1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Functions for working with the Flattened Device Tree data format |
4 | * |
5 | * Copyright 2009 Benjamin Herrenschmidt, IBM Corp |
6 | * benh@kernel.crashing.org |
7 | */ |
8 | |
9 | #define pr_fmt(fmt) "OF: fdt: " fmt |
10 | |
11 | #include <linux/crash_dump.h> |
12 | #include <linux/crc32.h> |
13 | #include <linux/kernel.h> |
14 | #include <linux/initrd.h> |
15 | #include <linux/memblock.h> |
16 | #include <linux/mutex.h> |
17 | #include <linux/of.h> |
18 | #include <linux/of_fdt.h> |
19 | #include <linux/sizes.h> |
20 | #include <linux/string.h> |
21 | #include <linux/errno.h> |
22 | #include <linux/slab.h> |
23 | #include <linux/libfdt.h> |
24 | #include <linux/debugfs.h> |
25 | #include <linux/serial_core.h> |
26 | #include <linux/sysfs.h> |
27 | #include <linux/random.h> |
28 | #include <linux/kexec_handover.h> |
29 | |
30 | #include <asm/setup.h> /* for COMMAND_LINE_SIZE */ |
31 | #include <asm/page.h> |
32 | |
33 | #include "of_private.h" |
34 | |
35 | /* |
36 | * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by |
37 | * cmd_wrap_S_dtb in scripts/Makefile.dtbs |
38 | */ |
39 | extern uint8_t __dtb_empty_root_begin[]; |
40 | extern uint8_t __dtb_empty_root_end[]; |
41 | |
42 | /* |
43 | * of_fdt_limit_memory - limit the number of regions in the /memory node |
44 | * @limit: maximum entries |
45 | * |
46 | * Adjust the flattened device tree to have at most 'limit' number of |
47 | * memory entries in the /memory node. This function may be called |
48 | * any time after initial_boot_param is set. |
49 | */ |
50 | void __init of_fdt_limit_memory(int limit) |
51 | { |
52 | int memory; |
53 | int len; |
54 | const void *val; |
55 | int cell_size = sizeof(uint32_t)*(dt_root_addr_cells + dt_root_size_cells); |
56 | |
57 | memory = fdt_path_offset(fdt: initial_boot_params, path: "/memory"); |
58 | if (memory > 0) { |
59 | val = fdt_getprop(fdt: initial_boot_params, nodeoffset: memory, name: "reg", lenp: &len); |
60 | if (len > limit*cell_size) { |
61 | len = limit*cell_size; |
62 | pr_debug("Limiting number of entries to %d\n", limit); |
63 | fdt_setprop(fdt: initial_boot_params, nodeoffset: memory, name: "reg", val, |
64 | len); |
65 | } |
66 | } |
67 | } |
68 | |
69 | bool of_fdt_device_is_available(const void *blob, unsigned long node) |
70 | { |
71 | const char *status = fdt_getprop(fdt: blob, nodeoffset: node, name: "status", NULL); |
72 | |
73 | if (!status) |
74 | return true; |
75 | |
76 | if (!strcmp(status, "ok") || !strcmp(status, "okay")) |
77 | return true; |
78 | |
79 | return false; |
80 | } |
81 | |
82 | static void *unflatten_dt_alloc(void **mem, unsigned long size, |
83 | unsigned long align) |
84 | { |
85 | void *res; |
86 | |
87 | *mem = PTR_ALIGN(*mem, align); |
88 | res = *mem; |
89 | *mem += size; |
90 | |
91 | return res; |
92 | } |
93 | |
94 | static void populate_properties(const void *blob, |
95 | int offset, |
96 | void **mem, |
97 | struct device_node *np, |
98 | const char *nodename, |
99 | bool dryrun) |
100 | { |
101 | struct property *pp, **pprev = NULL; |
102 | int cur; |
103 | bool has_name = false; |
104 | |
105 | pprev = &np->properties; |
106 | for (cur = fdt_first_property_offset(fdt: blob, nodeoffset: offset); |
107 | cur >= 0; |
108 | cur = fdt_next_property_offset(fdt: blob, offset: cur)) { |
109 | const __be32 *val; |
110 | const char *pname; |
111 | u32 sz; |
112 | |
113 | val = fdt_getprop_by_offset(fdt: blob, offset: cur, namep: &pname, lenp: &sz); |
114 | if (!val) { |
115 | pr_warn("Cannot locate property at 0x%x\n", cur); |
116 | continue; |
117 | } |
118 | |
119 | if (!pname) { |
120 | pr_warn("Cannot find property name at 0x%x\n", cur); |
121 | continue; |
122 | } |
123 | |
124 | if (!strcmp(pname, "name")) |
125 | has_name = true; |
126 | |
127 | pp = unflatten_dt_alloc(mem, size: sizeof(struct property), |
128 | align: __alignof__(struct property)); |
129 | if (dryrun) |
130 | continue; |
131 | |
132 | /* We accept flattened tree phandles either in |
133 | * ePAPR-style "phandle" properties, or the |
134 | * legacy "linux,phandle" properties. If both |
135 | * appear and have different values, things |
136 | * will get weird. Don't do that. |
137 | */ |
138 | if (!strcmp(pname, "phandle") || |
139 | !strcmp(pname, "linux,phandle")) { |
140 | if (!np->phandle) |
141 | np->phandle = be32_to_cpup(p: val); |
142 | } |
143 | |
144 | /* And we process the "ibm,phandle" property |
145 | * used in pSeries dynamic device tree |
146 | * stuff |
147 | */ |
148 | if (!strcmp(pname, "ibm,phandle")) |
149 | np->phandle = be32_to_cpup(p: val); |
150 | |
151 | pp->name = (char *)pname; |
152 | pp->length = sz; |
153 | pp->value = (__be32 *)val; |
154 | *pprev = pp; |
155 | pprev = &pp->next; |
156 | } |
157 | |
158 | /* With version 0x10 we may not have the name property, |
159 | * recreate it here from the unit name if absent |
160 | */ |
161 | if (!has_name) { |
162 | const char *p = nodename, *ps = p, *pa = NULL; |
163 | int len; |
164 | |
165 | while (*p) { |
166 | if ((*p) == '@') |
167 | pa = p; |
168 | else if ((*p) == '/') |
169 | ps = p + 1; |
170 | p++; |
171 | } |
172 | |
173 | if (pa < ps) |
174 | pa = p; |
175 | len = (pa - ps) + 1; |
176 | pp = unflatten_dt_alloc(mem, size: sizeof(struct property) + len, |
177 | align: __alignof__(struct property)); |
178 | if (!dryrun) { |
179 | pp->name = "name"; |
180 | pp->length = len; |
181 | pp->value = pp + 1; |
182 | *pprev = pp; |
183 | memcpy(pp->value, ps, len - 1); |
184 | ((char *)pp->value)[len - 1] = 0; |
