1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(lock: &opp_table->lock);
53 return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(error: -ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(ptr: dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(error: -EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(lock: &opp_table_lock);
93
94 return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table)
105{
106 return !WARN_ON(opp_table->clk_count > 1);
107}
108
109/**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp: opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119{
120 if (IS_ERR_OR_NULL(ptr: opp)) {
121 pr_err("%s: Invalid parameters\n", __func__);
122 return 0;
123 }
124
125 return opp->supplies[0].u_volt;
126}
127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129/**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
142{
143 if (IS_ERR_OR_NULL(ptr: opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return -EINVAL;
146 }
147
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
150 return 0;
151}
152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154/**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164{
165 unsigned long opp_power = 0;
166 int i;
167
168 if (IS_ERR_OR_NULL(ptr: opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
170 return 0;
171 }
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
174
175 return opp_power;
176}
177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179/**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189{
190 if (IS_ERR_OR_NULL(ptr: opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return 0;
193 }
194
195 return opp->rates[index];
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199/**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return U32_MAX.
205 */
206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207{
208 if (IS_ERR_OR_NULL(ptr: opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
210 return 0;
211 }
212
213 return opp->level;
214}
215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217/**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return U32_MAX.
225 */
226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 unsigned int index)
228{
229 if (IS_ERR_OR_NULL(ptr: opp) || !opp->available ||
230 index >= opp->opp_table->required_opp_count) {
231 pr_err("%s: Invalid parameters\n", __func__);
232 return 0;
233 }
234
235 /* required-opps not fully initialized yet */
236 if (lazy_linking_pending(opp_table: opp->opp_table))
237 return 0;
238
239 /* The required OPP table must belong to a genpd */
240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 return 0;
243 }
244
245 return opp->required_opps[index]->level;
246}
247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249/**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260{
261 if (IS_ERR_OR_NULL(ptr: opp) || !opp->available) {
262 pr_err("%s: Invalid parameters\n", __func__);
263 return false;
264 }
265
266 return opp->turbo;
267}
268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270/**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277{
278 struct opp_table *opp_table;
279 unsigned long clock_latency_ns;
280
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(ptr: opp_table))
283 return 0;
284
285 clock_latency_ns = opp_table->clock_latency_ns_max;
286
287 dev_pm_opp_put_opp_table(opp_table);
288
289 return clock_latency_ns;
290}
291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293/**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300{
301 struct opp_table *opp_table;
302 struct dev_pm_opp *opp;
303 struct regulator *reg;
304 unsigned long latency_ns = 0;
305 int ret, i, count;
306 struct {
307 unsigned long min;
308 unsigned long max;
309 } *uV;
310
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(ptr: opp_table))
313 return 0;
314
315 /* Regulator may not be required for the device */
316 if (!opp_table->regulators)
317 goto put_opp_table;
318
319 count = opp_table->regulator_count;
320
321 uV = kmalloc_array(n: count, size: sizeof(*uV), GFP_KERNEL);
322 if (!uV)
323 goto put_opp_table;
324
325 mutex_lock(&opp_table->lock);
326
327 for (i = 0; i < count; i++) {
328 uV[i].min = ~0;
329 uV[i].max = 0;
330
331 list_for_each_entry(opp, &opp_table->opp_list, node) {
332 if (!opp->available)
333 continue;
334
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
339 }
340 }
341
342 mutex_unlock(lock: &opp_table->lock);
343
344 /*
345 * The caller needs to ensure that opp_table (and hence the regulator)
346 * isn't freed, while we are executing this routine.
