1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * NVMe over Fabrics RDMA target. |
4 | * Copyright (c) 2015-2016 HGST, a Western Digital Company. |
5 | */ |
6 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
7 | #include <linux/atomic.h> |
8 | #include <linux/blk-integrity.h> |
9 | #include <linux/ctype.h> |
10 | #include <linux/delay.h> |
11 | #include <linux/err.h> |
12 | #include <linux/init.h> |
13 | #include <linux/module.h> |
14 | #include <linux/nvme.h> |
15 | #include <linux/slab.h> |
16 | #include <linux/string.h> |
17 | #include <linux/wait.h> |
18 | #include <linux/inet.h> |
19 | #include <linux/unaligned.h> |
20 | |
21 | #include <rdma/ib_verbs.h> |
22 | #include <rdma/rdma_cm.h> |
23 | #include <rdma/rw.h> |
24 | #include <rdma/ib_cm.h> |
25 | |
26 | #include <linux/nvme-rdma.h> |
27 | #include "nvmet.h" |
28 | |
29 | /* |
30 | * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data |
31 | */ |
32 | #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE |
33 | #define NVMET_RDMA_MAX_INLINE_SGE 4 |
34 | #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) |
35 | |
36 | /* Assume mpsmin == device_page_size == 4KB */ |
37 | #define NVMET_RDMA_MAX_MDTS 8 |
38 | #define NVMET_RDMA_MAX_METADATA_MDTS 5 |
39 | |
40 | #define NVMET_RDMA_BACKLOG 128 |
41 | |
42 | #define NVMET_RDMA_DISCRETE_RSP_TAG -1 |
43 | |
44 | struct nvmet_rdma_srq; |
45 | |
46 | struct nvmet_rdma_cmd { |
47 | struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; |
48 | struct ib_cqe cqe; |
49 | struct ib_recv_wr wr; |
50 | struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; |
51 | struct nvme_command *nvme_cmd; |
52 | struct nvmet_rdma_queue *queue; |
53 | struct nvmet_rdma_srq *nsrq; |
54 | }; |
55 | |
56 | enum { |
57 | NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), |
58 | }; |
59 | |
60 | struct nvmet_rdma_rsp { |
61 | struct ib_sge send_sge; |
62 | struct ib_cqe send_cqe; |
63 | struct ib_send_wr send_wr; |
64 | |
65 | struct nvmet_rdma_cmd *cmd; |
66 | struct nvmet_rdma_queue *queue; |
67 | |
68 | struct ib_cqe read_cqe; |
69 | struct ib_cqe write_cqe; |
70 | struct rdma_rw_ctx rw; |
71 | |
72 | struct nvmet_req req; |
73 | |
74 | bool allocated; |
75 | u8 n_rdma; |
76 | u32 flags; |
77 | u32 invalidate_rkey; |
78 | |
79 | struct list_head wait_list; |
80 | int tag; |
81 | }; |
82 | |
83 | enum nvmet_rdma_queue_state { |
84 | NVMET_RDMA_Q_CONNECTING, |
85 | NVMET_RDMA_Q_LIVE, |
86 | NVMET_RDMA_Q_DISCONNECTING, |
87 | }; |
88 | |
89 | struct nvmet_rdma_queue { |
90 | struct rdma_cm_id *cm_id; |
91 | struct ib_qp *qp; |
92 | struct nvmet_port *port; |
93 | struct ib_cq *cq; |
94 | atomic_t sq_wr_avail; |
95 | struct nvmet_rdma_device *dev; |
96 | struct nvmet_rdma_srq *nsrq; |
97 | spinlock_t state_lock; |
98 | enum nvmet_rdma_queue_state state; |
99 | struct nvmet_cq nvme_cq; |
100 | struct nvmet_sq nvme_sq; |
101 | |
102 | struct nvmet_rdma_rsp *rsps; |
103 | struct sbitmap rsp_tags; |
104 | struct nvmet_rdma_cmd *cmds; |
105 | |
106 | struct work_struct release_work; |
107 | struct list_head rsp_wait_list; |
108 | struct list_head rsp_wr_wait_list; |
109 | spinlock_t rsp_wr_wait_lock; |
110 | |
111 | int idx; |
112 | int host_qid; |
113 | int comp_vector; |
114 | int recv_queue_size; |
115 | int send_queue_size; |
116 | |
117 | struct list_head queue_list; |
118 | }; |
119 | |
120 | struct nvmet_rdma_port { |
121 | struct nvmet_port *nport; |
122 | struct sockaddr_storage addr; |
123 | struct rdma_cm_id *cm_id; |
124 | struct delayed_work repair_work; |
125 | }; |
126 | |
127 | struct nvmet_rdma_srq { |
128 | struct ib_srq *srq; |
129 | struct nvmet_rdma_cmd *cmds; |
130 | struct nvmet_rdma_device *ndev; |
131 | }; |
132 | |
133 | struct nvmet_rdma_device { |
134 | struct ib_device *device; |
135 | struct ib_pd *pd; |
136 | struct nvmet_rdma_srq **srqs; |
137 | int srq_count; |
138 | size_t srq_size; |
139 | struct kref ref; |
140 | struct list_head entry; |
141 | int inline_data_size; |
142 | int inline_page_count; |
143 | }; |
144 | |
145 | static bool nvmet_rdma_use_srq; |
146 | module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); |
147 | MODULE_PARM_DESC(use_srq, "Use shared receive queue."); |
148 | |
149 | static int srq_size_set(const char *val, const struct kernel_param *kp); |
150 | static const struct kernel_param_ops srq_size_ops = { |
151 | .set = srq_size_set, |
152 | .get = param_get_int, |
153 | }; |
154 | |
155 | static int nvmet_rdma_srq_size = 1024; |
156 | module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); |
157 | MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); |
158 | |
159 | static DEFINE_IDA(nvmet_rdma_queue_ida); |
160 | static LIST_HEAD(nvmet_rdma_queue_list); |
161 | static DEFINE_MUTEX(nvmet_rdma_queue_mutex); |
162 | |
163 | static LIST_HEAD(device_list); |
164 | static DEFINE_MUTEX(device_list_mutex); |
165 | |
166 | static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); |
167 | static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); |
168 | static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); |
169 | static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); |
170 | static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); |
171 | static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); |
172 | static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); |
173 | static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, |
174 | struct nvmet_rdma_rsp *r); |
175 | static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, |
176 | struct nvmet_rdma_rsp *r, |
177 | int tag); |
178 | |
179 | static const struct nvmet_fabrics_ops nvmet_rdma_ops; |
180 | |
181 | static int srq_size_set(const char *val, const struct kernel_param *kp) |
182 | { |
183 | int n = 0, ret; |
184 | |
185 | ret = kstrtoint(s: val, base: 10, res: &n); |
186 | if (ret != 0 || n < 256) |
187 | return -EINVAL; |
188 | |
189 | return param_set_int(val, kp); |
190 | } |
191 | |
192 | static int num_pages(int len) |
193 | { |
194 | return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); |
195 | } |
196 | |
197 | static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) |
198 | { |
199 | return nvme_is_write(cmd: rsp->req.cmd) && |
200 | rsp->req.transfer_len && |
201 | !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); |
202 | } |
203 | |
204 | static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) |
205 | { |
206 | return !nvme_is_write(cmd: rsp->req.cmd) && |
207 | rsp->req.transfer_len && |
208 | !rsp->req.cqe->status && |
209 | !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); |
210 | } |
211 | |
212 | static inline struct nvmet_rdma_rsp * |
213 | nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) |
214 | { |
215 | struct nvmet_rdma_rsp *rsp = NULL; |
216 | int tag; |
217 | |
218 | tag = sbitmap_get(sb: &queue->rsp_tags); |
219 | if (tag >= 0) |
220 | rsp = &queue->rsps[tag]; |
221 | |
222 | if (unlikely(!rsp)) { |
223 | int ret; |
224 | |
225 | rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); |
226 | if (unlikely(!rsp)) |
227 | return NULL; |
228 | ret = nvmet_rdma_alloc_rsp(ndev: queue->dev, r: rsp, |
229 | NVMET_RDMA_DISCRETE_RSP_TAG); |
230 | if (unlikely(ret)) { |
231 | kfree(objp: rsp); |
232 | return NULL; |
233 | } |
234 | } |
235 | |
236 | return rsp; |
237 | } |
238 | |
239 | static inline void |
240 | nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) |
241 | { |
242 | if (unlikely(rsp->tag == NVMET_RDMA_DISCRETE_RSP_TAG)) { |
243 | nvmet_rdma_free_rsp(ndev: rsp->queue->dev, r: rsp); |
244 | kfree(objp: rsp); |
245 | return; |
246 | } |
247 | |
248 | sbitmap_clear_bit(sb: &rsp->queue->rsp_tags, bitnr: rsp->tag); |
249 | } |
250 | |
251 | static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, |
252 | struct nvmet_rdma_cmd *c) |
253 | { |
254 | struct scatterlist *sg; |
255 | struct ib_sge *sge; |
256 | int i; |
257 | |
258 | if (!ndev->inline_data_size) |
259 | return; |
260 | |
261 | sg = c->inline_sg; |
262 | sge = &c->sge[1]; |
263 | |
264 | for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { |
265 | if (sge->length) |
266 | ib_dma_unmap_page(dev: ndev->device, addr: sge->addr, |
267 | size: sge->length, direction: DMA_FROM_DEVICE); |
268 | if (sg_page(sg)) |
269 | __free_page(sg_page(sg)); |
270 | } |
271 | } |
272 | |
273 | static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, |
274 | struct nvmet_rdma_cmd *c) |
275 | { |
276 | struct scatterlist *sg; |
277 | struct ib_sge *sge; |
278 | struct page *pg; |
279 | int len; |
280 | int i; |
281 | |
282 | if (!ndev->inline_data_size) |
283 | return 0; |
284 | |
285 | sg = c->inline_sg; |
286 | sg_init_table(sg, ndev->inline_page_count); |
287 | sge = &c->sge[1]; |
288 | len = ndev->inline_data_size; |
289 | |
290 | for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { |
291 | pg = alloc_page(GFP_KERNEL); |
292 | if (!pg) |
293 | goto out_err; |
294 | sg_assign_page(sg, page: pg); |
295 | sge->addr = ib_dma_map_page(dev: ndev->device, |
296 | page: pg, offset: 0, PAGE_SIZE, direction: DMA_FROM_DEVICE); |
297 | if (ib_dma_mapping_error(dev: ndev->device, dma_addr: sge->addr)) |
298 | goto out_err; |
