; |
1661 | cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
1662 | err = mmc_wait_for_cmd(card->host, &cmd, 0); |
1663 | if (err) { |
1664 | pr_err("mmc_erase: group end error %d, status %#x\n", |
1665 | err, cmd.resp[0]); |
1666 | err = -EIO; |
1667 | goto out; |
1668 | } |
1669 | |
1670 | memset(&cmd, 0, sizeof(struct mmc_command)); |
1671 | cmd.opcode = MMC_ERASE; |
1672 | cmd.arg = arg; |
1673 | busy_timeout = mmc_erase_timeout(card, arg, qty); |
1674 | use_r1b_resp = mmc_prepare_busy_cmd(host: card->host, cmd: &cmd, timeout_ms: busy_timeout); |
1675 | |
1676 | err = mmc_wait_for_cmd(card->host, &cmd, 0); |
1677 | if (err) { |
1678 | pr_err("mmc_erase: erase error %d, status %#x\n", |
1679 | err, cmd.resp[0]); |
1680 | err = -EIO; |
1681 | goto out; |
1682 | } |
1683 | |
1684 | if (mmc_host_is_spi(card->host)) |
1685 | goto out; |
1686 | |
1687 | /* |
1688 | * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling |
1689 | * shall be avoided. |
1690 | */ |
1691 | if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) |
1692 | goto out; |
1693 | |
1694 | /* Let's poll to find out when the erase operation completes. */ |
1695 | err = mmc_poll_for_busy(card, timeout_ms: busy_timeout, retry_crc_err: false, busy_cmd: MMC_BUSY_ERASE); |
1696 | |
1697 | out: |
1698 | mmc_retune_release(host: card->host); |
1699 | return err; |
1700 | } |
1701 | |
1702 | static unsigned int mmc_align_erase_size(struct mmc_card *card, |
1703 | unsigned int *from, |
1704 | unsigned int *to, |
1705 | unsigned int nr) |
1706 | { |
1707 | unsigned int from_new = *from, nr_new = nr, rem; |
1708 | |
1709 | /* |
1710 | * When the 'card->erase_size' is power of 2, we can use round_up/down() |
1711 | * to align the erase size efficiently. |
1712 | */ |
1713 | if (is_power_of_2(n: card->erase_size)) { |
1714 | unsigned int temp = from_new; |
1715 | |
1716 | from_new = round_up(temp, card->erase_size); |
1717 | rem = from_new - temp; |
1718 | |
1719 | if (nr_new > rem) |
1720 | nr_new -= rem; |
1721 | else |
1722 | return 0; |
1723 | |
1724 | nr_new = round_down(nr_new, card->erase_size); |
1725 | } else { |
1726 | rem = from_new % card->erase_size; |
1727 | if (rem) { |
1728 | rem = card->erase_size - rem; |
1729 | from_new += rem; |
1730 | if (nr_new > rem) |
1731 | nr_new -= rem; |
1732 | else |
1733 | return 0; |
1734 | } |
1735 | |
1736 | rem = nr_new % card->erase_size; |
1737 | if (rem) |
1738 | nr_new -= rem; |
1739 | } |
1740 | |
1741 | if (nr_new == 0) |
1742 | return 0; |
1743 | |
1744 | *to = from_new + nr_new; |
1745 | *from = from_new; |
1746 | |
1747 | return nr_new; |
1748 | } |
1749 | |
1750 | /** |
1751 | * mmc_erase - erase sectors. |
1752 | * @card: card to erase |
1753 | * @from: first sector to erase |
1754 | * @nr: number of sectors to erase |
1755 | * @arg: erase command argument |
1756 | * |
1757 | * Caller must claim host before calling this function. |
1758 | */ |
1759 | int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, |
1760 | unsigned int arg) |
1761 | { |
1762 | unsigned int rem, to = from + nr; |
1763 | int err; |
1764 | |
1765 | if (!(card->csd.cmdclass & CCC_ERASE)) |
1766 | return -EOPNOTSUPP; |
1767 | |
1768 | if (!card->erase_size) |
1769 | return -EOPNOTSUPP; |
1770 | |
1771 | if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) |
1772 | return -EOPNOTSUPP; |
1773 | |
1774 | if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && |
1775 | !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) |
1776 | return -EOPNOTSUPP; |
1777 | |
