1// SPDX-License-Identifier: GPL-2.0+
2/* Broadcom BCM54140 Quad SGMII/QSGMII Copper/Fiber Gigabit PHY
3 *
4 * Copyright (c) 2020 Michael Walle <michael@walle.cc>
5 */
6
7#include <linux/bitfield.h>
8#include <linux/brcmphy.h>
9#include <linux/hwmon.h>
10#include <linux/module.h>
11#include <linux/phy.h>
12
13#include "bcm-phy-lib.h"
14
15/* RDB per-port registers
16 */
17#define BCM54140_RDB_ISR 0x00a /* interrupt status */
18#define BCM54140_RDB_IMR 0x00b /* interrupt mask */
19#define BCM54140_RDB_INT_LINK BIT(1) /* link status changed */
20#define BCM54140_RDB_INT_SPEED BIT(2) /* link speed change */
21#define BCM54140_RDB_INT_DUPLEX BIT(3) /* duplex mode changed */
22#define BCM54140_RDB_SPARE1 0x012 /* spare control 1 */
23#define BCM54140_RDB_SPARE1_LSLM BIT(2) /* link speed LED mode */
24#define BCM54140_RDB_SPARE2 0x014 /* spare control 2 */
25#define BCM54140_RDB_SPARE2_WS_RTRY_DIS BIT(8) /* wirespeed retry disable */
26#define BCM54140_RDB_SPARE2_WS_RTRY_LIMIT GENMASK(4, 2) /* retry limit */
27#define BCM54140_RDB_SPARE3 0x015 /* spare control 3 */
28#define BCM54140_RDB_SPARE3_BIT0 BIT(0)
29#define BCM54140_RDB_LED_CTRL 0x019 /* LED control */
30#define BCM54140_RDB_LED_CTRL_ACTLINK0 BIT(4)
31#define BCM54140_RDB_LED_CTRL_ACTLINK1 BIT(8)
32#define BCM54140_RDB_C_APWR 0x01a /* auto power down control */
33#define BCM54140_RDB_C_APWR_SINGLE_PULSE BIT(8) /* single pulse */
34#define BCM54140_RDB_C_APWR_APD_MODE_DIS 0 /* ADP disable */
35#define BCM54140_RDB_C_APWR_APD_MODE_EN 1 /* ADP enable */
36#define BCM54140_RDB_C_APWR_APD_MODE_DIS2 2 /* ADP disable */
37#define BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG 3 /* ADP enable w/ aneg */
38#define BCM54140_RDB_C_APWR_APD_MODE_MASK GENMASK(6, 5)
39#define BCM54140_RDB_C_APWR_SLP_TIM_MASK BIT(4)/* sleep timer */
40#define BCM54140_RDB_C_APWR_SLP_TIM_2_7 0 /* 2.7s */
41#define BCM54140_RDB_C_APWR_SLP_TIM_5_4 1 /* 5.4s */
42#define BCM54140_RDB_C_PWR 0x02a /* copper power control */
43#define BCM54140_RDB_C_PWR_ISOLATE BIT(5) /* super isolate mode */
44#define BCM54140_RDB_C_MISC_CTRL 0x02f /* misc copper control */
45#define BCM54140_RDB_C_MISC_CTRL_WS_EN BIT(4) /* wirespeed enable */
46
47/* RDB global registers
48 */
49#define BCM54140_RDB_TOP_IMR 0x82d /* interrupt mask */
50#define BCM54140_RDB_TOP_IMR_PORT0 BIT(4)
51#define BCM54140_RDB_TOP_IMR_PORT1 BIT(5)
52#define BCM54140_RDB_TOP_IMR_PORT2 BIT(6)
53#define BCM54140_RDB_TOP_IMR_PORT3 BIT(7)
54#define BCM54140_RDB_MON_CTRL 0x831 /* monitor control */
55#define BCM54140_RDB_MON_CTRL_V_MODE BIT(3) /* voltage mode */
56#define BCM54140_RDB_MON_CTRL_SEL_MASK GENMASK(2, 1)
57#define BCM54140_RDB_MON_CTRL_SEL_TEMP 0 /* meassure temperature */
58#define BCM54140_RDB_MON_CTRL_SEL_1V0 1 /* meassure AVDDL 1.0V */
59#define BCM54140_RDB_MON_CTRL_SEL_3V3 2 /* meassure AVDDH 3.3V */
60#define BCM54140_RDB_MON_CTRL_SEL_RR 3 /* meassure all round-robin */
61#define BCM54140_RDB_MON_CTRL_PWR_DOWN BIT(0) /* power-down monitor */