299 | sge->length = min_t(int, len, PAGE_SIZE); |
300 | sge->lkey = ndev->pd->local_dma_lkey; |
301 | len -= sge->length; |
302 | } |
303 | |
304 | return 0; |
305 | out_err: |
306 | for (; i >= 0; i--, sg--, sge--) { |
307 | if (sge->length) |
308 | ib_dma_unmap_page(dev: ndev->device, addr: sge->addr, |
309 | size: sge->length, direction: DMA_FROM_DEVICE); |
310 | if (sg_page(sg)) |
311 | __free_page(sg_page(sg)); |
312 | } |
313 | return -ENOMEM; |
314 | } |
315 | |
316 | static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, |
317 | struct nvmet_rdma_cmd *c, bool admin) |
318 | { |
319 | /* NVMe command / RDMA RECV */ |
320 | c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); |
321 | if (!c->nvme_cmd) |
322 | goto out; |
323 | |
324 | c->sge[0].addr = ib_dma_map_single(dev: ndev->device, cpu_addr: c->nvme_cmd, |
325 | size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE); |
326 | if (ib_dma_mapping_error(dev: ndev->device, dma_addr: c->sge[0].addr)) |
327 | goto out_free_cmd; |
328 | |
329 | c->sge[0].length = sizeof(*c->nvme_cmd); |
330 | c->sge[0].lkey = ndev->pd->local_dma_lkey; |
331 | |
332 | if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) |
333 | goto out_unmap_cmd; |
334 | |
335 | c->cqe.done = nvmet_rdma_recv_done; |
336 | |
337 | c->wr.wr_cqe = &c->cqe; |
338 | c->wr.sg_list = c->sge; |
339 | c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; |
340 | |
341 | return 0; |
342 | |
343 | out_unmap_cmd: |
344 | ib_dma_unmap_single(dev: ndev->device, addr: c->sge[0].addr, |
345 | size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE); |
346 | out_free_cmd: |
347 | kfree(objp: c->nvme_cmd); |
348 | |
349 | out: |
350 | return -ENOMEM; |
351 | } |
352 | |
353 | static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, |
354 | struct nvmet_rdma_cmd *c, bool admin) |
355 | { |
356 | if (!admin) |
357 | nvmet_rdma_free_inline_pages(ndev, c); |
358 | ib_dma_unmap_single(dev: ndev->device, addr: c->sge[0].addr, |
359 | size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE); |
360 | kfree(objp: c->nvme_cmd); |
361 | } |
362 | |
363 | static struct nvmet_rdma_cmd * |
364 | nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, |
365 | int nr_cmds, bool admin) |
366 | { |
367 | struct nvmet_rdma_cmd *cmds; |
368 | int ret = -EINVAL, i; |
369 | |
370 | cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); |
371 | if (!cmds) |
372 | goto out; |
373 | |
374 | for (i = 0; i < nr_cmds; i++) { |
375 | ret = nvmet_rdma_alloc_cmd(ndev, c: cmds + i, admin); |
376 | if (ret) |
377 | goto out_free; |
378 | } |
379 | |
380 | return cmds; |
381 | |
382 | out_free: |
383 | while (--i >= 0) |
384 | nvmet_rdma_free_cmd(ndev, c: cmds + i, admin); |
385 | kfree(objp: cmds); |
386 | out: |
387 | return ERR_PTR(error: ret); |
388 | } |
389 | |
390 | static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, |
391 | struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) |
392 | { |
393 | int i; |
394 | |
395 | for (i = 0; i < nr_cmds; i++) |
396 | nvmet_rdma_free_cmd(ndev, c: cmds + i, admin); |
397 | kfree(objp: cmds); |
398 | } |
399 | |
400 | static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, |
401 | struct nvmet_rdma_rsp *r, int tag) |
402 | { |
403 | /* NVMe CQE / RDMA SEND */ |
404 | r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); |
405 | if (!r->req.cqe) |
406 | goto out; |
407 | |
408 | r->send_sge.addr = ib_dma_map_single(dev: ndev->device, cpu_addr: r->req.cqe, |
409 | size: sizeof(*r->req.cqe), direction: DMA_TO_DEVICE); |
410 | if (ib_dma_mapping_error(dev: ndev->device, dma_addr: r->send_sge.addr)) |
411 | goto out_free_rsp; |
412 | |
413 | if (ib_dma_pci_p2p_dma_supported(dev: ndev->device)) |
414 | r->req.p2p_client = &ndev->device->dev; |
415 | r->send_sge.length = sizeof(*r->req.cqe); |
416 | r->send_sge.lkey = ndev->pd->local_dma_lkey; |
417 | |
418 | r->send_cqe.done = nvmet_rdma_send_done; |
419 | |
420 | r->send_wr.wr_cqe = &r->send_cqe; |
421 | r->send_wr.sg_list = &r->send_sge; |
422 | r->send_wr.num_sge = 1; |
423 | r->send_wr.send_flags = IB_SEND_SIGNALED; |
424 | |
425 | /* Data In / RDMA READ */ |
426 | r->read_cqe.done = nvmet_rdma_read_data_done; |
427 | /* Data Out / RDMA WRITE */ |
428 | r->write_cqe.done = nvmet_rdma_write_data_done; |
429 | r->tag = tag; |
430 | |
431 | return 0; |
432 | |
433 | out_free_rsp: |
434 | kfree(objp: r->req.cqe); |
435 | out: |
436 | return -ENOMEM; |
437 | } |
438 | |
439 | static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, |
440 | struct nvmet_rdma_rsp *r) |
441 | { |
442 | ib_dma_unmap_single(dev: ndev->device, addr: r->send_sge.addr, |
443 | size: sizeof(*r->req.cqe), direction: DMA_TO_DEVICE); |
444 | kfree(objp: r->req.cqe); |
445 | } |
446 | |
447 | static int |
448 | nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) |
449 | { |
450 | struct nvmet_rdma_device *ndev = queue->dev; |
451 | int nr_rsps = queue->recv_queue_size * 2; |
452 | int ret = -ENOMEM, i; |
453 | |
454 | if (sbitmap_init_node(sb: &queue->rsp_tags, depth: nr_rsps, shift: -1, GFP_KERNEL, |
455 | NUMA_NO_NODE, round_robin: false, alloc_hint: true)) |
456 | goto out; |
457 | |
458 | queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), |
459 | GFP_KERNEL); |
460 | if (!queue->rsps) |
461 | goto out_free_sbitmap; |
462 | |
463 | for (i = 0; i < nr_rsps; i++) { |
464 | struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; |
465 | |
466 | ret = nvmet_rdma_alloc_rsp(ndev, r: rsp, tag: i); |
467 | if (ret) |
468 | goto out_free; |
469 | } |
470 | |
471 | return 0; |
472 | |
473 | out_free: |
474 | while (--i >= 0) |
475 | nvmet_rdma_free_rsp(ndev, r: &queue->rsps[i]); |
476 | kfree(objp: queue->rsps); |
477 | out_free_sbitmap: |
478 | sbitmap_free(sb: &queue->rsp_tags); |
479 | out: |
480 | return ret; |
481 | } |
482 | |
483 | static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) |
484 | { |
485 | struct nvmet_rdma_device *ndev = queue->dev; |
486 | int i, nr_rsps = queue->recv_queue_size * 2; |
487 | |
488 | for (i = 0; i < nr_rsps; i++) |
489 | nvmet_rdma_free_rsp(ndev, r: &queue->rsps[i]); |
490 | kfree(objp: queue->rsps); |
491 | sbitmap_free(sb: &queue->rsp_tags); |
492 | } |
493 | |
494 | static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, |
495 | struct nvmet_rdma_cmd *cmd) |
496 | { |
497 | int ret; |
498 | |
499 | ib_dma_sync_single_for_device(dev: ndev->device, |
500 | addr: cmd->sge[0].addr, size: cmd->sge[0].length, |
501 | dir: DMA_FROM_DEVICE); |
502 | |
503 | if (cmd->nsrq) |
504 | ret = ib_post_srq_recv(srq: cmd->nsrq->srq, recv_wr: &cmd->wr, NULL); |
505 | else |
506 | ret = ib_post_recv(qp: cmd->queue->qp, recv_wr: &cmd->wr, NULL); |
507 | |
508 | if (unlikely(ret)) |
509 | pr_err("post_recv cmd failed\n"); |
510 | |
511 | return ret; |
512 | } |
513 | |
514 | static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) |
515 | { |
516 | spin_lock(lock: &queue->rsp_wr_wait_lock); |
517 | while (!list_empty(head: &queue->rsp_wr_wait_list)) { |
518 | struct nvmet_rdma_rsp *rsp; |
519 | bool ret; |
520 | |
521 | rsp = list_entry(queue->rsp_wr_wait_list.next, |
522 | struct nvmet_rdma_rsp, wait_list); |
523 | list_del(entry: &rsp->wait_list); |
524 | |
525 | spin_unlock(lock: &queue->rsp_wr_wait_lock); |
526 | ret = nvmet_rdma_execute_command(rsp); |
527 | spin_lock(lock: &queue->rsp_wr_wait_lock); |
528 | |
529 | if (!ret) { |
530 | list_add(new: &rsp->wait_list, head: &queue->rsp_wr_wait_list); |
531 | break; |
532 | } |
533 | } |
534 | spin_unlock(lock: &queue->rsp_wr_wait_lock); |
535 | } |
536 | |
537 | static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) |
538 | { |
539 | struct ib_mr_status mr_status; |
540 | int ret; |
541 | u16 status = 0; |
542 | |
543 | ret = ib_check_mr_status(mr: sig_mr, check_mask: IB_MR_CHECK_SIG_STATUS, mr_status: &mr_status); |
544 | if (ret) { |
545 | pr_err("ib_check_mr_status failed, ret %d\n", ret); |
546 | return NVME_SC_INVALID_PI; |
547 | } |
548 | |
549 | if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { |
550 | switch (mr_status.sig_err.err_type) { |
551 | case IB_SIG_BAD_GUARD: |
552 | status = NVME_SC_GUARD_CHECK; |
553 | break; |
554 | case IB_SIG_BAD_REFTAG: |
555 | status = NVME_SC_REFTAG_CHECK; |
556 | break; |
557 | case IB_SIG_BAD_APPTAG: |
558 | status = NVME_SC_APPTAG_CHECK; |
559 | break; |
560 | } |
561 | pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", |
562 | mr_status.sig_err.err_type, |
563 | mr_status.sig_err.expected, |
564 | mr_status.sig_err.actual); |
565 | } |
566 | |
567 | return status; |
568 | } |
569 | |
570 | static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, |
571 | struct nvme_command *cmd, struct ib_sig_domain *domain, |
572 | u16 control, u8 pi_type) |
573 | { |
574 | domain->sig_type = IB_SIG_TYPE_T10_DIF; |
575 | domain->sig.dif.bg_type = IB_T10DIF_CRC; |
576 | domain->sig.dif.pi_interval = 1 << bi->interval_exp; |
577 | domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); |
578 | if (control & NVME_RW_PRINFO_PRCHK_REF) |
579 | domain->sig.dif.ref_remap = true; |
580 | |
581 | domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat); |
582 | domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm); |