1778 | if (mmc_card_mmc(card) && is_trim_arg(arg) && |
1779 | !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) |
1780 | return -EOPNOTSUPP; |
1781 | |
1782 | if (arg == MMC_SECURE_ERASE_ARG) { |
1783 | if (from % card->erase_size || nr % card->erase_size) |
1784 | return -EINVAL; |
1785 | } |
1786 | |
1787 | if (arg == MMC_ERASE_ARG) |
1788 | nr = mmc_align_erase_size(card, from: &from, to: &to, nr); |
1789 | |
1790 | if (nr == 0) |
1791 | return 0; |
1792 | |
1793 | if (to <= from) |
1794 | return -EINVAL; |
1795 | |
1796 | /* 'from' and 'to' are inclusive */ |
1797 | to -= 1; |
1798 | |
1799 | /* |
1800 | * Special case where only one erase-group fits in the timeout budget: |
1801 | * If the region crosses an erase-group boundary on this particular |
1802 | * case, we will be trimming more than one erase-group which, does not |
1803 | * fit in the timeout budget of the controller, so we need to split it |
1804 | * and call mmc_do_erase() twice if necessary. This special case is |
1805 | * identified by the card->eg_boundary flag. |
1806 | */ |
1807 | rem = card->erase_size - (from % card->erase_size); |
1808 | if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) { |
1809 | err = mmc_do_erase(card, from, to: from + rem - 1, arg); |
1810 | from += rem; |
1811 | if ((err) || (to <= from)) |
1812 | return err; |
1813 | } |
1814 | |
1815 | return mmc_do_erase(card, from, to, arg); |
1816 | } |
1817 | EXPORT_SYMBOL(mmc_erase); |
1818 | |
1819 | int mmc_can_erase(struct mmc_card *card) |
1820 | { |
1821 | if (card->csd.cmdclass & CCC_ERASE && card->erase_size) |
1822 | return 1; |
1823 | return 0; |
1824 | } |
1825 | EXPORT_SYMBOL(mmc_can_erase); |
1826 | |
1827 | int mmc_can_trim(struct mmc_card *card) |
1828 | { |
1829 | if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && |
1830 | (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) |
1831 | return 1; |
1832 | return 0; |
1833 | } |
1834 | EXPORT_SYMBOL(mmc_can_trim); |
1835 | |
1836 | int mmc_can_discard(struct mmc_card *card) |
1837 | { |
1838 | /* |
1839 | * As there's no way to detect the discard support bit at v4.5 |
1840 | * use the s/w feature support filed. |
1841 | */ |
1842 | if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) |
1843 | return 1; |
1844 | return 0; |
1845 | } |
1846 | EXPORT_SYMBOL(mmc_can_discard); |
1847 | |
1848 | int mmc_can_sanitize(struct mmc_card *card) |
1849 | { |
1850 | if (!mmc_can_trim(card) && !mmc_can_erase(card)) |
1851 | return 0; |
1852 | if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) |
1853 | return 1; |
1854 | return 0; |
1855 | } |
1856 | |
1857 | int mmc_can_secure_erase_trim(struct mmc_card *card) |
1858 | { |
1859 | if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && |
1860 | !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) |
1861 | return 1; |
1862 | return 0; |
1863 | } |
1864 | EXPORT_SYMBOL(mmc_can_secure_erase_trim); |
1865 | |
1866 | int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, |
1867 | unsigned int nr) |
1868 | { |
1869 | if (!card->erase_size) |
1870 | return 0; |
1871 | if (from % card->erase_size || nr % card->erase_size) |
1872 | return 0; |
1873 | return 1; |
1874 | } |
1875 | EXPORT_SYMBOL(mmc_erase_group_aligned); |
1876 | |
1877 | static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, |
1878 | unsigned int arg) |
1879 | { |
1880 | struct mmc_host *host = card->host; |
1881 | unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; |
1882 | unsigned int last_timeout = 0; |
1883 | unsigned int max_busy_timeout = host->max_busy_timeout ? |