62#define BCM54140_RDB_MON_TEMP_VAL 0x832 /* temperature value */
63#define BCM54140_RDB_MON_TEMP_MAX 0x833 /* temperature high thresh */
64#define BCM54140_RDB_MON_TEMP_MIN 0x834 /* temperature low thresh */
65#define BCM54140_RDB_MON_TEMP_DATA_MASK GENMASK(9, 0)
66#define BCM54140_RDB_MON_1V0_VAL 0x835 /* AVDDL 1.0V value */
67#define BCM54140_RDB_MON_1V0_MAX 0x836 /* AVDDL 1.0V high thresh */
68#define BCM54140_RDB_MON_1V0_MIN 0x837 /* AVDDL 1.0V low thresh */
69#define BCM54140_RDB_MON_1V0_DATA_MASK GENMASK(10, 0)
70#define BCM54140_RDB_MON_3V3_VAL 0x838 /* AVDDH 3.3V value */
71#define BCM54140_RDB_MON_3V3_MAX 0x839 /* AVDDH 3.3V high thresh */
72#define BCM54140_RDB_MON_3V3_MIN 0x83a /* AVDDH 3.3V low thresh */
73#define BCM54140_RDB_MON_3V3_DATA_MASK GENMASK(11, 0)
74#define BCM54140_RDB_MON_ISR 0x83b /* interrupt status */
75#define BCM54140_RDB_MON_ISR_3V3 BIT(2) /* AVDDH 3.3V alarm */
76#define BCM54140_RDB_MON_ISR_1V0 BIT(1) /* AVDDL 1.0V alarm */
77#define BCM54140_RDB_MON_ISR_TEMP BIT(0) /* temperature alarm */
78
79/* According to the datasheet the formula is:
80 * T = 413.35 - (0.49055 * bits[9:0])
81 */
82#define BCM54140_HWMON_TO_TEMP(v) (413350L - (v) * 491)
83#define BCM54140_HWMON_FROM_TEMP(v) DIV_ROUND_CLOSEST_ULL(413350L - (v), 491)
84
85/* According to the datasheet the formula is:
86 * U = bits[11:0] / 1024 * 220 / 0.2
87 *
88 * Normalized:
89 * U = bits[11:0] / 4096 * 2514
90 */
91#define BCM54140_HWMON_TO_IN_1V0(v) ((v) * 2514 >> 11)
92#define BCM54140_HWMON_FROM_IN_1V0(v) DIV_ROUND_CLOSEST_ULL(((v) << 11), 2514)
93
94/* According to the datasheet the formula is:
95 * U = bits[10:0] / 1024 * 880 / 0.7
96 *
97 * Normalized:
98 * U = bits[10:0] / 2048 * 4400
99 */
100#define BCM54140_HWMON_TO_IN_3V3(v) ((v) * 4400 >> 12)
101#define BCM54140_HWMON_FROM_IN_3V3(v) DIV_ROUND_CLOSEST_ULL(((v) << 12), 4400)
102
103#define BCM54140_HWMON_TO_IN(ch, v) ((ch) ? BCM54140_HWMON_TO_IN_3V3(v) \
104 : BCM54140_HWMON_TO_IN_1V0(v))
105#define BCM54140_HWMON_FROM_IN(ch, v) ((ch) ? BCM54140_HWMON_FROM_IN_3V3(v) \
106 : BCM54140_HWMON_FROM_IN_1V0(v))
107#define BCM54140_HWMON_IN_MASK(ch) ((ch) ? BCM54140_RDB_MON_3V3_DATA_MASK \
108 : BCM54140_RDB_MON_1V0_DATA_MASK)
109#define BCM54140_HWMON_IN_VAL_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_VAL \
110 : BCM54140_RDB_MON_1V0_VAL)
111#define BCM54140_HWMON_IN_MIN_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MIN \
112 : BCM54140_RDB_MON_1V0_MIN)
113#define BCM54140_HWMON_IN_MAX_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MAX \
114 : BCM54140_RDB_MON_1V0_MAX)
115#define BCM54140_HWMON_IN_ALARM_BIT(ch) ((ch) ? BCM54140_RDB_MON_ISR_3V3 \
116 : BCM54140_RDB_MON_ISR_1V0)
117
118/* This PHY has two different PHY IDs depening on its MODE_SEL pin. This
119 * pin choses between 4x SGMII and QSGMII mode:
120 * AE02_5009 4x SGMII
121 * AE02_5019 QSGMII
122 */
123#define BCM54140_PHY_ID_MASK 0xffffffe8
124
125#define BCM54140_PHY_ID_REV(phy_id) ((phy_id) & 0x7)
126#define BCM54140_REV_B0 1
127
