1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics RDMA target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/atomic.h>
8#include <linux/blk-integrity.h>
9#include <linux/ctype.h>
10#include <linux/delay.h>
11#include <linux/err.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/nvme.h>
15#include <linux/slab.h>
16#include <linux/string.h>
17#include <linux/wait.h>
18#include <linux/inet.h>
19#include <asm/unaligned.h>
20
21#include <rdma/ib_verbs.h>
22#include <rdma/rdma_cm.h>
23#include <rdma/rw.h>
24#include <rdma/ib_cm.h>
25
26#include <linux/nvme-rdma.h>
27#include "nvmet.h"
28
29/*
30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
31 */
32#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE
33#define NVMET_RDMA_MAX_INLINE_SGE 4
34#define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE)
35
36/* Assume mpsmin == device_page_size == 4KB */
37#define NVMET_RDMA_MAX_MDTS 8
38#define NVMET_RDMA_MAX_METADATA_MDTS 5
39
40#define NVMET_RDMA_BACKLOG 128
41
42struct nvmet_rdma_srq;
43
44struct nvmet_rdma_cmd {
45 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
46 struct ib_cqe cqe;
47 struct ib_recv_wr wr;
48 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
49 struct nvme_command *nvme_cmd;
50 struct nvmet_rdma_queue *queue;
51 struct nvmet_rdma_srq *nsrq;
52};
53
54enum {
55 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0),
56};
57
58struct nvmet_rdma_rsp {
59 struct ib_sge send_sge;
60 struct ib_cqe send_cqe;
61 struct ib_send_wr send_wr;
62
63 struct nvmet_rdma_cmd *cmd;
64 struct nvmet_rdma_queue *queue;
65
66 struct ib_cqe read_cqe;
67 struct ib_cqe write_cqe;
68 struct rdma_rw_ctx rw;
69
70 struct nvmet_req req;
71
72 bool allocated;
73 u8 n_rdma;
74 u32 flags;
75 u32 invalidate_rkey;
76
77 struct list_head wait_list;
78 struct list_head free_list;
79};
80
81enum nvmet_rdma_queue_state {
82 NVMET_RDMA_Q_CONNECTING,
83 NVMET_RDMA_Q_LIVE,
84 NVMET_RDMA_Q_DISCONNECTING,
85};
86
87struct nvmet_rdma_queue {
88 struct rdma_cm_id *cm_id;
89 struct ib_qp *qp;
90 struct nvmet_port *port;
91 struct ib_cq *cq;
92 atomic_t sq_wr_avail;
93 struct nvmet_rdma_device *dev;
94 struct nvmet_rdma_srq *nsrq;
95 spinlock_t state_lock;
96 enum nvmet_rdma_queue_state state;
97 struct nvmet_cq nvme_cq;
98 struct nvmet_sq nvme_sq;
99
100 struct nvmet_rdma_rsp *rsps;
101 struct list_head free_rsps;
102 spinlock_t rsps_lock;
103 struct nvmet_rdma_cmd *cmds;
104
105 struct work_struct release_work;
106 struct list_head rsp_wait_list;
107 struct list_head rsp_wr_wait_list;
108 spinlock_t rsp_wr_wait_lock;
109
110 int idx;
111 int host_qid;
112 int comp_vector;
113 int recv_queue_size;
114 int send_queue_size;
115
116 struct list_head queue_list;
117};
118
119struct nvmet_rdma_port {
120 struct nvmet_port *nport;
121 struct sockaddr_storage addr;
122 struct rdma_cm_id *cm_id;
123 struct delayed_work repair_work;
124};
125
126struct nvmet_rdma_srq {
127 struct ib_srq *srq;
128 struct nvmet_rdma_cmd *cmds;
129 struct nvmet_rdma_device *ndev;
130};
131
132struct nvmet_rdma_device {
133 struct ib_device *device;
134 struct ib_pd *pd;
135 struct nvmet_rdma_srq **srqs;
136 int srq_count;
137 size_t srq_size;
138 struct kref ref;
139 struct list_head entry;
140 int inline_data_size;
141 int inline_page_count;
142};
143
144static bool nvmet_rdma_use_srq;
145module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
146MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
147
148static int srq_size_set(const char *val, const struct kernel_param *kp);
149static const struct kernel_param_ops srq_size_ops = {
150 .set = srq_size_set,
151 .get = param_get_int,
152};
153
154static int nvmet_rdma_srq_size = 1024;
155module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
156MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
157
158static DEFINE_IDA(nvmet_rdma_queue_ida);
159static LIST_HEAD(nvmet_rdma_queue_list);
160static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
161
162static LIST_HEAD(device_list);
163static DEFINE_MUTEX(device_list_mutex);
164
165static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
166static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
167static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
168static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
169static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
170static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
171static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
172static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
173 struct nvmet_rdma_rsp *r);
174static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
175 struct nvmet_rdma_rsp *r);
176
177static const struct nvmet_fabrics_ops nvmet_rdma_ops;
178
179static int srq_size_set(const char *val, const struct kernel_param *kp)
180{
181 int n = 0, ret;
182
183 ret = kstrtoint(s: val, base: 10, res: &n);
184 if (ret != 0 || n < 256)
185 return -EINVAL;
186
187 return param_set_int(val, kp);
188}
189
190static int num_pages(int len)
191{
192 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
193}
194
195static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
196{
197 return nvme_is_write(cmd: rsp->req.cmd) &&
198 rsp->req.transfer_len &&
199 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
200}
201
202static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
203{
204 return !nvme_is_write(cmd: rsp->req.cmd) &&
205 rsp->req.transfer_len &&
206 !rsp->req.cqe->status &&
207 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
208}
209
210static inline struct nvmet_rdma_rsp *
211nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
212{
213 struct nvmet_rdma_rsp *rsp;
214 unsigned long flags;
215
216 spin_lock_irqsave(&queue->rsps_lock, flags);
217 rsp = list_first_entry_or_null(&queue->free_rsps,
218 struct nvmet_rdma_rsp, free_list);
219 if (likely(rsp))
220 list_del(entry: &rsp->free_list);
221 spin_unlock_irqrestore(lock: &queue->rsps_lock, flags);
222
223 if (unlikely(!rsp)) {
224 int ret;
225
226 rsp = kzalloc(size: sizeof(*rsp), GFP_KERNEL);
227 if (unlikely(!rsp))
228 return NULL;
229 ret = nvmet_rdma_alloc_rsp(ndev: queue->dev, r: rsp);
230 if (unlikely(ret)) {
231 kfree(objp: rsp);
232 return NULL;
233 }
234
235 rsp->allocated = true;
236 }
237
238 return rsp;
239}
240
241static inline void
242nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
243{
244 unsigned long flags;
245
246 if (unlikely(rsp->allocated)) {
247 nvmet_rdma_free_rsp(ndev: rsp->queue->dev, r: rsp);
248 kfree(objp: rsp);
249 return;
250 }
251
252 spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
253 list_add_tail(new: &rsp->free_list, head: &rsp->queue->free_rsps);
254 spin_unlock_irqrestore(lock: &rsp->queue->rsps_lock, flags);
255}
256
257static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
258 struct nvmet_rdma_cmd *c)
259{
260 struct scatterlist *sg;
261 struct ib_sge *sge;
262 int i;
263
264 if (!ndev->inline_data_size)
265 return;
266
267 sg = c->inline_sg;
268 sge = &c->sge[1];
269
270 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
271 if (sge->length)
272 ib_dma_unmap_page(dev: ndev->device, addr: sge->addr,
273 size: sge->length, direction: DMA_FROM_DEVICE);
274 if (sg_page(sg))
275 __free_page(sg_page(sg));
276 }
277}
278
279static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
280 struct nvmet_rdma_cmd *c)
281{
282 struct scatterlist *sg;
283 struct ib_sge *sge;
284 struct page *pg;
285 int len;