185 | pr_debug("fixed up name for %s -> %s\n", |
186 | nodename, (char *)pp->value); |
187 | } |
188 | } |
189 | } |
190 | |
191 | static int populate_node(const void *blob, |
192 | int offset, |
193 | void **mem, |
194 | struct device_node *dad, |
195 | struct device_node **pnp, |
196 | bool dryrun) |
197 | { |
198 | struct device_node *np; |
199 | const char *pathp; |
200 | int len; |
201 | |
202 | pathp = fdt_get_name(fdt: blob, nodeoffset: offset, lenp: &len); |
203 | if (!pathp) { |
204 | *pnp = NULL; |
205 | return len; |
206 | } |
207 | |
208 | len++; |
209 | |
210 | np = unflatten_dt_alloc(mem, size: sizeof(struct device_node) + len, |
211 | align: __alignof__(struct device_node)); |
212 | if (!dryrun) { |
213 | char *fn; |
214 | of_node_init(node: np); |
215 | np->full_name = fn = ((char *)np) + sizeof(*np); |
216 | |
217 | memcpy(fn, pathp, len); |
218 | |
219 | if (dad != NULL) { |
220 | np->parent = dad; |
221 | np->sibling = dad->child; |
222 | dad->child = np; |
223 | } |
224 | } |
225 | |
226 | populate_properties(blob, offset, mem, np, nodename: pathp, dryrun); |
227 | if (!dryrun) { |
228 | np->name = of_get_property(node: np, name: "name", NULL); |
229 | if (!np->name) |
230 | np->name = "<NULL>"; |
231 | } |
232 | |
233 | *pnp = np; |
234 | return 0; |
235 | } |
236 | |
237 | static void reverse_nodes(struct device_node *parent) |
238 | { |
239 | struct device_node *child, *next; |
240 | |
241 | /* In-depth first */ |
242 | child = parent->child; |
243 | while (child) { |
244 | reverse_nodes(parent: child); |
245 | |
246 | child = child->sibling; |
247 | } |
248 | |
249 | /* Reverse the nodes in the child list */ |
250 | child = parent->child; |
251 | parent->child = NULL; |
252 | while (child) { |
253 | next = child->sibling; |
254 | |
255 | child->sibling = parent->child; |
256 | parent->child = child; |
257 | child = next; |
258 | } |
259 | } |
260 | |
261 | /** |
262 | * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree |
263 | * @blob: The parent device tree blob |
264 | * @mem: Memory chunk to use for allocating device nodes and properties |
265 | * @dad: Parent struct device_node |
266 | * @nodepp: The device_node tree created by the call |
267 | * |
268 | * Return: The size of unflattened device tree or error code |
269 | */ |
270 | static int unflatten_dt_nodes(const void *blob, |
271 | void *mem, |
272 | struct device_node *dad, |
273 | struct device_node **nodepp) |
274 | { |
275 | struct device_node *root; |
276 | int offset = 0, depth = 0, initial_depth = 0; |
277 | #define FDT_MAX_DEPTH 64 |
278 | struct device_node *nps[FDT_MAX_DEPTH]; |
279 | void *base = mem; |
280 | bool dryrun = !base; |
281 | int ret; |
282 | |
283 | if (nodepp) |
284 | *nodepp = NULL; |
285 | |
286 | /* |
287 | * We're unflattening device sub-tree if @dad is valid. There are |
288 | * possibly multiple nodes in the first level of depth. We need |
289 | * set @depth to 1 to make fdt_next_node() happy as it bails |
290 | * immediately when negative @depth is found. Otherwise, the device |
291 | * nodes except the first one won't be unflattened successfully. |
292 | */ |
293 | if (dad) |
294 | depth = initial_depth = 1; |
295 | |
296 | root = dad; |
297 | nps[depth] = dad; |
298 | |
299 | for (offset = 0; |
300 | offset >= 0 && depth >= initial_depth; |
301 | offset = fdt_next_node(fdt: blob, offset, depth: &depth)) { |
302 | if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1)) |
303 | continue; |
304 | |
305 | if (!IS_ENABLED(CONFIG_OF_KOBJ) && |
306 | !of_fdt_device_is_available(blob, node: offset)) |
307 | continue; |
308 | |
309 | ret = populate_node(blob, offset, mem: &mem, dad: nps[depth], |
310 | pnp: &nps[depth+1], dryrun); |
311 | if (ret < 0) |
312 | return ret; |
313 | |
314 | if (!dryrun && nodepp && !*nodepp) |
315 | *nodepp = nps[depth+1]; |
316 | if (!dryrun && !root) |
317 | root = nps[depth+1]; |
318 | } |
319 | |
320 | if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { |
321 | pr_err("Error %d processing FDT\n", offset); |
322 | return -EINVAL; |
323 | } |
324 | |
325 | /* |
326 | * Reverse the child list. Some drivers assumes node order matches .dts |
327 | * node order |
328 | */ |
329 | if (!dryrun) |
330 | reverse_nodes(parent: root); |
331 | |
332 | return mem - base; |
333 | } |
334 | |
335 | /** |
336 | * __unflatten_device_tree - create tree of device_nodes from flat blob |
337 | * @blob: The blob to expand |
338 | * @dad: Parent device node |
339 | * @mynodes: The device_node tree created by the call |
340 | * @dt_alloc: An allocator that provides a virtual address to memory |
341 | * for the resulting tree |
342 | * @detached: if true set OF_DETACHED on @mynodes |
343 | * |
344 | * unflattens a device-tree, creating the tree of struct device_node. It also |
345 | * fills the "name" and "type" pointers of the nodes so the normal device-tree |
346 | * walking functions can be used. |
347 | * |
348 | * Return: NULL on failure or the memory chunk containing the unflattened |
349 | * device tree on success. |
350 | */ |
351 | void *__unflatten_device_tree(const void *blob, |
352 | struct device_node *dad, |
353 | struct device_node **mynodes, |
354 | void *(*dt_alloc)(u64 size, u64 align), |
355 | bool detached) |
356 | { |
357 | int size; |
358 | void *mem; |
359 | int ret; |
360 | |
361 | if (mynodes) |
362 | *mynodes = NULL; |
363 | |
364 | pr_debug(" -> unflatten_device_tree()\n"); |
365 | |
366 | if (!blob) { |
367 | pr_debug("No device tree pointer\n"); |
368 | return NULL; |
369 | } |
370 | |
