1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/atomic.h>
8#include <linux/blk-integrity.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/err.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/nvme.h>
15#include <linux/slab.h>
16#include <linux/string.h>
17#include <linux/wait.h>
18#include <linux/inet.h>
19#include <linux/unaligned.h>
20
21#include <rdma/ib_verbs.h>
22#include <rdma/rdma_cm.h>
23#include <rdma/rw.h>
24#include <rdma/ib_cm.h>
25
26#include <linux/nvme-rdma.h>
27#include "nvmet.h"
28
29/*
30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31 */
32#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
33#define NVMET_RDMA_MAX_INLINE_SGE 4
34#define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
35
36/* Assume mpsmin == device_page_size == 4KB */
37#define NVMET_RDMA_MAX_MDTS 8
38#define NVMET_RDMA_MAX_METADATA_MDTS 5
39
40#define NVMET_RDMA_BACKLOG 128
41
42#define NVMET_RDMA_DISCRETE_RSP_TAG -1
43
44struct nvmet_rdma_srq;
45
46struct nvmet_rdma_cmd {
47 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
48 struct ib_cqe cqe;
49 struct ib_recv_wr wr;
50 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
51 struct nvme_command *nvme_cmd;
52 struct nvmet_rdma_queue *queue;
53 struct nvmet_rdma_srq *nsrq;
54};
55
56enum {
57 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
58};
59
60struct nvmet_rdma_rsp {
61 struct ib_sge send_sge;
62 struct ib_cqe send_cqe;
63 struct ib_send_wr send_wr;
64
65 struct nvmet_rdma_cmd *cmd;
66 struct nvmet_rdma_queue *queue;
67
68 struct ib_cqe read_cqe;
69 struct ib_cqe write_cqe;
70 struct rdma_rw_ctx rw;
71
72 struct nvmet_req req;
73
74 bool allocated;
75 u8 n_rdma;
76 u32 flags;
77 u32 invalidate_rkey;
78
79 struct list_head wait_list;
80 int tag;
81};
82
83enum nvmet_rdma_queue_state {
84 NVMET_RDMA_Q_CONNECTING,
85 NVMET_RDMA_Q_LIVE,
86 NVMET_RDMA_Q_DISCONNECTING,
87};
88
89struct nvmet_rdma_queue {
90 struct rdma_cm_id *cm_id;
91 struct ib_qp *qp;
92 struct nvmet_port *port;
93 struct ib_cq *cq;
94 atomic_t sq_wr_avail;
95 struct nvmet_rdma_device *dev;
96 struct nvmet_rdma_srq *nsrq;
97 spinlock_t state_lock;
98 enum nvmet_rdma_queue_state state;
99 struct nvmet_cq nvme_cq;
100 struct nvmet_sq nvme_sq;
101
102 struct nvmet_rdma_rsp *rsps;
103 struct sbitmap rsp_tags;
104 struct nvmet_rdma_cmd *cmds;
105
106 struct work_struct release_work;
107 struct list_head rsp_wait_list;
108 struct list_head rsp_wr_wait_list;
109 spinlock_t rsp_wr_wait_lock;
110
111 int idx;
112 int host_qid;
113 int comp_vector;
114 int recv_queue_size;
115 int send_queue_size;
116
117 struct list_head queue_list;
118};
119
120struct nvmet_rdma_port {
121 struct nvmet_port *nport;
122 struct sockaddr_storage addr;
123 struct rdma_cm_id *cm_id;
124 struct delayed_work repair_work;
125};
126
127struct nvmet_rdma_srq {
128 struct ib_srq *srq;
129 struct nvmet_rdma_cmd *cmds;
130 struct nvmet_rdma_device *ndev;
131};
132
133struct nvmet_rdma_device {
134 struct ib_device *device;
135 struct ib_pd *pd;
136 struct nvmet_rdma_srq **srqs;
137 int srq_count;
138 size_t srq_size;
139 struct kref ref;
140 struct list_head entry;
141 int inline_data_size;
142 int inline_page_count;
143};
144
145static bool nvmet_rdma_use_srq;
146module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
147MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
148
149static int srq_size_set(const char *val, const struct kernel_param *kp);
150static const struct kernel_param_ops srq_size_ops = {
151 .set = srq_size_set,
152 .get = param_get_int,
153};
154
155static int nvmet_rdma_srq_size = 1024;
156module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
157MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
158
159static DEFINE_IDA(nvmet_rdma_queue_ida);
160static LIST_HEAD(nvmet_rdma_queue_list);
161static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
162
163static LIST_HEAD(device_list);
164static DEFINE_MUTEX(device_list_mutex);
165
166static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
167static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
168static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
169static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
170static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
171static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
172static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
173static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
174 struct nvmet_rdma_rsp *r);
175static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
176 struct nvmet_rdma_rsp *r,
177 int tag);
178
179static const struct nvmet_fabrics_ops nvmet_rdma_ops;
180
181static int srq_size_set(const char *val, const struct kernel_param *kp)
182{
183 int n = 0, ret;
184
185 ret = kstrtoint(s: val, base: 10, res: &n);
186 if (ret != 0 || n < 256)
187 return -EINVAL;
188
189 return param_set_int(val, kp);
190}
191
192static int num_pages(int len)
193{
194 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
195}
196
197static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
198{
199 return nvme_is_write(cmd: rsp->req.cmd) &&
200 rsp->req.transfer_len &&
201 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
202}
203
204static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
205{
206 return !nvme_is_write(cmd: rsp->req.cmd) &&
207 rsp->req.transfer_len &&
208 !rsp->req.cqe->status &&
209 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
210}
211
212static inline struct nvmet_rdma_rsp *
213nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
214{
215 struct nvmet_rdma_rsp *rsp = NULL;
216 int tag;
217
218 tag = sbitmap_get(sb: &queue->rsp_tags);
219 if (tag >= 0)
220 rsp = &queue->rsps[tag];
221
222 if (unlikely(!rsp)) {
223 int ret;
224
225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
226 if (unlikely(!rsp))
227 return NULL;
228 ret = nvmet_rdma_alloc_rsp(ndev: queue->dev, r: rsp,
229 NVMET_RDMA_DISCRETE_RSP_TAG);
230 if (unlikely(ret)) {
231 kfree(objp: rsp);
232 return NULL;
233 }
234 }
235
236 return rsp;
237}
238
239static inline void
240nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
241{
242 if (unlikely(rsp->tag == NVMET_RDMA_DISCRETE_RSP_TAG)) {
243 nvmet_rdma_free_rsp(ndev: rsp->queue->dev, r: rsp);
244 kfree(objp: rsp);
245 return;
246 }
247
248 sbitmap_clear_bit(sb: &rsp->queue->rsp_tags, bitnr: rsp->tag);
249}
250
251static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
252 struct nvmet_rdma_cmd *c)
253{
254 struct scatterlist *sg;
255 struct ib_sge *sge;
256 int i;
257
258 if (!ndev->inline_data_size)
259 return;
260
261 sg = c->inline_sg;
262 sge = &c->sge[1];
263
264 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
265 if (sge->length)
266 ib_dma_unmap_page(dev: ndev->device, addr: sge->addr,
267 size: sge->length, direction: DMA_FROM_DEVICE);
268 if (sg_page(sg))
269 __free_page(sg_page(sg));
270 }
271}
272
273static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
274 struct nvmet_rdma_cmd *c)
275{
276 struct scatterlist *sg;
277 struct ib_sge *sge;
278 struct page *pg;
279 int len;
280 int i;
281
282 if (!ndev->inline_data_size)
283 return 0;
284
285 sg = c->inline_sg;
286 sg_init_table(sg, ndev->inline_page_count);
287 sge = &c->sge[1];
288 len = ndev->inline_data_size;
289
290 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
291 pg = alloc_page(GFP_KERNEL);
292 if (!pg)
293 goto out_err;
294 sg_assign_page(sg, page: pg);
295 sge->addr = ib_dma_map_page(dev: ndev->device,
296 page: pg, offset: 0, PAGE_SIZE, direction: DMA_FROM_DEVICE);