583 | domain->sig.dif.app_escape = true; |
584 | if (pi_type == NVME_NS_DPS_PI_TYPE3) |
585 | domain->sig.dif.ref_escape = true; |
586 | } |
587 | |
588 | static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, |
589 | struct ib_sig_attrs *sig_attrs) |
590 | { |
591 | struct nvme_command *cmd = req->cmd; |
592 | u16 control = le16_to_cpu(cmd->rw.control); |
593 | u8 pi_type = req->ns->pi_type; |
594 | struct blk_integrity *bi; |
595 | |
596 | bi = bdev_get_integrity(bdev: req->ns->bdev); |
597 | |
598 | memset(sig_attrs, 0, sizeof(*sig_attrs)); |
599 | |
600 | if (control & NVME_RW_PRINFO_PRACT) { |
601 | /* for WRITE_INSERT/READ_STRIP no wire domain */ |
602 | sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; |
603 | nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->mem, control, |
604 | pi_type); |
605 | /* Clear the PRACT bit since HCA will generate/verify the PI */ |
606 | control &= ~NVME_RW_PRINFO_PRACT; |
607 | cmd->rw.control = cpu_to_le16(control); |
608 | /* PI is added by the HW */ |
609 | req->transfer_len += req->metadata_len; |
610 | } else { |
611 | /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ |
612 | nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->wire, control, |
613 | pi_type); |
614 | nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->mem, control, |
615 | pi_type); |
616 | } |
617 | |
618 | if (control & NVME_RW_PRINFO_PRCHK_REF) |
619 | sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; |
620 | if (control & NVME_RW_PRINFO_PRCHK_GUARD) |
621 | sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; |
622 | if (control & NVME_RW_PRINFO_PRCHK_APP) |
623 | sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; |
624 | } |
625 | |
626 | static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, |
627 | struct ib_sig_attrs *sig_attrs) |
628 | { |
629 | struct rdma_cm_id *cm_id = rsp->queue->cm_id; |
630 | struct nvmet_req *req = &rsp->req; |
631 | int ret; |
632 | |
633 | if (req->metadata_len) |
634 | ret = rdma_rw_ctx_signature_init(ctx: &rsp->rw, qp: cm_id->qp, |
635 | port_num: cm_id->port_num, sg: req->sg, sg_cnt: req->sg_cnt, |
636 | prot_sg: req->metadata_sg, prot_sg_cnt: req->metadata_sg_cnt, sig_attrs, |
637 | remote_addr: addr, rkey: key, dir: nvmet_data_dir(req)); |
638 | else |
639 | ret = rdma_rw_ctx_init(ctx: &rsp->rw, qp: cm_id->qp, port_num: cm_id->port_num, |
640 | sg: req->sg, sg_cnt: req->sg_cnt, sg_offset: 0, remote_addr: addr, rkey: key, |
641 | dir: nvmet_data_dir(req)); |
642 | |
643 | return ret; |
644 | } |
645 | |
646 | static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) |
647 | { |
648 | struct rdma_cm_id *cm_id = rsp->queue->cm_id; |
649 | struct nvmet_req *req = &rsp->req; |
650 | |
651 | if (req->metadata_len) |
652 | rdma_rw_ctx_destroy_signature(ctx: &rsp->rw, qp: cm_id->qp, |
653 | port_num: cm_id->port_num, sg: req->sg, sg_cnt: req->sg_cnt, |
654 | prot_sg: req->metadata_sg, prot_sg_cnt: req->metadata_sg_cnt, |
655 | dir: nvmet_data_dir(req)); |
656 | else |
657 | rdma_rw_ctx_destroy(ctx: &rsp->rw, qp: cm_id->qp, port_num: cm_id->port_num, |
658 | sg: req->sg, sg_cnt: req->sg_cnt, dir: nvmet_data_dir(req)); |
659 | } |
660 | |
661 | static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) |
662 | { |
663 | struct nvmet_rdma_queue *queue = rsp->queue; |
664 | |
665 | atomic_add(i: 1 + rsp->n_rdma, v: &queue->sq_wr_avail); |
666 | |
667 | if (rsp->n_rdma) |
668 | nvmet_rdma_rw_ctx_destroy(rsp); |
669 | |
670 | if (rsp->req.sg != rsp->cmd->inline_sg) |
671 | nvmet_req_free_sgls(req: &rsp->req); |
672 | |
673 | if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) |
674 | nvmet_rdma_process_wr_wait_list(queue); |
675 | |
676 | nvmet_rdma_put_rsp(rsp); |
677 | } |
678 | |
679 | static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) |
680 | { |
681 | if (queue->nvme_sq.ctrl) { |
682 | nvmet_ctrl_fatal_error(ctrl: queue->nvme_sq.ctrl); |
683 | } else { |
684 | /* |
685 | * we didn't setup the controller yet in case |
686 | * of admin connect error, just disconnect and |
687 | * cleanup the queue |
688 | */ |
689 | nvmet_rdma_queue_disconnect(queue); |
690 | } |
691 | } |
692 | |
693 | static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) |
694 | { |
695 | struct nvmet_rdma_rsp *rsp = |
696 | container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); |
697 | struct nvmet_rdma_queue *queue = wc->qp->qp_context; |
698 | |
699 | nvmet_rdma_release_rsp(rsp); |
700 | |
701 | if (unlikely(wc->status != IB_WC_SUCCESS && |
702 | wc->status != IB_WC_WR_FLUSH_ERR)) { |
703 | pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", |
704 | wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); |
705 | nvmet_rdma_error_comp(queue); |
706 | } |
707 | } |
708 | |
709 | static void nvmet_rdma_queue_response(struct nvmet_req *req) |
710 | { |
711 | struct nvmet_rdma_rsp *rsp = |
712 | container_of(req, struct nvmet_rdma_rsp, req); |
713 | struct rdma_cm_id *cm_id = rsp->queue->cm_id; |
714 | struct ib_send_wr *first_wr; |
715 | |
716 | if (rsp->invalidate_rkey) { |
717 | rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; |
718 | rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; |
719 | } else { |
720 | rsp->send_wr.opcode = IB_WR_SEND; |
721 | } |
722 | |
723 | if (nvmet_rdma_need_data_out(rsp)) { |
724 | if (rsp->req.metadata_len) |
725 | first_wr = rdma_rw_ctx_wrs(ctx: &rsp->rw, qp: cm_id->qp, |
726 | port_num: cm_id->port_num, cqe: &rsp->write_cqe, NULL); |
727 | else |
728 | first_wr = rdma_rw_ctx_wrs(ctx: &rsp->rw, qp: cm_id->qp, |
729 | port_num: cm_id->port_num, NULL, chain_wr: &rsp->send_wr); |
730 | } else { |
731 | first_wr = &rsp->send_wr; |
732 | } |
733 | |
734 | nvmet_rdma_post_recv(ndev: rsp->queue->dev, cmd: rsp->cmd); |
735 | |
736 | ib_dma_sync_single_for_device(dev: rsp->queue->dev->device, |
737 | addr: rsp->send_sge.addr, size: rsp->send_sge.length, |
738 | dir: DMA_TO_DEVICE); |
739 | |
740 | if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { |
741 | pr_err("sending cmd response failed\n"); |
742 | nvmet_rdma_release_rsp(rsp); |
743 | } |
744 | } |
745 | |
746 | static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) |
747 | { |
748 | struct nvmet_rdma_rsp *rsp = |
749 | container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); |
750 | struct nvmet_rdma_queue *queue = wc->qp->qp_context; |
751 | u16 status = 0; |
752 | |
753 | WARN_ON(rsp->n_rdma <= 0); |
754 | atomic_add(i: rsp->n_rdma, v: &queue->sq_wr_avail); |
755 | rsp->n_rdma = 0; |
756 | |
757 | if (unlikely(wc->status != IB_WC_SUCCESS)) { |
758 | nvmet_rdma_rw_ctx_destroy(rsp); |
759 | nvmet_req_uninit(req: &rsp->req); |
760 | nvmet_rdma_release_rsp(rsp); |
761 | if (wc->status != IB_WC_WR_FLUSH_ERR) { |
762 | pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", |
763 | wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); |
764 | nvmet_rdma_error_comp(queue); |
765 | } |
766 | return; |
767 | } |
768 | |
769 | if (rsp->req.metadata_len) |
770 | status = nvmet_rdma_check_pi_status(sig_mr: rsp->rw.reg->mr); |
771 | nvmet_rdma_rw_ctx_destroy(rsp); |
772 | |
773 | if (unlikely(status)) |
774 | nvmet_req_complete(req: &rsp->req, status); |
775 | else |
776 | rsp->req.execute(&rsp->req); |
777 | } |
778 | |
779 | static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) |
780 | { |
781 | struct nvmet_rdma_rsp *rsp = |
782 | container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); |
783 | struct nvmet_rdma_queue *queue = wc->qp->qp_context; |
784 | struct rdma_cm_id *cm_id = rsp->queue->cm_id; |
785 | u16 status; |
786 | |
787 | if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) |
788 | return; |
789 | |
790 | WARN_ON(rsp->n_rdma <= 0); |
791 | atomic_add(i: rsp->n_rdma, v: &queue->sq_wr_avail); |
792 | rsp->n_rdma = 0; |
793 | |
794 | if (unlikely(wc->status != IB_WC_SUCCESS)) { |
795 | nvmet_rdma_rw_ctx_destroy(rsp); |
796 | nvmet_req_uninit(req: &rsp->req); |
797 | nvmet_rdma_release_rsp(rsp); |
798 | if (wc->status != IB_WC_WR_FLUSH_ERR) { |
799 | pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", |
800 | ib_wc_status_msg(wc->status), wc->status); |
801 | nvmet_rdma_error_comp(queue); |
802 | } |
803 | return; |
804 | } |
805 | |
806 | /* |
807 | * Upon RDMA completion check the signature status |
808 | * - if succeeded send good NVMe response |
809 | * - if failed send bad NVMe response with appropriate error |
810 | */ |
811 | status = nvmet_rdma_check_pi_status(sig_mr: rsp->rw.reg->mr); |
812 | if (unlikely(status)) |
813 | rsp->req.cqe->status = cpu_to_le16(status << 1); |
814 | nvmet_rdma_rw_ctx_destroy(rsp); |
815 | |
816 | if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { |
817 | pr_err("sending cmd response failed\n"); |
818 | nvmet_rdma_release_rsp(rsp); |
819 | } |
820 | } |
821 | |
822 | static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, |
823 | u64 off) |
824 | { |
825 | int sg_count = num_pages(len); |
826 | struct scatterlist *sg; |
827 | int i; |
828 | |
829 | sg = rsp->cmd->inline_sg; |
830 | for (i = 0; i < sg_count; i++, sg++) { |
831 | if (i < sg_count - 1) |
832 | sg_unmark_end(sg); |
833 | else |
834 | sg_mark_end(sg); |
835 | sg->offset = off; |