286 int i;
287
288 if (!ndev->inline_data_size)
289 return 0;
290
291 sg = c->inline_sg;
292 sg_init_table(sg, ndev->inline_page_count);
293 sge = &c->sge[1];
294 len = ndev->inline_data_size;
295
296 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
297 pg = alloc_page(GFP_KERNEL);
298 if (!pg)
299 goto out_err;
300 sg_assign_page(sg, page: pg);
301 sge->addr = ib_dma_map_page(dev: ndev->device,
302 page: pg, offset: 0, PAGE_SIZE, direction: DMA_FROM_DEVICE);
303 if (ib_dma_mapping_error(dev: ndev->device, dma_addr: sge->addr))
304 goto out_err;
305 sge->length = min_t(int, len, PAGE_SIZE);
306 sge->lkey = ndev->pd->local_dma_lkey;
307 len -= sge->length;
308 }
309
310 return 0;
311out_err:
312 for (; i >= 0; i--, sg--, sge--) {
313 if (sge->length)
314 ib_dma_unmap_page(dev: ndev->device, addr: sge->addr,
315 size: sge->length, direction: DMA_FROM_DEVICE);
316 if (sg_page(sg))
317 __free_page(sg_page(sg));
318 }
319 return -ENOMEM;
320}
321
322static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
323 struct nvmet_rdma_cmd *c, bool admin)
324{
325 /* NVMe command / RDMA RECV */
326 c->nvme_cmd = kmalloc(size: sizeof(*c->nvme_cmd), GFP_KERNEL);
327 if (!c->nvme_cmd)
328 goto out;
329
330 c->sge[0].addr = ib_dma_map_single(dev: ndev->device, cpu_addr: c->nvme_cmd,
331 size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE);
332 if (ib_dma_mapping_error(dev: ndev->device, dma_addr: c->sge[0].addr))
333 goto out_free_cmd;
334
335 c->sge[0].length = sizeof(*c->nvme_cmd);
336 c->sge[0].lkey = ndev->pd->local_dma_lkey;
337
338 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
339 goto out_unmap_cmd;
340
341 c->cqe.done = nvmet_rdma_recv_done;
342
343 c->wr.wr_cqe = &c->cqe;
344 c->wr.sg_list = c->sge;
345 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
346
347 return 0;
348
349out_unmap_cmd:
350 ib_dma_unmap_single(dev: ndev->device, addr: c->sge[0].addr,
351 size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE);
352out_free_cmd:
353 kfree(objp: c->nvme_cmd);
354
355out:
356 return -ENOMEM;
357}
358
359static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
360 struct nvmet_rdma_cmd *c, bool admin)
361{
362 if (!admin)
363 nvmet_rdma_free_inline_pages(ndev, c);
364 ib_dma_unmap_single(dev: ndev->device, addr: c->sge[0].addr,
365 size: sizeof(*c->nvme_cmd), direction: DMA_FROM_DEVICE);
366 kfree(objp: c->nvme_cmd);
367}
368
369static struct nvmet_rdma_cmd *
370nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
371 int nr_cmds, bool admin)
372{
373 struct nvmet_rdma_cmd *cmds;
374 int ret = -EINVAL, i;
375
376 cmds = kcalloc(n: nr_cmds, size: sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
377 if (!cmds)
378 goto out;
379
380 for (i = 0; i < nr_cmds; i++) {
381 ret = nvmet_rdma_alloc_cmd(ndev, c: cmds + i, admin);
382 if (ret)
383 goto out_free;
384 }
385
386 return cmds;
387
388out_free:
389 while (--i >= 0)
390 nvmet_rdma_free_cmd(ndev, c: cmds + i, admin);
391 kfree(objp: cmds);
392out:
393 return ERR_PTR(error: ret);
394}
395
396static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
397 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
398{
399 int i;
400
401 for (i = 0; i < nr_cmds; i++)
402 nvmet_rdma_free_cmd(ndev, c: cmds + i, admin);
403 kfree(objp: cmds);
404}
405
406static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
407 struct nvmet_rdma_rsp *r)
408{
409 /* NVMe CQE / RDMA SEND */
410 r->req.cqe = kmalloc(size: sizeof(*r->req.cqe), GFP_KERNEL);
411 if (!r->req.cqe)
412 goto out;
413
414 r->send_sge.addr = ib_dma_map_single(dev: ndev->device, cpu_addr: r->req.cqe,
415 size: sizeof(*r->req.cqe), direction: DMA_TO_DEVICE);
416 if (ib_dma_mapping_error(dev: ndev->device, dma_addr: r->send_sge.addr))
417 goto out_free_rsp;
418
419 if (ib_dma_pci_p2p_dma_supported(dev: ndev->device))
420 r->req.p2p_client = &ndev->device->dev;
421 r->send_sge.length = sizeof(*r->req.cqe);
422 r->send_sge.lkey = ndev->pd->local_dma_lkey;
423
424 r->send_cqe.done = nvmet_rdma_send_done;
425
426 r->send_wr.wr_cqe = &r->send_cqe;
427 r->send_wr.sg_list = &r->send_sge;
428 r->send_wr.num_sge = 1;
429 r->send_wr.send_flags = IB_SEND_SIGNALED;
430
431 /* Data In / RDMA READ */
432 r->read_cqe.done = nvmet_rdma_read_data_done;
433 /* Data Out / RDMA WRITE */
434 r->write_cqe.done = nvmet_rdma_write_data_done;
435
436 return 0;
437
438out_free_rsp:
439 kfree(objp: r->req.cqe);
440out:
441 return -ENOMEM;
442}
443
444static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
445 struct nvmet_rdma_rsp *r)
446{
447 ib_dma_unmap_single(dev: ndev->device, addr: r->send_sge.addr,
448 size: sizeof(*r->req.cqe), direction: DMA_TO_DEVICE);
449 kfree(objp: r->req.cqe);
450}
451
452static int
453nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
454{
455 struct nvmet_rdma_device *ndev = queue->dev;
456 int nr_rsps = queue->recv_queue_size * 2;
457 int ret = -EINVAL, i;
458
459 queue->rsps = kcalloc(n: nr_rsps, size: sizeof(struct nvmet_rdma_rsp),
460 GFP_KERNEL);
461 if (!queue->rsps)
462 goto out;
463
464 for (i = 0; i < nr_rsps; i++) {
465 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
466
467 ret = nvmet_rdma_alloc_rsp(ndev, r: rsp);
468 if (ret)
469 goto out_free;
470
471 list_add_tail(new: &rsp->free_list, head: &queue->free_rsps);
472 }
473
474 return 0;
475
476out_free:
477 while (--i >= 0) {
478 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
479
480 list_del(entry: &rsp->free_list);
481 nvmet_rdma_free_rsp(ndev, r: rsp);
482 }
483 kfree(objp: queue->rsps);
484out:
485 return ret;
486}
487
488static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
489{
490 struct nvmet_rdma_device *ndev = queue->dev;
491 int i, nr_rsps = queue->recv_queue_size * 2;
492
493 for (i = 0; i < nr_rsps; i++) {
494 struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
495
496 list_del(entry: &rsp->free_list);
497 nvmet_rdma_free_rsp(ndev, r: rsp);
498 }
499 kfree(objp: queue->rsps);
500}
501
502static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
503 struct nvmet_rdma_cmd *cmd)
504{
505 int ret;
506
507 ib_dma_sync_single_for_device(dev: ndev->device,
508 addr: cmd->sge[0].addr, size: cmd->sge[0].length,
509 dir: DMA_FROM_DEVICE);
510
511 if (cmd->nsrq)
512 ret = ib_post_srq_recv(srq: cmd->nsrq->srq, recv_wr: &cmd->wr, NULL);
513 else
514 ret = ib_post_recv(qp: cmd->queue->qp, recv_wr: &cmd->wr, NULL);
515
516 if (unlikely(ret))
517 pr_err("post_recv cmd failed\n");
518
519 return ret;
520}
521
522static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
523{
524 spin_lock(lock: &queue->rsp_wr_wait_lock);
525 while (!list_empty(head: &queue->rsp_wr_wait_list)) {
526 struct nvmet_rdma_rsp *rsp;
527 bool ret;
528
529 rsp = list_entry(queue->rsp_wr_wait_list.next,
530 struct nvmet_rdma_rsp, wait_list);
531 list_del(entry: &rsp->wait_list);
532
533 spin_unlock(lock: &queue->rsp_wr_wait_lock);
534 ret = nvmet_rdma_execute_command(rsp);
535 spin_lock(lock: &queue->rsp_wr_wait_lock);
536
537 if (!ret) {
538 list_add(new: &rsp->wait_list, head: &queue->rsp_wr_wait_list);
539 break;
540 }
541 }
542 spin_unlock(lock: &queue->rsp_wr_wait_lock);
543}
544
545static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
546{
547 struct ib_mr_status mr_status;
548 int ret;
549 u16 status = 0;
550
551 ret = ib_check_mr_status(mr: sig_mr, check_mask: IB_MR_CHECK_SIG_STATUS, mr_status: &mr_status);
552 if (ret) {
553 pr_err("ib_check_mr_status failed, ret %d\n", ret);
554 return NVME_SC_INVALID_PI;