371 | pr_debug("Unflattening device tree:\n"); |
372 | pr_debug("magic: %08x\n", fdt_magic(blob)); |
373 | pr_debug("size: %08x\n", fdt_totalsize(blob)); |
374 | pr_debug("version: %08x\n", fdt_version(blob)); |
375 | |
376 | if (fdt_check_header(fdt: blob)) { |
377 | pr_err("Invalid device tree blob header\n"); |
378 | return NULL; |
379 | } |
380 | |
381 | /* First pass, scan for size */ |
382 | size = unflatten_dt_nodes(blob, NULL, dad, NULL); |
383 | if (size <= 0) |
384 | return NULL; |
385 | |
386 | size = ALIGN(size, 4); |
387 | pr_debug(" size is %d, allocating...\n", size); |
388 | |
389 | /* Allocate memory for the expanded device tree */ |
390 | mem = dt_alloc(size + 4, __alignof__(struct device_node)); |
391 | if (!mem) |
392 | return NULL; |
393 | |
394 | memset(mem, 0, size); |
395 | |
396 | *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); |
397 | |
398 | pr_debug(" unflattening %p...\n", mem); |
399 | |
400 | /* Second pass, do actual unflattening */ |
401 | ret = unflatten_dt_nodes(blob, mem, dad, nodepp: mynodes); |
402 | |
403 | if (be32_to_cpup(p: mem + size) != 0xdeadbeef) |
404 | pr_warn("End of tree marker overwritten: %08x\n", |
405 | be32_to_cpup(mem + size)); |
406 | |
407 | if (ret <= 0) |
408 | return NULL; |
409 | |
410 | if (detached && mynodes && *mynodes) { |
411 | of_node_set_flag(n: *mynodes, OF_DETACHED); |
412 | pr_debug("unflattened tree is detached\n"); |
413 | } |
414 | |
415 | pr_debug(" <- unflatten_device_tree()\n"); |
416 | return mem; |
417 | } |
418 | |
419 | static void *kernel_tree_alloc(u64 size, u64 align) |
420 | { |
421 | return kzalloc(size, GFP_KERNEL); |
422 | } |
423 | |
424 | static DEFINE_MUTEX(of_fdt_unflatten_mutex); |
425 | |
426 | /** |
427 | * of_fdt_unflatten_tree - create tree of device_nodes from flat blob |
428 | * @blob: Flat device tree blob |
429 | * @dad: Parent device node |
430 | * @mynodes: The device tree created by the call |
431 | * |
432 | * unflattens the device-tree passed by the firmware, creating the |
433 | * tree of struct device_node. It also fills the "name" and "type" |
434 | * pointers of the nodes so the normal device-tree walking functions |
435 | * can be used. |
436 | * |
437 | * Return: NULL on failure or the memory chunk containing the unflattened |
438 | * device tree on success. |
439 | */ |
440 | void *of_fdt_unflatten_tree(const unsigned long *blob, |
441 | struct device_node *dad, |
442 | struct device_node **mynodes) |
443 | { |
444 | void *mem; |
445 | |
446 | mutex_lock(&of_fdt_unflatten_mutex); |
447 | mem = __unflatten_device_tree(blob, dad, mynodes, dt_alloc: &kernel_tree_alloc, |
448 | detached: true); |
449 | mutex_unlock(lock: &of_fdt_unflatten_mutex); |
450 | |
451 | return mem; |
452 | } |
453 | EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree); |
454 | |
455 | /* Everything below here references initial_boot_params directly. */ |
456 | int __initdata dt_root_addr_cells; |
457 | int __initdata dt_root_size_cells; |
458 | |
459 | void *initial_boot_params __ro_after_init; |
460 | phys_addr_t initial_boot_params_pa __ro_after_init; |
461 | |
462 | #ifdef CONFIG_OF_EARLY_FLATTREE |
463 | |
464 | static u32 of_fdt_crc32; |
465 | |
466 | /* |
467 | * fdt_reserve_elfcorehdr() - reserves memory for elf core header |
468 | * |
469 | * This function reserves the memory occupied by an elf core header |
470 | * described in the device tree. This region contains all the |
471 | * information about primary kernel's core image and is used by a dump |
472 | * capture kernel to access the system memory on primary kernel. |
473 | */ |
474 | static void __init fdt_reserve_elfcorehdr(void) |
475 | { |
476 | if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size) |
477 | return; |
478 | |
479 | if (memblock_is_region_reserved(base: elfcorehdr_addr, size: elfcorehdr_size)) { |
480 | pr_warn("elfcorehdr is overlapped\n"); |
481 | return; |
482 | } |
483 | |
484 | memblock_reserve(base: elfcorehdr_addr, size: elfcorehdr_size); |
485 | |
486 | pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n", |
487 | elfcorehdr_size >> 10, elfcorehdr_addr); |
488 | } |
489 | |
490 | /** |
491 | * early_init_fdt_scan_reserved_mem() - create reserved memory regions |
492 | * |
493 | * This function grabs memory from early allocator for device exclusive use |
494 | * defined in device tree structures. It should be called by arch specific code |
495 | * once the early allocator (i.e. memblock) has been fully activated. |
496 | */ |
497 | void __init early_init_fdt_scan_reserved_mem(void) |
498 | { |
499 | int n; |
500 | int res; |
501 | u64 base, size; |
502 | |
503 | if (!initial_boot_params) |
504 | return; |
505 | |
506 | fdt_scan_reserved_mem(); |
507 | fdt_reserve_elfcorehdr(); |
508 | |
509 | /* Process header /memreserve/ fields */ |
510 | for (n = 0; ; n++) { |
511 | res = fdt_get_mem_rsv(fdt: initial_boot_params, n, address: &base, size: &size); |
512 | if (res) { |
513 | pr_err("Invalid memory reservation block index %d\n", n); |
514 | break; |
515 | } |
516 | if (!size) |
517 | break; |
518 | memblock_reserve(base, size); |
519 | } |
520 | } |
521 | |
522 | /** |
523 | * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob |
524 | */ |
525 | void __init early_init_fdt_reserve_self(void) |
526 | { |
527 | if (!initial_boot_params) |
528 | return; |
529 | |
530 | /* Reserve the dtb region */ |
531 | memblock_reserve(__pa(initial_boot_params), |
532 | fdt_totalsize(initial_boot_params)); |
533 | } |
534 | |
535 | /** |