1884 | host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; |
1885 | |
1886 | if (card->erase_shift) { |
1887 | max_qty = UINT_MAX >> card->erase_shift; |
1888 | min_qty = card->pref_erase >> card->erase_shift; |
1889 | } else if (mmc_card_sd(card)) { |
1890 | max_qty = UINT_MAX; |
1891 | min_qty = card->pref_erase; |
1892 | } else { |
1893 | max_qty = UINT_MAX / card->erase_size; |
1894 | min_qty = card->pref_erase / card->erase_size; |
1895 | } |
1896 | |
1897 | /* |
1898 | * We should not only use 'host->max_busy_timeout' as the limitation |
1899 | * when deciding the max discard sectors. We should set a balance value |
1900 | * to improve the erase speed, and it can not get too long timeout at |
1901 | * the same time. |
1902 | * |
1903 | * Here we set 'card->pref_erase' as the minimal discard sectors no |
1904 | * matter what size of 'host->max_busy_timeout', but if the |
1905 | * 'host->max_busy_timeout' is large enough for more discard sectors, |
1906 | * then we can continue to increase the max discard sectors until we |
1907 | * get a balance value. In cases when the 'host->max_busy_timeout' |
1908 | * isn't specified, use the default max erase timeout. |
1909 | */ |
1910 | do { |
1911 | y = 0; |
1912 | for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { |
1913 | timeout = mmc_erase_timeout(card, arg, qty: qty + x); |
1914 | |
1915 | if (qty + x > min_qty && timeout > max_busy_timeout) |
1916 | break; |
1917 | |
1918 | if (timeout < last_timeout) |
1919 | break; |
1920 | last_timeout = timeout; |
1921 | y = x; |
1922 | } |
1923 | qty += y; |
1924 | } while (y); |
1925 | |
1926 | if (!qty) |
1927 | return 0; |
1928 | |
1929 | /* |
1930 | * When specifying a sector range to trim, chances are we might cross |
1931 | * an erase-group boundary even if the amount of sectors is less than |
1932 | * one erase-group. |
1933 | * If we can only fit one erase-group in the controller timeout budget, |
1934 | * we have to care that erase-group boundaries are not crossed by a |
1935 | * single trim operation. We flag that special case with "eg_boundary". |
1936 | * In all other cases we can just decrement qty and pretend that we |
1937 | * always touch (qty + 1) erase-groups as a simple optimization. |
1938 | */ |
1939 | if (qty == 1) |
1940 | card->eg_boundary = 1; |
1941 | else |
1942 | qty--; |
1943 | |
1944 | /* Convert qty to sectors */ |
1945 | if (card->erase_shift) |
1946 | max_discard = qty << card->erase_shift; |
1947 | else if (mmc_card_sd(card)) |
1948 | max_discard = qty + 1; |
1949 | else |
1950 | max_discard = qty * card->erase_size; |
1951 | |
1952 | return max_discard; |
1953 | } |
1954 | |
1955 | unsigned int mmc_calc_max_discard(struct mmc_card *card) |
1956 | { |
1957 | struct mmc_host *host = card->host; |
1958 | unsigned int max_discard, max_trim; |
1959 | |
1960 | /* |
1961 | * Without erase_group_def set, MMC erase timeout depends on clock |
1962 | * frequence which can change. In that case, the best choice is |
1963 | * just the preferred erase size. |
1964 | */ |
1965 | if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) |
1966 | return card->pref_erase; |
1967 | |
1968 | max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); |
1969 | if (mmc_can_trim(card)) { |
1970 | max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); |
1971 | if (max_trim < max_discard || max_discard == 0) |
1972 | max_discard = max_trim; |
1973 | } else if (max_discard < card->erase_size) { |
1974 | max_discard = 0; |
1975 | } |