555 }
556
557 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
558 switch (mr_status.sig_err.err_type) {
559 case IB_SIG_BAD_GUARD:
560 status = NVME_SC_GUARD_CHECK;
561 break;
562 case IB_SIG_BAD_REFTAG:
563 status = NVME_SC_REFTAG_CHECK;
564 break;
565 case IB_SIG_BAD_APPTAG:
566 status = NVME_SC_APPTAG_CHECK;
567 break;
568 }
569 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
570 mr_status.sig_err.err_type,
571 mr_status.sig_err.expected,
572 mr_status.sig_err.actual);
573 }
574
575 return status;
576}
577
578static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
579 struct nvme_command *cmd, struct ib_sig_domain *domain,
580 u16 control, u8 pi_type)
581{
582 domain->sig_type = IB_SIG_TYPE_T10_DIF;
583 domain->sig.dif.bg_type = IB_T10DIF_CRC;
584 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
585 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
586 if (control & NVME_RW_PRINFO_PRCHK_REF)
587 domain->sig.dif.ref_remap = true;
588
589 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
590 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
591 domain->sig.dif.app_escape = true;
592 if (pi_type == NVME_NS_DPS_PI_TYPE3)
593 domain->sig.dif.ref_escape = true;
594}
595
596static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
597 struct ib_sig_attrs *sig_attrs)
598{
599 struct nvme_command *cmd = req->cmd;
600 u16 control = le16_to_cpu(cmd->rw.control);
601 u8 pi_type = req->ns->pi_type;
602 struct blk_integrity *bi;
603
604 bi = bdev_get_integrity(bdev: req->ns->bdev);
605
606 memset(sig_attrs, 0, sizeof(*sig_attrs));
607
608 if (control & NVME_RW_PRINFO_PRACT) {
609 /* for WRITE_INSERT/READ_STRIP no wire domain */
610 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
611 nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->mem, control,
612 pi_type);
613 /* Clear the PRACT bit since HCA will generate/verify the PI */
614 control &= ~NVME_RW_PRINFO_PRACT;
615 cmd->rw.control = cpu_to_le16(control);
616 /* PI is added by the HW */
617 req->transfer_len += req->metadata_len;
618 } else {
619 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
620 nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->wire, control,
621 pi_type);
622 nvmet_rdma_set_sig_domain(bi, cmd, domain: &sig_attrs->mem, control,
623 pi_type);
624 }
625
626 if (control & NVME_RW_PRINFO_PRCHK_REF)
627 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
628 if (control & NVME_RW_PRINFO_PRCHK_GUARD)
629 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
630 if (control & NVME_RW_PRINFO_PRCHK_APP)
631 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
632}
633
634static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
635 struct ib_sig_attrs *sig_attrs)
636{
637 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
638 struct nvmet_req *req = &rsp->req;
639 int ret;
640
641 if (req->metadata_len)
642 ret = rdma_rw_ctx_signature_init(ctx: &rsp->rw, qp: cm_id->qp,
643 port_num: cm_id->port_num, sg: req->sg, sg_cnt: req->sg_cnt,
644 prot_sg: req->metadata_sg, prot_sg_cnt: req->metadata_sg_cnt, sig_attrs,
645 remote_addr: addr, rkey: key, dir: nvmet_data_dir(req));
646 else
647 ret = rdma_rw_ctx_init(ctx: &rsp->rw, qp: cm_id->qp, port_num: cm_id->port_num,
648 sg: req->sg, sg_cnt: req->sg_cnt, sg_offset: 0, remote_addr: addr, rkey: key,
649 dir: nvmet_data_dir(req));
650
651 return ret;
652}
653
654static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
655{
656 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
657 struct nvmet_req *req = &rsp->req;
658
659 if (req->metadata_len)
660 rdma_rw_ctx_destroy_signature(ctx: &rsp->rw, qp: cm_id->qp,
661 port_num: cm_id->port_num, sg: req->sg, sg_cnt: req->sg_cnt,
662 prot_sg: req->metadata_sg, prot_sg_cnt: req->metadata_sg_cnt,
663 dir: nvmet_data_dir(req));
664 else
665 rdma_rw_ctx_destroy(ctx: &rsp->rw, qp: cm_id->qp, port_num: cm_id->port_num,
666 sg: req->sg, sg_cnt: req->sg_cnt, dir: nvmet_data_dir(req));
667}
668
669static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
670{
671 struct nvmet_rdma_queue *queue = rsp->queue;
672
673 atomic_add(i: 1 + rsp->n_rdma, v: &queue->sq_wr_avail);
674
675 if (rsp->n_rdma)
676 nvmet_rdma_rw_ctx_destroy(rsp);
677
678 if (rsp->req.sg != rsp->cmd->inline_sg)
679 nvmet_req_free_sgls(req: &rsp->req);
680
681 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
682 nvmet_rdma_process_wr_wait_list(queue);
683
684 nvmet_rdma_put_rsp(rsp);
685}
686
687static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
688{
689 if (queue->nvme_sq.ctrl) {
690 nvmet_ctrl_fatal_error(ctrl: queue->nvme_sq.ctrl);
691 } else {
692 /*
693 * we didn't setup the controller yet in case
694 * of admin connect error, just disconnect and
695 * cleanup the queue
696 */
697 nvmet_rdma_queue_disconnect(queue);
698 }
699}
700
701static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
702{
703 struct nvmet_rdma_rsp *rsp =
704 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
705 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
706
707 nvmet_rdma_release_rsp(rsp);
708
709 if (unlikely(wc->status != IB_WC_SUCCESS &&
710 wc->status != IB_WC_WR_FLUSH_ERR)) {
711 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
712 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
713 nvmet_rdma_error_comp(queue);
714 }
715}
716
717static void nvmet_rdma_queue_response(struct nvmet_req *req)
718{
719 struct nvmet_rdma_rsp *rsp =
720 container_of(req, struct nvmet_rdma_rsp, req);
721 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
722 struct ib_send_wr *first_wr;
723
724 if (rsp->invalidate_rkey) {
725 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
726 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
727 } else {
728 rsp->send_wr.opcode = IB_WR_SEND;
729 }
730
731 if (nvmet_rdma_need_data_out(rsp)) {
732 if (rsp->req.metadata_len)
733 first_wr = rdma_rw_ctx_wrs(ctx: &rsp->rw, qp: cm_id->qp,
734 port_num: cm_id->port_num, cqe: &rsp->write_cqe, NULL);
735 else
736 first_wr = rdma_rw_ctx_wrs(ctx: &rsp->rw, qp: cm_id->qp,
737 port_num: cm_id->port_num, NULL, chain_wr: &rsp->send_wr);
738 } else {
739 first_wr = &rsp->send_wr;
740 }
741
742 nvmet_rdma_post_recv(ndev: rsp->queue->dev, cmd: rsp->cmd);
743
744 ib_dma_sync_single_for_device(dev: rsp->queue->dev->device,
745 addr: rsp->send_sge.addr, size: rsp->send_sge.length,
746 dir: DMA_TO_DEVICE);
747
748 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
749 pr_err("sending cmd response failed\n");
750 nvmet_rdma_release_rsp(rsp);
751 }
752}
753
754static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
755{
756 struct nvmet_rdma_rsp *rsp =
757 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
758 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
759 u16 status = 0;
760
761 WARN_ON(rsp->n_rdma <= 0);
762 atomic_add(i: rsp->n_rdma, v: &queue->sq_wr_avail);
763 rsp->n_rdma = 0;
764
765 if (unlikely(wc->status != IB_WC_SUCCESS)) {
766 nvmet_rdma_rw_ctx_destroy(rsp);
767 nvmet_req_uninit(req: &rsp->req);
768 nvmet_rdma_release_rsp(rsp);
769 if (wc->status != IB_WC_WR_FLUSH_ERR) {
770 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
771 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
772 nvmet_rdma_error_comp(queue);
773 }
774 return;
775 }
776
777 if (rsp->req.metadata_len)
778 status = nvmet_rdma_check_pi_status(sig_mr: rsp->rw.reg->mr);
779 nvmet_rdma_rw_ctx_destroy(rsp);
780
781 if (unlikely(status))
782 nvmet_req_complete(req: &rsp->req, status);