297 if (ib_dma_mapping_error(dev: ndev->device, dma_addr: sge->addr))
298 goto out_err;
299 sge->length = min_t(int, len, PAGE_SIZE);
300 sge->lkey = ndev->pd->local_dma_lkey;
301 len -= sge->length;
302 }
303
304 return 0;
305out_err:
306 for (; i >= 0; i--, sg--, sge--) {
307 if (sge->length)
308 ib_dma_unmap_page(dev: ndev->device, addr: sge->addr,
309 size: sge->length, direction: DMA_FROM_DEVICE);
310 if (sg_page(sg))
311 __free_page(sg_page(sg));
312 }
313 return -ENOMEM;
314}
315
316static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
317 struct nvmet_rdma_cmd *c, bool admin)
318{
319 /* NVMe command / RDMA RECV */
320 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
321 if (!c->nvme_cmd)
322 goto out;
323
324 c->sge[0].addr = ib_dma_map_single(dev: ndev->device, cpu_addr: c->nvme_cmd,
325 size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE);
326 if (ib_dma_mapping_error(dev: ndev->device, dma_addr: c->sge[0].addr))
327 goto out_free_cmd;
328
329 c->sge[0].length = sizeof(*c->nvme_cmd);
330 c->sge[0].lkey = ndev->pd->local_dma_lkey;
331
332 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
333 goto out_unmap_cmd;
334
335 c->cqe.done = nvmet_rdma_recv_done;
336
337 c->wr.wr_cqe = &c->cqe;
338 c->wr.sg_list = c->sge;
339 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
340
341 return 0;
342
343out_unmap_cmd:
344 ib_dma_unmap_single(dev: ndev->device, addr: c->sge[0].addr,
345 size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE);
346out_free_cmd:
347 kfree(objp: c->nvme_cmd);
348
349out:
350 return -ENOMEM;
351}
352
353static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
354 struct nvmet_rdma_cmd *c, bool admin)
355{
356 if (!admin)
357 nvmet_rdma_free_inline_pages(ndev, c);
358 ib_dma_unmap_single(dev: ndev->device, addr: c->sge[0].addr,
359 size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE);
360 kfree(objp: c->nvme_cmd);
361}
362
363static struct nvmet_rdma_cmd *
364nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
365 int nr_cmds, bool admin)
366{
367 struct nvmet_rdma_cmd *cmds;
368 int ret = -EINVAL, i;
369
370 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
371 if (!cmds)
372 goto out;
373
374 for (i = 0; i < nr_cmds; i++) {
375 ret = nvmet_rdma_alloc_cmd(ndev, c: cmds + i, admin);
376 if (ret)
377 goto out_free;
378 }
379
380 return cmds;
381
382out_free:
383 while (--i >= 0)
384 nvmet_rdma_free_cmd(ndev, c: cmds + i, admin);
385 kfree(objp: cmds);
386out:
387 return ERR_PTR(error: ret);
388}
389
390static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
391 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
392{
393 int i;
394
395 for (i = 0; i < nr_cmds; i++)
396 nvmet_rdma_free_cmd(ndev, c: cmds + i, admin);
397 kfree(objp: cmds);
398}
399
400static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
401 struct nvmet_rdma_rsp *r, int tag)
402{
403 /* NVMe CQE / RDMA SEND */
404 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
405 if (!r->req.cqe)
406 goto out;
407
408 r->send_sge.addr = ib_dma_map_single(dev: ndev->device, cpu_addr: r->req.cqe,
409 size: sizeof(*r->req.cqe), direction: DMA_TO_DEVICE);
410 if (ib_dma_mapping_error(dev: ndev->device, dma_addr: r->send_sge.addr))
411 goto out_free_rsp;
412
413 if (ib_dma_pci_p2p_dma_supported(dev: ndev->device))
414 r->req.p2p_client = &ndev->device->dev;
415 r->send_sge.length = sizeof(*r->req.cqe);
416 r->send_sge.lkey = ndev->pd->local_dma_lkey;
417
418 r->send_cqe.done = nvmet_rdma_send_done;
419
420 r->send_wr.wr_cqe = &r->send_cqe;
421 r->send_wr.sg_list = &r->send_sge;
422 r->send_wr.num_sge = 1;
423 r->send_wr.send_flags = IB_SEND_SIGNALED;
424
425 /* Data In / RDMA READ */
426 r->read_cqe.done = nvmet_rdma_read_data_done;
427 /* Data Out / RDMA WRITE */
428 r->write_cqe.done = nvmet_rdma_write_data_done;
429 r->tag = tag;
430
431 return 0;
432
433out_free_rsp:
434 kfree(objp: r->req.cqe);
435out:
436 return -ENOMEM;
437}
438
439static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
440 struct nvmet_rdma_rsp *r)
441{
442 ib_dma_unmap_single(dev: ndev->device, addr: r->send_sge.addr,
443 size: sizeof(*r->req.cqe), direction: DMA_TO_DEVICE);
444 kfree(objp: r->req.cqe);
445}
446
447static int
448nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
449{
450 struct nvmet_rdma_device *ndev = queue->dev;
451 int nr_rsps = queue->recv_queue_size * 2;
452 int ret = -ENOMEM, i;
453
454 if (sbitmap_init_node(sb: &queue->rsp_tags, depth: nr_rsps, shift: -1, GFP_KERNEL,
455 NUMA_NO_NODE, round_robin: false, alloc_hint: true))
456 goto out;
457
458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
459 GFP_KERNEL);
460 if (!queue->rsps)
461 goto out_free_sbitmap;
462
463 for (i = 0; i < nr_rsps; i++) {
464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
465
466 ret = nvmet_rdma_alloc_rsp(ndev, r: rsp, tag: i);
467 if (ret)
468 goto out_free;
469 }
470
471 return 0;
472
473out_free:
474 while (--i >= 0)
475 nvmet_rdma_free_rsp(ndev, r: &queue->rsps[i]);
476 kfree(objp: queue->rsps);
477out_free_sbitmap:
478 sbitmap_free(sb: &queue->rsp_tags);
479out:
480 return ret;
481}
482
483static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
484{
485 struct nvmet_rdma_device *ndev = queue->dev;
486 int i, nr_rsps = queue->recv_queue_size * 2;
487
488 for (i = 0; i < nr_rsps; i++)
489 nvmet_rdma_free_rsp(ndev, r: &queue->rsps[i]);
490 kfree(objp: queue->rsps);
491 sbitmap_free(sb: &queue->rsp_tags);
492}
493
494static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
495 struct nvmet_rdma_cmd *cmd)
496{
497 int ret;
498
499 ib_dma_sync_single_for_device(dev: ndev->device,
500 addr: cmd->sge[0].addr, size: cmd->sge[0].length,
501 dir: DMA_FROM_DEVICE);
502
503 if (cmd->nsrq)
504 ret = ib_post_srq_recv(srq: cmd->nsrq->srq, recv_wr: &cmd->wr, NULL);
505 else
506 ret = ib_post_recv(qp: cmd->queue->qp, recv_wr: &cmd->wr, NULL);
507
508 if (unlikely(ret))
509 pr_err("post_recv cmd failed\n");
510
511 return ret;
512}
513
514static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
515{
516 spin_lock(lock: &queue->rsp_wr_wait_lock);
517 while (!list_empty(head: &queue->rsp_wr_wait_list)) {
518 struct nvmet_rdma_rsp *rsp;
519 bool ret;
520
521 rsp = list_entry(queue->rsp_wr_wait_list.next,
522 struct nvmet_rdma_rsp, wait_list);
523 list_del(entry: &rsp->wait_list);
524
525 spin_unlock(lock: &queue->rsp_wr_wait_lock);
526 ret = nvmet_rdma_execute_command(rsp);
527 spin_lock(lock: &queue->rsp_wr_wait_lock);
528
529 if (!ret) {
530 list_add(new: &rsp->wait_list, head: &queue->rsp_wr_wait_list);
531 break;
532 }
533 }
534 spin_unlock(lock: &queue->rsp_wr_wait_lock);
535}
536
537static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
538{
539 struct ib_mr_status mr_status;
540 int ret;
541 u16 status = 0;
542
543 ret = ib_check_mr_status(mr: sig_mr, check_mask: IB_MR_CHECK_SIG_STATUS, mr_status: &mr_status);
544 if (ret) {
545 pr_err("ib_check_mr_status failed, ret %d\n", ret);
546 return NVME_SC_INVALID_PI;
547 }
548
549 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
550 switch (mr_status.sig_err.err_type) {
551 case IB_SIG_BAD_GUARD:
552 status = NVME_SC_GUARD_CHECK;
553 break;
554 case IB_SIG_BAD_REFTAG:
555 status = NVME_SC_REFTAG_CHECK;
556 break;
557 case IB_SIG_BAD_APPTAG:
558 status = NVME_SC_APPTAG_CHECK;
559 break;
560 }
561 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
562 mr_status.sig_err.err_type,
563 mr_status.sig_err.expected,
564 mr_status.sig_err.actual);
565 }
566
567 return status;
568}
569