836 | sg->length = min_t(int, len, PAGE_SIZE - off); |
837 | len -= sg->length; |
838 | if (!i) |
839 | off = 0; |
840 | } |
841 | |
842 | rsp->req.sg = rsp->cmd->inline_sg; |
843 | rsp->req.sg_cnt = sg_count; |
844 | } |
845 | |
846 | static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) |
847 | { |
848 | struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; |
849 | u64 off = le64_to_cpu(sgl->addr); |
850 | u32 len = le32_to_cpu(sgl->length); |
851 | |
852 | if (!nvme_is_write(cmd: rsp->req.cmd)) { |
853 | rsp->req.error_loc = |
854 | offsetof(struct nvme_common_command, opcode); |
855 | return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
856 | } |
857 | |
858 | if (off + len > rsp->queue->dev->inline_data_size) { |
859 | pr_err("invalid inline data offset!\n"); |
860 | return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR; |
861 | } |
862 | |
863 | /* no data command? */ |
864 | if (!len) |
865 | return 0; |
866 | |
867 | nvmet_rdma_use_inline_sg(rsp, len, off); |
868 | rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; |
869 | rsp->req.transfer_len += len; |
870 | return 0; |
871 | } |
872 | |
873 | static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, |
874 | struct nvme_keyed_sgl_desc *sgl, bool invalidate) |
875 | { |
876 | u64 addr = le64_to_cpu(sgl->addr); |
877 | u32 key = get_unaligned_le32(p: sgl->key); |
878 | struct ib_sig_attrs sig_attrs; |
879 | int ret; |
880 | |
881 | rsp->req.transfer_len = get_unaligned_le24(p: sgl->length); |
882 | |
883 | /* no data command? */ |
884 | if (!rsp->req.transfer_len) |
885 | return 0; |
886 | |
887 | if (rsp->req.metadata_len) |
888 | nvmet_rdma_set_sig_attrs(req: &rsp->req, sig_attrs: &sig_attrs); |
889 | |
890 | ret = nvmet_req_alloc_sgls(req: &rsp->req); |
891 | if (unlikely(ret < 0)) |
892 | goto error_out; |
893 | |
894 | ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, sig_attrs: &sig_attrs); |
895 | if (unlikely(ret < 0)) |
896 | goto error_out; |
897 | rsp->n_rdma += ret; |
898 | |
899 | if (invalidate) |
900 | rsp->invalidate_rkey = key; |
901 | |
902 | return 0; |
903 | |
904 | error_out: |
905 | rsp->req.transfer_len = 0; |
906 | return NVME_SC_INTERNAL; |
907 | } |
908 | |
909 | static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) |
910 | { |
911 | struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; |
912 | |
913 | switch (sgl->type >> 4) { |
914 | case NVME_SGL_FMT_DATA_DESC: |
915 | switch (sgl->type & 0xf) { |
916 | case NVME_SGL_FMT_OFFSET: |
917 | return nvmet_rdma_map_sgl_inline(rsp); |
918 | default: |
919 | pr_err("invalid SGL subtype: %#x\n", sgl->type); |
920 | rsp->req.error_loc = |
921 | offsetof(struct nvme_common_command, dptr); |
922 | return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
923 | } |
924 | case NVME_KEY_SGL_FMT_DATA_DESC: |
925 | switch (sgl->type & 0xf) { |
926 | case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: |
927 | return nvmet_rdma_map_sgl_keyed(rsp, sgl, invalidate: true); |
928 | case NVME_SGL_FMT_ADDRESS: |
929 | return nvmet_rdma_map_sgl_keyed(rsp, sgl, invalidate: false); |
930 | default: |
931 | pr_err("invalid SGL subtype: %#x\n", sgl->type); |
932 | rsp->req.error_loc = |
933 | offsetof(struct nvme_common_command, dptr); |
934 | return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
935 | } |
936 | default: |
937 | pr_err("invalid SGL type: %#x\n", sgl->type); |
938 | rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); |
939 | return NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR; |
940 | } |
941 | } |
942 | |
943 | static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) |
944 | { |
945 | struct nvmet_rdma_queue *queue = rsp->queue; |
946 | |
947 | if (unlikely(atomic_sub_return(1 + rsp->n_rdma, |
948 | &queue->sq_wr_avail) < 0)) { |
949 | pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", |
950 | 1 + rsp->n_rdma, queue->idx, |
951 | queue->nvme_sq.ctrl->cntlid); |
952 | atomic_add(i: 1 + rsp->n_rdma, v: &queue->sq_wr_avail); |
953 | return false; |
954 | } |
955 | |
956 | if (nvmet_rdma_need_data_in(rsp)) { |
957 | if (rdma_rw_ctx_post(ctx: &rsp->rw, qp: queue->qp, |
958 | port_num: queue->cm_id->port_num, cqe: &rsp->read_cqe, NULL)) |
959 | nvmet_req_complete(req: &rsp->req, status: NVME_SC_DATA_XFER_ERROR); |
960 | } else { |
961 | rsp->req.execute(&rsp->req); |
962 | } |
963 | |
964 | return true; |
965 | } |
966 | |
967 | static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, |
968 | struct nvmet_rdma_rsp *cmd) |
969 | { |
970 | u16 status; |
971 | |
972 | ib_dma_sync_single_for_cpu(dev: queue->dev->device, |
973 | addr: cmd->cmd->sge[0].addr, size: cmd->cmd->sge[0].length, |
974 | dir: DMA_FROM_DEVICE); |
975 | ib_dma_sync_single_for_cpu(dev: queue->dev->device, |
976 | addr: cmd->send_sge.addr, size: cmd->send_sge.length, |
977 | dir: DMA_TO_DEVICE); |
978 | |
979 | if (!nvmet_req_init(req: &cmd->req, sq: &queue->nvme_sq, ops: &nvmet_rdma_ops)) |
980 | return; |
981 | |
982 | status = nvmet_rdma_map_sgl(rsp: cmd); |
983 | if (status) |
984 | goto out_err; |
985 | |
986 | if (unlikely(!nvmet_rdma_execute_command(cmd))) { |
987 | spin_lock(lock: &queue->rsp_wr_wait_lock); |
988 | list_add_tail(new: &cmd->wait_list, head: &queue->rsp_wr_wait_list); |
989 | spin_unlock(lock: &queue->rsp_wr_wait_lock); |
990 | } |
991 | |
992 | return; |
993 | |
994 | out_err: |
995 | nvmet_req_complete(req: &cmd->req, status); |
996 | } |
997 | |
998 | static bool nvmet_rdma_recv_not_live(struct nvmet_rdma_queue *queue, |
999 | struct nvmet_rdma_rsp *rsp) |
1000 | { |
1001 | unsigned long flags; |
1002 | bool ret = true; |
1003 | |
1004 | spin_lock_irqsave(&queue->state_lock, flags); |
1005 | /* |
1006 | * recheck queue state is not live to prevent a race condition |
1007 | * with RDMA_CM_EVENT_ESTABLISHED handler. |
1008 | */ |
1009 | if (queue->state == NVMET_RDMA_Q_LIVE) |
1010 | ret = false; |
1011 | else if (queue->state == NVMET_RDMA_Q_CONNECTING) |
1012 | list_add_tail(new: &rsp->wait_list, head: &queue->rsp_wait_list); |
1013 | else |
1014 | nvmet_rdma_put_rsp(rsp); |
1015 | spin_unlock_irqrestore(lock: &queue->state_lock, flags); |
1016 | return ret; |
1017 | } |
1018 | |
1019 | static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) |
1020 | { |
1021 | struct nvmet_rdma_cmd *cmd = |
1022 | container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); |
1023 | struct nvmet_rdma_queue *queue = wc->qp->qp_context; |
1024 | struct nvmet_rdma_rsp *rsp; |
1025 | |
1026 | if (unlikely(wc->status != IB_WC_SUCCESS)) { |
1027 | if (wc->status != IB_WC_WR_FLUSH_ERR) { |
1028 | pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", |
1029 | wc->wr_cqe, ib_wc_status_msg(wc->status), |
1030 | wc->status); |
1031 | nvmet_rdma_error_comp(queue); |
1032 | } |
1033 | return; |
1034 | } |
1035 | |
1036 | if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { |
1037 | pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); |
1038 | nvmet_rdma_error_comp(queue); |
1039 | return; |
1040 | } |
1041 | |
1042 | cmd->queue = queue; |
1043 | rsp = nvmet_rdma_get_rsp(queue); |
1044 | if (unlikely(!rsp)) { |
1045 | /* |
1046 | * we get here only under memory pressure, |
1047 | * silently drop and have the host retry |
1048 | * as we can't even fail it. |
1049 | */ |
1050 | nvmet_rdma_post_recv(ndev: queue->dev, cmd); |
1051 | return; |
1052 | } |
1053 | rsp->queue = queue; |
1054 | rsp->cmd = cmd; |
1055 | rsp->flags = 0; |
1056 | rsp->req.cmd = cmd->nvme_cmd; |
1057 | rsp->req.port = queue->port; |
1058 | rsp->n_rdma = 0; |
1059 | rsp->invalidate_rkey = 0; |
1060 | |
1061 | if (unlikely(queue->state != NVMET_RDMA_Q_LIVE) && |
1062 | nvmet_rdma_recv_not_live(queue, rsp)) |
1063 | return; |
1064 | |
1065 | nvmet_rdma_handle_command(queue, cmd: rsp); |
1066 | } |
1067 | |
1068 | static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) |
1069 | { |
1070 | nvmet_rdma_free_cmds(ndev: nsrq->ndev, cmds: nsrq->cmds, nr_cmds: nsrq->ndev->srq_size, |
1071 | admin: false); |
1072 | ib_destroy_srq(srq: nsrq->srq); |
1073 | |
1074 | kfree(objp: nsrq); |
1075 | } |
1076 | |
1077 | static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) |
1078 | { |
1079 | int i; |
1080 | |
1081 | if (!ndev->srqs) |
1082 | return; |
1083 | |
1084 | for (i = 0; i < ndev->srq_count; i++) |
1085 | nvmet_rdma_destroy_srq(nsrq: ndev->srqs[i]); |
1086 | |
1087 | kfree(objp: ndev->srqs); |
1088 | } |
1089 | |
1090 | static struct nvmet_rdma_srq * |
1091 | nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) |
1092 | { |
1093 | struct ib_srq_init_attr srq_attr = { NULL, }; |
1094 | size_t srq_size = ndev->srq_size; |
1095 | struct nvmet_rdma_srq *nsrq; |
1096 | struct ib_srq *srq; |
1097 | int ret, i; |
1098 | |
1099 | nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); |
1100 | if (!nsrq) |
1101 | return ERR_PTR(error: -ENOMEM); |
1102 | |
1103 | srq_attr.attr.max_wr = srq_size; |
1104 | srq_attr.attr.max_sge = 1 + ndev->inline_page_count; |
1105 | srq_attr.attr.srq_limit = 0; |
1106 | srq_attr.srq_type = IB_SRQT_BASIC; |
1107 | srq = ib_create_srq(pd: ndev->pd, srq_init_attr: &srq_attr); |
1108 | if (IS_ERR(ptr: srq)) { |