783 else
784 rsp->req.execute(&rsp->req);
785}
786
787static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
788{
789 struct nvmet_rdma_rsp *rsp =
790 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
791 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
792 struct rdma_cm_id *cm_id = rsp->queue->cm_id;
793 u16 status;
794
795 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
796 return;
797
798 WARN_ON(rsp->n_rdma <= 0);
799 atomic_add(i: rsp->n_rdma, v: &queue->sq_wr_avail);
800 rsp->n_rdma = 0;
801
802 if (unlikely(wc->status != IB_WC_SUCCESS)) {
803 nvmet_rdma_rw_ctx_destroy(rsp);
804 nvmet_req_uninit(req: &rsp->req);
805 nvmet_rdma_release_rsp(rsp);
806 if (wc->status != IB_WC_WR_FLUSH_ERR) {
807 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
808 ib_wc_status_msg(wc->status), wc->status);
809 nvmet_rdma_error_comp(queue);
810 }
811 return;
812 }
813
814 /*
815 * Upon RDMA completion check the signature status
816 * - if succeeded send good NVMe response
817 * - if failed send bad NVMe response with appropriate error
818 */
819 status = nvmet_rdma_check_pi_status(sig_mr: rsp->rw.reg->mr);
820 if (unlikely(status))
821 rsp->req.cqe->status = cpu_to_le16(status << 1);
822 nvmet_rdma_rw_ctx_destroy(rsp);
823
824 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
825 pr_err("sending cmd response failed\n");
826 nvmet_rdma_release_rsp(rsp);
827 }
828}
829
830static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
831 u64 off)
832{
833 int sg_count = num_pages(len);
834 struct scatterlist *sg;
835 int i;
836
837 sg = rsp->cmd->inline_sg;
838 for (i = 0; i < sg_count; i++, sg++) {
839 if (i < sg_count - 1)
840 sg_unmark_end(sg);
841 else
842 sg_mark_end(sg);
843 sg->offset = off;
844 sg->length = min_t(int, len, PAGE_SIZE - off);
845 len -= sg->length;
846 if (!i)
847 off = 0;
848 }
849
850 rsp->req.sg = rsp->cmd->inline_sg;
851 rsp->req.sg_cnt = sg_count;
852}
853
854static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
855{
856 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
857 u64 off = le64_to_cpu(sgl->addr);
858 u32 len = le32_to_cpu(sgl->length);
859
860 if (!nvme_is_write(cmd: rsp->req.cmd)) {
861 rsp->req.error_loc =
862 offsetof(struct nvme_common_command, opcode);
863 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
864 }
865
866 if (off + len > rsp->queue->dev->inline_data_size) {
867 pr_err("invalid inline data offset!\n");
868 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
869 }
870
871 /* no data command? */
872 if (!len)
873 return 0;
874
875 nvmet_rdma_use_inline_sg(rsp, len, off);
876 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
877 rsp->req.transfer_len += len;
878 return 0;
879}
880
881static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
882 struct nvme_keyed_sgl_desc *sgl, bool invalidate)
883{
884 u64 addr = le64_to_cpu(sgl->addr);
885 u32 key = get_unaligned_le32(p: sgl->key);
886 struct ib_sig_attrs sig_attrs;
887 int ret;
888
889 rsp->req.transfer_len = get_unaligned_le24(p: sgl->length);
890
891 /* no data command? */
892 if (!rsp->req.transfer_len)
893 return 0;
894
895 if (rsp->req.metadata_len)
896 nvmet_rdma_set_sig_attrs(req: &rsp->req, sig_attrs: &sig_attrs);
897
898 ret = nvmet_req_alloc_sgls(req: &rsp->req);
899 if (unlikely(ret < 0))
900 goto error_out;
901
902 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, sig_attrs: &sig_attrs);
903 if (unlikely(ret < 0))
904 goto error_out;
905 rsp->n_rdma += ret;
906
907 if (invalidate)
908 rsp->invalidate_rkey = key;
909
910 return 0;
911
912error_out:
913 rsp->req.transfer_len = 0;
914 return NVME_SC_INTERNAL;
915}
916
917static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
918{
919 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
920
921 switch (sgl->type >> 4) {
922 case NVME_SGL_FMT_DATA_DESC:
923 switch (sgl->type & 0xf) {
924 case NVME_SGL_FMT_OFFSET:
925 return nvmet_rdma_map_sgl_inline(rsp);
926 default:
927 pr_err("invalid SGL subtype: %#x\n", sgl->type);
928 rsp->req.error_loc =
929 offsetof(struct nvme_common_command, dptr);
930 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
931 }
932 case NVME_KEY_SGL_FMT_DATA_DESC:
933 switch (sgl->type & 0xf) {
934 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
935 return nvmet_rdma_map_sgl_keyed(rsp, sgl, invalidate: true);
936 case NVME_SGL_FMT_ADDRESS:
937 return nvmet_rdma_map_sgl_keyed(rsp, sgl, invalidate: false);
938 default:
939 pr_err("invalid SGL subtype: %#x\n", sgl->type);
940 rsp->req.error_loc =
941 offsetof(struct nvme_common_command, dptr);
942 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
943 }
944 default:
945 pr_err("invalid SGL type: %#x\n", sgl->type);
946 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
947 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
948 }
949}
950
951static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
952{
953 struct nvmet_rdma_queue *queue = rsp->queue;
954
955 if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
956 &queue->sq_wr_avail) < 0)) {
957 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
958 1 + rsp->n_rdma, queue->idx,
959 queue->nvme_sq.ctrl->cntlid);
960 atomic_add(i: 1 + rsp->n_rdma, v: &queue->sq_wr_avail);
961 return false;
962 }
963
964 if (nvmet_rdma_need_data_in(rsp)) {
965 if (rdma_rw_ctx_post(ctx: &rsp->rw, qp: queue->qp,
966 port_num: queue->cm_id->port_num, cqe: &rsp->read_cqe, NULL))
967 nvmet_req_complete(req: &rsp->req, status: NVME_SC_DATA_XFER_ERROR);
968 } else {
969 rsp->req.execute(&rsp->req);
970 }
971
972 return true;
973}
974
975static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
976 struct nvmet_rdma_rsp *cmd)
977{
978 u16 status;
979
980 ib_dma_sync_single_for_cpu(dev: queue->dev->device,
981 addr: cmd->cmd->sge[0].addr, size: cmd->cmd->sge[0].length,
982 dir: DMA_FROM_DEVICE);
983 ib_dma_sync_single_for_cpu(dev: queue->dev->device,
984 addr: cmd->send_sge.addr, size: cmd->send_sge.length,
985 dir: DMA_TO_DEVICE);
986
987 if (!nvmet_req_init(req: &cmd->req, cq: &queue->nvme_cq,
988 sq: &queue->nvme_sq, ops: &nvmet_rdma_ops))
989 return;
990
991 status = nvmet_rdma_map_sgl(rsp: cmd);
992 if (status)
993 goto out_err;
994
995 if (unlikely(!nvmet_rdma_execute_command(cmd))) {
996 spin_lock(lock: &queue->rsp_wr_wait_lock);
997 list_add_tail(new: &cmd->wait_list, head: &queue->rsp_wr_wait_list);
998 spin_unlock(lock: &queue->rsp_wr_wait_lock);
999 }
1000
1001 return;
1002
1003out_err:
1004 nvmet_req_complete(req: &cmd->req, status);
1005}
1006
1007static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1008{
1009 struct nvmet_rdma_cmd *cmd =
1010 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1011 struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1012 struct nvmet_rdma_rsp *rsp;
1013
1014 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015 if (wc->status != IB_WC_WR_FLUSH_ERR) {
1016 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1017 wc->wr_cqe, ib_wc_status_msg(wc->status),
1018 wc->status);
1019 nvmet_rdma_error_comp(queue);
1020 }
1021 return;
1022 }
1023
1024 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1025 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1026 nvmet_rdma_error_comp(queue);
1027 return;
1028 }
1029
1030 cmd->queue = queue;
1031 rsp = nvmet_rdma_get_rsp(queue);
1032 if (unlikely(!rsp)) {
1033 /*
1034 * we get here only under memory pressure,
1035 * silently drop and have the host retry
1036 * as we can't even fail it.