536 | * of_scan_flat_dt - scan flattened tree blob and call callback on each. |
537 | * @it: callback function |
538 | * @data: context data pointer |
539 | * |
540 | * This function is used to scan the flattened device-tree, it is |
541 | * used to extract the memory information at boot before we can |
542 | * unflatten the tree |
543 | */ |
544 | int __init of_scan_flat_dt(int (*it)(unsigned long node, |
545 | const char *uname, int depth, |
546 | void *data), |
547 | void *data) |
548 | { |
549 | const void *blob = initial_boot_params; |
550 | const char *pathp; |
551 | int offset, rc = 0, depth = -1; |
552 | |
553 | if (!blob) |
554 | return 0; |
555 | |
556 | for (offset = fdt_next_node(fdt: blob, offset: -1, depth: &depth); |
557 | offset >= 0 && depth >= 0 && !rc; |
558 | offset = fdt_next_node(fdt: blob, offset, depth: &depth)) { |
559 | |
560 | pathp = fdt_get_name(fdt: blob, nodeoffset: offset, NULL); |
561 | rc = it(offset, pathp, depth, data); |
562 | } |
563 | return rc; |
564 | } |
565 | |
566 | /** |
567 | * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. |
568 | * @parent: parent node |
569 | * @it: callback function |
570 | * @data: context data pointer |
571 | * |
572 | * This function is used to scan sub-nodes of a node. |
573 | */ |
574 | int __init of_scan_flat_dt_subnodes(unsigned long parent, |
575 | int (*it)(unsigned long node, |
576 | const char *uname, |
577 | void *data), |
578 | void *data) |
579 | { |
580 | const void *blob = initial_boot_params; |
581 | int node; |
582 | |
583 | fdt_for_each_subnode(node, blob, parent) { |
584 | const char *pathp; |
585 | int rc; |
586 | |
587 | pathp = fdt_get_name(fdt: blob, nodeoffset: node, NULL); |
588 | rc = it(node, pathp, data); |
589 | if (rc) |
590 | return rc; |
591 | } |
592 | return 0; |
593 | } |
594 | |
595 | /** |
596 | * of_get_flat_dt_subnode_by_name - get the subnode by given name |
597 | * |
598 | * @node: the parent node |
599 | * @uname: the name of subnode |
600 | * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none |
601 | */ |
602 | |
603 | int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) |
604 | { |
605 | return fdt_subnode_offset(fdt: initial_boot_params, parentoffset: node, name: uname); |
606 | } |
607 | |
608 | /* |
609 | * of_get_flat_dt_root - find the root node in the flat blob |
610 | */ |
611 | unsigned long __init of_get_flat_dt_root(void) |
612 | { |
613 | return 0; |
614 | } |
615 | |
616 | /* |
617 | * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr |
618 | * |
619 | * This function can be used within scan_flattened_dt callback to get |
620 | * access to properties |
621 | */ |
622 | const void *__init of_get_flat_dt_prop(unsigned long node, const char *name, |
623 | int *size) |
624 | { |
625 | return fdt_getprop(fdt: initial_boot_params, nodeoffset: node, name, lenp: size); |
626 | } |
627 | |
628 | /** |
629 | * of_fdt_is_compatible - Return true if given node from the given blob has |
630 | * compat in its compatible list |
631 | * @blob: A device tree blob |
632 | * @node: node to test |
633 | * @compat: compatible string to compare with compatible list. |
634 | * |
635 | * Return: a non-zero value on match with smaller values returned for more |
636 | * specific compatible values. |
637 | */ |
638 | static int of_fdt_is_compatible(const void *blob, |
639 | unsigned long node, const char *compat) |
640 | { |
641 | const char *cp; |
642 | int cplen; |
643 | unsigned long l, score = 0; |
644 | |
645 | cp = fdt_getprop(fdt: blob, nodeoffset: node, name: "compatible", lenp: &cplen); |
646 | if (cp == NULL) |
647 | return 0; |
648 | while (cplen > 0) { |
649 | score++; |
650 | if (of_compat_cmp(cp, compat, strlen(compat)) == 0) |
651 | return score; |
652 | l = strlen(cp) + 1; |
653 | cp += l; |
654 | cplen -= l; |
655 | } |
656 | |
657 | return 0; |
658 | } |
659 | |
660 | /** |
661 | * of_flat_dt_is_compatible - Return true if given node has compat in compatible list |
662 | * @node: node to test |
663 | * @compat: compatible string to compare with compatible list. |
664 | */ |
665 | int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) |
666 | { |
667 | return of_fdt_is_compatible(blob: initial_boot_params, node, compat); |
668 | } |
669 | |
670 | /* |
671 | * of_flat_dt_match - Return true if node matches a list of compatible values |
672 | */ |
673 | static int __init of_flat_dt_match(unsigned long node, const char *const *compat) |
674 | { |
675 | unsigned int tmp, score = 0; |
676 | |
677 | if (!compat) |
678 | return 0; |
679 | |
680 | while (*compat) { |
681 | tmp = of_fdt_is_compatible(blob: initial_boot_params, node, compat: *compat); |
682 | if (tmp && (score == 0 || (tmp < score))) |
683 | score = tmp; |
684 | compat++; |
685 | } |
686 | |
687 | return score; |
688 | } |
689 | |
690 | /* |
691 | * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle |
692 | */ |
693 | uint32_t __init of_get_flat_dt_phandle(unsigned long node) |
694 | { |
695 | return fdt_get_phandle(fdt: initial_boot_params, nodeoffset: node); |
696 | } |
697 | |
698 | const char * __init of_flat_dt_get_machine_name(void) |
699 | { |
700 | const char *name; |
701 | unsigned long dt_root = of_get_flat_dt_root(); |
702 | |
703 | name = of_get_flat_dt_prop(node: dt_root, name: "model", NULL); |
704 | if (!name) |
705 | name = of_get_flat_dt_prop(node: dt_root, name: "compatible", NULL); |
706 | return name; |
707 | } |
708 | |
709 | /** |
710 | * of_flat_dt_match_machine - Iterate match tables to find matching machine. |
711 | * |