570static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
571 struct nvme_command *cmd, struct ib_sig_domain *domain,
572 u16 control, u8 pi_type)
573{
574 domain->sig_type = IB_SIG_TYPE_T10_DIF;
575 domain->sig.dif.bg_type = IB_T10DIF_CRC;
576 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
577 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
578 if (control & NVME_RW_PRINFO_PRCHK_REF)
579 domain->sig.dif.ref_remap = true;
580
581 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
582 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
583 domain->sig.dif.app_escape = true;
584 if (pi_type == NVME_NS_DPS_PI_TYPE3)
585 domain->sig.dif.ref_escape = true;
586}
587
588static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
589 struct ib_sig_attrs *sig_attrs)
590{
591 struct nvme_command *cmd = req->cmd;
592 u16 control = le16_to_cpu(cmd->rw.control);
593 u8 pi_type = req->ns->pi_type;
594 struct blk_integrity *bi;
595
596 bi = bdev_get_integrity(bdev: req->ns->bdev);
597
598 memset(sig_attrs, 0, sizeof(*sig_attrs));
599
600 if (control & NVME_RW_PRINFO_PRACT) {
601 /* for WRITE_INSERT/READ_STRIP no wire domain */
602 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
603 nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->mem, control,
604 pi_type);
605 /* Clear the PRACT bit since HCA will generate/verify the PI */
606 control &= ~NVME_RW_PRINFO_PRACT;
607 cmd->rw.control = cpu_to_le16(control);
608 /* PI is added by the HW */
609 req->transfer_len += req->metadata_len;
610 } else {
611 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
612 nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->wire, control,
613 pi_type);
614 nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->mem, control,
615 pi_type);
616 }
617
618 if (control & NVME_RW_PRINFO_PRCHK_REF)
619 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
620 if (control & NVME_RW_PRINFO_PRCHK_GUARD)
621 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
622 if (control & NVME_RW_PRINFO_PRCHK_APP)
623 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
624}
625
626static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
627 struct ib_sig_attrs *sig_attrs)
628{
629 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
630 struct nvmet_req *req = &rsp->req;
631 int ret;
632
633 if (req->metadata_len)
634 ret = rdma_rw_ctx_signature_init(ctx: &rsp->rw, qp: cm_id->qp,
635 port_num: cm_id->port_num, sg: req->sg, sg_cnt: req->sg_cnt,
636 prot_sg: req->metadata_sg, prot_sg_cnt: req->metadata_sg_cnt, sig_attrs,
637 remote_addr: addr, rkey: key, dir: nvmet_data_dir(req));
638 else
639 ret = rdma_rw_ctx_init(ctx: &rsp->rw, qp: cm_id->qp, port_num: cm_id->port_num,
640 sg: req->sg, sg_cnt: req->sg_cnt, sg_offset: 0, remote_addr: addr, rkey: key,
641 dir: nvmet_data_dir(req));
642
643 return ret;
644}
645
646static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
647{
648 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
649 struct nvmet_req *req = &rsp->req;
650
651 if (req->metadata_len)
652 rdma_rw_ctx_destroy_signature(ctx: &rsp->rw, qp: cm_id->qp,
653 port_num: cm_id->port_num, sg: req->sg, sg_cnt: req->sg_cnt,
654 prot_sg: req->metadata_sg, prot_sg_cnt: req->metadata_sg_cnt,
655 dir: nvmet_data_dir(req));
656 else
657 rdma_rw_ctx_destroy(ctx: &rsp->rw, qp: cm_id->qp, port_num: cm_id->port_num,
658 sg: req->sg, sg_cnt: req->sg_cnt, dir: nvmet_data_dir(req));
659}
660
661static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
662{
663 struct nvmet_rdma_queue *queue = rsp->queue;
664
665 atomic_add(i: 1 + rsp->n_rdma, v: &queue->sq_wr_avail);
666
667 if (rsp->n_rdma)
668 nvmet_rdma_rw_ctx_destroy(rsp);
669
670 if (rsp->req.sg != rsp->cmd->inline_sg)
671 nvmet_req_free_sgls(req: &rsp->req);
672
673 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
674 nvmet_rdma_process_wr_wait_list(queue);
675
676 nvmet_rdma_put_rsp(rsp);
677}
678
679static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
680{
681 if (queue->nvme_sq.ctrl) {
682 nvmet_ctrl_fatal_error(ctrl: queue->nvme_sq.ctrl);
683 } else {
684 /*
685 * we didn't setup the controller yet in case
686 * of admin connect error, just disconnect and
687 * cleanup the queue
688 */
689 nvmet_rdma_queue_disconnect(queue);
690 }
691}
692
693static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
694{
695 struct nvmet_rdma_rsp *rsp =
696 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
697 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
698
699 nvmet_rdma_release_rsp(rsp);
700
701 if (unlikely(wc->status != IB_WC_SUCCESS &&
702 wc->status != IB_WC_WR_FLUSH_ERR)) {
703 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
704 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
705 nvmet_rdma_error_comp(queue);
706 }
707}
708
709static void nvmet_rdma_queue_response(struct nvmet_req *req)
710{
711 struct nvmet_rdma_rsp *rsp =
712 container_of(req, struct nvmet_rdma_rsp, req);
713 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
714 struct ib_send_wr *first_wr;
715
716 if (rsp->invalidate_rkey) {
717 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
718 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
719 } else {
720 rsp->send_wr.opcode = IB_WR_SEND;
721 }
722
723 if (nvmet_rdma_need_data_out(rsp)) {
724 if (rsp->req.metadata_len)
725 first_wr = rdma_rw_ctx_wrs(ctx: &rsp->rw, qp: cm_id->qp,
726 port_num: cm_id->port_num, cqe: &rsp->write_cqe, NULL);
727 else
728 first_wr = rdma_rw_ctx_wrs(ctx: &rsp->rw, qp: cm_id->qp,
729 port_num: cm_id->port_num, NULL, chain_wr: &rsp->send_wr);
730 } else {
731 first_wr = &rsp->send_wr;
732 }
733
734 nvmet_rdma_post_recv(ndev: rsp->queue->dev, cmd: rsp->cmd);
735
736 ib_dma_sync_single_for_device(dev: rsp->queue->dev->device,
737 addr: rsp->send_sge.addr, size: rsp->send_sge.length,
738 dir: DMA_TO_DEVICE);
739
740 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
741 pr_err("sending cmd response failed\n");
742 nvmet_rdma_release_rsp(rsp);
743 }
744}
745
746static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
747{
748 struct nvmet_rdma_rsp *rsp =
749 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
750 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
751 u16 status = 0;
752
753 WARN_ON(rsp->n_rdma <= 0);
754 atomic_add(i: rsp->n_rdma, v: &queue->sq_wr_avail);
755 rsp->n_rdma = 0;
756
757 if (unlikely(wc->status != IB_WC_SUCCESS)) {
758 nvmet_rdma_rw_ctx_destroy(rsp);
759 nvmet_req_uninit(req: &rsp->req);
760 nvmet_rdma_release_rsp(rsp);
761 if (wc->status != IB_WC_WR_FLUSH_ERR) {
762 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
763 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
764 nvmet_rdma_error_comp(queue);
765 }
766 return;
767 }
768
769 if (rsp->req.metadata_len)
770 status = nvmet_rdma_check_pi_status(sig_mr: rsp->rw.reg->mr);
771 nvmet_rdma_rw_ctx_destroy(rsp);
772
773 if (unlikely(status))
774 nvmet_req_complete(req: &rsp->req, status);
775 else
776 rsp->req.execute(&rsp->req);
777}
778
779static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
780{
781 struct nvmet_rdma_rsp *rsp =
782 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
783 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
784 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
785 u16 status;
786
787 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
788 return;
789
790 WARN_ON(rsp->n_rdma <= 0);
791 atomic_add(i: rsp->n_rdma, v: &queue->sq_wr_avail);
792 rsp->n_rdma = 0;
793
794 if (unlikely(wc->status != IB_WC_SUCCESS)) {