1976 | pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", |
1977 | mmc_hostname(host), max_discard, host->max_busy_timeout ? |
1978 | host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); |
1979 | return max_discard; |
1980 | } |
1981 | EXPORT_SYMBOL(mmc_calc_max_discard); |
1982 | |
1983 | bool mmc_card_is_blockaddr(struct mmc_card *card) |
1984 | { |
1985 | return card ? mmc_card_blockaddr(card) : false; |
1986 | } |
1987 | EXPORT_SYMBOL(mmc_card_is_blockaddr); |
1988 | |
1989 | int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) |
1990 | { |
1991 | struct mmc_command cmd = {}; |
1992 | |
1993 | if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || |
1994 | mmc_card_hs400(card) || mmc_card_hs400es(card)) |
1995 | return 0; |
1996 | |
1997 | cmd.opcode = MMC_SET_BLOCKLEN; |
1998 | cmd.arg = blocklen; |
1999 | cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; |
2000 | return mmc_wait_for_cmd(card->host, &cmd, 5); |
2001 | } |
2002 | EXPORT_SYMBOL(mmc_set_blocklen); |
2003 | |
2004 | static void mmc_hw_reset_for_init(struct mmc_host *host) |
2005 | { |
2006 | mmc_pwrseq_reset(host); |
2007 | |
2008 | if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset) |
2009 | return; |
2010 | host->ops->card_hw_reset(host); |
2011 | } |
2012 | |
2013 | /** |
2014 | * mmc_hw_reset - reset the card in hardware |
2015 | * @card: card to be reset |
2016 | * |
2017 | * Hard reset the card. This function is only for upper layers, like the |
2018 | * block layer or card drivers. You cannot use it in host drivers (struct |
2019 | * mmc_card might be gone then). |
2020 | * |
2021 | * Return: 0 on success, -errno on failure |
2022 | */ |
2023 | int mmc_hw_reset(struct mmc_card *card) |
2024 | { |
2025 | struct mmc_host *host = card->host; |
2026 | int ret; |
2027 | |
2028 | ret = host->bus_ops->hw_reset(host); |
2029 | if (ret < 0) |
2030 | pr_warn("%s: tried to HW reset card, got error %d\n", |
2031 | mmc_hostname(host), ret); |
2032 | |
2033 | return ret; |
2034 | } |
2035 | EXPORT_SYMBOL(mmc_hw_reset); |
2036 | |
2037 | int mmc_sw_reset(struct mmc_card *card) |
2038 | { |
2039 | struct mmc_host *host = card->host; |
2040 | int ret; |
2041 | |
2042 | if (!host->bus_ops->sw_reset) |
2043 | return -EOPNOTSUPP; |
2044 | |
2045 | ret = host->bus_ops->sw_reset(host); |
2046 | if (ret) |
2047 | pr_warn("%s: tried to SW reset card, got error %d\n", |
2048 | mmc_hostname(host), ret); |
2049 | |
2050 | return ret; |
2051 | } |
2052 | EXPORT_SYMBOL(mmc_sw_reset); |
2053 | |
2054 | static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) |
2055 | { |
2056 | host->f_init = freq; |
2057 | |
2058 | pr_debug("%s: %s: trying to init card at %u Hz\n", |
2059 | mmc_hostname(host), __func__, host->f_init); |
2060 | |
2061 | mmc_power_up(host, ocr: host->ocr_avail); |
2062 | |
2063 | /* |
2064 | * Some eMMCs (with VCCQ always on) may not be reset after power up, so |
2065 | * do a hardware reset if possible. |
2066 | */ |
2067 | mmc_hw_reset_for_init(host); |
2068 | |
2069 | /* |
2070 | * sdio_reset sends CMD52 to reset card. Since we do not know |
2071 | * if the card is being re-initialized, just send it. CMD52 |
2072 | * should be ignored by SD/eMMC cards. |
2073 | * Skip it if we already know that we do not support SDIO commands |
2074 | */ |
2075 | if (!(host->caps2 & MMC_CAP2_NO_SDIO)) |
2076 | sdio_reset(host); |
2077 | |
2078 | mmc_go_idle(host); |
2079 | |
2080 | if (!(host->caps2 & MMC_CAP2_NO_SD)) { |
2081 | if (mmc_send_if_cond_pcie(host, ocr: host->ocr_avail)) |
2082 | goto out; |