712 | * @default_match: A machine specific ptr to return in case of no match. |
713 | * @get_next_compat: callback function to return next compatible match table. |
714 | * |
715 | * Iterate through machine match tables to find the best match for the machine |
716 | * compatible string in the FDT. |
717 | */ |
718 | const void * __init of_flat_dt_match_machine(const void *default_match, |
719 | const void * (*get_next_compat)(const char * const**)) |
720 | { |
721 | const void *data = NULL; |
722 | const void *best_data = default_match; |
723 | const char *const *compat; |
724 | unsigned long dt_root; |
725 | unsigned int best_score = ~1, score = 0; |
726 | |
727 | dt_root = of_get_flat_dt_root(); |
728 | while ((data = get_next_compat(&compat))) { |
729 | score = of_flat_dt_match(node: dt_root, compat); |
730 | if (score > 0 && score < best_score) { |
731 | best_data = data; |
732 | best_score = score; |
733 | } |
734 | } |
735 | if (!best_data) { |
736 | const char *prop; |
737 | int size; |
738 | |
739 | pr_err("\n unrecognized device tree list:\n[ "); |
740 | |
741 | prop = of_get_flat_dt_prop(node: dt_root, name: "compatible", size: &size); |
742 | if (prop) { |
743 | while (size > 0) { |
744 | printk("'%s' ", prop); |
745 | size -= strlen(prop) + 1; |
746 | prop += strlen(prop) + 1; |
747 | } |
748 | } |
749 | printk("]\n\n"); |
750 | return NULL; |
751 | } |
752 | |
753 | pr_info("Machine model: %s\n", of_flat_dt_get_machine_name()); |
754 | |
755 | return best_data; |
756 | } |
757 | |
758 | static void __early_init_dt_declare_initrd(unsigned long start, |
759 | unsigned long end) |
760 | { |
761 | /* |
762 | * __va() is not yet available this early on some platforms. In that |
763 | * case, the platform uses phys_initrd_start/phys_initrd_size instead |
764 | * and does the VA conversion itself. |
765 | */ |
766 | if (!IS_ENABLED(CONFIG_ARM64) && |
767 | !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) { |
768 | initrd_start = (unsigned long)__va(start); |
769 | initrd_end = (unsigned long)__va(end); |
770 | initrd_below_start_ok = 1; |
771 | } |
772 | } |
773 | |
774 | /** |
775 | * early_init_dt_check_for_initrd - Decode initrd location from flat tree |
776 | * @node: reference to node containing initrd location ('chosen') |
777 | */ |
778 | static void __init early_init_dt_check_for_initrd(unsigned long node) |
779 | { |
780 | u64 start, end; |
781 | int len; |
782 | const __be32 *prop; |
783 | |
784 | if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD)) |
785 | return; |
786 | |
787 | pr_debug("Looking for initrd properties... "); |
788 | |
789 | prop = of_get_flat_dt_prop(node, name: "linux,initrd-start", size: &len); |
790 | if (!prop) |
791 | return; |
792 | start = of_read_number(cell: prop, size: len/4); |
793 | |
794 | prop = of_get_flat_dt_prop(node, name: "linux,initrd-end", size: &len); |
795 | if (!prop) |
796 | return; |
797 | end = of_read_number(cell: prop, size: len/4); |
798 | if (start > end) |
799 | return; |
800 | |
801 | __early_init_dt_declare_initrd(start, end); |
802 | phys_initrd_start = start; |
803 | phys_initrd_size = end - start; |
804 | |
805 | pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n", start, end); |
806 | } |
807 | |
808 | /** |
809 | * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat |
810 | * tree |
811 | * @node: reference to node containing elfcorehdr location ('chosen') |
812 | */ |
813 | static void __init early_init_dt_check_for_elfcorehdr(unsigned long node) |
814 | { |
815 | const __be32 *prop; |
816 | int len; |
817 | |
818 | if (!IS_ENABLED(CONFIG_CRASH_DUMP)) |
819 | return; |
820 | |
821 | pr_debug("Looking for elfcorehdr property... "); |
822 | |
823 | prop = of_get_flat_dt_prop(node, name: "linux,elfcorehdr", size: &len); |
824 | if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells))) |
825 | return; |
826 | |
827 | elfcorehdr_addr = dt_mem_next_cell(s: dt_root_addr_cells, cellp: &prop); |
828 | elfcorehdr_size = dt_mem_next_cell(s: dt_root_size_cells, cellp: &prop); |
829 | |
830 | pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n", |
831 | elfcorehdr_addr, elfcorehdr_size); |
832 | } |
833 | |
834 | static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND; |
835 | |
836 | /* |
837 | * The main usage of linux,usable-memory-range is for crash dump kernel. |
838 | * Originally, the number of usable-memory regions is one. Now there may |
839 | * be two regions, low region and high region. |
840 | * To make compatibility with existing user-space and older kdump, the low |
841 | * region is always the last range of linux,usable-memory-range if exist. |
842 | */ |
843 | #define MAX_USABLE_RANGES 2 |
844 | |
845 | /** |
846 | * early_init_dt_check_for_usable_mem_range - Decode usable memory range |
847 | * location from flat tree |
848 | */ |
849 | void __init early_init_dt_check_for_usable_mem_range(void) |
850 | { |
851 | struct memblock_region rgn[MAX_USABLE_RANGES] = {0}; |
852 | const __be32 *prop, *endp; |
853 | int len, i; |
854 | unsigned long node = chosen_node_offset; |
855 | |
856 | if ((long)node < 0) |
857 | return; |
858 | |
859 | pr_debug("Looking for usable-memory-range property... "); |
860 | |
861 | prop = of_get_flat_dt_prop(node, name: "linux,usable-memory-range", size: &len); |
862 | if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells))) |
863 | return; |
864 | |
865 | endp = prop + (len / sizeof(__be32)); |
866 | for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) { |
867 | rgn[i].base = dt_mem_next_cell(s: dt_root_addr_cells, cellp: &prop); |