795 nvmet_rdma_rw_ctx_destroy(rsp);
796 nvmet_req_uninit(req: &rsp->req);
797 nvmet_rdma_release_rsp(rsp);
798 if (wc->status != IB_WC_WR_FLUSH_ERR) {
799 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
800 ib_wc_status_msg(wc->status), wc->status);
801 nvmet_rdma_error_comp(queue);
802 }
803 return;
804 }
805
806 /*
807 * Upon RDMA completion check the signature status
808 * - if succeeded send good NVMe response
809 * - if failed send bad NVMe response with appropriate error
810 */
811 status = nvmet_rdma_check_pi_status(sig_mr: rsp->rw.reg->mr);
812 if (unlikely(status))
813 rsp->req.cqe->status = cpu_to_le16(status << 1);
814 nvmet_rdma_rw_ctx_destroy(rsp);
815
816 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
817 pr_err("sending cmd response failed\n");
818 nvmet_rdma_release_rsp(rsp);
819 }
820}
821
822static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
823 u64 off)
824{
825 int sg_count = num_pages(len);
826 struct scatterlist *sg;
827 int i;
828
829 sg = rsp->cmd->inline_sg;
830 for (i = 0; i < sg_count; i++, sg++) {
831 if (i < sg_count - 1)
832 sg_unmark_end(sg);
833 else
834 sg_mark_end(sg);
835 sg->offset = off;
836 sg->length = min_t(int, len, PAGE_SIZE - off);
837 len -= sg->length;
838 if (!i)
839 off = 0;
840 }
841
842 rsp->req.sg = rsp->cmd->inline_sg;
843 rsp->req.sg_cnt = sg_count;
844}
845
846static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
847{
848 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
849 u64 off = le64_to_cpu(sgl->addr);
850 u32 len = le32_to_cpu(sgl->length);
851
852 if (!nvme_is_write(cmd: rsp->req.cmd)) {
853 rsp->req.error_loc =
854 offsetof(struct nvme_common_command, opcode);
855 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
856 }
857
858 if (off + len > rsp->queue->dev->inline_data_size) {
859 pr_err("invalid inline data offset!\n");
860 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR;
861 }
862
863 /* no data command? */
864 if (!len)
865 return 0;
866
867 nvmet_rdma_use_inline_sg(rsp, len, off);
868 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
869 rsp->req.transfer_len += len;
870 return 0;
871}
872
873static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
874 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
875{
876 u64 addr = le64_to_cpu(sgl->addr);
877 u32 key = get_unaligned_le32(p: sgl->key);
878 struct ib_sig_attrs sig_attrs;
879 int ret;
880
881 rsp->req.transfer_len = get_unaligned_le24(p: sgl->length);
882
883 /* no data command? */
884 if (!rsp->req.transfer_len)
885 return 0;
886
887 if (rsp->req.metadata_len)
888 nvmet_rdma_set_sig_attrs(req: &rsp->req, sig_attrs: &sig_attrs);
889
890 ret = nvmet_req_alloc_sgls(req: &rsp->req);
891 if (unlikely(ret < 0))
892 goto error_out;
893
894 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, sig_attrs: &sig_attrs);
895 if (unlikely(ret < 0))
896 goto error_out;
897 rsp->n_rdma += ret;
898
899 if (invalidate)
900 rsp->invalidate_rkey = key;
901
902 return 0;
903
904error_out:
905 rsp->req.transfer_len = 0;
906 return NVME_SC_INTERNAL;
907}
908
909static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
910{
911 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
912
913 switch (sgl->type >> 4) {
914 case NVME_SGL_FMT_DATA_DESC:
915 switch (sgl->type & 0xf) {
916 case NVME_SGL_FMT_OFFSET:
917 return nvmet_rdma_map_sgl_inline(rsp);
918 default:
919 pr_err("invalid SGL subtype: %#x\n", sgl->type);
920 rsp->req.error_loc =
921 offsetof(struct nvme_common_command, dptr);
922 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
923 }
924 case NVME_KEY_SGL_FMT_DATA_DESC:
925 switch (sgl->type & 0xf) {
926 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
927 return nvmet_rdma_map_sgl_keyed(rsp, sgl, invalidate: true);
928 case NVME_SGL_FMT_ADDRESS:
929 return nvmet_rdma_map_sgl_keyed(rsp, sgl, invalidate: false);
930 default:
931 pr_err("invalid SGL subtype: %#x\n", sgl->type);
932 rsp->req.error_loc =
933 offsetof(struct nvme_common_command, dptr);
934 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
935 }
936 default:
937 pr_err("invalid SGL type: %#x\n", sgl->type);
938 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
939 return NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR;
940 }
941}
942
943static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
944{
945 struct nvmet_rdma_queue *queue = rsp->queue;
946
947 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
948 &queue->sq_wr_avail) < 0)) {
949 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
950 1 + rsp->n_rdma, queue->idx,
951 queue->nvme_sq.ctrl->cntlid);
952 atomic_add(i: 1 + rsp->n_rdma, v: &queue->sq_wr_avail);
953 return false;
954 }
955
956 if (nvmet_rdma_need_data_in(rsp)) {
957 if (rdma_rw_ctx_post(ctx: &rsp->rw, qp: queue->qp,
958 port_num: queue->cm_id->port_num, cqe: &rsp->read_cqe, NULL))
959 nvmet_req_complete(req: &rsp->req, status: NVME_SC_DATA_XFER_ERROR);
960 } else {
961 rsp->req.execute(&rsp->req);
962 }
963
964 return true;
965}
966
967static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
968 struct nvmet_rdma_rsp *cmd)
969{
970 u16 status;
971
972 ib_dma_sync_single_for_cpu(dev: queue->dev->device,
973 addr: cmd->cmd->sge[0].addr, size: cmd->cmd->sge[0].length,
974 dir: DMA_FROM_DEVICE);
975 ib_dma_sync_single_for_cpu(dev: queue->dev->device,
976 addr: cmd->send_sge.addr, size: cmd->send_sge.length,
977 dir: DMA_TO_DEVICE);
978
979 if (!nvmet_req_init(req: &cmd->req, sq: &queue->nvme_sq, ops: &nvmet_rdma_ops))
980 return;
981
982 status = nvmet_rdma_map_sgl(rsp: cmd);
983 if (status)
984 goto out_err;
985
986 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
987 spin_lock(lock: &queue->rsp_wr_wait_lock);
988 list_add_tail(new: &cmd->wait_list, head: &queue->rsp_wr_wait_list);
989 spin_unlock(lock: &queue->rsp_wr_wait_lock);
990 }
991
992 return;
993
994out_err:
995 nvmet_req_complete(req: &cmd->req, status);
996}
997
998static bool nvmet_rdma_recv_not_live(struct nvmet_rdma_queue *queue,
999 struct nvmet_rdma_rsp *rsp)
1000{
1001 unsigned long flags;
1002 bool ret = true;
1003
1004 spin_lock_irqsave(&queue->state_lock, flags);
1005 /*
1006 * recheck queue state is not live to prevent a race condition
1007 * with RDMA_CM_EVENT_ESTABLISHED handler.
1008 */
1009 if (queue->state == NVMET_RDMA_Q_LIVE)
1010 ret = false;
1011 else if (queue->state == NVMET_RDMA_Q_CONNECTING)
1012 list_add_tail(new: &rsp->wait_list, head: &queue->rsp_wait_list);
1013 else
1014 nvmet_rdma_put_rsp(rsp);
1015 spin_unlock_irqrestore(lock: &queue->state_lock, flags);
1016 return ret;
1017}
1018
1019static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1020{
1021 struct nvmet_rdma_cmd *cmd =
1022 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1023 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1024 struct nvmet_rdma_rsp *rsp;
1025
1026 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1027 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1028 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1029 wc->wr_cqe, ib_wc_status_msg(wc->status),
1030 wc->status);
1031 nvmet_rdma_error_comp(queue);
1032 }
1033 return;
1034 }
1035
1036 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1037 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1038 nvmet_rdma_error_comp(queue);
1039 return;
1040 }
1041
1042 cmd->queue = queue;
1043 rsp = nvmet_rdma_get_rsp(queue);
1044 if (unlikely(!rsp)) {
1045 /*
1046 * we get here only under memory pressure,
1047 * silently drop and have the host retry
1048 * as we can't even fail it.