1037 */
1038 nvmet_rdma_post_recv(ndev: queue->dev, cmd);
1039 return;
1040 }
1041 rsp->queue = queue;
1042 rsp->cmd = cmd;
1043 rsp->flags = 0;
1044 rsp->req.cmd = cmd->nvme_cmd;
1045 rsp->req.port = queue->port;
1046 rsp->n_rdma = 0;
1047 rsp->invalidate_rkey = 0;
1048
1049 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1050 unsigned long flags;
1051
1052 spin_lock_irqsave(&queue->state_lock, flags);
1053 if (queue->state == NVMET_RDMA_Q_CONNECTING)
1054 list_add_tail(new: &rsp->wait_list, head: &queue->rsp_wait_list);
1055 else
1056 nvmet_rdma_put_rsp(rsp);
1057 spin_unlock_irqrestore(lock: &queue->state_lock, flags);
1058 return;
1059 }
1060
1061 nvmet_rdma_handle_command(queue, cmd: rsp);
1062}
1063
1064static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1065{
1066 nvmet_rdma_free_cmds(ndev: nsrq->ndev, cmds: nsrq->cmds, nr_cmds: nsrq->ndev->srq_size,
1067 admin: false);
1068 ib_destroy_srq(srq: nsrq->srq);
1069
1070 kfree(objp: nsrq);
1071}
1072
1073static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1074{
1075 int i;
1076
1077 if (!ndev->srqs)
1078 return;
1079
1080 for (i = 0; i < ndev->srq_count; i++)
1081 nvmet_rdma_destroy_srq(nsrq: ndev->srqs[i]);
1082
1083 kfree(objp: ndev->srqs);
1084}
1085
1086static struct nvmet_rdma_srq *
1087nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1088{
1089 struct ib_srq_init_attr srq_attr = { NULL, };
1090 size_t srq_size = ndev->srq_size;
1091 struct nvmet_rdma_srq *nsrq;
1092 struct ib_srq *srq;
1093 int ret, i;
1094
1095 nsrq = kzalloc(size: sizeof(*nsrq), GFP_KERNEL);
1096 if (!nsrq)
1097 return ERR_PTR(error: -ENOMEM);
1098
1099 srq_attr.attr.max_wr = srq_size;
1100 srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1101 srq_attr.attr.srq_limit = 0;
1102 srq_attr.srq_type = IB_SRQT_BASIC;
1103 srq = ib_create_srq(pd: ndev->pd, srq_init_attr: &srq_attr);
1104 if (IS_ERR(ptr: srq)) {
1105 ret = PTR_ERR(ptr: srq);
1106 goto out_free;
1107 }
1108
1109 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, nr_cmds: srq_size, admin: false);
1110 if (IS_ERR(ptr: nsrq->cmds)) {
1111 ret = PTR_ERR(ptr: nsrq->cmds);
1112 goto out_destroy_srq;
1113 }
1114
1115 nsrq->srq = srq;
1116 nsrq->ndev = ndev;
1117
1118 for (i = 0; i < srq_size; i++) {
1119 nsrq->cmds[i].nsrq = nsrq;
1120 ret = nvmet_rdma_post_recv(ndev, cmd: &nsrq->cmds[i]);
1121 if (ret)
1122 goto out_free_cmds;
1123 }
1124
1125 return nsrq;
1126
1127out_free_cmds:
1128 nvmet_rdma_free_cmds(ndev, cmds: nsrq->cmds, nr_cmds: srq_size, admin: false);
1129out_destroy_srq:
1130 ib_destroy_srq(srq);
1131out_free:
1132 kfree(objp: nsrq);
1133 return ERR_PTR(error: ret);
1134}
1135
1136static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1137{
1138 int i, ret;
1139
1140 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1141 /*
1142 * If SRQs aren't supported we just go ahead and use normal
1143 * non-shared receive queues.
1144 */
1145 pr_info("SRQ requested but not supported.\n");
1146 return 0;
1147 }
1148
1149 ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1150 nvmet_rdma_srq_size);
1151 ndev->srq_count = min(ndev->device->num_comp_vectors,
1152 ndev->device->attrs.max_srq);
1153
1154 ndev->srqs = kcalloc(n: ndev->srq_count, size: sizeof(*ndev->srqs), GFP_KERNEL);
1155 if (!ndev->srqs)
1156 return -ENOMEM;
1157
1158 for (i = 0; i < ndev->srq_count; i++) {
1159 ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1160 if (IS_ERR(ptr: ndev->srqs[i])) {
1161 ret = PTR_ERR(ptr: ndev->srqs[i]);
1162 goto err_srq;
1163 }
1164 }
1165
1166 return 0;
1167
1168err_srq:
1169 while (--i >= 0)
1170 nvmet_rdma_destroy_srq(nsrq: ndev->srqs[i]);
1171 kfree(objp: ndev->srqs);
1172 return ret;
1173}
1174
1175static void nvmet_rdma_free_dev(struct kref *ref)
1176{
1177 struct nvmet_rdma_device *ndev =
1178 container_of(ref, struct nvmet_rdma_device, ref);
1179
1180 mutex_lock(&device_list_mutex);
1181 list_del(entry: &ndev->entry);
1182 mutex_unlock(lock: &device_list_mutex);
1183
1184 nvmet_rdma_destroy_srqs(ndev);
1185 ib_dealloc_pd(pd: ndev->pd);
1186
1187 kfree(objp: ndev);
1188}
1189
1190static struct nvmet_rdma_device *
1191nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1192{
1193 struct nvmet_rdma_port *port = cm_id->context;
1194 struct nvmet_port *nport = port->nport;
1195 struct nvmet_rdma_device *ndev;
1196 int inline_page_count;
1197 int inline_sge_count;
1198 int ret;
1199
1200 mutex_lock(&device_list_mutex);
1201 list_for_each_entry(ndev, &device_list, entry) {
1202 if (ndev->device->node_guid == cm_id->device->node_guid &&
1203 kref_get_unless_zero(kref: &ndev->ref))
1204 goto out_unlock;
1205 }
1206
1207 ndev = kzalloc(size: sizeof(*ndev), GFP_KERNEL);
1208 if (!ndev)
1209 goto out_err;
1210
1211 inline_page_count = num_pages(len: nport->inline_data_size);
1212 inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1213 cm_id->device->attrs.max_recv_sge) - 1;
1214 if (inline_page_count > inline_sge_count) {
1215 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1216 nport->inline_data_size, cm_id->device->name,
1217 inline_sge_count * PAGE_SIZE);
1218 nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1219 inline_page_count = inline_sge_count;
1220 }
1221 ndev->inline_data_size = nport->inline_data_size;
1222 ndev->inline_page_count = inline_page_count;
1223
1224 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags &
1225 IBK_INTEGRITY_HANDOVER)) {
1226 pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1227 cm_id->device->name);
1228 nport->pi_enable = false;
1229 }
1230
1231 ndev->device = cm_id->device;
1232 kref_init(kref: &ndev->ref);
1233
1234 ndev->pd = ib_alloc_pd(ndev->device, 0);
1235 if (IS_ERR(ptr: ndev->pd))
1236 goto out_free_dev;
1237
1238 if (nvmet_rdma_use_srq) {
1239 ret = nvmet_rdma_init_srqs(ndev);
1240 if (ret)
1241 goto out_free_pd;
1242 }
1243
1244 list_add(new: &ndev->entry, head: &device_list);
1245out_unlock:
1246 mutex_unlock(lock: &device_list_mutex);
1247 pr_debug("added %s.\n", ndev->device->name);
1248 return ndev;
1249
1250out_free_pd:
1251 ib_dealloc_pd(pd: ndev->pd);
1252out_free_dev:
1253 kfree(objp: ndev);
1254out_err:
1255 mutex_unlock(lock: &device_list_mutex);
1256 return NULL;
1257}
1258
1259static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1260{
1261 struct ib_qp_init_attr qp_attr = { };
1262 struct nvmet_rdma_device *ndev = queue->dev;
1263 int nr_cqe, ret, i, factor;
1264
1265 /*
1266 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1267 */
1268 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1269
1270 queue->cq = ib_cq_pool_get(dev: ndev->device, nr_cqe: nr_cqe + 1,
1271 comp_vector_hint: queue->comp_vector, poll_ctx: IB_POLL_WORKQUEUE);
1272 if (IS_ERR(ptr: queue->cq)) {
1273 ret = PTR_ERR(ptr: queue->cq);
1274 pr_err("failed to create CQ cqe= %d ret= %d\n",
1275 nr_cqe + 1, ret);
1276 goto out;
1277 }
1278
1279 qp_attr.qp_context = queue;
1280 qp_attr.event_handler = nvmet_rdma_qp_event;
1281 qp_attr.send_cq = queue->cq;
1282 qp_attr.recv_cq = queue->cq;
1283 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1284 qp_attr.qp_type = IB_QPT_RC;
1285 /* +1 for drain */
1286 qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1287 factor = rdma_rw_mr_factor(device: ndev->device, port_num: queue->cm_id->port_num,
1288 maxpages: 1 << NVMET_RDMA_MAX_MDTS);
1289 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1290 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1291 ndev->device->attrs.max_send_sge);
1292
1293 if (queue->nsrq) {
1294 qp_attr.srq = queue->nsrq->srq;
1295 } else {
1296 /* +1 for drain */
1297 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1298 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1299 }
1300
1301 if (queue->port->pi_enable && queue->host_qid)
1302 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1303
1304 ret = rdma_create_qp(id: queue->cm_id, pd: ndev->pd, qp_init_attr: &qp_attr);
1305 if (ret) {
1306 pr_err("failed to create_qp ret= %d\n", ret);
1307 goto err_destroy_cq;
1308 }
1309 queue->qp = queue->cm_id->qp;
1310
1311 atomic_set(v: &queue->sq_wr_avail, i: qp_attr.cap.max_send_wr);
1312
1313 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1314 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1315 qp_attr.cap.max_send_wr, queue->cm_id);
1316
1317 if (!queue->nsrq) {
1318 for (i = 0; i < queue->recv_queue_size; i++) {
1319 queue->cmds[i].queue = queue;