868 | rgn[i].size = dt_mem_next_cell(s: dt_root_size_cells, cellp: &prop); |
869 | |
870 | pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n", |
871 | i, &rgn[i].base, &rgn[i].size); |
872 | } |
873 | |
874 | memblock_cap_memory_range(base: rgn[0].base, size: rgn[0].size); |
875 | for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++) |
876 | memblock_add(base: rgn[i].base, size: rgn[i].size); |
877 | } |
878 | |
879 | /** |
880 | * early_init_dt_check_kho - Decode info required for kexec handover from DT |
881 | */ |
882 | static void __init early_init_dt_check_kho(void) |
883 | { |
884 | unsigned long node = chosen_node_offset; |
885 | u64 fdt_start, fdt_size, scratch_start, scratch_size; |
886 | const __be32 *p; |
887 | int l; |
888 | |
889 | if (!IS_ENABLED(CONFIG_KEXEC_HANDOVER) || (long)node < 0) |
890 | return; |
891 | |
892 | p = of_get_flat_dt_prop(node, name: "linux,kho-fdt", size: &l); |
893 | if (l != (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32)) |
894 | return; |
895 | |
896 | fdt_start = dt_mem_next_cell(s: dt_root_addr_cells, cellp: &p); |
897 | fdt_size = dt_mem_next_cell(s: dt_root_addr_cells, cellp: &p); |
898 | |
899 | p = of_get_flat_dt_prop(node, name: "linux,kho-scratch", size: &l); |
900 | if (l != (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32)) |
901 | return; |
902 | |
903 | scratch_start = dt_mem_next_cell(s: dt_root_addr_cells, cellp: &p); |
904 | scratch_size = dt_mem_next_cell(s: dt_root_addr_cells, cellp: &p); |
905 | |
906 | kho_populate(fdt_phys: fdt_start, fdt_len: fdt_size, scratch_phys: scratch_start, scratch_len: scratch_size); |
907 | } |
908 | |
909 | #ifdef CONFIG_SERIAL_EARLYCON |
910 | |
911 | int __init early_init_dt_scan_chosen_stdout(void) |
912 | { |
913 | int offset; |
914 | const char *p, *q, *options = NULL; |
915 | int l; |
916 | const struct earlycon_id *match; |
917 | const void *fdt = initial_boot_params; |
918 | int ret; |
919 | |
920 | offset = fdt_path_offset(fdt, path: "/chosen"); |
921 | if (offset < 0) |
922 | offset = fdt_path_offset(fdt, path: "/chosen@0"); |
923 | if (offset < 0) |
924 | return -ENOENT; |
925 | |
926 | p = fdt_getprop(fdt, nodeoffset: offset, name: "stdout-path", lenp: &l); |
927 | if (!p) |
928 | p = fdt_getprop(fdt, nodeoffset: offset, name: "linux,stdout-path", lenp: &l); |
929 | if (!p || !l) |
930 | return -ENOENT; |
931 | |
932 | q = strchrnul(p, ':'); |
933 | if (*q != '\0') |
934 | options = q + 1; |
935 | l = q - p; |
936 | |
937 | /* Get the node specified by stdout-path */ |
938 | offset = fdt_path_offset_namelen(fdt, path: p, namelen: l); |
939 | if (offset < 0) { |
940 | pr_warn("earlycon: stdout-path %.*s not found\n", l, p); |
941 | return 0; |
942 | } |
943 | |
944 | for (match = __earlycon_table; match < __earlycon_table_end; match++) { |
945 | if (!match->compatible[0]) |
946 | continue; |
947 | |
948 | if (fdt_node_check_compatible(fdt, nodeoffset: offset, compatible: match->compatible)) |
949 | continue; |
950 | |
951 | ret = of_setup_earlycon(match, node: offset, options); |
952 | if (!ret || ret == -EALREADY) |
953 | return 0; |
954 | } |
955 | return -ENODEV; |
956 | } |
957 | #endif |
958 | |
959 | /* |
960 | * early_init_dt_scan_root - fetch the top level address and size cells |
961 | */ |
962 | int __init early_init_dt_scan_root(void) |
963 | { |
964 | const __be32 *prop; |
965 | const void *fdt = initial_boot_params; |
966 | int node = fdt_path_offset(fdt, path: "/"); |
967 | |
968 | if (node < 0) |
969 | return -ENODEV; |
970 | |
971 | dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
972 | dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
973 | |
974 | prop = of_get_flat_dt_prop(node, name: "#size-cells", NULL); |
975 | if (!WARN(!prop, "No '#size-cells' in root node\n")) |
976 | dt_root_size_cells = be32_to_cpup(p: prop); |
977 | pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); |
978 | |
979 | prop = of_get_flat_dt_prop(node, name: "#address-cells", NULL); |
980 | if (!WARN(!prop, "No '#address-cells' in root node\n")) |
981 | dt_root_addr_cells = be32_to_cpup(p: prop); |
982 | pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); |
983 | |
984 | return 0; |
985 | } |
986 | |
987 | u64 __init dt_mem_next_cell(int s, const __be32 **cellp) |
988 | { |
989 | const __be32 *p = *cellp; |
990 | |
991 | *cellp = p + s; |
992 | return of_read_number(cell: p, size: s); |
993 | } |
994 | |
995 | /* |
996 | * early_init_dt_scan_memory - Look for and parse memory nodes |
997 | */ |
998 | int __init early_init_dt_scan_memory(void) |
999 | { |
1000 | int node, found_memory = 0; |
1001 | const void *fdt = initial_boot_params; |
1002 | |
1003 | fdt_for_each_subnode(node, fdt, 0) { |
1004 | const char *type = of_get_flat_dt_prop(node, name: "device_type", NULL); |
1005 | const __be32 *reg, *endp; |
1006 | int l; |
1007 | bool hotpluggable; |
1008 | |
1009 | /* We are scanning "memory" nodes only */ |
1010 | if (type == NULL || strcmp(type, "memory") != 0) |
1011 | continue; |
1012 | |
1013 | if (!of_fdt_device_is_available(blob: fdt, node)) |
1014 | continue; |
1015 | |
1016 | reg = of_get_flat_dt_prop(node, name: "linux,usable-memory", size: &l); |
1017 | if (reg == NULL) |
1018 | reg = of_get_flat_dt_prop(node, name: "reg", size: &l); |
1019 | if (reg == NULL) |
1020 | continue; |
1021 | |
1022 | endp = reg + (l / sizeof(__be32)); |
1023 | hotpluggable = of_get_flat_dt_prop(node, name: "hotpluggable", NULL); |
1024 | |
1025 | pr_debug("memory scan node %s, reg size %d,\n", |
1026 | fdt_get_name(fdt, node, NULL), l); |