2083 | if (mmc_card_sd_express(host)) |
2084 | return 0; |
2085 | } |
2086 | |
2087 | /* Order's important: probe SDIO, then SD, then MMC */ |
2088 | if (!(host->caps2 & MMC_CAP2_NO_SDIO)) |
2089 | if (!mmc_attach_sdio(host)) |
2090 | return 0; |
2091 | |
2092 | if (!(host->caps2 & MMC_CAP2_NO_SD)) |
2093 | if (!mmc_attach_sd(host)) |
2094 | return 0; |
2095 | |
2096 | if (!(host->caps2 & MMC_CAP2_NO_MMC)) |
2097 | if (!mmc_attach_mmc(host)) |
2098 | return 0; |
2099 | |
2100 | out: |
2101 | mmc_power_off(host); |
2102 | return -EIO; |
2103 | } |
2104 | |
2105 | int _mmc_detect_card_removed(struct mmc_host *host) |
2106 | { |
2107 | int ret; |
2108 | |
2109 | if (!host->card || mmc_card_removed(host->card)) |
2110 | return 1; |
2111 | |
2112 | ret = host->bus_ops->alive(host); |
2113 | |
2114 | /* |
2115 | * Card detect status and alive check may be out of sync if card is |
2116 | * removed slowly, when card detect switch changes while card/slot |
2117 | * pads are still contacted in hardware (refer to "SD Card Mechanical |
2118 | * Addendum, Appendix C: Card Detection Switch"). So reschedule a |
2119 | * detect work 200ms later for this case. |
2120 | */ |
2121 | if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { |
2122 | mmc_detect_change(host, msecs_to_jiffies(m: 200)); |
2123 | pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); |
2124 | } |
2125 | |
2126 | if (ret) { |
2127 | mmc_card_set_removed(host->card); |
2128 | pr_debug("%s: card remove detected\n", mmc_hostname(host)); |
2129 | } |
2130 | |
2131 | return ret; |
2132 | } |
2133 | |
2134 | int mmc_detect_card_removed(struct mmc_host *host) |
2135 | { |
2136 | struct mmc_card *card = host->card; |
2137 | int ret; |
2138 | |
2139 | WARN_ON(!host->claimed); |
2140 | |
2141 | if (!card) |
2142 | return 1; |
2143 | |
2144 | if (!mmc_card_is_removable(host)) |
2145 | return 0; |
2146 | |
2147 | ret = mmc_card_removed(card); |
2148 | /* |
2149 | * The card will be considered unchanged unless we have been asked to |
2150 | * detect a change or host requires polling to provide card detection. |
2151 | */ |
2152 | if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) |
2153 | return ret; |
2154 | |
2155 | host->detect_change = 0; |
2156 | if (!ret) { |
2157 | ret = _mmc_detect_card_removed(host); |
2158 | if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { |
2159 | /* |
2160 | * Schedule a detect work as soon as possible to let a |
2161 | * rescan handle the card removal. |
2162 | */ |
2163 | cancel_delayed_work(dwork: &host->detect); |
2164 | _mmc_detect_change(host, delay: 0, cd_irq: false); |
2165 | } |
2166 | } |
2167 | |
2168 | return ret; |
2169 | } |
2170 | EXPORT_SYMBOL(mmc_detect_card_removed); |
2171 | |
2172 | int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector) |
2173 | { |
2174 | unsigned int boot_sectors_num; |
2175 | |
2176 | if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA))) |
2177 | return -EOPNOTSUPP; |
2178 | |
2179 | /* filter out unrelated cards */ |
2180 | if (card->ext_csd.rev < 3 || |
2181 | !mmc_card_mmc(card) || |
2182 | !mmc_card_is_blockaddr(card) || |
2183 | mmc_card_is_removable(host: card->host)) |
2184 | return -ENOENT; |
2185 | |
2186 | /* |
2187 | * eMMC storage has two special boot partitions in addition to the |
2188 | * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main |
2189 | * accesses, this means that the partition table addresses are shifted |
2190 | * by the size of boot partitions. In accordance with the eMMC |