1109 | ret = PTR_ERR(ptr: srq); |
1110 | goto out_free; |
1111 | } |
1112 | |
1113 | nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, nr_cmds: srq_size, admin: false); |
1114 | if (IS_ERR(ptr: nsrq->cmds)) { |
1115 | ret = PTR_ERR(ptr: nsrq->cmds); |
1116 | goto out_destroy_srq; |
1117 | } |
1118 | |
1119 | nsrq->srq = srq; |
1120 | nsrq->ndev = ndev; |
1121 | |
1122 | for (i = 0; i < srq_size; i++) { |
1123 | nsrq->cmds[i].nsrq = nsrq; |
1124 | ret = nvmet_rdma_post_recv(ndev, cmd: &nsrq->cmds[i]); |
1125 | if (ret) |
1126 | goto out_free_cmds; |
1127 | } |
1128 | |
1129 | return nsrq; |
1130 | |
1131 | out_free_cmds: |
1132 | nvmet_rdma_free_cmds(ndev, cmds: nsrq->cmds, nr_cmds: srq_size, admin: false); |
1133 | out_destroy_srq: |
1134 | ib_destroy_srq(srq); |
1135 | out_free: |
1136 | kfree(objp: nsrq); |
1137 | return ERR_PTR(error: ret); |
1138 | } |
1139 | |
1140 | static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) |
1141 | { |
1142 | int i, ret; |
1143 | |
1144 | if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { |
1145 | /* |
1146 | * If SRQs aren't supported we just go ahead and use normal |
1147 | * non-shared receive queues. |
1148 | */ |
1149 | pr_info("SRQ requested but not supported.\n"); |
1150 | return 0; |
1151 | } |
1152 | |
1153 | ndev->srq_size = min(ndev->device->attrs.max_srq_wr, |
1154 | nvmet_rdma_srq_size); |
1155 | ndev->srq_count = min(ndev->device->num_comp_vectors, |
1156 | ndev->device->attrs.max_srq); |
1157 | |
1158 | ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); |
1159 | if (!ndev->srqs) |
1160 | return -ENOMEM; |
1161 | |
1162 | for (i = 0; i < ndev->srq_count; i++) { |
1163 | ndev->srqs[i] = nvmet_rdma_init_srq(ndev); |
1164 | if (IS_ERR(ptr: ndev->srqs[i])) { |
1165 | ret = PTR_ERR(ptr: ndev->srqs[i]); |
1166 | goto err_srq; |
1167 | } |
1168 | } |
1169 | |
1170 | return 0; |
1171 | |
1172 | err_srq: |
1173 | while (--i >= 0) |
1174 | nvmet_rdma_destroy_srq(nsrq: ndev->srqs[i]); |
1175 | kfree(objp: ndev->srqs); |
1176 | return ret; |
1177 | } |
1178 | |
1179 | static void nvmet_rdma_free_dev(struct kref *ref) |
1180 | { |
1181 | struct nvmet_rdma_device *ndev = |
1182 | container_of(ref, struct nvmet_rdma_device, ref); |
1183 | |
1184 | mutex_lock(&device_list_mutex); |
1185 | list_del(entry: &ndev->entry); |
1186 | mutex_unlock(lock: &device_list_mutex); |
1187 | |
1188 | nvmet_rdma_destroy_srqs(ndev); |
1189 | ib_dealloc_pd(pd: ndev->pd); |
1190 | |
1191 | kfree(objp: ndev); |
1192 | } |
1193 | |
1194 | static struct nvmet_rdma_device * |
1195 | nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) |
1196 | { |
1197 | struct nvmet_rdma_port *port = cm_id->context; |
1198 | struct nvmet_port *nport = port->nport; |
1199 | struct nvmet_rdma_device *ndev; |
1200 | int inline_page_count; |
1201 | int inline_sge_count; |
1202 | int ret; |
1203 | |
1204 | mutex_lock(&device_list_mutex); |
1205 | list_for_each_entry(ndev, &device_list, entry) { |
1206 | if (ndev->device->node_guid == cm_id->device->node_guid && |
1207 | kref_get_unless_zero(kref: &ndev->ref)) |
1208 | goto out_unlock; |
1209 | } |
1210 | |
1211 | ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); |
1212 | if (!ndev) |
1213 | goto out_err; |
1214 | |
1215 | inline_page_count = num_pages(len: nport->inline_data_size); |
1216 | inline_sge_count = max(cm_id->device->attrs.max_sge_rd, |
1217 | cm_id->device->attrs.max_recv_sge) - 1; |
1218 | if (inline_page_count > inline_sge_count) { |
1219 | pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", |
1220 | nport->inline_data_size, cm_id->device->name, |
1221 | inline_sge_count * PAGE_SIZE); |
1222 | nport->inline_data_size = inline_sge_count * PAGE_SIZE; |
1223 | inline_page_count = inline_sge_count; |
1224 | } |
1225 | ndev->inline_data_size = nport->inline_data_size; |
1226 | ndev->inline_page_count = inline_page_count; |
1227 | |
1228 | if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags & |
1229 | IBK_INTEGRITY_HANDOVER)) { |
1230 | pr_warn("T10-PI is not supported by device %s. Disabling it\n", |
1231 | cm_id->device->name); |
1232 | nport->pi_enable = false; |
1233 | } |
1234 | |
1235 | ndev->device = cm_id->device; |
1236 | kref_init(kref: &ndev->ref); |
1237 | |
1238 | ndev->pd = ib_alloc_pd(ndev->device, 0); |
1239 | if (IS_ERR(ptr: ndev->pd)) |
1240 | goto out_free_dev; |
1241 | |
1242 | if (nvmet_rdma_use_srq) { |
1243 | ret = nvmet_rdma_init_srqs(ndev); |
1244 | if (ret) |
1245 | goto out_free_pd; |
1246 | } |
1247 | |
1248 | list_add(new: &ndev->entry, head: &device_list); |
1249 | out_unlock: |
1250 | mutex_unlock(lock: &device_list_mutex); |
1251 | pr_debug("added %s.\n", ndev->device->name); |
1252 | return ndev; |
1253 | |
1254 | out_free_pd: |
1255 | ib_dealloc_pd(pd: ndev->pd); |
1256 | out_free_dev: |
1257 | kfree(objp: ndev); |
1258 | out_err: |
1259 | mutex_unlock(lock: &device_list_mutex); |
1260 | return NULL; |
1261 | } |
1262 | |
1263 | static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) |
1264 | { |
1265 | struct ib_qp_init_attr qp_attr = { }; |
1266 | struct nvmet_rdma_device *ndev = queue->dev; |
1267 | int nr_cqe, ret, i, factor; |
1268 | |
1269 | /* |
1270 | * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. |
1271 | */ |
1272 | nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; |
1273 | |
1274 | queue->cq = ib_cq_pool_get(dev: ndev->device, nr_cqe: nr_cqe + 1, |
1275 | comp_vector_hint: queue->comp_vector, poll_ctx: IB_POLL_WORKQUEUE); |
1276 | if (IS_ERR(ptr: queue->cq)) { |
1277 | ret = PTR_ERR(ptr: queue->cq); |
1278 | pr_err("failed to create CQ cqe= %d ret= %d\n", |
1279 | nr_cqe + 1, ret); |
1280 | goto out; |
1281 | } |
1282 | |
1283 | qp_attr.qp_context = queue; |
1284 | qp_attr.event_handler = nvmet_rdma_qp_event; |
1285 | qp_attr.send_cq = queue->cq; |
1286 | qp_attr.recv_cq = queue->cq; |
1287 | qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
1288 | qp_attr.qp_type = IB_QPT_RC; |
1289 | /* +1 for drain */ |
1290 | qp_attr.cap.max_send_wr = queue->send_queue_size + 1; |
1291 | factor = rdma_rw_mr_factor(device: ndev->device, port_num: queue->cm_id->port_num, |
1292 | maxpages: 1 << NVMET_RDMA_MAX_MDTS); |
1293 | qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; |
1294 | qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, |
1295 | ndev->device->attrs.max_send_sge); |
1296 | |
1297 | if (queue->nsrq) { |
1298 | qp_attr.srq = queue->nsrq->srq; |
1299 | } else { |
1300 | /* +1 for drain */ |
1301 | qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; |
1302 | qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; |
1303 | } |
1304 | |
1305 | if (queue->port->pi_enable && queue->host_qid) |
1306 | qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; |
1307 | |
1308 | ret = rdma_create_qp(id: queue->cm_id, pd: ndev->pd, qp_init_attr: &qp_attr); |
1309 | if (ret) { |
1310 | pr_err("failed to create_qp ret= %d\n", ret); |
1311 | goto err_destroy_cq; |
1312 | } |
1313 | queue->qp = queue->cm_id->qp; |
1314 | |
1315 | atomic_set(v: &queue->sq_wr_avail, i: qp_attr.cap.max_send_wr); |
1316 | |
1317 | pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", |
1318 | __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, |
1319 | qp_attr.cap.max_send_wr, queue->cm_id); |
1320 | |
1321 | if (!queue->nsrq) { |
1322 | for (i = 0; i < queue->recv_queue_size; i++) { |
1323 | queue->cmds[i].queue = queue; |
1324 | ret = nvmet_rdma_post_recv(ndev, cmd: &queue->cmds[i]); |
1325 | if (ret) |
1326 | goto err_destroy_qp; |
1327 | } |
1328 | } |
1329 | |
1330 | out: |
1331 | return ret; |
1332 | |
1333 | err_destroy_qp: |
1334 | rdma_destroy_qp(id: queue->cm_id); |
1335 | err_destroy_cq: |
1336 | ib_cq_pool_put(cq: queue->cq, nr_cqe: nr_cqe + 1); |
1337 | goto out; |
1338 | } |
1339 | |
1340 | static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) |
1341 | { |
1342 | ib_drain_qp(qp: queue->qp); |
1343 | if (queue->cm_id) |
1344 | rdma_destroy_id(id: queue->cm_id); |
1345 | ib_destroy_qp(qp: queue->qp); |
1346 | ib_cq_pool_put(cq: queue->cq, nr_cqe: queue->recv_queue_size + 2 * |
1347 | queue->send_queue_size + 1); |
1348 | } |
1349 | |
1350 | static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) |
1351 | { |
1352 | pr_debug("freeing queue %d\n", queue->idx); |
1353 | |
1354 | nvmet_sq_destroy(sq: &queue->nvme_sq); |
1355 | nvmet_cq_put(cq: &queue->nvme_cq); |
1356 | |
1357 | nvmet_rdma_destroy_queue_ib(queue); |
1358 | if (!queue->nsrq) { |
1359 | nvmet_rdma_free_cmds(ndev: queue->dev, cmds: queue->cmds, |
1360 | nr_cmds: queue->recv_queue_size, |
1361 | admin: !queue->host_qid); |
1362 | } |
1363 | nvmet_rdma_free_rsps(queue); |
1364 | ida_free(&nvmet_rdma_queue_ida, id: queue->idx); |
1365 | kfree(objp: queue); |
1366 | } |
1367 | |
1368 | static void nvmet_rdma_release_queue_work(struct work_struct *w) |
1369 | { |
1370 | struct nvmet_rdma_queue *queue = |
1371 | container_of(w, struct nvmet_rdma_queue, release_work); |
1372 | struct nvmet_rdma_device *dev = queue->dev; |
1373 | |
1374 | nvmet_rdma_free_queue(queue); |
1375 | |
1376 | kref_put(kref: &dev->ref, release: nvmet_rdma_free_dev); |
1377 | } |
1378 | |
1379 | static int |
1380 | nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, |