1049 */
1050 nvmet_rdma_post_recv(ndev: queue->dev, cmd);
1051 return;
1052 }
1053 rsp->queue = queue;
1054 rsp->cmd = cmd;
1055 rsp->flags = 0;
1056 rsp->req.cmd = cmd->nvme_cmd;
1057 rsp->req.port = queue->port;
1058 rsp->n_rdma = 0;
1059 rsp->invalidate_rkey = 0;
1060
1061 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE) &&
1062 nvmet_rdma_recv_not_live(queue, rsp))
1063 return;
1064
1065 nvmet_rdma_handle_command(queue, cmd: rsp);
1066}
1067
1068static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1069{
1070 nvmet_rdma_free_cmds(ndev: nsrq->ndev, cmds: nsrq->cmds, nr_cmds: nsrq->ndev->srq_size,
1071 admin: false);
1072 ib_destroy_srq(srq: nsrq->srq);
1073
1074 kfree(objp: nsrq);
1075}
1076
1077static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1078{
1079 int i;
1080
1081 if (!ndev->srqs)
1082 return;
1083
1084 for (i = 0; i < ndev->srq_count; i++)
1085 nvmet_rdma_destroy_srq(nsrq: ndev->srqs[i]);
1086
1087 kfree(objp: ndev->srqs);
1088}
1089
1090static struct nvmet_rdma_srq *
1091nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1092{
1093 struct ib_srq_init_attr srq_attr = { NULL, };
1094 size_t srq_size = ndev->srq_size;
1095 struct nvmet_rdma_srq *nsrq;
1096 struct ib_srq *srq;
1097 int ret, i;
1098
1099 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1100 if (!nsrq)
1101 return ERR_PTR(error: -ENOMEM);
1102
1103 srq_attr.attr.max_wr = srq_size;
1104 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1105 srq_attr.attr.srq_limit = 0;
1106 srq_attr.srq_type = IB_SRQT_BASIC;
1107 srq = ib_create_srq(pd: ndev->pd, srq_init_attr: &srq_attr);
1108 if (IS_ERR(ptr: srq)) {
1109 ret = PTR_ERR(ptr: srq);
1110 goto out_free;
1111 }
1112
1113 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, nr_cmds: srq_size, admin: false);
1114 if (IS_ERR(ptr: nsrq->cmds)) {
1115 ret = PTR_ERR(ptr: nsrq->cmds);
1116 goto out_destroy_srq;
1117 }
1118
1119 nsrq->srq = srq;
1120 nsrq->ndev = ndev;
1121
1122 for (i = 0; i < srq_size; i++) {
1123 nsrq->cmds[i].nsrq = nsrq;
1124 ret = nvmet_rdma_post_recv(ndev, cmd: &nsrq->cmds[i]);
1125 if (ret)
1126 goto out_free_cmds;
1127 }
1128
1129 return nsrq;
1130
1131out_free_cmds:
1132 nvmet_rdma_free_cmds(ndev, cmds: nsrq->cmds, nr_cmds: srq_size, admin: false);
1133out_destroy_srq:
1134 ib_destroy_srq(srq);
1135out_free:
1136 kfree(objp: nsrq);
1137 return ERR_PTR(error: ret);
1138}
1139
1140static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1141{
1142 int i, ret;
1143
1144 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1145 /*
1146 * If SRQs aren't supported we just go ahead and use normal
1147 * non-shared receive queues.
1148 */
1149 pr_info("SRQ requested but not supported.\n");
1150 return 0;
1151 }
1152
1153 ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1154 nvmet_rdma_srq_size);
1155 ndev->srq_count = min(ndev->device->num_comp_vectors,
1156 ndev->device->attrs.max_srq);
1157
1158 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1159 if (!ndev->srqs)
1160 return -ENOMEM;
1161
1162 for (i = 0; i < ndev->srq_count; i++) {
1163 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1164 if (IS_ERR(ptr: ndev->srqs[i])) {
1165 ret = PTR_ERR(ptr: ndev->srqs[i]);
1166 goto err_srq;
1167 }
1168 }
1169
1170 return 0;
1171
1172err_srq:
1173 while (--i >= 0)
1174 nvmet_rdma_destroy_srq(nsrq: ndev->srqs[i]);
1175 kfree(objp: ndev->srqs);
1176 return ret;
1177}
1178
1179static void nvmet_rdma_free_dev(struct kref *ref)
1180{
1181 struct nvmet_rdma_device *ndev =
1182 container_of(ref, struct nvmet_rdma_device, ref);
1183
1184 mutex_lock(&device_list_mutex);
1185 list_del(entry: &ndev->entry);
1186 mutex_unlock(lock: &device_list_mutex);
1187
1188 nvmet_rdma_destroy_srqs(ndev);
1189 ib_dealloc_pd(pd: ndev->pd);
1190
1191 kfree(objp: ndev);
1192}
1193
1194static struct nvmet_rdma_device *
1195nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1196{
1197 struct nvmet_rdma_port *port = cm_id->context;
1198 struct nvmet_port *nport = port->nport;
1199 struct nvmet_rdma_device *ndev;
1200 int inline_page_count;
1201 int inline_sge_count;
1202 int ret;
1203
1204 mutex_lock(&device_list_mutex);
1205 list_for_each_entry(ndev, &device_list, entry) {
1206 if (ndev->device->node_guid == cm_id->device->node_guid &&
1207 kref_get_unless_zero(kref: &ndev->ref))
1208 goto out_unlock;
1209 }
1210
1211 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1212 if (!ndev)
1213 goto out_err;
1214
1215 inline_page_count = num_pages(len: nport->inline_data_size);
1216 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1217 cm_id->device->attrs.max_recv_sge) - 1;
1218 if (inline_page_count > inline_sge_count) {
1219 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1220 nport->inline_data_size, cm_id->device->name,
1221 inline_sge_count * PAGE_SIZE);
1222 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1223 inline_page_count = inline_sge_count;
1224 }
1225 ndev->inline_data_size = nport->inline_data_size;
1226 ndev->inline_page_count = inline_page_count;
1227
1228 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1229 IBK_INTEGRITY_HANDOVER)) {
1230 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1231 cm_id->device->name);
1232 nport->pi_enable = false;
1233 }
1234
1235 ndev->device = cm_id->device;
1236 kref_init(kref: &ndev->ref);
1237
1238 ndev->pd = ib_alloc_pd(ndev->device, 0);
1239 if (IS_ERR(ptr: ndev->pd))
1240 goto out_free_dev;
1241
1242 if (nvmet_rdma_use_srq) {
1243 ret = nvmet_rdma_init_srqs(ndev);
1244 if (ret)
1245 goto out_free_pd;
1246 }
1247
1248 list_add(new: &ndev->entry, head: &device_list);
1249out_unlock:
1250 mutex_unlock(lock: &device_list_mutex);
1251 pr_debug("added %s.\n", ndev->device->name);
1252 return ndev;
1253
1254out_free_pd:
1255 ib_dealloc_pd(pd: ndev->pd);
1256out_free_dev:
1257 kfree(objp: ndev);
1258out_err:
1259 mutex_unlock(lock: &device_list_mutex);
1260 return NULL;
1261}
1262
1263static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1264{
1265 struct ib_qp_init_attr qp_attr = { };
1266 struct nvmet_rdma_device *ndev = queue->dev;
1267 int nr_cqe, ret, i, factor;
1268
1269 /*
1270 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1271 */
1272 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1273
1274 queue->cq = ib_cq_pool_get(dev: ndev->device, nr_cqe: nr_cqe + 1,
1275 comp_vector_hint: queue->comp_vector, poll_ctx: IB_POLL_WORKQUEUE);
1276 if (IS_ERR(ptr: queue->cq)) {
1277 ret = PTR_ERR(ptr: queue->cq);
1278 pr_err("failed to create CQ cqe= %d ret= %d\n",
1279 nr_cqe + 1, ret);
1280 goto out;
1281 }
1282
1283 qp_attr.qp_context = queue;
1284 qp_attr.event_handler = nvmet_rdma_qp_event;
1285 qp_attr.send_cq = queue->cq;
1286 qp_attr.recv_cq = queue->cq;
1287 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1288 qp_attr.qp_type = IB_QPT_RC;
1289 /* +1 for drain */
1290 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1291 factor = rdma_rw_mr_factor(device: ndev->device, port_num: queue->cm_id->port_num,
1292 maxpages: 1 << NVMET_RDMA_MAX_MDTS);
1293 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1294 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1295 ndev->device->attrs.max_send_sge);
1296
1297 if (queue->nsrq) {
1298 qp_attr.srq = queue->nsrq->srq;
1299 } else {
1300 /* +1 for drain */
1301 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1302 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1303 }
1304
1305 if (queue->port->pi_enable && queue->host_qid)
1306 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1307
1308 ret = rdma_create_qp(id: queue->cm_id, pd: ndev->pd, qp_init_attr: &qp_attr);
1309 if (ret) {
1310 pr_err("failed to create_qp ret= %d\n", ret);
1311 goto err_destroy_cq;
1312 }
1313 queue->qp = queue->cm_id->qp;
1314
1315 atomic_set(v: &queue->sq_wr_avail, i: qp_attr.cap.max_send_wr);
1316
1317 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1318 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1319 qp_attr.cap.max_send_wr, queue->cm_id);
1320
1321 if (!queue->nsrq) {
1322 for (i = 0; i < queue->recv_queue_size; i++) {
1323 queue->cmds[i].queue = queue;
1324 ret = nvmet_rdma_post_recv(ndev, cmd: &queue->cmds[i]);
1325 if (ret)
1326 goto err_destroy_qp;
1327 }
1328 }
1329
1330out:
1331 return ret;
1332
1333err_destroy_qp:
1334 rdma_destroy_qp(id: queue->cm_id);
1335err_destroy_cq:
1336 ib_cq_pool_put(cq: queue->cq, nr_cqe: nr_cqe + 1);
1337 goto out;
1338}
1339
1340static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1341{
1342 ib_drain_qp(qp: queue->qp);
1343 if (queue->cm_id)
1344 rdma_destroy_id(id: queue->cm_id);
1345 ib_destroy_qp(qp: queue->qp);
1346 ib_cq_pool_put(cq: queue->cq, nr_cqe: queue->recv_queue_size + 2 *
1347 queue->send_queue_size + 1);
1348}
1349
1350static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1351{
1352 pr_debug("freeing queue %d\n", queue->idx);
1353
1354 nvmet_sq_destroy(sq: &queue->nvme_sq);
1355 nvmet_cq_put(cq: &queue->nvme_cq);
1356
1357 nvmet_rdma_destroy_queue_ib(queue);
1358 if (!queue->nsrq) {
1359 nvmet_rdma_free_cmds(ndev: queue->dev, cmds: queue->cmds,
1360 nr_cmds: queue->recv_queue_size,
1361 admin: !queue->host_qid);
1362 }
1363 nvmet_rdma_free_rsps(queue);
1364 ida_free(&nvmet_rdma_queue_ida, id: queue->idx);
1365 kfree(objp: queue);
1366}
1367
1368static void nvmet_rdma_release_queue_work(struct work_struct *w)
1369{
1370 struct nvmet_rdma_queue *queue =
1371 container_of(w, struct nvmet_rdma_queue, release_work);
1372 struct nvmet_rdma_device *dev = queue->dev;
1373
1374 nvmet_rdma_free_queue(queue);
1375
1376 kref_put(kref: &dev->ref, release: nvmet_rdma_free_dev);
1377}
1378
1379static int
1380nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1381 struct nvmet_rdma_queue *queue)
1382{
1383 struct nvme_rdma_cm_req *req;
1384
1385 req = (struct nvme_rdma_cm_req *)conn->private_data;
1386 if (!req || conn->private_data_len == 0)
1387 return NVME_RDMA_CM_INVALID_LEN;
1388
1389 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1390 return NVME_RDMA_CM_INVALID_RECFMT;
1391
1392 queue->host_qid = le16_to_cpu(req->qid);
1393
1394 /*
1395 * req->hsqsize corresponds to our recv queue size plus 1
1396 * req->hrqsize corresponds to our send queue size
1397 */
1398 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1399 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1400
1401 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1402 return NVME_RDMA_CM_INVALID_HSQSIZE;
1403
1404 /* XXX: Should we enforce some kind of max for IO queues? */
1405
1406 return 0;
1407}
1408
1409static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1410 enum nvme_rdma_cm_status status)
1411{
1412 struct nvme_rdma_cm_rej rej;
1413
1414 pr_debug("rejecting connect request: status %d (%s)\n",
1415 status, nvme_rdma_cm_msg(status));
1416
1417 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1418 rej.sts = cpu_to_le16(status);
1419
1420 return rdma_reject(id: cm_id, private_data: (void *)&rej, private_data_len: sizeof(rej),
1421 reason: IB_CM_REJ_CONSUMER_DEFINED);
1422}
1423
1424static struct nvmet_rdma_queue *
1425nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1426 struct rdma_cm_id *cm_id,
1427 struct rdma_cm_event *event)
1428{
1429 struct nvmet_rdma_port *port = cm_id->context;
1430 struct nvmet_rdma_queue *queue;
1431 int ret;
1432
1433 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1434 if (!queue) {
1435 ret = NVME_RDMA_CM_NO_RSC;
1436 goto out_reject;
1437 }
1438
1439 nvmet_cq_init(cq: &queue->nvme_cq);
1440 ret = nvmet_sq_init(sq: &queue->nvme_sq, cq: &queue->nvme_cq);
1441 if (ret) {
1442 ret = NVME_RDMA_CM_NO_RSC;
1443 goto out_free_queue;
1444 }
1445
1446 ret = nvmet_rdma_parse_cm_connect_req(conn: &event->param.conn, queue);
1447 if (ret)
1448 goto out_destroy_sq;
1449
1450 /*
1451 * Schedules the actual release because calling rdma_destroy_id from
1452 * inside a CM callback would trigger a deadlock. (great API design..)
1453 */
1454 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1455 queue->dev = ndev;
1456 queue->cm_id = cm_id;
1457 queue->port = port->nport;
1458
1459 spin_lock_init(&queue->state_lock);
1460 queue->state = NVMET_RDMA_Q_CONNECTING;
1461 INIT_LIST_HEAD(list: &queue->rsp_wait_list);
1462 INIT_LIST_HEAD(list: &queue->rsp_wr_wait_list);
1463 spin_lock_init(&queue->rsp_wr_wait_lock);
1464 INIT_LIST_HEAD(list: &queue->queue_list);
1465
1466 queue->idx = ida_alloc(ida: &nvmet_rdma_queue_ida, GFP_KERNEL);
1467 if (queue->idx < 0) {
1468 ret = NVME_RDMA_CM_NO_RSC;
1469 goto out_destroy_sq;
1470 }
1471
1472 /*
1473 * Spread the io queues across completion vectors,
1474 * but still keep all admin queues on vector 0.
1475 */
1476 queue->comp_vector = !queue->host_qid ? 0 :
1477 queue->idx % ndev->device->num_comp_vectors;
1478
1479
1480 ret = nvmet_rdma_alloc_rsps(queue);
1481 if (ret) {
1482 ret = NVME_RDMA_CM_NO_RSC;
1483 goto out_ida_remove;
1484 }
1485
1486 if (ndev->srqs) {
1487 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1488 } else {
1489 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1490 nr_cmds: queue->recv_queue_size,
1491 admin: !queue->host_qid);
1492 if (IS_ERR(ptr: queue->cmds)) {
1493 ret = NVME_RDMA_CM_NO_RSC;
1494 goto out_free_responses;
1495 }
1496 }
1497
1498 ret = nvmet_rdma_create_queue_ib(queue);
1499 if (ret) {
1500 pr_err("%s: creating RDMA queue failed (%d).\n",
1501 __func__, ret);
1502 ret = NVME_RDMA_CM_NO_RSC;
1503 goto out_free_cmds;
1504 }
1505
1506 return queue;
1507
1508out_free_cmds:
1509 if (!queue->nsrq) {
1510 nvmet_rdma_free_cmds(ndev: queue->dev, cmds: queue->cmds,
1511 nr_cmds: queue->recv_queue_size,
1512 admin: !queue->host_qid);
1513 }
1514out_free_responses:
1515 nvmet_rdma_free_rsps(queue);
1516out_ida_remove:
1517 ida_free(&nvmet_rdma_queue_ida, id: queue->idx);
1518out_destroy_sq:
1519 nvmet_sq_destroy(sq: &queue->nvme_sq);
1520out_free_queue:
1521 nvmet_cq_put(cq: &queue->nvme_cq);
1522 kfree(objp: queue);
1523out_reject:
1524 nvmet_rdma_cm_reject(cm_id, status: ret);
1525 return NULL;
1526}
1527
1528static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1529{
1530 struct nvmet_rdma_queue *queue = priv;
1531
1532 switch (event->event) {
1533 case IB_EVENT_COMM_EST:
1534 rdma_notify(id: queue->cm_id, event: event->event);
1535 break;
1536 case IB_EVENT_QP_LAST_WQE_REACHED:
1537 pr_debug("received last WQE reached event for queue=0x%p\n",
1538 queue);
1539 break;
1540 default:
1541 pr_err("received IB QP event: %s (%d)\n",
1542 ib_event_msg(event->event), event->event);
1543 break;
1544 }
1545}
1546
1547static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1548 struct nvmet_rdma_queue *queue,
1549 struct rdma_conn_param *p)
1550{
1551 struct rdma_conn_param param = { };
1552 struct nvme_rdma_cm_rep priv = { };
1553 int ret = -ENOMEM;
1554
1555 param.rnr_retry_count = 7;
1556 param.flow_control = 1;
1557 param.initiator_depth = min_t(u8, p->initiator_depth,
1558 queue->dev->device->attrs.max_qp_init_rd_atom);
1559 param.private_data = &priv;
1560 param.private_data_len = sizeof(priv);
1561 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1562 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1563
1564 ret = rdma_accept(id: cm_id, conn_param: &param);
1565 if (ret)
1566 pr_err("rdma_accept failed (error code = %d)\n", ret);
1567
1568 return ret;
1569}
1570
1571static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1572 struct rdma_cm_event *event)
1573{
1574 struct nvmet_rdma_device *ndev;
1575 struct nvmet_rdma_queue *queue;
1576 int ret = -EINVAL;
1577
1578 ndev = nvmet_rdma_find_get_device(cm_id);
1579 if (!ndev) {
1580 nvmet_rdma_cm_reject(cm_id, status: NVME_RDMA_CM_NO_RSC);
1581 return -ECONNREFUSED;
1582 }
1583
1584 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1585 if (!queue) {
1586 ret = -ENOMEM;
1587 goto put_device;
1588 }
1589
1590 if (queue->host_qid == 0) {
1591 struct nvmet_rdma_queue *q;
1592 int pending = 0;
1593
1594 /* Check for pending controller teardown */
1595 mutex_lock(&nvmet_rdma_queue_mutex);
1596 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) {
1597 if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl &&
1598 q->state == NVMET_RDMA_Q_DISCONNECTING)
1599 pending++;
1600 }
1601 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1602 if (pending > NVMET_RDMA_BACKLOG)
1603 return NVME_SC_CONNECT_CTRL_BUSY;
1604 }
1605
1606 ret = nvmet_rdma_cm_accept(cm_id, queue, p: &event->param.conn);
1607 if (ret) {
1608 /*
1609 * Don't destroy the cm_id in free path, as we implicitly
1610 * destroy the cm_id here with non-zero ret code.