128#define BCM54140_DEFAULT_DOWNSHIFT 5
129#define BCM54140_MAX_DOWNSHIFT 9
130
131struct bcm54140_priv {
132 int port;
133 int base_addr;
134#if IS_ENABLED(CONFIG_HWMON)
135 /* protect the alarm bits */
136 struct mutex alarm_lock;
137 u16 alarm;
138#endif
139};
140
141#if IS_ENABLED(CONFIG_HWMON)
142static umode_t bcm54140_hwmon_is_visible(const void *data,
143 enum hwmon_sensor_types type,
144 u32 attr, int channel)
145{
146 switch (type) {
147 case hwmon_in:
148 switch (attr) {
149 case hwmon_in_min:
150 case hwmon_in_max:
151 return 0644;
152 case hwmon_in_label:
153 case hwmon_in_input:
154 case hwmon_in_alarm:
155 return 0444;
156 default:
157 return 0;
158 }
159 case hwmon_temp:
160 switch (attr) {
161 case hwmon_temp_min:
162 case hwmon_temp_max:
163 return 0644;
164 case hwmon_temp_input:
165 case hwmon_temp_alarm:
166 return 0444;
167 default:
168 return 0;
169 }
170 default:
171 return 0;
172 }
173}
174
175static int bcm54140_hwmon_read_alarm(struct device *dev, unsigned int bit,
176 long *val)
177{
178 struct phy_device *phydev = dev_get_drvdata(dev);
179 struct bcm54140_priv *priv = phydev->priv;
180 int tmp, ret = 0;
181
182 mutex_lock(&priv->alarm_lock);
183
184 /* latch any alarm bits */
185 tmp = bcm_phy_read_rdb(phydev, BCM54140_RDB_MON_ISR);
186 if (tmp < 0) {
187 ret = tmp;
188 goto out;
189 }
190 priv->alarm |= tmp;
191
192 *val = !!(priv->alarm & bit);
193 priv->alarm &= ~bit;
194
195out:
196 mutex_unlock(lock: &priv->alarm_lock);
197 return ret;
198}
199
200static int bcm54140_hwmon_read_temp(struct device *dev, u32 attr, long *val)
201{
202 struct phy_device *phydev = dev_get_drvdata(dev);
203 u16 reg;
204 int tmp;
205
206 switch (attr) {
207 case hwmon_temp_input:
208 reg = BCM54140_RDB_MON_TEMP_VAL;
209 break;
210 case hwmon_temp_min:
211 reg = BCM54140_RDB_MON_TEMP_MIN;
212 break;
213 case hwmon_temp_max:
214 reg = BCM54140_RDB_MON_TEMP_MAX;
215 break;
216 case hwmon_temp_alarm:
217 return bcm54140_hwmon_read_alarm(dev,
218 BCM54140_RDB_MON_ISR_TEMP,
219 val);
220 default:
221 return -EOPNOTSUPP;
222 }
223
224 tmp = bcm_phy_read_rdb(phydev, rdb: reg);
225 if (tmp < 0)
226 return tmp;
227
228 *val = BCM54140_HWMON_TO_TEMP(tmp & BCM54140_RDB_MON_TEMP_DATA_MASK);
229
230 return 0;
231}
232
233static int bcm54140_hwmon_read_in(struct device *dev, u32 attr,
234 int channel, long *val)
235{
236 struct phy_device *phydev = dev_get_drvdata(dev);
237 u16 bit, reg;
238 int tmp;
239
240 switch (attr) {
241 case hwmon_in_input:
242 reg = BCM54140_HWMON_IN_VAL_REG(channel);
243 break;
244 case hwmon_in_min:
245 reg = BCM54140_HWMON_IN_MIN_REG(channel);
246 break;
247 case hwmon_in_max:
248 reg = BCM54140_HWMON_IN_MAX_REG(channel);
249 break;
250 case hwmon_in_alarm:
251 bit = BCM54140_HWMON_IN_ALARM_BIT(channel);
252 return bcm54140_hwmon_read_alarm(dev, bit, val);
253 default:
254 return -EOPNOTSUPP;
255 }
256
257 tmp = bcm_phy_read_rdb(phydev, rdb: reg);
258 if (tmp < 0)
259 return tmp;
260
261 tmp &= BCM54140_HWMON_IN_MASK(channel);