1381 | struct nvmet_rdma_queue *queue) |
1382 | { |
1383 | struct nvme_rdma_cm_req *req; |
1384 | |
1385 | req = (struct nvme_rdma_cm_req *)conn->private_data; |
1386 | if (!req || conn->private_data_len == 0) |
1387 | return NVME_RDMA_CM_INVALID_LEN; |
1388 | |
1389 | if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) |
1390 | return NVME_RDMA_CM_INVALID_RECFMT; |
1391 | |
1392 | queue->host_qid = le16_to_cpu(req->qid); |
1393 | |
1394 | /* |
1395 | * req->hsqsize corresponds to our recv queue size plus 1 |
1396 | * req->hrqsize corresponds to our send queue size |
1397 | */ |
1398 | queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; |
1399 | queue->send_queue_size = le16_to_cpu(req->hrqsize); |
1400 | |
1401 | if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) |
1402 | return NVME_RDMA_CM_INVALID_HSQSIZE; |
1403 | |
1404 | /* XXX: Should we enforce some kind of max for IO queues? */ |
1405 | |
1406 | return 0; |
1407 | } |
1408 | |
1409 | static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, |
1410 | enum nvme_rdma_cm_status status) |
1411 | { |
1412 | struct nvme_rdma_cm_rej rej; |
1413 | |
1414 | pr_debug("rejecting connect request: status %d (%s)\n", |
1415 | status, nvme_rdma_cm_msg(status)); |
1416 | |
1417 | rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); |
1418 | rej.sts = cpu_to_le16(status); |
1419 | |
1420 | return rdma_reject(id: cm_id, private_data: (void *)&rej, private_data_len: sizeof(rej), |
1421 | reason: IB_CM_REJ_CONSUMER_DEFINED); |
1422 | } |
1423 | |
1424 | static struct nvmet_rdma_queue * |
1425 | nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, |
1426 | struct rdma_cm_id *cm_id, |
1427 | struct rdma_cm_event *event) |
1428 | { |
1429 | struct nvmet_rdma_port *port = cm_id->context; |
1430 | struct nvmet_rdma_queue *queue; |
1431 | int ret; |
1432 | |
1433 | queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
1434 | if (!queue) { |
1435 | ret = NVME_RDMA_CM_NO_RSC; |
1436 | goto out_reject; |
1437 | } |
1438 | |
1439 | nvmet_cq_init(cq: &queue->nvme_cq); |
1440 | ret = nvmet_sq_init(sq: &queue->nvme_sq, cq: &queue->nvme_cq); |
1441 | if (ret) { |
1442 | ret = NVME_RDMA_CM_NO_RSC; |
1443 | goto out_free_queue; |
1444 | } |
1445 | |
1446 | ret = nvmet_rdma_parse_cm_connect_req(conn: &event->param.conn, queue); |
1447 | if (ret) |
1448 | goto out_destroy_sq; |
1449 | |
1450 | /* |
1451 | * Schedules the actual release because calling rdma_destroy_id from |
1452 | * inside a CM callback would trigger a deadlock. (great API design..) |
1453 | */ |
1454 | INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); |
1455 | queue->dev = ndev; |
1456 | queue->cm_id = cm_id; |
1457 | queue->port = port->nport; |
1458 | |
1459 | spin_lock_init(&queue->state_lock); |
1460 | queue->state = NVMET_RDMA_Q_CONNECTING; |
1461 | INIT_LIST_HEAD(list: &queue->rsp_wait_list); |
1462 | INIT_LIST_HEAD(list: &queue->rsp_wr_wait_list); |
1463 | spin_lock_init(&queue->rsp_wr_wait_lock); |
1464 | INIT_LIST_HEAD(list: &queue->queue_list); |
1465 | |
1466 | queue->idx = ida_alloc(ida: &nvmet_rdma_queue_ida, GFP_KERNEL); |
1467 | if (queue->idx < 0) { |
1468 | ret = NVME_RDMA_CM_NO_RSC; |
1469 | goto out_destroy_sq; |
1470 | } |
1471 | |
1472 | /* |
1473 | * Spread the io queues across completion vectors, |
1474 | * but still keep all admin queues on vector 0. |
1475 | */ |
1476 | queue->comp_vector = !queue->host_qid ? 0 : |
1477 | queue->idx % ndev->device->num_comp_vectors; |
1478 | |
1479 | |
1480 | ret = nvmet_rdma_alloc_rsps(queue); |
1481 | if (ret) { |
1482 | ret = NVME_RDMA_CM_NO_RSC; |
1483 | goto out_ida_remove; |
1484 | } |
1485 | |
1486 | if (ndev->srqs) { |
1487 | queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; |
1488 | } else { |
1489 | queue->cmds = nvmet_rdma_alloc_cmds(ndev, |
1490 | nr_cmds: queue->recv_queue_size, |
1491 | admin: !queue->host_qid); |
1492 | if (IS_ERR(ptr: queue->cmds)) { |
1493 | ret = NVME_RDMA_CM_NO_RSC; |
1494 | goto out_free_responses; |
1495 | } |
1496 | } |
1497 | |
1498 | ret = nvmet_rdma_create_queue_ib(queue); |
1499 | if (ret) { |
1500 | pr_err("%s: creating RDMA queue failed (%d).\n", |
1501 | __func__, ret); |
1502 | ret = NVME_RDMA_CM_NO_RSC; |
1503 | goto out_free_cmds; |
1504 | } |
1505 | |
1506 | return queue; |
1507 | |
1508 | out_free_cmds: |
1509 | if (!queue->nsrq) { |
1510 | nvmet_rdma_free_cmds(ndev: queue->dev, cmds: queue->cmds, |
1511 | nr_cmds: queue->recv_queue_size, |
1512 | admin: !queue->host_qid); |
1513 | } |
1514 | out_free_responses: |
1515 | nvmet_rdma_free_rsps(queue); |
1516 | out_ida_remove: |
1517 | ida_free(&nvmet_rdma_queue_ida, id: queue->idx); |
1518 | out_destroy_sq: |
1519 | nvmet_sq_destroy(sq: &queue->nvme_sq); |
1520 | out_free_queue: |
1521 | nvmet_cq_put(cq: &queue->nvme_cq); |
1522 | kfree(objp: queue); |
1523 | out_reject: |
1524 | nvmet_rdma_cm_reject(cm_id, status: ret); |
1525 | return NULL; |
1526 | } |
1527 | |
1528 | static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) |
1529 | { |
1530 | struct nvmet_rdma_queue *queue = priv; |
1531 | |
1532 | switch (event->event) { |
1533 | case IB_EVENT_COMM_EST: |
1534 | rdma_notify(id: queue->cm_id, event: event->event); |
1535 | break; |
1536 | case IB_EVENT_QP_LAST_WQE_REACHED: |
1537 | pr_debug("received last WQE reached event for queue=0x%p\n", |
1538 | queue); |
1539 | break; |
1540 | default: |
1541 | pr_err("received IB QP event: %s (%d)\n", |
1542 | ib_event_msg(event->event), event->event); |
1543 | break; |
1544 | } |
1545 | } |
1546 | |
1547 | static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, |
1548 | struct nvmet_rdma_queue *queue, |
1549 | struct rdma_conn_param *p) |
1550 | { |
1551 | struct rdma_conn_param param = { }; |
1552 | struct nvme_rdma_cm_rep priv = { }; |
1553 | int ret = -ENOMEM; |
1554 | |
1555 | param.rnr_retry_count = 7; |
1556 | param.flow_control = 1; |
1557 | param.initiator_depth = min_t(u8, p->initiator_depth, |
1558 | queue->dev->device->attrs.max_qp_init_rd_atom); |
1559 | param.private_data = &priv; |
1560 | param.private_data_len = sizeof(priv); |
1561 | priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); |
1562 | priv.crqsize = cpu_to_le16(queue->recv_queue_size); |
1563 | |
1564 | ret = rdma_accept(id: cm_id, conn_param: ¶m); |
1565 | if (ret) |
1566 | pr_err("rdma_accept failed (error code = %d)\n", ret); |
1567 | |
1568 | return ret; |
1569 | } |
1570 | |
1571 | static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, |
1572 | struct rdma_cm_event *event) |
1573 | { |
1574 | struct nvmet_rdma_device *ndev; |
1575 | struct nvmet_rdma_queue *queue; |
1576 | int ret = -EINVAL; |
1577 | |
1578 | ndev = nvmet_rdma_find_get_device(cm_id); |
1579 | if (!ndev) { |
1580 | nvmet_rdma_cm_reject(cm_id, status: NVME_RDMA_CM_NO_RSC); |
1581 | return -ECONNREFUSED; |
1582 | } |
1583 | |
1584 | queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); |
1585 | if (!queue) { |
1586 | ret = -ENOMEM; |
1587 | goto put_device; |
1588 | } |
1589 | |
1590 | if (queue->host_qid == 0) { |
1591 | struct nvmet_rdma_queue *q; |
1592 | int pending = 0; |
1593 | |
1594 | /* Check for pending controller teardown */ |
1595 | mutex_lock(&nvmet_rdma_queue_mutex); |
1596 | list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) { |
1597 | if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl && |
1598 | q->state == NVMET_RDMA_Q_DISCONNECTING) |
1599 | pending++; |
1600 | } |
1601 | mutex_unlock(lock: &nvmet_rdma_queue_mutex); |
1602 | if (pending > NVMET_RDMA_BACKLOG) |
1603 | return NVME_SC_CONNECT_CTRL_BUSY; |
1604 | } |
1605 | |
1606 | ret = nvmet_rdma_cm_accept(cm_id, queue, p: &event->param.conn); |
1607 | if (ret) { |
1608 | /* |
1609 | * Don't destroy the cm_id in free path, as we implicitly |
1610 | * destroy the cm_id here with non-zero ret code. |
1611 | */ |
1612 | queue->cm_id = NULL; |
1613 | goto free_queue; |
1614 | } |
1615 | |
1616 | mutex_lock(&nvmet_rdma_queue_mutex); |
1617 | list_add_tail(new: &queue->queue_list, head: &nvmet_rdma_queue_list); |
1618 | mutex_unlock(lock: &nvmet_rdma_queue_mutex); |
1619 | |
1620 | return 0; |
1621 | |
1622 | free_queue: |
1623 | nvmet_rdma_free_queue(queue); |
1624 | put_device: |
1625 | kref_put(kref: &ndev->ref, release: nvmet_rdma_free_dev); |
1626 | |
1627 | return ret; |
1628 | } |
1629 | |
1630 | static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) |
1631 | { |
1632 | unsigned long flags; |
1633 | |
1634 | spin_lock_irqsave(&queue->state_lock, flags); |
1635 | if (queue->state != NVMET_RDMA_Q_CONNECTING) { |
1636 | pr_warn("trying to establish a connected queue\n"); |
1637 | goto out_unlock; |
1638 | } |
1639 | queue->state = NVMET_RDMA_Q_LIVE; |
1640 | |
1641 | while (!list_empty(head: &queue->rsp_wait_list)) { |
1642 | struct nvmet_rdma_rsp *cmd; |
1643 | |
1644 | cmd = list_first_entry(&queue->rsp_wait_list, |
1645 | struct nvmet_rdma_rsp, wait_list); |
1646 | list_del(entry: &cmd->wait_list); |
1647 | |
1648 | spin_unlock_irqrestore(lock: &queue->state_lock, flags); |
1649 | nvmet_rdma_handle_command(queue, cmd); |
1650 | spin_lock_irqsave(&queue->state_lock, flags); |
1651 | } |
1652 | |
1653 | out_unlock: |