1611 */
1612 queue->cm_id = NULL;
1613 goto free_queue;
1614 }
1615
1616 mutex_lock(&nvmet_rdma_queue_mutex);
1617 list_add_tail(new: &queue->queue_list, head: &nvmet_rdma_queue_list);
1618 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1619
1620 return 0;
1621
1622free_queue:
1623 nvmet_rdma_free_queue(queue);
1624put_device:
1625 kref_put(kref: &ndev->ref, release: nvmet_rdma_free_dev);
1626
1627 return ret;
1628}
1629
1630static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1631{
1632 unsigned long flags;
1633
1634 spin_lock_irqsave(&queue->state_lock, flags);
1635 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1636 pr_warn("trying to establish a connected queue\n");
1637 goto out_unlock;
1638 }
1639 queue->state = NVMET_RDMA_Q_LIVE;
1640
1641 while (!list_empty(head: &queue->rsp_wait_list)) {
1642 struct nvmet_rdma_rsp *cmd;
1643
1644 cmd = list_first_entry(&queue->rsp_wait_list,
1645 struct nvmet_rdma_rsp, wait_list);
1646 list_del(entry: &cmd->wait_list);
1647
1648 spin_unlock_irqrestore(lock: &queue->state_lock, flags);
1649 nvmet_rdma_handle_command(queue, cmd);
1650 spin_lock_irqsave(&queue->state_lock, flags);
1651 }
1652
1653out_unlock:
1654 spin_unlock_irqrestore(lock: &queue->state_lock, flags);
1655}
1656
1657static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1658{
1659 bool disconnect = false;
1660 unsigned long flags;
1661
1662 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1663
1664 spin_lock_irqsave(&queue->state_lock, flags);
1665 switch (queue->state) {
1666 case NVMET_RDMA_Q_CONNECTING:
1667 while (!list_empty(head: &queue->rsp_wait_list)) {
1668 struct nvmet_rdma_rsp *rsp;
1669
1670 rsp = list_first_entry(&queue->rsp_wait_list,
1671 struct nvmet_rdma_rsp,
1672 wait_list);
1673 list_del(entry: &rsp->wait_list);
1674 nvmet_rdma_put_rsp(rsp);
1675 }
1676 fallthrough;
1677 case NVMET_RDMA_Q_LIVE:
1678 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1679 disconnect = true;
1680 break;
1681 case NVMET_RDMA_Q_DISCONNECTING:
1682 break;
1683 }
1684 spin_unlock_irqrestore(lock: &queue->state_lock, flags);
1685
1686 if (disconnect) {
1687 rdma_disconnect(id: queue->cm_id);
1688 queue_work(wq: nvmet_wq, work: &queue->release_work);
1689 }
1690}
1691
1692static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1693{
1694 bool disconnect = false;
1695
1696 mutex_lock(&nvmet_rdma_queue_mutex);
1697 if (!list_empty(head: &queue->queue_list)) {
1698 list_del_init(entry: &queue->queue_list);
1699 disconnect = true;
1700 }
1701 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1702
1703 if (disconnect)
1704 __nvmet_rdma_queue_disconnect(queue);
1705}
1706
1707static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1708 struct nvmet_rdma_queue *queue)
1709{
1710 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1711
1712 mutex_lock(&nvmet_rdma_queue_mutex);
1713 if (!list_empty(head: &queue->queue_list))
1714 list_del_init(entry: &queue->queue_list);
1715 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1716
1717 pr_err("failed to connect queue %d\n", queue->idx);
1718 queue_work(wq: nvmet_wq, work: &queue->release_work);
1719}
1720
1721/**
1722 * nvmet_rdma_device_removal() - Handle RDMA device removal
1723 * @cm_id: rdma_cm id, used for nvmet port
1724 * @queue: nvmet rdma queue (cm id qp_context)
1725 *
1726 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1727 * to unplug. Note that this event can be generated on a normal
1728 * queue cm_id and/or a device bound listener cm_id (where in this
1729 * case queue will be null).
1730 *
1731 * We registered an ib_client to handle device removal for queues,
1732 * so we only need to handle the listening port cm_ids. In this case
1733 * we nullify the priv to prevent double cm_id destruction and destroying
1734 * the cm_id implicitely by returning a non-zero rc to the callout.
1735 */
1736static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1737 struct nvmet_rdma_queue *queue)
1738{
1739 struct nvmet_rdma_port *port;
1740
1741 if (queue) {
1742 /*
1743 * This is a queue cm_id. we have registered
1744 * an ib_client to handle queues removal
1745 * so don't interfear and just return.
1746 */
1747 return 0;
1748 }
1749
1750 port = cm_id->context;
1751
1752 /*
1753 * This is a listener cm_id. Make sure that
1754 * future remove_port won't invoke a double
1755 * cm_id destroy. use atomic xchg to make sure
1756 * we don't compete with remove_port.
1757 */
1758 if (xchg(&port->cm_id, NULL) != cm_id)
1759 return 0;
1760
1761 /*
1762 * We need to return 1 so that the core will destroy
1763 * it's own ID. What a great API design..
1764 */
1765 return 1;
1766}
1767
1768static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1769 struct rdma_cm_event *event)
1770{
1771 struct nvmet_rdma_queue *queue = NULL;
1772 int ret = 0;
1773
1774 if (cm_id->qp)
1775 queue = cm_id->qp->qp_context;
1776
1777 pr_debug("%s (%d): status %d id %p\n",
1778 rdma_event_msg(event->event), event->event,
1779 event->status, cm_id);
1780
1781 switch (event->event) {
1782 case RDMA_CM_EVENT_CONNECT_REQUEST:
1783 ret = nvmet_rdma_queue_connect(cm_id, event);
1784 break;
1785 case RDMA_CM_EVENT_ESTABLISHED:
1786 nvmet_rdma_queue_established(queue);
1787 break;
1788 case RDMA_CM_EVENT_ADDR_CHANGE:
1789 if (!queue) {
1790 struct nvmet_rdma_port *port = cm_id->context;
1791
1792 queue_delayed_work(wq: nvmet_wq, dwork: &port->repair_work, delay: 0);
1793 break;
1794 }
1795 fallthrough;
1796 case RDMA_CM_EVENT_DISCONNECTED:
1797 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1798 nvmet_rdma_queue_disconnect(queue);
1799 break;
1800 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1801 ret = nvmet_rdma_device_removal(cm_id, queue);
1802 break;
1803 case RDMA_CM_EVENT_REJECTED:
1804 pr_debug("Connection rejected: %s\n",
1805 rdma_reject_msg(cm_id, event->status));
1806 fallthrough;
1807 case RDMA_CM_EVENT_UNREACHABLE:
1808 case RDMA_CM_EVENT_CONNECT_ERROR:
1809 nvmet_rdma_queue_connect_fail(cm_id, queue);
1810 break;
1811 default:
1812 pr_err("received unrecognized RDMA CM event %d\n",
1813 event->event);
1814 break;
1815 }
1816
1817 return ret;
1818}
1819
1820static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1821{
1822 struct nvmet_rdma_queue *queue, *n;
1823
1824 mutex_lock(&nvmet_rdma_queue_mutex);
1825 list_for_each_entry_safe(queue, n, &nvmet_rdma_queue_list, queue_list) {
1826 if (queue->nvme_sq.ctrl != ctrl)
1827 continue;
1828 list_del_init(entry: &queue->queue_list);
1829 __nvmet_rdma_queue_disconnect(queue);
1830 }
1831 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1832}
1833
1834static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1835{
1836 struct nvmet_rdma_queue *queue, *tmp;
1837 struct nvmet_port *nport = port->nport;
1838
1839 mutex_lock(&nvmet_rdma_queue_mutex);
1840 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1841 queue_list) {
1842 if (queue->port != nport)
1843 continue;
1844
1845 list_del_init(entry: &queue->queue_list);
1846 __nvmet_rdma_queue_disconnect(queue);
1847 }
1848 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1849}
1850
1851static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1852{
1853 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1854
1855 if (cm_id)
1856 rdma_destroy_id(id: cm_id);
1857
1858 /*
1859 * Destroy the remaining queues, which are not belong to any
1860 * controller yet. Do it here after the RDMA-CM was destroyed
1861 * guarantees that no new queue will be created.