262 *val = BCM54140_HWMON_TO_IN(channel, tmp);
263
264 return 0;
265}
266
267static int bcm54140_hwmon_read(struct device *dev,
268 enum hwmon_sensor_types type, u32 attr,
269 int channel, long *val)
270{
271 switch (type) {
272 case hwmon_temp:
273 return bcm54140_hwmon_read_temp(dev, attr, val);
274 case hwmon_in:
275 return bcm54140_hwmon_read_in(dev, attr, channel, val);
276 default:
277 return -EOPNOTSUPP;
278 }
279}
280
281static const char *const bcm54140_hwmon_in_labels[] = {
282 "AVDDL",
283 "AVDDH",
284};
285
286static int bcm54140_hwmon_read_string(struct device *dev,
287 enum hwmon_sensor_types type, u32 attr,
288 int channel, const char **str)
289{
290 switch (type) {
291 case hwmon_in:
292 switch (attr) {
293 case hwmon_in_label:
294 *str = bcm54140_hwmon_in_labels[channel];
295 return 0;
296 default:
297 return -EOPNOTSUPP;
298 }
299 default:
300 return -EOPNOTSUPP;
301 }
302}
303
304static int bcm54140_hwmon_write_temp(struct device *dev, u32 attr,
305 int channel, long val)
306{
307 struct phy_device *phydev = dev_get_drvdata(dev);
308 u16 mask = BCM54140_RDB_MON_TEMP_DATA_MASK;
309 u16 reg;
310
311 val = clamp_val(val, BCM54140_HWMON_TO_TEMP(mask),
312 BCM54140_HWMON_TO_TEMP(0));
313
314 switch (attr) {
315 case hwmon_temp_min:
316 reg = BCM54140_RDB_MON_TEMP_MIN;
317 break;
318 case hwmon_temp_max:
319 reg = BCM54140_RDB_MON_TEMP_MAX;
320 break;
321 default:
322 return -EOPNOTSUPP;
323 }
324
325 return bcm_phy_modify_rdb(phydev, rdb: reg, mask,
326 BCM54140_HWMON_FROM_TEMP(val));
327}
328
329static int bcm54140_hwmon_write_in(struct device *dev, u32 attr,
330 int channel, long val)
331{
332 struct phy_device *phydev = dev_get_drvdata(dev);
333 u16 mask = BCM54140_HWMON_IN_MASK(channel);
334 u16 reg;
335
336 val = clamp_val(val, 0, BCM54140_HWMON_TO_IN(channel, mask));
337
338 switch (attr) {
339 case hwmon_in_min:
340 reg = BCM54140_HWMON_IN_MIN_REG(channel);
341 break;
342 case hwmon_in_max:
343 reg = BCM54140_HWMON_IN_MAX_REG(channel);
344 break;
345 default:
346 return -EOPNOTSUPP;
347 }
348
349 return bcm_phy_modify_rdb(phydev, rdb: reg, mask,
350 BCM54140_HWMON_FROM_IN(channel, val));
351}
352
353static int bcm54140_hwmon_write(struct device *dev,
354 enum hwmon_sensor_types type, u32 attr,
355 int channel, long val)
356{
357 switch (type) {
358 case hwmon_temp:
359 return bcm54140_hwmon_write_temp(dev, attr, channel, val);
360 case hwmon_in:
361 return bcm54140_hwmon_write_in(dev, attr, channel, val);
362 default:
363 return -EOPNOTSUPP;
364 }
365}
366
367static const struct hwmon_channel_info * const bcm54140_hwmon_info[] = {
368 HWMON_CHANNEL_INFO(temp,
369 HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
370 HWMON_T_ALARM),
371 HWMON_CHANNEL_INFO(in,
372 HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
373 HWMON_I_ALARM | HWMON_I_LABEL,
374 HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
375 HWMON_I_ALARM | HWMON_I_LABEL),
376 NULL
377};
378
379static const struct hwmon_ops bcm54140_hwmon_ops = {