1654 | spin_unlock_irqrestore(lock: &queue->state_lock, flags); |
1655 | } |
1656 | |
1657 | static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) |
1658 | { |
1659 | bool disconnect = false; |
1660 | unsigned long flags; |
1661 | |
1662 | pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); |
1663 | |
1664 | spin_lock_irqsave(&queue->state_lock, flags); |
1665 | switch (queue->state) { |
1666 | case NVMET_RDMA_Q_CONNECTING: |
1667 | while (!list_empty(head: &queue->rsp_wait_list)) { |
1668 | struct nvmet_rdma_rsp *rsp; |
1669 | |
1670 | rsp = list_first_entry(&queue->rsp_wait_list, |
1671 | struct nvmet_rdma_rsp, |
1672 | wait_list); |
1673 | list_del(entry: &rsp->wait_list); |
1674 | nvmet_rdma_put_rsp(rsp); |
1675 | } |
1676 | fallthrough; |
1677 | case NVMET_RDMA_Q_LIVE: |
1678 | queue->state = NVMET_RDMA_Q_DISCONNECTING; |
1679 | disconnect = true; |
1680 | break; |
1681 | case NVMET_RDMA_Q_DISCONNECTING: |
1682 | break; |
1683 | } |
1684 | spin_unlock_irqrestore(lock: &queue->state_lock, flags); |
1685 | |
1686 | if (disconnect) { |
1687 | rdma_disconnect(id: queue->cm_id); |
1688 | queue_work(wq: nvmet_wq, work: &queue->release_work); |
1689 | } |
1690 | } |
1691 | |
1692 | static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) |
1693 | { |
1694 | bool disconnect = false; |
1695 | |
1696 | mutex_lock(&nvmet_rdma_queue_mutex); |
1697 | if (!list_empty(head: &queue->queue_list)) { |
1698 | list_del_init(entry: &queue->queue_list); |
1699 | disconnect = true; |
1700 | } |
1701 | mutex_unlock(lock: &nvmet_rdma_queue_mutex); |
1702 | |
1703 | if (disconnect) |
1704 | __nvmet_rdma_queue_disconnect(queue); |
1705 | } |
1706 | |
1707 | static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, |
1708 | struct nvmet_rdma_queue *queue) |
1709 | { |
1710 | WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); |
1711 | |
1712 | mutex_lock(&nvmet_rdma_queue_mutex); |
1713 | if (!list_empty(head: &queue->queue_list)) |
1714 | list_del_init(entry: &queue->queue_list); |
1715 | mutex_unlock(lock: &nvmet_rdma_queue_mutex); |
1716 | |
1717 | pr_err("failed to connect queue %d\n", queue->idx); |
1718 | queue_work(wq: nvmet_wq, work: &queue->release_work); |
1719 | } |
1720 | |
1721 | /** |
1722 | * nvmet_rdma_device_removal() - Handle RDMA device removal |
1723 | * @cm_id: rdma_cm id, used for nvmet port |
1724 | * @queue: nvmet rdma queue (cm id qp_context) |
1725 | * |
1726 | * DEVICE_REMOVAL event notifies us that the RDMA device is about |
1727 | * to unplug. Note that this event can be generated on a normal |
1728 | * queue cm_id and/or a device bound listener cm_id (where in this |
1729 | * case queue will be null). |
1730 | * |
1731 | * We registered an ib_client to handle device removal for queues, |
1732 | * so we only need to handle the listening port cm_ids. In this case |
1733 | * we nullify the priv to prevent double cm_id destruction and destroying |
1734 | * the cm_id implicitely by returning a non-zero rc to the callout. |
1735 | */ |
1736 | static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, |
1737 | struct nvmet_rdma_queue *queue) |
1738 | { |
1739 | struct nvmet_rdma_port *port; |
1740 | |
1741 | if (queue) { |
1742 | /* |
1743 | * This is a queue cm_id. we have registered |
1744 | * an ib_client to handle queues removal |
1745 | * so don't interfear and just return. |
1746 | */ |
1747 | return 0; |
1748 | } |
1749 | |
1750 | port = cm_id->context; |
1751 | |
1752 | /* |
1753 | * This is a listener cm_id. Make sure that |
1754 | * future remove_port won't invoke a double |
1755 | * cm_id destroy. use atomic xchg to make sure |
1756 | * we don't compete with remove_port. |
1757 | */ |
1758 | if (xchg(&port->cm_id, NULL) != cm_id) |
1759 | return 0; |
1760 | |
1761 | /* |
1762 | * We need to return 1 so that the core will destroy |
1763 | * it's own ID. What a great API design.. |
1764 | */ |
1765 | return 1; |
1766 | } |
1767 | |
1768 | static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, |
1769 | struct rdma_cm_event *event) |
1770 | { |
1771 | struct nvmet_rdma_queue *queue = NULL; |
1772 | int ret = 0; |
1773 | |
1774 | if (cm_id->qp) |
1775 | queue = cm_id->qp->qp_context; |
1776 | |
1777 | pr_debug("%s (%d): status %d id %p\n", |
1778 | rdma_event_msg(event->event), event->event, |
1779 | event->status, cm_id); |
1780 | |
1781 | switch (event->event) { |
1782 | case RDMA_CM_EVENT_CONNECT_REQUEST: |
1783 | ret = nvmet_rdma_queue_connect(cm_id, event); |
1784 | break; |
1785 | case RDMA_CM_EVENT_ESTABLISHED: |
1786 | nvmet_rdma_queue_established(queue); |
1787 | break; |
1788 | case RDMA_CM_EVENT_ADDR_CHANGE: |
1789 | if (!queue) { |
1790 | struct nvmet_rdma_port *port = cm_id->context; |
1791 | |
1792 | queue_delayed_work(wq: nvmet_wq, dwork: &port->repair_work, delay: 0); |
1793 | break; |
1794 | } |
1795 | fallthrough; |
1796 | case RDMA_CM_EVENT_DISCONNECTED: |
1797 | case RDMA_CM_EVENT_TIMEWAIT_EXIT: |
1798 | nvmet_rdma_queue_disconnect(queue); |
1799 | break; |
1800 | case RDMA_CM_EVENT_DEVICE_REMOVAL: |
1801 | ret = nvmet_rdma_device_removal(cm_id, queue); |
1802 | break; |
1803 | case RDMA_CM_EVENT_REJECTED: |
1804 | pr_debug("Connection rejected: %s\n", |
1805 | rdma_reject_msg(cm_id, event->status)); |
1806 | fallthrough; |
1807 | case RDMA_CM_EVENT_UNREACHABLE: |
1808 | case RDMA_CM_EVENT_CONNECT_ERROR: |
1809 | nvmet_rdma_queue_connect_fail(cm_id, queue); |
1810 | break; |
1811 | default: |
1812 | pr_err("received unrecognized RDMA CM event %d\n", |
1813 | event->event); |
1814 | break; |
1815 | } |
1816 | |
1817 | return ret; |
1818 | } |
1819 | |
1820 | static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) |
1821 | { |
1822 | struct nvmet_rdma_queue *queue, *n; |
1823 | |
1824 | mutex_lock(&nvmet_rdma_queue_mutex); |
1825 | list_for_each_entry_safe(queue, n, &nvmet_rdma_queue_list, queue_list) { |
1826 | if (queue->nvme_sq.ctrl != ctrl) |
1827 | continue; |
1828 | list_del_init(entry: &queue->queue_list); |
1829 | __nvmet_rdma_queue_disconnect(queue); |
1830 | } |
1831 | mutex_unlock(lock: &nvmet_rdma_queue_mutex); |
1832 | } |
1833 | |
1834 | static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port) |
1835 | { |
1836 | struct nvmet_rdma_queue *queue, *tmp; |
1837 | struct nvmet_port *nport = port->nport; |
1838 | |
1839 | mutex_lock(&nvmet_rdma_queue_mutex); |
1840 | list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, |
1841 | queue_list) { |
1842 | if (queue->port != nport) |
1843 | continue; |
1844 | |
1845 | list_del_init(entry: &queue->queue_list); |
1846 | __nvmet_rdma_queue_disconnect(queue); |
1847 | } |
1848 | mutex_unlock(lock: &nvmet_rdma_queue_mutex); |
1849 | } |
1850 | |
1851 | static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) |
1852 | { |
1853 | struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); |
1854 | |
1855 | if (cm_id) |
1856 | rdma_destroy_id(id: cm_id); |
1857 | |
1858 | /* |
1859 | * Destroy the remaining queues, which are not belong to any |
1860 | * controller yet. Do it here after the RDMA-CM was destroyed |
1861 | * guarantees that no new queue will be created. |
1862 | */ |
1863 | nvmet_rdma_destroy_port_queues(port); |
1864 | } |
1865 | |
1866 | static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) |
1867 | { |
1868 | struct sockaddr *addr = (struct sockaddr *)&port->addr; |
1869 | struct rdma_cm_id *cm_id; |
1870 | int ret; |
1871 | |
1872 | cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, |
1873 | RDMA_PS_TCP, IB_QPT_RC); |
1874 | if (IS_ERR(ptr: cm_id)) { |
1875 | pr_err("CM ID creation failed\n"); |
1876 | return PTR_ERR(ptr: cm_id); |
1877 | } |
1878 | |
1879 | /* |
1880 | * Allow both IPv4 and IPv6 sockets to bind a single port |
1881 | * at the same time. |
1882 | */ |
1883 | ret = rdma_set_afonly(id: cm_id, afonly: 1); |
1884 | if (ret) { |
1885 | pr_err("rdma_set_afonly failed (%d)\n", ret); |
1886 | goto out_destroy_id; |
1887 | } |
1888 | |
1889 | ret = rdma_bind_addr(id: cm_id, addr); |
1890 | if (ret) { |
1891 | pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); |
1892 | goto out_destroy_id; |
1893 | } |
1894 | |
1895 | ret = rdma_listen(id: cm_id, NVMET_RDMA_BACKLOG); |
1896 | if (ret) { |
1897 | pr_err("listening to %pISpcs failed (%d)\n", addr, ret); |
1898 | goto out_destroy_id; |
1899 | } |
1900 | |
1901 | port->cm_id = cm_id; |
1902 | return 0; |
1903 | |
1904 | out_destroy_id: |
1905 | rdma_destroy_id(id: cm_id); |
1906 | return ret; |
1907 | } |
1908 | |
1909 | static void nvmet_rdma_repair_port_work(struct work_struct *w) |
1910 | { |
1911 | struct nvmet_rdma_port *port = container_of(to_delayed_work(w), |
1912 | struct nvmet_rdma_port, repair_work); |
1913 | int ret; |
1914 | |
1915 | nvmet_rdma_disable_port(port); |
1916 | ret = nvmet_rdma_enable_port(port); |
1917 | if (ret) |
1918 | queue_delayed_work(wq: nvmet_wq, dwork: &port->repair_work, delay: 5 * HZ); |
1919 | } |
1920 | |
1921 | static int nvmet_rdma_add_port(struct nvmet_port *nport) |
1922 | { |
1923 | struct nvmet_rdma_port *port; |
1924 | __kernel_sa_family_t af; |
1925 | int ret; |
1926 | |
1927 | port = kzalloc(sizeof(*port), GFP_KERNEL); |
1928 | if (!port) |
1929 | return -ENOMEM; |