1862 */
1863 nvmet_rdma_destroy_port_queues(port);
1864}
1865
1866static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1867{
1868 struct sockaddr *addr = (struct sockaddr *)&port->addr;
1869 struct rdma_cm_id *cm_id;
1870 int ret;
1871
1872 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1873 RDMA_PS_TCP, IB_QPT_RC);
1874 if (IS_ERR(ptr: cm_id)) {
1875 pr_err("CM ID creation failed\n");
1876 return PTR_ERR(ptr: cm_id);
1877 }
1878
1879 /*
1880 * Allow both IPv4 and IPv6 sockets to bind a single port
1881 * at the same time.
1882 */
1883 ret = rdma_set_afonly(id: cm_id, afonly: 1);
1884 if (ret) {
1885 pr_err("rdma_set_afonly failed (%d)\n", ret);
1886 goto out_destroy_id;
1887 }
1888
1889 ret = rdma_bind_addr(id: cm_id, addr);
1890 if (ret) {
1891 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1892 goto out_destroy_id;
1893 }
1894
1895 ret = rdma_listen(id: cm_id, NVMET_RDMA_BACKLOG);
1896 if (ret) {
1897 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1898 goto out_destroy_id;
1899 }
1900
1901 port->cm_id = cm_id;
1902 return 0;
1903
1904out_destroy_id:
1905 rdma_destroy_id(id: cm_id);
1906 return ret;
1907}
1908
1909static void nvmet_rdma_repair_port_work(struct work_struct *w)
1910{
1911 struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1912 struct nvmet_rdma_port, repair_work);
1913 int ret;
1914
1915 nvmet_rdma_disable_port(port);
1916 ret = nvmet_rdma_enable_port(port);
1917 if (ret)
1918 queue_delayed_work(wq: nvmet_wq, dwork: &port->repair_work, delay: 5 * HZ);
1919}
1920
1921static int nvmet_rdma_add_port(struct nvmet_port *nport)
1922{
1923 struct nvmet_rdma_port *port;
1924 __kernel_sa_family_t af;
1925 int ret;
1926
1927 port = kzalloc(sizeof(*port), GFP_KERNEL);
1928 if (!port)
1929 return -ENOMEM;
1930
1931 nport->priv = port;
1932 port->nport = nport;
1933 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1934
1935 switch (nport->disc_addr.adrfam) {
1936 case NVMF_ADDR_FAMILY_IP4:
1937 af = AF_INET;
1938 break;
1939 case NVMF_ADDR_FAMILY_IP6:
1940 af = AF_INET6;
1941 break;
1942 default:
1943 pr_err("address family %d not supported\n",
1944 nport->disc_addr.adrfam);
1945 ret = -EINVAL;
1946 goto out_free_port;
1947 }
1948
1949 if (nport->inline_data_size < 0) {
1950 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1951 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1952 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1953 nport->inline_data_size,
1954 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1955 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1956 }
1957
1958 if (nport->max_queue_size < 0) {
1959 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE;
1960 } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) {
1961 pr_warn("max_queue_size %u is too large, reducing to %u\n",
1962 nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE);
1963 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1964 }
1965
1966 ret = inet_pton_with_scope(net: &init_net, af, src: nport->disc_addr.traddr,
1967 port: nport->disc_addr.trsvcid, addr: &port->addr);
1968 if (ret) {
1969 pr_err("malformed ip/port passed: %s:%s\n",
1970 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1971 goto out_free_port;
1972 }
1973
1974 ret = nvmet_rdma_enable_port(port);
1975 if (ret)
1976 goto out_free_port;
1977
1978 pr_info("enabling port %d (%pISpcs)\n",
1979 le16_to_cpu(nport->disc_addr.portid),
1980 (struct sockaddr *)&port->addr);
1981
1982 return 0;
1983
1984out_free_port:
1985 kfree(objp: port);
1986 return ret;
1987}
1988
1989static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1990{
1991 struct nvmet_rdma_port *port = nport->priv;
1992
1993 cancel_delayed_work_sync(dwork: &port->repair_work);
1994 nvmet_rdma_disable_port(port);
1995 kfree(objp: port);
1996}
1997
1998static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1999 struct nvmet_port *nport, char *traddr)
2000{
2001 struct nvmet_rdma_port *port = nport->priv;
2002 struct rdma_cm_id *cm_id = port->cm_id;
2003
2004 if (inet_addr_is_any(addr: &cm_id->route.addr.src_addr)) {
2005 struct nvmet_rdma_rsp *rsp =
2006 container_of(req, struct nvmet_rdma_rsp, req);
2007 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
2008 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
2009
2010 sprintf(buf: traddr, fmt: "%pISc", addr);
2011 } else {
2012 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2013 }
2014}
2015
2016static ssize_t nvmet_rdma_host_port_addr(struct nvmet_ctrl *ctrl,
2017 char *traddr, size_t traddr_len)
2018{
2019 struct nvmet_sq *nvme_sq = ctrl->sqs[0];
2020 struct nvmet_rdma_queue *queue =
2021 container_of(nvme_sq, struct nvmet_rdma_queue, nvme_sq);
2022
2023 return snprintf(buf: traddr, size: traddr_len, fmt: "%pISc",
2024 (struct sockaddr *)&queue->cm_id->route.addr.dst_addr);
2025}
2026
2027static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
2028{
2029 if (ctrl->pi_support)
2030 return NVMET_RDMA_MAX_METADATA_MDTS;
2031 return NVMET_RDMA_MAX_MDTS;
2032}
2033
2034static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2035{
2036 if (ctrl->pi_support)
2037 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
2038 return NVME_RDMA_MAX_QUEUE_SIZE;
2039}
2040
2041static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2042 .owner = THIS_MODULE,
2043 .type = NVMF_TRTYPE_RDMA,
2044 .msdbd = 1,
2045 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2046 .add_port = nvmet_rdma_add_port,
2047 .remove_port = nvmet_rdma_remove_port,
2048 .queue_response = nvmet_rdma_queue_response,
2049 .delete_ctrl = nvmet_rdma_delete_ctrl,
2050 .disc_traddr = nvmet_rdma_disc_port_addr,
2051 .host_traddr = nvmet_rdma_host_port_addr,
2052 .get_mdts = nvmet_rdma_get_mdts,
2053 .get_max_queue_size = nvmet_rdma_get_max_queue_size,
2054};
2055
2056static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2057{
2058 struct nvmet_rdma_queue *queue, *tmp;
2059 struct nvmet_rdma_device *ndev;
2060 bool found = false;
2061
2062 mutex_lock(&device_list_mutex);
2063 list_for_each_entry(ndev, &device_list, entry) {
2064 if (ndev->device == ib_device) {
2065 found = true;
2066 break;
2067 }
2068 }
2069 mutex_unlock(lock: &device_list_mutex);
2070
2071 if (!found)
2072 return;
2073
2074 /*
2075 * IB Device that is used by nvmet controllers is being removed,
2076 * delete all queues using this device.
2077 */
2078 mutex_lock(&nvmet_rdma_queue_mutex);
2079 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2080 queue_list) {
2081 if (queue->dev->device != ib_device)
2082 continue;
2083
2084 pr_info("Removing queue %d\n", queue->idx);
2085 list_del_init(entry: &queue->queue_list);
2086 __nvmet_rdma_queue_disconnect(queue);
2087 }
2088 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
2089
2090 flush_workqueue(nvmet_wq);
2091}
2092
2093static struct ib_client nvmet_rdma_ib_client = {
2094 .name = "nvmet_rdma",
2095 .remove = nvmet_rdma_remove_one
2096};
2097
2098static int __init nvmet_rdma_init(void)
2099{
2100 int ret;
2101
2102 ret = ib_register_client(client: &nvmet_rdma_ib_client);
2103 if (ret)
2104 return ret;
2105
2106 ret = nvmet_register_transport(ops: &nvmet_rdma_ops);
2107 if (ret)
2108 goto err_ib_client;
2109
2110 return 0;
2111
2112err_ib_client:
2113 ib_unregister_client(client: &nvmet_rdma_ib_client);
2114 return ret;
2115}
2116
2117static void __exit nvmet_rdma_exit(void)
2118{
2119 nvmet_unregister_transport(ops: &nvmet_rdma_ops);
2120 ib_unregister_client(client: &nvmet_rdma_ib_client);
2121 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2122 ida_destroy(ida: &nvmet_rdma_queue_ida);
2123}
2124
2125module_init(nvmet_rdma_init);
2126module_exit(nvmet_rdma_exit);
2127
2128MODULE_DESCRIPTION("NVMe target RDMA transport driver");
2129MODULE_LICENSE("GPL v2");
2130MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2131

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/nvme/target/rdma.c