380 .is_visible = bcm54140_hwmon_is_visible,
381 .read = bcm54140_hwmon_read,
382 .read_string = bcm54140_hwmon_read_string,
383 .write = bcm54140_hwmon_write,
384};
385
386static const struct hwmon_chip_info bcm54140_chip_info = {
387 .ops = &bcm54140_hwmon_ops,
388 .info = bcm54140_hwmon_info,
389};
390
391static int bcm54140_enable_monitoring(struct phy_device *phydev)
392{
393 u16 mask, set;
394
395 /* 3.3V voltage mode */
396 set = BCM54140_RDB_MON_CTRL_V_MODE;
397
398 /* select round-robin */
399 mask = BCM54140_RDB_MON_CTRL_SEL_MASK;
400 set |= FIELD_PREP(BCM54140_RDB_MON_CTRL_SEL_MASK,
401 BCM54140_RDB_MON_CTRL_SEL_RR);
402
403 /* remove power-down bit */
404 mask |= BCM54140_RDB_MON_CTRL_PWR_DOWN;
405
406 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_MON_CTRL, mask, set);
407}
408
409static int bcm54140_probe_once(struct phy_device *phydev)
410{
411 struct device *hwmon;
412 int ret;
413
414 /* enable hardware monitoring */
415 ret = bcm54140_enable_monitoring(phydev);
416 if (ret)
417 return ret;
418
419 hwmon = devm_hwmon_device_register_with_info(dev: &phydev->mdio.dev,
420 name: "BCM54140", drvdata: phydev,
421 info: &bcm54140_chip_info,
422 NULL);
423 return PTR_ERR_OR_ZERO(ptr: hwmon);
424}
425#endif
426
427static int bcm54140_base_read_rdb(struct phy_device *phydev, u16 rdb)
428{
429 int ret;
430
431 phy_lock_mdio_bus(phydev);
432 ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, val: rdb);
433 if (ret < 0)
434 goto out;
435
436 ret = __phy_package_read(phydev, MII_BCM54XX_RDB_DATA);
437
438out:
439 phy_unlock_mdio_bus(phydev);
440 return ret;
441}
442
443static int bcm54140_base_write_rdb(struct phy_device *phydev,
444 u16 rdb, u16 val)
445{
446 int ret;
447
448 phy_lock_mdio_bus(phydev);
449 ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, val: rdb);
450 if (ret < 0)
451 goto out;
452
453 ret = __phy_package_write(phydev, MII_BCM54XX_RDB_DATA, val);
454
455out:
456 phy_unlock_mdio_bus(phydev);
457 return ret;
458}
459
460/* Under some circumstances a core PLL may not lock, this will then prevent
461 * a successful link establishment. Restart the PLL after the voltages are
462 * stable to workaround this issue.
463 */
464static int bcm54140_b0_workaround(struct phy_device *phydev)
465{
466 int spare3;
467 int ret;
468
469 spare3 = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE3);
470 if (spare3 < 0)
471 return spare3;
472
473 spare3 &= ~BCM54140_RDB_SPARE3_BIT0;
474
475 ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, val: spare3);
476 if (ret)
477 return ret;
478
479 ret = phy_modify(phydev, MII_BMCR, mask: 0, BMCR_PDOWN);
480 if (ret)
481 return ret;
482
483 ret = phy_modify(phydev, MII_BMCR, BMCR_PDOWN, set: 0);
484 if (ret)
485 return ret;
486
487 spare3 |= BCM54140_RDB_SPARE3_BIT0;
488
489 return bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, val: spare3);
490}
491
492/* The BCM54140 is a quad PHY where only the first port has access to the
493 * global register. Thus we need to find out its PHY address.