1320 ret = nvmet_rdma_post_recv(ndev, cmd: &queue->cmds[i]);
1321 if (ret)
1322 goto err_destroy_qp;
1323 }
1324 }
1325
1326out:
1327 return ret;
1328
1329err_destroy_qp:
1330 rdma_destroy_qp(id: queue->cm_id);
1331err_destroy_cq:
1332 ib_cq_pool_put(cq: queue->cq, nr_cqe: nr_cqe + 1);
1333 goto out;
1334}
1335
1336static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1337{
1338 ib_drain_qp(qp: queue->qp);
1339 if (queue->cm_id)
1340 rdma_destroy_id(id: queue->cm_id);
1341 ib_destroy_qp(qp: queue->qp);
1342 ib_cq_pool_put(cq: queue->cq, nr_cqe: queue->recv_queue_size + 2 *
1343 queue->send_queue_size + 1);
1344}
1345
1346static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1347{
1348 pr_debug("freeing queue %d\n", queue->idx);
1349
1350 nvmet_sq_destroy(sq: &queue->nvme_sq);
1351
1352 nvmet_rdma_destroy_queue_ib(queue);
1353 if (!queue->nsrq) {
1354 nvmet_rdma_free_cmds(ndev: queue->dev, cmds: queue->cmds,
1355 nr_cmds: queue->recv_queue_size,
1356 admin: !queue->host_qid);
1357 }
1358 nvmet_rdma_free_rsps(queue);
1359 ida_free(&nvmet_rdma_queue_ida, id: queue->idx);
1360 kfree(objp: queue);
1361}
1362
1363static void nvmet_rdma_release_queue_work(struct work_struct *w)
1364{
1365 struct nvmet_rdma_queue *queue =
1366 container_of(w, struct nvmet_rdma_queue, release_work);
1367 struct nvmet_rdma_device *dev = queue->dev;
1368
1369 nvmet_rdma_free_queue(queue);
1370
1371 kref_put(kref: &dev->ref, release: nvmet_rdma_free_dev);
1372}
1373
1374static int
1375nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1376 struct nvmet_rdma_queue *queue)
1377{
1378 struct nvme_rdma_cm_req *req;
1379
1380 req = (struct nvme_rdma_cm_req *)conn->private_data;
1381 if (!req || conn->private_data_len == 0)
1382 return NVME_RDMA_CM_INVALID_LEN;
1383
1384 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1385 return NVME_RDMA_CM_INVALID_RECFMT;
1386
1387 queue->host_qid = le16_to_cpu(req->qid);
1388
1389 /*
1390 * req->hsqsize corresponds to our recv queue size plus 1
1391 * req->hrqsize corresponds to our send queue size
1392 */
1393 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1394 queue->send_queue_size = le16_to_cpu(req->hrqsize);
1395
1396 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1397 return NVME_RDMA_CM_INVALID_HSQSIZE;
1398
1399 /* XXX: Should we enforce some kind of max for IO queues? */
1400
1401 return 0;
1402}
1403
1404static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1405 enum nvme_rdma_cm_status status)
1406{
1407 struct nvme_rdma_cm_rej rej;
1408
1409 pr_debug("rejecting connect request: status %d (%s)\n",
1410 status, nvme_rdma_cm_msg(status));
1411
1412 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1413 rej.sts = cpu_to_le16(status);
1414
1415 return rdma_reject(id: cm_id, private_data: (void *)&rej, private_data_len: sizeof(rej),
1416 reason: IB_CM_REJ_CONSUMER_DEFINED);
1417}
1418
1419static struct nvmet_rdma_queue *
1420nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1421 struct rdma_cm_id *cm_id,
1422 struct rdma_cm_event *event)
1423{
1424 struct nvmet_rdma_port *port = cm_id->context;
1425 struct nvmet_rdma_queue *queue;
1426 int ret;
1427
1428 queue = kzalloc(size: sizeof(*queue), GFP_KERNEL);
1429 if (!queue) {
1430 ret = NVME_RDMA_CM_NO_RSC;
1431 goto out_reject;
1432 }
1433
1434 ret = nvmet_sq_init(sq: &queue->nvme_sq);
1435 if (ret) {
1436 ret = NVME_RDMA_CM_NO_RSC;
1437 goto out_free_queue;
1438 }
1439
1440 ret = nvmet_rdma_parse_cm_connect_req(conn: &event->param.conn, queue);
1441 if (ret)
1442 goto out_destroy_sq;
1443
1444 /*
1445 * Schedules the actual release because calling rdma_destroy_id from
1446 * inside a CM callback would trigger a deadlock. (great API design..)
1447 */
1448 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1449 queue->dev = ndev;
1450 queue->cm_id = cm_id;
1451 queue->port = port->nport;
1452
1453 spin_lock_init(&queue->state_lock);
1454 queue->state = NVMET_RDMA_Q_CONNECTING;
1455 INIT_LIST_HEAD(list: &queue->rsp_wait_list);
1456 INIT_LIST_HEAD(list: &queue->rsp_wr_wait_list);
1457 spin_lock_init(&queue->rsp_wr_wait_lock);
1458 INIT_LIST_HEAD(list: &queue->free_rsps);
1459 spin_lock_init(&queue->rsps_lock);
1460 INIT_LIST_HEAD(list: &queue->queue_list);
1461
1462 queue->idx = ida_alloc(ida: &nvmet_rdma_queue_ida, GFP_KERNEL);
1463 if (queue->idx < 0) {
1464 ret = NVME_RDMA_CM_NO_RSC;
1465 goto out_destroy_sq;
1466 }
1467
1468 /*
1469 * Spread the io queues across completion vectors,
1470 * but still keep all admin queues on vector 0.
1471 */
1472 queue->comp_vector = !queue->host_qid ? 0 :
1473 queue->idx % ndev->device->num_comp_vectors;
1474
1475
1476 ret = nvmet_rdma_alloc_rsps(queue);
1477 if (ret) {
1478 ret = NVME_RDMA_CM_NO_RSC;
1479 goto out_ida_remove;
1480 }
1481
1482 if (ndev->srqs) {
1483 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1484 } else {
1485 queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1486 nr_cmds: queue->recv_queue_size,
1487 admin: !queue->host_qid);
1488 if (IS_ERR(ptr: queue->cmds)) {
1489 ret = NVME_RDMA_CM_NO_RSC;
1490 goto out_free_responses;
1491 }
1492 }
1493
1494 ret = nvmet_rdma_create_queue_ib(queue);
1495 if (ret) {
1496 pr_err("%s: creating RDMA queue failed (%d).\n",
1497 __func__, ret);
1498 ret = NVME_RDMA_CM_NO_RSC;
1499 goto out_free_cmds;
1500 }
1501
1502 return queue;
1503
1504out_free_cmds:
1505 if (!queue->nsrq) {
1506 nvmet_rdma_free_cmds(ndev: queue->dev, cmds: queue->cmds,
1507 nr_cmds: queue->recv_queue_size,
1508 admin: !queue->host_qid);
1509 }
1510out_free_responses:
1511 nvmet_rdma_free_rsps(queue);
1512out_ida_remove:
1513 ida_free(&nvmet_rdma_queue_ida, id: queue->idx);
1514out_destroy_sq:
1515 nvmet_sq_destroy(sq: &queue->nvme_sq);
1516out_free_queue:
1517 kfree(objp: queue);
1518out_reject:
1519 nvmet_rdma_cm_reject(cm_id, status: ret);
1520 return NULL;
1521}
1522
1523static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1524{
1525 struct nvmet_rdma_queue *queue = priv;
1526
1527 switch (event->event) {
1528 case IB_EVENT_COMM_EST:
1529 rdma_notify(id: queue->cm_id, event: event->event);
1530 break;
1531 case IB_EVENT_QP_LAST_WQE_REACHED:
1532 pr_debug("received last WQE reached event for queue=0x%p\n",
1533 queue);
1534 break;
1535 default:
1536 pr_err("received IB QP event: %s (%d)\n",
1537 ib_event_msg(event->event), event->event);
1538 break;
1539 }
1540}
1541
1542static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1543 struct nvmet_rdma_queue *queue,
1544 struct rdma_conn_param *p)
1545{
1546 struct rdma_conn_param param = { };
1547 struct nvme_rdma_cm_rep priv = { };
1548 int ret = -ENOMEM;
1549
1550 param.rnr_retry_count = 7;
1551 param.flow_control = 1;
1552 param.initiator_depth = min_t(u8, p->initiator_depth,
1553 queue->dev->device->attrs.max_qp_init_rd_atom);
1554 param.private_data = &priv;
1555 param.private_data_len = sizeof(priv);
1556 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1557 priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1558
1559 ret = rdma_accept(id: cm_id, conn_param: &param);
1560 if (ret)
1561 pr_err("rdma_accept failed (error code = %d)\n", ret);
1562
1563 return ret;
1564}
1565
1566static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1567 struct rdma_cm_event *event)
1568{
1569 struct nvmet_rdma_device *ndev;
1570 struct nvmet_rdma_queue *queue;
1571 int ret = -EINVAL;
1572
1573 ndev = nvmet_rdma_find_get_device(cm_id);
1574 if (!ndev) {
1575 nvmet_rdma_cm_reject(cm_id, status: NVME_RDMA_CM_NO_RSC);
1576 return -ECONNREFUSED;
1577 }
1578
1579 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1580 if (!queue) {
1581 ret = -ENOMEM;
1582 goto put_device;
1583 }
1584
1585 if (queue->host_qid == 0) {
1586 struct nvmet_rdma_queue *q;
1587 int pending = 0;
1588
1589 /* Check for pending controller teardown */
1590 mutex_lock(&nvmet_rdma_queue_mutex);
1591 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) {
1592 if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl &&
1593 q->state == NVMET_RDMA_Q_DISCONNECTING)
1594 pending++;
1595 }
1596 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1597 if (pending > NVMET_RDMA_BACKLOG)
1598 return NVME_SC_CONNECT_CTRL_BUSY;
1599 }
1600
1601 ret = nvmet_rdma_cm_accept(cm_id, queue, p: &event->param.conn);
1602 if (ret) {
1603 /*
1604 * Don't destroy the cm_id in free path, as we implicitly
1605 * destroy the cm_id here with non-zero ret code.