1027 | |
1028 | while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
1029 | u64 base, size; |
1030 | |
1031 | base = dt_mem_next_cell(s: dt_root_addr_cells, cellp: ®); |
1032 | size = dt_mem_next_cell(s: dt_root_size_cells, cellp: ®); |
1033 | |
1034 | if (size == 0) |
1035 | continue; |
1036 | pr_debug(" - %llx, %llx\n", base, size); |
1037 | |
1038 | early_init_dt_add_memory_arch(base, size); |
1039 | |
1040 | found_memory = 1; |
1041 | |
1042 | if (!hotpluggable) |
1043 | continue; |
1044 | |
1045 | if (memblock_mark_hotplug(base, size)) |
1046 | pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n", |
1047 | base, base + size); |
1048 | } |
1049 | } |
1050 | return found_memory; |
1051 | } |
1052 | |
1053 | int __init early_init_dt_scan_chosen(char *cmdline) |
1054 | { |
1055 | int l, node; |
1056 | const char *p; |
1057 | const void *rng_seed; |
1058 | const void *fdt = initial_boot_params; |
1059 | |
1060 | node = fdt_path_offset(fdt, path: "/chosen"); |
1061 | if (node < 0) |
1062 | node = fdt_path_offset(fdt, path: "/chosen@0"); |
1063 | if (node < 0) |
1064 | /* Handle the cmdline config options even if no /chosen node */ |
1065 | goto handle_cmdline; |
1066 | |
1067 | chosen_node_offset = node; |
1068 | |
1069 | early_init_dt_check_for_initrd(node); |
1070 | early_init_dt_check_for_elfcorehdr(node); |
1071 | |
1072 | rng_seed = of_get_flat_dt_prop(node, name: "rng-seed", size: &l); |
1073 | if (rng_seed && l > 0) { |
1074 | add_bootloader_randomness(buf: rng_seed, len: l); |
1075 | |
1076 | /* try to clear seed so it won't be found. */ |
1077 | fdt_nop_property(fdt: initial_boot_params, nodeoffset: node, name: "rng-seed"); |
1078 | |
1079 | /* update CRC check value */ |
1080 | of_fdt_crc32 = crc32_be(crc: ~0, p: initial_boot_params, |
1081 | fdt_totalsize(initial_boot_params)); |
1082 | } |
1083 | |
1084 | /* Retrieve command line */ |
1085 | p = of_get_flat_dt_prop(node, name: "bootargs", size: &l); |
1086 | if (p != NULL && l > 0) |
1087 | strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE)); |
1088 | |
1089 | handle_cmdline: |
1090 | /* |
1091 | * CONFIG_CMDLINE is meant to be a default in case nothing else |
1092 | * managed to set the command line, unless CONFIG_CMDLINE_FORCE |
1093 | * is set in which case we override whatever was found earlier. |
1094 | */ |
1095 | #ifdef CONFIG_CMDLINE |
1096 | #if defined(CONFIG_CMDLINE_EXTEND) |
1097 | strlcat(cmdline, " ", COMMAND_LINE_SIZE); |
1098 | strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
1099 | #elif defined(CONFIG_CMDLINE_FORCE) |
1100 | strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
1101 | #else |
1102 | /* No arguments from boot loader, use kernel's cmdl*/ |
1103 | if (!((char *)cmdline)[0]) |
1104 | strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
1105 | #endif |
1106 | #endif /* CONFIG_CMDLINE */ |
1107 | |
1108 | pr_debug("Command line is: %s\n", (char *)cmdline); |
1109 | |
1110 | return 0; |
1111 | } |
1112 | |
1113 | #ifndef MIN_MEMBLOCK_ADDR |
1114 | #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) |
1115 | #endif |
1116 | #ifndef MAX_MEMBLOCK_ADDR |
1117 | #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0) |
1118 | #endif |
1119 | |
1120 | void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size) |
1121 | { |
1122 | const u64 phys_offset = MIN_MEMBLOCK_ADDR; |
1123 | |
1124 | if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { |
1125 | pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
1126 | base, base + size); |
1127 | return; |
1128 | } |
1129 | |
1130 | if (!PAGE_ALIGNED(base)) { |
1131 | size -= PAGE_SIZE - (base & ~PAGE_MASK); |
1132 | base = PAGE_ALIGN(base); |
1133 | } |
1134 | size &= PAGE_MASK; |
1135 | |
1136 | if (base > MAX_MEMBLOCK_ADDR) { |
1137 | pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
1138 | base, base + size); |
1139 | return; |
1140 | } |
1141 | |
1142 | if (base + size - 1 > MAX_MEMBLOCK_ADDR) { |
1143 | pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", |
1144 | ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); |
1145 | size = MAX_MEMBLOCK_ADDR - base + 1; |
1146 | } |
1147 | |
1148 | if (base + size < phys_offset) { |
1149 | pr_warn("Ignoring memory block 0x%llx - 0x%llx\n", |
1150 | base, base + size); |
1151 | return; |
1152 | } |
1153 | if (base < phys_offset) { |
1154 | pr_warn("Ignoring memory range 0x%llx - 0x%llx\n", |
1155 | base, phys_offset); |
1156 | size -= phys_offset - base; |
1157 | base = phys_offset; |
1158 | } |
1159 | memblock_add(base, size); |
1160 | } |
1161 | |
1162 | static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align) |
1163 | { |
1164 | return memblock_alloc_or_panic(size, align); |
1165 | } |
1166 | |
1167 | bool __init early_init_dt_verify(void *dt_virt, phys_addr_t dt_phys) |
1168 | { |
1169 | if (!dt_virt) |
1170 | return false; |
1171 | |
1172 | /* check device tree validity */ |
1173 | if (fdt_check_header(fdt: dt_virt)) |
1174 | return false; |
1175 | |
1176 | /* Setup flat device-tree pointer */ |
1177 | initial_boot_params = dt_virt; |
1178 | initial_boot_params_pa = dt_phys; |
1179 | of_fdt_crc32 = crc32_be(crc: ~0, p: initial_boot_params, |
1180 | fdt_totalsize(initial_boot_params)); |
1181 | |
1182 | /* Initialize {size,address}-cells info */ |
1183 | early_init_dt_scan_root(); |
1184 | |
1185 | return true; |
1186 | } |
1187 | |
1188 | |
1189 | void __init early_init_dt_scan_nodes(void) |
1190 | { |
1191 | int rc; |
1192 | |
1193 | /* Retrieve various information from the /chosen node */ |