494 *
495 */
496static int bcm54140_get_base_addr_and_port(struct phy_device *phydev)
497{
498 struct bcm54140_priv *priv = phydev->priv;
499 struct mii_bus *bus = phydev->mdio.bus;
500 int addr, min_addr, max_addr;
501 int step = 1;
502 u32 phy_id;
503 int tmp;
504
505 min_addr = phydev->mdio.addr;
506 max_addr = phydev->mdio.addr;
507 addr = phydev->mdio.addr;
508
509 /* We scan forward and backwards and look for PHYs which have the
510 * same phy_id like we do. Step 1 will scan forward, step 2
511 * backwards. Once we are finished, we have a min_addr and
512 * max_addr which resembles the range of PHY addresses of the same
513 * type of PHY. There is one caveat; there may be many PHYs of
514 * the same type, but we know that each PHY takes exactly 4
515 * consecutive addresses. Therefore we can deduce our offset
516 * to the base address of this quad PHY.
517 */
518
519 while (1) {
520 if (step == 3) {
521 break;
522 } else if (step == 1) {
523 max_addr = addr;
524 addr++;
525 } else {
526 min_addr = addr;
527 addr--;
528 }
529
530 if (addr < 0 || addr >= PHY_MAX_ADDR) {
531 addr = phydev->mdio.addr;
532 step++;
533 continue;
534 }
535
536 /* read the PHY id */
537 tmp = mdiobus_read(bus, addr, MII_PHYSID1);
538 if (tmp < 0)
539 return tmp;
540 phy_id = tmp << 16;
541 tmp = mdiobus_read(bus, addr, MII_PHYSID2);
542 if (tmp < 0)
543 return tmp;
544 phy_id |= tmp;
545
546 /* see if it is still the same PHY */
547 if ((phy_id & phydev->drv->phy_id_mask) !=
548 (phydev->drv->phy_id & phydev->drv->phy_id_mask)) {
549 addr = phydev->mdio.addr;
550 step++;
551 }
552 }
553
554 /* The range we get should be a multiple of four. Please note that both
555 * the min_addr and max_addr are inclusive. So we have to add one if we
556 * subtract them.
557 */
558 if ((max_addr - min_addr + 1) % 4) {
559 dev_err(&phydev->mdio.dev,
560 "Detected Quad PHY IDs %d..%d doesn't make sense.\n",
561 min_addr, max_addr);
562 return -EINVAL;
563 }
564
565 priv->port = (phydev->mdio.addr - min_addr) % 4;
566 priv->base_addr = phydev->mdio.addr - priv->port;
567
568 return 0;
569}
570
571static int bcm54140_probe(struct phy_device *phydev)
572{
573 struct bcm54140_priv *priv;
574 int ret;
575
576 priv = devm_kzalloc(dev: &phydev->mdio.dev, size: sizeof(*priv), GFP_KERNEL);
577 if (!priv)
578 return -ENOMEM;
579
580 phydev->priv = priv;
581
582 ret = bcm54140_get_base_addr_and_port(phydev);
583 if (ret)
584 return ret;
585
586 devm_phy_package_join(dev: &phydev->mdio.dev, phydev, addr: priv->base_addr, priv_size: 0);
587
588#if IS_ENABLED(CONFIG_HWMON)
589 mutex_init(&priv->alarm_lock);
590
591 if (phy_package_init_once(phydev)) {
592 ret = bcm54140_probe_once(phydev);
593 if (ret)
594 return ret;
595 }
596#endif
597
598 phydev_dbg(phydev, "probed (port %d, base PHY address %d)\n",
599 priv->port, priv->base_addr);
600
601 return 0;
602}
603
604static int bcm54140_config_init(struct phy_device *phydev)
605{
606 u16 reg = 0xffff;
607 int ret;
608
609 /* Apply hardware errata */
610 if (BCM54140_PHY_ID_REV(phydev->phy_id) == BCM54140_REV_B0) {
611 ret = bcm54140_b0_workaround(phydev);
612 if (ret)
613 return ret;
614 }
615
616 /* Unmask events we are interested in. */
617 reg &= ~(BCM54140_RDB_INT_DUPLEX |
618 BCM54140_RDB_INT_SPEED |
619 BCM54140_RDB_INT_LINK);
620 ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_IMR, val: reg);
621 if (ret)
622 return ret;
623
624 /* LED1=LINKSPD[1], LED2=LINKSPD[2], LED3=LINK/ACTIVITY */
625 ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE1,
626 mask: 0, BCM54140_RDB_SPARE1_LSLM);
627 if (ret)
628 return ret;
629