2191 | * specification, the boot partition size is calculated as follows: |
2192 | * |
2193 | * boot partition size = 128K byte x BOOT_SIZE_MULT |
2194 | * |
2195 | * Calculate number of sectors occupied by the both boot partitions. |
2196 | */ |
2197 | boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K / |
2198 | SZ_512 * MMC_NUM_BOOT_PARTITION; |
2199 | |
2200 | /* Defined by NVIDIA and used by Android devices. */ |
2201 | *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1; |
2202 | |
2203 | return 0; |
2204 | } |
2205 | EXPORT_SYMBOL(mmc_card_alternative_gpt_sector); |
2206 | |
2207 | void mmc_rescan(struct work_struct *work) |
2208 | { |
2209 | struct mmc_host *host = |
2210 | container_of(work, struct mmc_host, detect.work); |
2211 | int i; |
2212 | |
2213 | if (host->rescan_disable) |
2214 | return; |
2215 | |
2216 | /* If there is a non-removable card registered, only scan once */ |
2217 | if (!mmc_card_is_removable(host) && host->rescan_entered) |
2218 | return; |
2219 | host->rescan_entered = 1; |
2220 | |
2221 | if (host->trigger_card_event && host->ops->card_event) { |
2222 | mmc_claim_host(host); |
2223 | host->ops->card_event(host); |
2224 | mmc_release_host(host); |
2225 | host->trigger_card_event = false; |
2226 | } |
2227 | |
2228 | /* Verify a registered card to be functional, else remove it. */ |
2229 | if (host->bus_ops) |
2230 | host->bus_ops->detect(host); |
2231 | |
2232 | host->detect_change = 0; |
2233 | |
2234 | /* if there still is a card present, stop here */ |
2235 | if (host->bus_ops != NULL) |
2236 | goto out; |
2237 | |
2238 | mmc_claim_host(host); |
2239 | if (mmc_card_is_removable(host) && host->ops->get_cd && |
2240 | host->ops->get_cd(host) == 0) { |
2241 | mmc_power_off(host); |
2242 | mmc_release_host(host); |
2243 | goto out; |
2244 | } |
2245 | |
2246 | /* If an SD express card is present, then leave it as is. */ |
2247 | if (mmc_card_sd_express(host)) { |
2248 | mmc_release_host(host); |
2249 | goto out; |
2250 | } |
2251 | |
2252 | for (i = 0; i < ARRAY_SIZE(freqs); i++) { |
2253 | unsigned int freq = freqs[i]; |
2254 | if (freq > host->f_max) { |
2255 | if (i + 1 < ARRAY_SIZE(freqs)) |
2256 | continue; |
2257 | freq = host->f_max; |
2258 | } |
2259 | if (!mmc_rescan_try_freq(host, max(freq, host->f_min))) |
2260 | break; |
2261 | if (freqs[i] <= host->f_min) |
2262 | break; |
2263 | } |
2264 | |
2265 | /* A non-removable card should have been detected by now. */ |
2266 | if (!mmc_card_is_removable(host) && !host->bus_ops) |
2267 | pr_info("%s: Failed to initialize a non-removable card", |
2268 | mmc_hostname(host)); |
2269 | |
2270 | /* |
2271 | * Ignore the command timeout errors observed during |
2272 | * the card init as those are excepted. |
2273 | */ |
2274 | host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0; |
2275 | mmc_release_host(host); |
2276 | |
2277 | out: |
2278 | if (host->caps & MMC_CAP_NEEDS_POLL) |
2279 | mmc_schedule_delayed_work(work: &host->detect, HZ); |
2280 | } |
2281 | |
2282 | void mmc_start_host(struct mmc_host *host) |
2283 | { |
2284 | host->f_init = max(min(freqs[0], host->f_max), host->f_min); |
2285 | host->rescan_disable = 0; |
2286 | |
2287 | if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { |
2288 | mmc_claim_host(host); |
2289 | mmc_power_up(host, ocr: host->ocr_avail); |
2290 | mmc_release_host(host); |
2291 | } |
2292 | |
2293 | mmc_gpiod_request_cd_irq(host); |
2294 | _mmc_detect_change(host, delay: 0, cd_irq: false); |
2295 | } |
2296 | |
2297 | void __mmc_stop_host(struct mmc_host *host) |