1606 */
1607 queue->cm_id = NULL;
1608 goto free_queue;
1609 }
1610
1611 mutex_lock(&nvmet_rdma_queue_mutex);
1612 list_add_tail(new: &queue->queue_list, head: &nvmet_rdma_queue_list);
1613 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1614
1615 return 0;
1616
1617free_queue:
1618 nvmet_rdma_free_queue(queue);
1619put_device:
1620 kref_put(kref: &ndev->ref, release: nvmet_rdma_free_dev);
1621
1622 return ret;
1623}
1624
1625static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1626{
1627 unsigned long flags;
1628
1629 spin_lock_irqsave(&queue->state_lock, flags);
1630 if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1631 pr_warn("trying to establish a connected queue\n");
1632 goto out_unlock;
1633 }
1634 queue->state = NVMET_RDMA_Q_LIVE;
1635
1636 while (!list_empty(head: &queue->rsp_wait_list)) {
1637 struct nvmet_rdma_rsp *cmd;
1638
1639 cmd = list_first_entry(&queue->rsp_wait_list,
1640 struct nvmet_rdma_rsp, wait_list);
1641 list_del(entry: &cmd->wait_list);
1642
1643 spin_unlock_irqrestore(lock: &queue->state_lock, flags);
1644 nvmet_rdma_handle_command(queue, cmd);
1645 spin_lock_irqsave(&queue->state_lock, flags);
1646 }
1647
1648out_unlock:
1649 spin_unlock_irqrestore(lock: &queue->state_lock, flags);
1650}
1651
1652static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1653{
1654 bool disconnect = false;
1655 unsigned long flags;
1656
1657 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1658
1659 spin_lock_irqsave(&queue->state_lock, flags);
1660 switch (queue->state) {
1661 case NVMET_RDMA_Q_CONNECTING:
1662 while (!list_empty(head: &queue->rsp_wait_list)) {
1663 struct nvmet_rdma_rsp *rsp;
1664
1665 rsp = list_first_entry(&queue->rsp_wait_list,
1666 struct nvmet_rdma_rsp,
1667 wait_list);
1668 list_del(entry: &rsp->wait_list);
1669 nvmet_rdma_put_rsp(rsp);
1670 }
1671 fallthrough;
1672 case NVMET_RDMA_Q_LIVE:
1673 queue->state = NVMET_RDMA_Q_DISCONNECTING;
1674 disconnect = true;
1675 break;
1676 case NVMET_RDMA_Q_DISCONNECTING:
1677 break;
1678 }
1679 spin_unlock_irqrestore(lock: &queue->state_lock, flags);
1680
1681 if (disconnect) {
1682 rdma_disconnect(id: queue->cm_id);
1683 queue_work(wq: nvmet_wq, work: &queue->release_work);
1684 }
1685}
1686
1687static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1688{
1689 bool disconnect = false;
1690
1691 mutex_lock(&nvmet_rdma_queue_mutex);
1692 if (!list_empty(head: &queue->queue_list)) {
1693 list_del_init(entry: &queue->queue_list);
1694 disconnect = true;
1695 }
1696 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1697
1698 if (disconnect)
1699 __nvmet_rdma_queue_disconnect(queue);
1700}
1701
1702static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1703 struct nvmet_rdma_queue *queue)
1704{
1705 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1706
1707 mutex_lock(&nvmet_rdma_queue_mutex);
1708 if (!list_empty(head: &queue->queue_list))
1709 list_del_init(entry: &queue->queue_list);
1710 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1711
1712 pr_err("failed to connect queue %d\n", queue->idx);
1713 queue_work(wq: nvmet_wq, work: &queue->release_work);
1714}
1715
1716/**
1717 * nvmet_rdma_device_removal() - Handle RDMA device removal
1718 * @cm_id: rdma_cm id, used for nvmet port
1719 * @queue: nvmet rdma queue (cm id qp_context)
1720 *
1721 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1722 * to unplug. Note that this event can be generated on a normal
1723 * queue cm_id and/or a device bound listener cm_id (where in this
1724 * case queue will be null).
1725 *
1726 * We registered an ib_client to handle device removal for queues,
1727 * so we only need to handle the listening port cm_ids. In this case
1728 * we nullify the priv to prevent double cm_id destruction and destroying
1729 * the cm_id implicitely by returning a non-zero rc to the callout.
1730 */
1731static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1732 struct nvmet_rdma_queue *queue)
1733{
1734 struct nvmet_rdma_port *port;
1735
1736 if (queue) {
1737 /*
1738 * This is a queue cm_id. we have registered
1739 * an ib_client to handle queues removal
1740 * so don't interfear and just return.
1741 */
1742 return 0;
1743 }
1744
1745 port = cm_id->context;
1746
1747 /*
1748 * This is a listener cm_id. Make sure that
1749 * future remove_port won't invoke a double
1750 * cm_id destroy. use atomic xchg to make sure
1751 * we don't compete with remove_port.
1752 */
1753 if (xchg(&port->cm_id, NULL) != cm_id)
1754 return 0;
1755
1756 /*
1757 * We need to return 1 so that the core will destroy
1758 * it's own ID. What a great API design..
1759 */
1760 return 1;
1761}
1762
1763static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1764 struct rdma_cm_event *event)
1765{
1766 struct nvmet_rdma_queue *queue = NULL;
1767 int ret = 0;
1768
1769 if (cm_id->qp)
1770 queue = cm_id->qp->qp_context;
1771
1772 pr_debug("%s (%d): status %d id %p\n",
1773 rdma_event_msg(event->event), event->event,
1774 event->status, cm_id);
1775
1776 switch (event->event) {
1777 case RDMA_CM_EVENT_CONNECT_REQUEST:
1778 ret = nvmet_rdma_queue_connect(cm_id, event);
1779 break;
1780 case RDMA_CM_EVENT_ESTABLISHED:
1781 nvmet_rdma_queue_established(queue);
1782 break;
1783 case RDMA_CM_EVENT_ADDR_CHANGE:
1784 if (!queue) {
1785 struct nvmet_rdma_port *port = cm_id->context;
1786
1787 queue_delayed_work(wq: nvmet_wq, dwork: &port->repair_work, delay: 0);
1788 break;
1789 }
1790 fallthrough;
1791 case RDMA_CM_EVENT_DISCONNECTED:
1792 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1793 nvmet_rdma_queue_disconnect(queue);
1794 break;
1795 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1796 ret = nvmet_rdma_device_removal(cm_id, queue);
1797 break;
1798 case RDMA_CM_EVENT_REJECTED:
1799 pr_debug("Connection rejected: %s\n",
1800 rdma_reject_msg(cm_id, event->status));
1801 fallthrough;
1802 case RDMA_CM_EVENT_UNREACHABLE:
1803 case RDMA_CM_EVENT_CONNECT_ERROR:
1804 nvmet_rdma_queue_connect_fail(cm_id, queue);
1805 break;
1806 default:
1807 pr_err("received unrecognized RDMA CM event %d\n",
1808 event->event);
1809 break;
1810 }
1811
1812 return ret;
1813}
1814
1815static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1816{
1817 struct nvmet_rdma_queue *queue;
1818
1819restart:
1820 mutex_lock(&nvmet_rdma_queue_mutex);
1821 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1822 if (queue->nvme_sq.ctrl == ctrl) {
1823 list_del_init(entry: &queue->queue_list);
1824 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1825
1826 __nvmet_rdma_queue_disconnect(queue);
1827 goto restart;
1828 }
1829 }
1830 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1831}
1832
1833static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port)
1834{
1835 struct nvmet_rdma_queue *queue, *tmp;
1836 struct nvmet_port *nport = port->nport;
1837
1838 mutex_lock(&nvmet_rdma_queue_mutex);
1839 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
1840 queue_list) {
1841 if (queue->port != nport)
1842 continue;
1843
1844 list_del_init(entry: &queue->queue_list);
1845 __nvmet_rdma_queue_disconnect(queue);
1846 }
1847 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
1848}
1849
1850static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1851{
1852 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1853
1854 if (cm_id)
1855 rdma_destroy_id(id: cm_id);
1856
1857 /*
1858 * Destroy the remaining queues, which are not belong to any
1859 * controller yet. Do it here after the RDMA-CM was destroyed
1860 * guarantees that no new queue will be created.