630 ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_LED_CTRL,
631 mask: 0, BCM54140_RDB_LED_CTRL_ACTLINK0);
632 if (ret)
633 return ret;
634
635 /* disable super isolate mode */
636 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_PWR,
637 BCM54140_RDB_C_PWR_ISOLATE, set: 0);
638}
639
640static irqreturn_t bcm54140_handle_interrupt(struct phy_device *phydev)
641{
642 int irq_status, irq_mask;
643
644 irq_status = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
645 if (irq_status < 0) {
646 phy_error(phydev);
647 return IRQ_NONE;
648 }
649
650 irq_mask = bcm_phy_read_rdb(phydev, BCM54140_RDB_IMR);
651 if (irq_mask < 0) {
652 phy_error(phydev);
653 return IRQ_NONE;
654 }
655 irq_mask = ~irq_mask;
656
657 if (!(irq_status & irq_mask))
658 return IRQ_NONE;
659
660 phy_trigger_machine(phydev);
661
662 return IRQ_HANDLED;
663}
664
665static int bcm54140_ack_intr(struct phy_device *phydev)
666{
667 int reg;
668
669 /* clear pending interrupts */
670 reg = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
671 if (reg < 0)
672 return reg;
673
674 return 0;
675}
676
677static int bcm54140_config_intr(struct phy_device *phydev)
678{
679 struct bcm54140_priv *priv = phydev->priv;
680 static const u16 port_to_imr_bit[] = {
681 BCM54140_RDB_TOP_IMR_PORT0, BCM54140_RDB_TOP_IMR_PORT1,
682 BCM54140_RDB_TOP_IMR_PORT2, BCM54140_RDB_TOP_IMR_PORT3,
683 };
684 int reg, err;
685
686 if (priv->port >= ARRAY_SIZE(port_to_imr_bit))
687 return -EINVAL;
688
689 reg = bcm54140_base_read_rdb(phydev, BCM54140_RDB_TOP_IMR);
690 if (reg < 0)
691 return reg;
692
693 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
694 err = bcm54140_ack_intr(phydev);
695 if (err)
696 return err;
697
698 reg &= ~port_to_imr_bit[priv->port];
699 err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, val: reg);
700 } else {
701 reg |= port_to_imr_bit[priv->port];
702 err = bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, val: reg);
703 if (err)
704 return err;
705
706 err = bcm54140_ack_intr(phydev);
707 }
708
709 return err;
710}
711
712static int bcm54140_get_downshift(struct phy_device *phydev, u8 *data)
713{
714 int val;
715
716 val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_MISC_CTRL);
717 if (val < 0)
718 return val;
719
720 if (!(val & BCM54140_RDB_C_MISC_CTRL_WS_EN)) {
721 *data = DOWNSHIFT_DEV_DISABLE;
722 return 0;
723 }
724
725 val = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE2);
726 if (val < 0)
727 return val;
728
729 if (val & BCM54140_RDB_SPARE2_WS_RTRY_DIS)
730 *data = 1;
731 else
732 *data = FIELD_GET(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, val) + 2;
733
734 return 0;
735}
736
737static int bcm54140_set_downshift(struct phy_device *phydev, u8 cnt)
738{
739 u16 mask, set;
740 int ret;
741
742 if (cnt > BCM54140_MAX_DOWNSHIFT && cnt != DOWNSHIFT_DEV_DEFAULT_COUNT)
743 return -EINVAL;
744
745 if (!cnt)
746 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
747 BCM54140_RDB_C_MISC_CTRL_WS_EN, set: 0);
748
749 if (cnt == DOWNSHIFT_DEV_DEFAULT_COUNT)
750 cnt = BCM54140_DEFAULT_DOWNSHIFT;
751
752 if (cnt == 1) {
753 mask = 0;
754 set = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
755 } else {
756 mask = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
757 mask |= BCM54140_RDB_SPARE2_WS_RTRY_LIMIT;
758 set = FIELD_PREP(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, cnt - 2);
759 }
760 ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE2,
761 mask, set);
762 if (ret)
763 return ret;
764
765 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
766 mask: 0, BCM54140_RDB_C_MISC_CTRL_WS_EN);
767}
768