1194 | rc = early_init_dt_scan_chosen(cmdline: boot_command_line); |
1195 | if (rc) |
1196 | pr_warn("No chosen node found, continuing without\n"); |
1197 | |
1198 | /* Setup memory, calling early_init_dt_add_memory_arch */ |
1199 | early_init_dt_scan_memory(); |
1200 | |
1201 | /* Handle linux,usable-memory-range property */ |
1202 | early_init_dt_check_for_usable_mem_range(); |
1203 | |
1204 | /* Handle kexec handover */ |
1205 | early_init_dt_check_kho(); |
1206 | } |
1207 | |
1208 | bool __init early_init_dt_scan(void *dt_virt, phys_addr_t dt_phys) |
1209 | { |
1210 | bool status; |
1211 | |
1212 | status = early_init_dt_verify(dt_virt, dt_phys); |
1213 | if (!status) |
1214 | return false; |
1215 | |
1216 | early_init_dt_scan_nodes(); |
1217 | return true; |
1218 | } |
1219 | |
1220 | static void *__init copy_device_tree(void *fdt) |
1221 | { |
1222 | int size; |
1223 | void *dt; |
1224 | |
1225 | size = fdt_totalsize(fdt); |
1226 | dt = early_init_dt_alloc_memory_arch(size, |
1227 | roundup_pow_of_two(FDT_V17_SIZE)); |
1228 | |
1229 | if (dt) |
1230 | memcpy(dt, fdt, size); |
1231 | |
1232 | return dt; |
1233 | } |
1234 | |
1235 | /** |
1236 | * unflatten_device_tree - create tree of device_nodes from flat blob |
1237 | * |
1238 | * unflattens the device-tree passed by the firmware, creating the |
1239 | * tree of struct device_node. It also fills the "name" and "type" |
1240 | * pointers of the nodes so the normal device-tree walking functions |
1241 | * can be used. |
1242 | */ |
1243 | void __init unflatten_device_tree(void) |
1244 | { |
1245 | void *fdt = initial_boot_params; |
1246 | |
1247 | /* Save the statically-placed regions in the reserved_mem array */ |
1248 | fdt_scan_reserved_mem_reg_nodes(); |
1249 | |
1250 | /* Populate an empty root node when bootloader doesn't provide one */ |
1251 | if (!fdt) { |
1252 | fdt = (void *) __dtb_empty_root_begin; |
1253 | /* fdt_totalsize() will be used for copy size */ |
1254 | if (fdt_totalsize(fdt) > |
1255 | __dtb_empty_root_end - __dtb_empty_root_begin) { |
1256 | pr_err("invalid size in dtb_empty_root\n"); |
1257 | return; |
1258 | } |
1259 | of_fdt_crc32 = crc32_be(crc: ~0, p: fdt, fdt_totalsize(fdt)); |
1260 | fdt = copy_device_tree(fdt); |
1261 | } |
1262 | |
1263 | __unflatten_device_tree(blob: fdt, NULL, mynodes: &of_root, |
1264 | dt_alloc: early_init_dt_alloc_memory_arch, detached: false); |
1265 | |
1266 | /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ |
1267 | of_alias_scan(dt_alloc: early_init_dt_alloc_memory_arch); |
1268 | |
1269 | unittest_unflatten_overlay_base(); |
1270 | } |
1271 | |
1272 | /** |
1273 | * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob |
1274 | * |
1275 | * Copies and unflattens the device-tree passed by the firmware, creating the |
1276 | * tree of struct device_node. It also fills the "name" and "type" |
1277 | * pointers of the nodes so the normal device-tree walking functions |
1278 | * can be used. This should only be used when the FDT memory has not been |
1279 | * reserved such is the case when the FDT is built-in to the kernel init |
1280 | * section. If the FDT memory is reserved already then unflatten_device_tree |
1281 | * should be used instead. |
1282 | */ |
1283 | void __init unflatten_and_copy_device_tree(void) |
1284 | { |
1285 | if (initial_boot_params) |
1286 | initial_boot_params = copy_device_tree(fdt: initial_boot_params); |
1287 | |
1288 | unflatten_device_tree(); |
1289 | } |
1290 | |
1291 | #ifdef CONFIG_SYSFS |
1292 | static int __init of_fdt_raw_init(void) |
1293 | { |
1294 | static __ro_after_init BIN_ATTR_SIMPLE_ADMIN_RO(fdt); |
1295 | |
1296 | if (!initial_boot_params) |
1297 | return 0; |
1298 | |
1299 | if (of_fdt_crc32 != crc32_be(crc: ~0, p: initial_boot_params, |
1300 | fdt_totalsize(initial_boot_params))) { |
1301 | pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n"); |
1302 | return 0; |
1303 | } |
1304 | bin_attr_fdt.private = initial_boot_params; |
1305 | bin_attr_fdt.size = fdt_totalsize(initial_boot_params); |
1306 | return sysfs_create_bin_file(kobj: firmware_kobj, attr: &bin_attr_fdt); |
1307 | } |
1308 | late_initcall(of_fdt_raw_init); |
1309 | #endif |
1310 | |
1311 | #endif /* CONFIG_OF_EARLY_FLATTREE */ |
1312 |
Definitions
- of_fdt_limit_memory
- of_fdt_device_is_available
- unflatten_dt_alloc
- populate_properties
- populate_node
- reverse_nodes
- unflatten_dt_nodes
- __unflatten_device_tree
- kernel_tree_alloc
- of_fdt_unflatten_mutex
- of_fdt_unflatten_tree
- dt_root_addr_cells
- dt_root_size_cells
- initial_boot_params
- initial_boot_params_pa
- of_fdt_crc32
- fdt_reserve_elfcorehdr
- early_init_fdt_scan_reserved_mem
- early_init_fdt_reserve_self
- of_scan_flat_dt
- of_scan_flat_dt_subnodes
- of_get_flat_dt_subnode_by_name
- of_get_flat_dt_root
- of_get_flat_dt_prop
- of_fdt_is_compatible
- of_flat_dt_is_compatible
- of_flat_dt_match
- of_get_flat_dt_phandle
- of_flat_dt_get_machine_name
- of_flat_dt_match_machine
- __early_init_dt_declare_initrd
- early_init_dt_check_for_initrd
- early_init_dt_check_for_elfcorehdr
- chosen_node_offset
- early_init_dt_check_for_usable_mem_range
- early_init_dt_check_kho
- early_init_dt_scan_chosen_stdout
- early_init_dt_scan_root
- dt_mem_next_cell
- early_init_dt_scan_memory
- early_init_dt_scan_chosen
- early_init_dt_add_memory_arch
- early_init_dt_alloc_memory_arch
- early_init_dt_verify
- early_init_dt_scan_nodes
- early_init_dt_scan
- copy_device_tree
- unflatten_device_tree
- unflatten_and_copy_device_tree
Improve your Profiling and Debugging skills
Find out more