1861 */
1862 nvmet_rdma_destroy_port_queues(port);
1863}
1864
1865static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1866{
1867 struct sockaddr *addr = (struct sockaddr *)&port->addr;
1868 struct rdma_cm_id *cm_id;
1869 int ret;
1870
1871 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1872 RDMA_PS_TCP, IB_QPT_RC);
1873 if (IS_ERR(ptr: cm_id)) {
1874 pr_err("CM ID creation failed\n");
1875 return PTR_ERR(ptr: cm_id);
1876 }
1877
1878 /*
1879 * Allow both IPv4 and IPv6 sockets to bind a single port
1880 * at the same time.
1881 */
1882 ret = rdma_set_afonly(id: cm_id, afonly: 1);
1883 if (ret) {
1884 pr_err("rdma_set_afonly failed (%d)\n", ret);
1885 goto out_destroy_id;
1886 }
1887
1888 ret = rdma_bind_addr(id: cm_id, addr);
1889 if (ret) {
1890 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1891 goto out_destroy_id;
1892 }
1893
1894 ret = rdma_listen(id: cm_id, NVMET_RDMA_BACKLOG);
1895 if (ret) {
1896 pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1897 goto out_destroy_id;
1898 }
1899
1900 port->cm_id = cm_id;
1901 return 0;
1902
1903out_destroy_id:
1904 rdma_destroy_id(id: cm_id);
1905 return ret;
1906}
1907
1908static void nvmet_rdma_repair_port_work(struct work_struct *w)
1909{
1910 struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1911 struct nvmet_rdma_port, repair_work);
1912 int ret;
1913
1914 nvmet_rdma_disable_port(port);
1915 ret = nvmet_rdma_enable_port(port);
1916 if (ret)
1917 queue_delayed_work(wq: nvmet_wq, dwork: &port->repair_work, delay: 5 * HZ);
1918}
1919
1920static int nvmet_rdma_add_port(struct nvmet_port *nport)
1921{
1922 struct nvmet_rdma_port *port;
1923 __kernel_sa_family_t af;
1924 int ret;
1925
1926 port = kzalloc(size: sizeof(*port), GFP_KERNEL);
1927 if (!port)
1928 return -ENOMEM;
1929
1930 nport->priv = port;
1931 port->nport = nport;
1932 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1933
1934 switch (nport->disc_addr.adrfam) {
1935 case NVMF_ADDR_FAMILY_IP4:
1936 af = AF_INET;
1937 break;
1938 case NVMF_ADDR_FAMILY_IP6:
1939 af = AF_INET6;
1940 break;
1941 default:
1942 pr_err("address family %d not supported\n",
1943 nport->disc_addr.adrfam);
1944 ret = -EINVAL;
1945 goto out_free_port;
1946 }
1947
1948 if (nport->inline_data_size < 0) {
1949 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1950 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1951 pr_warn("inline_data_size %u is too large, reducing to %u\n",
1952 nport->inline_data_size,
1953 NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1954 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1955 }
1956
1957 if (nport->max_queue_size < 0) {
1958 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE;
1959 } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) {
1960 pr_warn("max_queue_size %u is too large, reducing to %u\n",
1961 nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE);
1962 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1963 }
1964
1965 ret = inet_pton_with_scope(net: &init_net, af, src: nport->disc_addr.traddr,
1966 port: nport->disc_addr.trsvcid, addr: &port->addr);
1967 if (ret) {
1968 pr_err("malformed ip/port passed: %s:%s\n",
1969 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1970 goto out_free_port;
1971 }
1972
1973 ret = nvmet_rdma_enable_port(port);
1974 if (ret)
1975 goto out_free_port;
1976
1977 pr_info("enabling port %d (%pISpcs)\n",
1978 le16_to_cpu(nport->disc_addr.portid),
1979 (struct sockaddr *)&port->addr);
1980
1981 return 0;
1982
1983out_free_port:
1984 kfree(objp: port);
1985 return ret;
1986}
1987
1988static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1989{
1990 struct nvmet_rdma_port *port = nport->priv;
1991
1992 cancel_delayed_work_sync(dwork: &port->repair_work);
1993 nvmet_rdma_disable_port(port);
1994 kfree(objp: port);
1995}
1996
1997static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1998 struct nvmet_port *nport, char *traddr)
1999{
2000 struct nvmet_rdma_port *port = nport->priv;
2001 struct rdma_cm_id *cm_id = port->cm_id;
2002
2003 if (inet_addr_is_any(addr: (struct sockaddr *)&cm_id->route.addr.src_addr)) {
2004 struct nvmet_rdma_rsp *rsp =
2005 container_of(req, struct nvmet_rdma_rsp, req);
2006 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
2007 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
2008
2009 sprintf(buf: traddr, fmt: "%pISc", addr);
2010 } else {
2011 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
2012 }
2013}
2014
2015static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
2016{
2017 if (ctrl->pi_support)
2018 return NVMET_RDMA_MAX_METADATA_MDTS;
2019 return NVMET_RDMA_MAX_MDTS;
2020}
2021
2022static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl)
2023{
2024 if (ctrl->pi_support)
2025 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
2026 return NVME_RDMA_MAX_QUEUE_SIZE;
2027}
2028
2029static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
2030 .owner = THIS_MODULE,
2031 .type = NVMF_TRTYPE_RDMA,
2032 .msdbd = 1,
2033 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
2034 .add_port = nvmet_rdma_add_port,
2035 .remove_port = nvmet_rdma_remove_port,
2036 .queue_response = nvmet_rdma_queue_response,
2037 .delete_ctrl = nvmet_rdma_delete_ctrl,
2038 .disc_traddr = nvmet_rdma_disc_port_addr,
2039 .get_mdts = nvmet_rdma_get_mdts,
2040 .get_max_queue_size = nvmet_rdma_get_max_queue_size,
2041};
2042
2043static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2044{
2045 struct nvmet_rdma_queue *queue, *tmp;
2046 struct nvmet_rdma_device *ndev;
2047 bool found = false;
2048
2049 mutex_lock(&device_list_mutex);
2050 list_for_each_entry(ndev, &device_list, entry) {
2051 if (ndev->device == ib_device) {
2052 found = true;
2053 break;
2054 }
2055 }
2056 mutex_unlock(lock: &device_list_mutex);
2057
2058 if (!found)
2059 return;
2060
2061 /*
2062 * IB Device that is used by nvmet controllers is being removed,
2063 * delete all queues using this device.
2064 */
2065 mutex_lock(&nvmet_rdma_queue_mutex);
2066 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2067 queue_list) {
2068 if (queue->dev->device != ib_device)
2069 continue;
2070
2071 pr_info("Removing queue %d\n", queue->idx);
2072 list_del_init(entry: &queue->queue_list);
2073 __nvmet_rdma_queue_disconnect(queue);
2074 }
2075 mutex_unlock(lock: &nvmet_rdma_queue_mutex);
2076
2077 flush_workqueue(nvmet_wq);
2078}
2079
2080static struct ib_client nvmet_rdma_ib_client = {
2081 .name = "nvmet_rdma",
2082 .remove = nvmet_rdma_remove_one
2083};
2084
2085static int __init nvmet_rdma_init(void)
2086{
2087 int ret;
2088
2089 ret = ib_register_client(client: &nvmet_rdma_ib_client);
2090 if (ret)
2091 return ret;
2092
2093 ret = nvmet_register_transport(ops: &nvmet_rdma_ops);
2094 if (ret)
2095 goto err_ib_client;
2096
2097 return 0;
2098
2099err_ib_client:
2100 ib_unregister_client(client: &nvmet_rdma_ib_client);
2101 return ret;
2102}
2103
2104static void __exit nvmet_rdma_exit(void)
2105{
2106 nvmet_unregister_transport(ops: &nvmet_rdma_ops);
2107 ib_unregister_client(client: &nvmet_rdma_ib_client);
2108 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2109 ida_destroy(ida: &nvmet_rdma_queue_ida);
2110}
2111
2112module_init(nvmet_rdma_init);
2113module_exit(nvmet_rdma_exit);
2114
2115MODULE_DESCRIPTION("NVMe target RDMA transport driver");
2116MODULE_LICENSE("GPL v2");
2117MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2118

source code of linux/drivers/nvme/target/rdma.c