769static int bcm54140_get_edpd(struct phy_device *phydev, u16 *tx_interval)
770{
771 int val;
772
773 val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_APWR);
774 if (val < 0)
775 return val;
776
777 switch (FIELD_GET(BCM54140_RDB_C_APWR_APD_MODE_MASK, val)) {
778 case BCM54140_RDB_C_APWR_APD_MODE_DIS:
779 case BCM54140_RDB_C_APWR_APD_MODE_DIS2:
780 *tx_interval = ETHTOOL_PHY_EDPD_DISABLE;
781 break;
782 case BCM54140_RDB_C_APWR_APD_MODE_EN:
783 case BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG:
784 switch (FIELD_GET(BCM54140_RDB_C_APWR_SLP_TIM_MASK, val)) {
785 case BCM54140_RDB_C_APWR_SLP_TIM_2_7:
786 *tx_interval = 2700;
787 break;
788 case BCM54140_RDB_C_APWR_SLP_TIM_5_4:
789 *tx_interval = 5400;
790 break;
791 }
792 }
793
794 return 0;
795}
796
797static int bcm54140_set_edpd(struct phy_device *phydev, u16 tx_interval)
798{
799 u16 mask, set;
800
801 mask = BCM54140_RDB_C_APWR_APD_MODE_MASK;
802 if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE)
803 set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
804 BCM54140_RDB_C_APWR_APD_MODE_DIS);
805 else
806 set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
807 BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG);
808
809 /* enable single pulse mode */
810 set |= BCM54140_RDB_C_APWR_SINGLE_PULSE;
811
812 /* set sleep timer */
813 mask |= BCM54140_RDB_C_APWR_SLP_TIM_MASK;
814 switch (tx_interval) {
815 case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS:
816 case ETHTOOL_PHY_EDPD_DISABLE:
817 case 2700:
818 set |= BCM54140_RDB_C_APWR_SLP_TIM_2_7;
819 break;
820 case 5400:
821 set |= BCM54140_RDB_C_APWR_SLP_TIM_5_4;
822 break;
823 default:
824 return -EINVAL;
825 }
826
827 return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_APWR, mask, set);
828}
829
830static int bcm54140_get_tunable(struct phy_device *phydev,
831 struct ethtool_tunable *tuna, void *data)
832{
833 switch (tuna->id) {
834 case ETHTOOL_PHY_DOWNSHIFT:
835 return bcm54140_get_downshift(phydev, data);
836 case ETHTOOL_PHY_EDPD:
837 return bcm54140_get_edpd(phydev, tx_interval: data);
838 default:
839 return -EOPNOTSUPP;
840 }
841}
842
843static int bcm54140_set_tunable(struct phy_device *phydev,
844 struct ethtool_tunable *tuna, const void *data)
845{
846 switch (tuna->id) {
847 case ETHTOOL_PHY_DOWNSHIFT:
848 return bcm54140_set_downshift(phydev, cnt: *(const u8 *)data);
849 case ETHTOOL_PHY_EDPD:
850 return bcm54140_set_edpd(phydev, tx_interval: *(const u16 *)data);
851 default:
852 return -EOPNOTSUPP;
853 }
854}
855
856static struct phy_driver bcm54140_drivers[] = {
857 {
858 .phy_id = PHY_ID_BCM54140,
859 .phy_id_mask = BCM54140_PHY_ID_MASK,
860 .name = "Broadcom BCM54140",
861 .flags = PHY_POLL_CABLE_TEST,
862 .features = PHY_GBIT_FEATURES,
863 .config_init = bcm54140_config_init,
864 .handle_interrupt = bcm54140_handle_interrupt,
865 .config_intr = bcm54140_config_intr,
866 .probe = bcm54140_probe,
867 .suspend = genphy_suspend,
868 .resume = genphy_resume,
869 .soft_reset = genphy_soft_reset,
870 .get_tunable = bcm54140_get_tunable,
871 .set_tunable = bcm54140_set_tunable,
872 .cable_test_start = bcm_phy_cable_test_start_rdb,
873 .cable_test_get_status = bcm_phy_cable_test_get_status_rdb,
874 },
875};
876module_phy_driver(bcm54140_drivers);
877
878static struct mdio_device_id __maybe_unused bcm54140_tbl[] = {
879 { PHY_ID_BCM54140, BCM54140_PHY_ID_MASK },
880 { }
881};
882
883MODULE_AUTHOR("Michael Walle");
884MODULE_DESCRIPTION("Broadcom BCM54140 PHY driver");
885MODULE_DEVICE_TABLE(mdio, bcm54140_tbl);
886MODULE_LICENSE("GPL");
887

source code of linux/drivers/net/phy/bcm54140.c