2298 | { |
2299 | if (host->slot.cd_irq >= 0) { |
2300 | mmc_gpio_set_cd_wake(host, on: false); |
2301 | disable_irq(irq: host->slot.cd_irq); |
2302 | } |
2303 | |
2304 | host->rescan_disable = 1; |
2305 | cancel_delayed_work_sync(dwork: &host->detect); |
2306 | } |
2307 | |
2308 | void mmc_stop_host(struct mmc_host *host) |
2309 | { |
2310 | __mmc_stop_host(host); |
2311 | |
2312 | /* clear pm flags now and let card drivers set them as needed */ |
2313 | host->pm_flags = 0; |
2314 | |
2315 | if (host->bus_ops) { |
2316 | /* Calling bus_ops->remove() with a claimed host can deadlock */ |
2317 | host->bus_ops->remove(host); |
2318 | mmc_claim_host(host); |
2319 | mmc_detach_bus(host); |
2320 | mmc_power_off(host); |
2321 | mmc_release_host(host); |
2322 | return; |
2323 | } |
2324 | |
2325 | mmc_claim_host(host); |
2326 | mmc_power_off(host); |
2327 | mmc_release_host(host); |
2328 | } |
2329 | |
2330 | static int __init mmc_init(void) |
2331 | { |
2332 | int ret; |
2333 | |
2334 | ret = mmc_register_bus(); |
2335 | if (ret) |
2336 | return ret; |
2337 | |
2338 | ret = mmc_register_host_class(); |
2339 | if (ret) |
2340 | goto unregister_bus; |
2341 | |
2342 | ret = sdio_register_bus(); |
2343 | if (ret) |
2344 | goto unregister_host_class; |
2345 | |
2346 | return 0; |
2347 | |
2348 | unregister_host_class: |
2349 | mmc_unregister_host_class(); |
2350 | unregister_bus: |
2351 | mmc_unregister_bus(); |
2352 | return ret; |
2353 | } |
2354 | |
2355 | static void __exit mmc_exit(void) |
2356 | { |
2357 | sdio_unregister_bus(); |
2358 | mmc_unregister_host_class(); |
2359 | mmc_unregister_bus(); |
2360 | } |
2361 | |
2362 | subsys_initcall(mmc_init); |
2363 | module_exit(mmc_exit); |
2364 | |
2365 | MODULE_LICENSE("GPL"); |
2366 |
Definitions
- freqs
- use_spi_crc
- mmc_schedule_delayed_work
- mmc_should_fail_request
- mmc_complete_cmd
- mmc_command_done
- mmc_request_done
- __mmc_start_request
- mmc_mrq_pr_debug
- mmc_mrq_prep
- mmc_start_request
- mmc_wait_done
- mmc_wait_ongoing_tfr_cmd
- __mmc_start_req
- mmc_wait_for_req_done
- mmc_cqe_start_req
- mmc_cqe_request_done
- mmc_cqe_post_req
- mmc_cqe_recovery
- mmc_is_req_done
- mmc_wait_for_req
- mmc_wait_for_cmd
- mmc_set_data_timeout
- mmc_ctx_matches
- mmc_ctx_set_claimer
- __mmc_claim_host
- mmc_release_host
- mmc_get_card
- mmc_put_card
- mmc_set_ios
- mmc_set_chip_select
- mmc_set_clock
- mmc_execute_tuning
- mmc_set_bus_mode
- mmc_set_bus_width
- mmc_set_initial_state
- mmc_vdd_to_ocrbitnum
- mmc_vddrange_to_ocrmask
- mmc_of_get_func_num
- mmc_of_find_child_device
- mmc_select_voltage
- mmc_set_signal_voltage
- mmc_set_initial_signal_voltage
- mmc_host_set_uhs_voltage
- mmc_set_uhs_voltage
- mmc_set_timing
- mmc_set_driver_type
- mmc_select_drive_strength
- mmc_power_up
- mmc_power_off
- mmc_power_cycle
- mmc_attach_bus
- mmc_detach_bus
- _mmc_detect_change
- mmc_detect_change
- mmc_init_erase
- is_trim_arg
- mmc_mmc_erase_timeout
- mmc_sd_erase_timeout
- mmc_erase_timeout
- mmc_do_erase
- mmc_align_erase_size
- mmc_erase
- mmc_can_erase
- mmc_can_trim
- mmc_can_discard
- mmc_can_sanitize
- mmc_can_secure_erase_trim
- mmc_erase_group_aligned
- mmc_do_calc_max_discard
- mmc_calc_max_discard
- mmc_card_is_blockaddr
- mmc_set_blocklen
- mmc_hw_reset_for_init
- mmc_hw_reset
- mmc_sw_reset
- mmc_rescan_try_freq
- _mmc_detect_card_removed
- mmc_detect_card_removed
- mmc_card_alternative_gpt_sector
- mmc_rescan
- mmc_start_host
- __mmc_stop_host
- mmc_stop_host
- mmc_init
Improve your Profiling and Debugging skills
Find out more