1930 | |
1931 | nport->priv = port; |
1932 | port->nport = nport; |
1933 | INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); |
1934 | |
1935 | switch (nport->disc_addr.adrfam) { |
1936 | case NVMF_ADDR_FAMILY_IP4: |
1937 | af = AF_INET; |
1938 | break; |
1939 | case NVMF_ADDR_FAMILY_IP6: |
1940 | af = AF_INET6; |
1941 | break; |
1942 | default: |
1943 | pr_err("address family %d not supported\n", |
1944 | nport->disc_addr.adrfam); |
1945 | ret = -EINVAL; |
1946 | goto out_free_port; |
1947 | } |
1948 | |
1949 | if (nport->inline_data_size < 0) { |
1950 | nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; |
1951 | } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { |
1952 | pr_warn("inline_data_size %u is too large, reducing to %u\n", |
1953 | nport->inline_data_size, |
1954 | NVMET_RDMA_MAX_INLINE_DATA_SIZE); |
1955 | nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; |
1956 | } |
1957 | |
1958 | if (nport->max_queue_size < 0) { |
1959 | nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE; |
1960 | } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) { |
1961 | pr_warn("max_queue_size %u is too large, reducing to %u\n", |
1962 | nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE); |
1963 | nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE; |
1964 | } |
1965 | |
1966 | ret = inet_pton_with_scope(net: &init_net, af, src: nport->disc_addr.traddr, |
1967 | port: nport->disc_addr.trsvcid, addr: &port->addr); |
1968 | if (ret) { |
1969 | pr_err("malformed ip/port passed: %s:%s\n", |
1970 | nport->disc_addr.traddr, nport->disc_addr.trsvcid); |
1971 | goto out_free_port; |
1972 | } |
1973 | |
1974 | ret = nvmet_rdma_enable_port(port); |
1975 | if (ret) |
1976 | goto out_free_port; |
1977 | |
1978 | pr_info("enabling port %d (%pISpcs)\n", |
1979 | le16_to_cpu(nport->disc_addr.portid), |
1980 | (struct sockaddr *)&port->addr); |
1981 | |
1982 | return 0; |
1983 | |
1984 | out_free_port: |
1985 | kfree(objp: port); |
1986 | return ret; |
1987 | } |
1988 | |
1989 | static void nvmet_rdma_remove_port(struct nvmet_port *nport) |
1990 | { |
1991 | struct nvmet_rdma_port *port = nport->priv; |
1992 | |
1993 | cancel_delayed_work_sync(dwork: &port->repair_work); |
1994 | nvmet_rdma_disable_port(port); |
1995 | kfree(objp: port); |
1996 | } |
1997 | |
1998 | static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, |
1999 | struct nvmet_port *nport, char *traddr) |
2000 | { |
2001 | struct nvmet_rdma_port *port = nport->priv; |
2002 | struct rdma_cm_id *cm_id = port->cm_id; |
2003 | |
2004 | if (inet_addr_is_any(addr: &cm_id->route.addr.src_addr)) { |
2005 | struct nvmet_rdma_rsp *rsp = |
2006 | container_of(req, struct nvmet_rdma_rsp, req); |
2007 | struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; |
2008 | struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; |
2009 | |
2010 | sprintf(buf: traddr, fmt: "%pISc", addr); |
2011 | } else { |
2012 | memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); |
2013 | } |
2014 | } |
2015 | |
2016 | static ssize_t nvmet_rdma_host_port_addr(struct nvmet_ctrl *ctrl, |
2017 | char *traddr, size_t traddr_len) |
2018 | { |
2019 | struct nvmet_sq *nvme_sq = ctrl->sqs[0]; |
2020 | struct nvmet_rdma_queue *queue = |
2021 | container_of(nvme_sq, struct nvmet_rdma_queue, nvme_sq); |
2022 | |
2023 | return snprintf(buf: traddr, size: traddr_len, fmt: "%pISc", |
2024 | (struct sockaddr *)&queue->cm_id->route.addr.dst_addr); |
2025 | } |
2026 | |
2027 | static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) |
2028 | { |
2029 | if (ctrl->pi_support) |
2030 | return NVMET_RDMA_MAX_METADATA_MDTS; |
2031 | return NVMET_RDMA_MAX_MDTS; |
2032 | } |
2033 | |
2034 | static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl) |
2035 | { |
2036 | if (ctrl->pi_support) |
2037 | return NVME_RDMA_MAX_METADATA_QUEUE_SIZE; |
2038 | return NVME_RDMA_MAX_QUEUE_SIZE; |
2039 | } |
2040 | |
2041 | static const struct nvmet_fabrics_ops nvmet_rdma_ops = { |
2042 | .owner = THIS_MODULE, |
2043 | .type = NVMF_TRTYPE_RDMA, |
2044 | .msdbd = 1, |
2045 | .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, |
2046 | .add_port = nvmet_rdma_add_port, |
2047 | .remove_port = nvmet_rdma_remove_port, |
2048 | .queue_response = nvmet_rdma_queue_response, |
2049 | .delete_ctrl = nvmet_rdma_delete_ctrl, |
2050 | .disc_traddr = nvmet_rdma_disc_port_addr, |
2051 | .host_traddr = nvmet_rdma_host_port_addr, |
2052 | .get_mdts = nvmet_rdma_get_mdts, |
2053 | .get_max_queue_size = nvmet_rdma_get_max_queue_size, |
2054 | }; |
2055 | |
2056 | static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) |
2057 | { |
2058 | struct nvmet_rdma_queue *queue, *tmp; |
2059 | struct nvmet_rdma_device *ndev; |
2060 | bool found = false; |
2061 | |
2062 | mutex_lock(&device_list_mutex); |
2063 | list_for_each_entry(ndev, &device_list, entry) { |
2064 | if (ndev->device == ib_device) { |
2065 | found = true; |
2066 | break; |
2067 | } |
2068 | } |
2069 | mutex_unlock(lock: &device_list_mutex); |
2070 | |
2071 | if (!found) |
2072 | return; |
2073 | |
2074 | /* |
2075 | * IB Device that is used by nvmet controllers is being removed, |
2076 | * delete all queues using this device. |
2077 | */ |
2078 | mutex_lock(&nvmet_rdma_queue_mutex); |
2079 | list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, |
2080 | queue_list) { |
2081 | if (queue->dev->device != ib_device) |
2082 | continue; |
2083 | |
2084 | pr_info("Removing queue %d\n", queue->idx); |
2085 | list_del_init(entry: &queue->queue_list); |
2086 | __nvmet_rdma_queue_disconnect(queue); |
2087 | } |
2088 | mutex_unlock(lock: &nvmet_rdma_queue_mutex); |
2089 | |
2090 | flush_workqueue(nvmet_wq); |
2091 | } |
2092 | |
2093 | static struct ib_client nvmet_rdma_ib_client = { |
2094 | .name = "nvmet_rdma", |
2095 | .remove = nvmet_rdma_remove_one |
2096 | }; |
2097 | |
2098 | static int __init nvmet_rdma_init(void) |
2099 | { |
2100 | int ret; |
2101 | |
2102 | ret = ib_register_client(client: &nvmet_rdma_ib_client); |
2103 | if (ret) |
2104 | return ret; |
2105 | |
2106 | ret = nvmet_register_transport(ops: &nvmet_rdma_ops); |
2107 | if (ret) |
2108 | goto err_ib_client; |
2109 | |
2110 | return 0; |
2111 | |
2112 | err_ib_client: |
2113 | ib_unregister_client(client: &nvmet_rdma_ib_client); |
2114 | return ret; |
2115 | } |
2116 | |
2117 | static void __exit nvmet_rdma_exit(void) |
2118 | { |
2119 | nvmet_unregister_transport(ops: &nvmet_rdma_ops); |
2120 | ib_unregister_client(client: &nvmet_rdma_ib_client); |
2121 | WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); |
2122 | ida_destroy(ida: &nvmet_rdma_queue_ida); |
2123 | } |
2124 | |
2125 | module_init(nvmet_rdma_init); |
2126 | module_exit(nvmet_rdma_exit); |
2127 | |
2128 | MODULE_DESCRIPTION("NVMe target RDMA transport driver"); |
2129 | MODULE_LICENSE("GPL v2"); |
2130 | MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ |
2131 |
Definitions
- nvmet_rdma_cmd
- nvmet_rdma_rsp
- nvmet_rdma_queue_state
- nvmet_rdma_queue
- nvmet_rdma_port
- nvmet_rdma_srq
- nvmet_rdma_device
- nvmet_rdma_use_srq
- srq_size_ops
- nvmet_rdma_srq_size
- nvmet_rdma_queue_ida
- nvmet_rdma_queue_list
- nvmet_rdma_queue_mutex
- device_list
- device_list_mutex
- nvmet_rdma_ops
- srq_size_set
- num_pages
- nvmet_rdma_need_data_in
- nvmet_rdma_need_data_out
- nvmet_rdma_get_rsp
- nvmet_rdma_put_rsp
- nvmet_rdma_free_inline_pages
- nvmet_rdma_alloc_inline_pages
- nvmet_rdma_alloc_cmd
- nvmet_rdma_free_cmd
- nvmet_rdma_alloc_cmds
- nvmet_rdma_free_cmds
- nvmet_rdma_alloc_rsp
- nvmet_rdma_free_rsp
- nvmet_rdma_alloc_rsps
- nvmet_rdma_free_rsps
- nvmet_rdma_post_recv
- nvmet_rdma_process_wr_wait_list
- nvmet_rdma_check_pi_status
- nvmet_rdma_set_sig_domain
- nvmet_rdma_set_sig_attrs
- nvmet_rdma_rw_ctx_init
- nvmet_rdma_rw_ctx_destroy
- nvmet_rdma_release_rsp
- nvmet_rdma_error_comp
- nvmet_rdma_send_done
- nvmet_rdma_queue_response
- nvmet_rdma_read_data_done
- nvmet_rdma_write_data_done
- nvmet_rdma_use_inline_sg
- nvmet_rdma_map_sgl_inline
- nvmet_rdma_map_sgl_keyed
- nvmet_rdma_map_sgl
- nvmet_rdma_execute_command
- nvmet_rdma_handle_command
- nvmet_rdma_recv_not_live
- nvmet_rdma_recv_done
- nvmet_rdma_destroy_srq
- nvmet_rdma_destroy_srqs
- nvmet_rdma_init_srq
- nvmet_rdma_init_srqs
- nvmet_rdma_free_dev
- nvmet_rdma_find_get_device
- nvmet_rdma_create_queue_ib
- nvmet_rdma_destroy_queue_ib
- nvmet_rdma_free_queue
- nvmet_rdma_release_queue_work
- nvmet_rdma_parse_cm_connect_req
- nvmet_rdma_cm_reject
- nvmet_rdma_alloc_queue
- nvmet_rdma_qp_event
- nvmet_rdma_cm_accept
- nvmet_rdma_queue_connect
- nvmet_rdma_queue_established
- __nvmet_rdma_queue_disconnect
- nvmet_rdma_queue_disconnect
- nvmet_rdma_queue_connect_fail
- nvmet_rdma_device_removal
- nvmet_rdma_cm_handler
- nvmet_rdma_delete_ctrl
- nvmet_rdma_destroy_port_queues
- nvmet_rdma_disable_port
- nvmet_rdma_enable_port
- nvmet_rdma_repair_port_work
- nvmet_rdma_add_port
- nvmet_rdma_remove_port
- nvmet_rdma_disc_port_addr
- nvmet_rdma_host_port_addr
- nvmet_rdma_get_mdts
- nvmet_rdma_get_max_queue_size
- nvmet_rdma_ops
- nvmet_rdma_remove_one
- nvmet_rdma_ib_client
- nvmet_rdma_init
Improve your Profiling and Debugging skills
Find out more