347 */
348 for (i = 0; i < count; i++) {
349 reg = opp_table->regulators[i];
350 ret = regulator_set_voltage_time(regulator: reg, old_uV: uV[i].min, new_uV: uV[i].max);
351 if (ret > 0)
352 latency_ns += ret * 1000;
353 }
354
355 kfree(objp: uV);
356put_opp_table:
357 dev_pm_opp_put_opp_table(opp_table);
358
359 return latency_ns;
360}
361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363/**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 * nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372{
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
375}
376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378/**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev: device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386{
387 struct opp_table *opp_table;
388 unsigned long freq = 0;
389
390 opp_table = _find_opp_table(dev);
391 if (IS_ERR(ptr: opp_table))
392 return 0;
393
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp: opp_table->suspend_opp);
396
397 dev_pm_opp_put_opp_table(opp_table);
398
399 return freq;
400}
401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
403int _get_opp_count(struct opp_table *opp_table)
404{
405 struct dev_pm_opp *opp;
406 int count = 0;
407
408 mutex_lock(&opp_table->lock);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
411 if (opp->available)
412 count++;
413 }
414
415 mutex_unlock(lock: &opp_table->lock);
416
417 return count;
418}
419
420/**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev: device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
427int dev_pm_opp_get_opp_count(struct device *dev)
428{
429 struct opp_table *opp_table;
430 int count;
431
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(ptr: opp_table)) {
434 count = PTR_ERR(ptr: opp_table);
435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 __func__, count);
437 return count;
438 }
439
440 count = _get_opp_count(opp_table);
441 dev_pm_opp_put_opp_table(opp_table);
442
443 return count;
444}
445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447/* Helpers to read keys */
448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449{
450 return opp->rates[index];
451}
452
453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454{
455 return opp->level;
456}
457
458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459{
460 return opp->bandwidth[index].peak;
461}
462
463/* Generic comparison helpers */
464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
466{
467 if (opp_key == key) {
468 *opp = temp_opp;
469 return true;
470 }
471
472 return false;
473}
474
475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
477{
478 if (opp_key >= key) {
479 *opp = temp_opp;
480 return true;
481 }
482
483 return false;
484}
485
486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
488{
489 if (opp_key > key)
490 return true;
491
492 *opp = temp_opp;
493 return false;
494}
495
496/* Generic key finding helpers */
497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
503{
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(error: -ERANGE);
505
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(error: -EINVAL);
509
510 mutex_lock(&opp_table->lock);
511
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 break;
516 }
517 }
518
519 /* Increment the reference count of OPP */
520 if (!IS_ERR(ptr: opp)) {
521 *key = read(opp, index);
522 dev_pm_opp_get(opp);
523 }
524
525 mutex_unlock(lock: &opp_table->lock);
526
527 return opp;
528}
529
530static struct dev_pm_opp *
531_find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
539
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(ptr: opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 PTR_ERR(opp_table));
544 return ERR_CAST(ptr: opp_table);
545 }
546
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
548 compare, assert);
549
550 dev_pm_opp_put_opp_table(opp_table);
551
552 return opp;
553}
554
555static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
559{
560 /*
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
563 */
564 return _find_key(dev, key: &key, index, available, read, compare: _compare_exact,
565 assert);
566}
567
568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
572{
573 return _opp_table_find_key(opp_table, key, index, available, read,
574 compare: _compare_ceil, assert);
575}
576
577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
581{
582 return _find_key(dev, key, index, available, read, compare: _compare_ceil,
583 assert);
584}
585
586static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
590{
591 return _find_key(dev, key, index, available, read, compare: _compare_floor,
592 assert);
593}
594
595/**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
599 * @available: true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 unsigned long freq, bool available)
620{
621 return _find_key_exact(dev, key: freq, index: 0, available, read: _read_freq,
622 assert: assert_single_clk);
623}
624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626/**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646struct dev_pm_opp *
647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
649{
650 return _find_key_exact(dev, key: freq, index, available, read: _read_freq, NULL);
651}
652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 unsigned long *freq)
656{
657 return _opp_table_find_key_ceil(opp_table, key: freq, index: 0, available: true, read: _read_freq,
658 assert: assert_single_clk);
659}
660
661/**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 unsigned long *freq)
681{
682 return _find_key_ceil(dev, key: freq, index: 0, available: true, read: _read_freq, assert: assert_single_clk);
683}
684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686/**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706struct dev_pm_opp *
707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 u32 index)
709{
710 return _find_key_ceil(dev, key: freq, index, available: true, read: _read_freq, NULL);
711}
712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714/**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 unsigned long *freq)
734{
735 return _find_key_floor(dev, key: freq, index: 0, available: true, read: _read_freq, assert: assert_single_clk);
736}
737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739/**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759struct dev_pm_opp *
760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 u32 index)
762{
763 return _find_key_floor(dev, key: freq, index, available: true, read: _read_freq, NULL);
764}
765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767/**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 unsigned int level)
784{
785 return _find_key_exact(dev, key: level, index: 0, available: true, read: _read_level, NULL);
786}
787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789/**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 unsigned int *level)
806{
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
809
810 opp = _find_key_ceil(dev, key: &temp, index: 0, available: true, read: _read_level, NULL);
811 if (IS_ERR(ptr: opp))
812 return opp;
813
814 /* False match */
815 if (temp == OPP_LEVEL_UNSET) {
816 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
817 dev_pm_opp_put(opp);
818 return ERR_PTR(error: -ENODEV);
819 }
820
821 *level = temp;
822 return opp;
823}
824EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
825
826/**
827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
828 * @dev: device for which we do this operation
829 * @level: Start level
830 *
831 * Search for the matching floor *available* OPP from a starting level
832 * for a device.
833 *
834 * Return: matching *opp and refreshes *level accordingly, else returns
835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
836 * values can be:
837 * EINVAL: for bad pointer
838 * ERANGE: no match found for search
839 * ENODEV: if device not found in list of registered devices
840 *
841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
842 * use.
843 */
844struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
845 unsigned int *level)
846{
847 unsigned long temp = *level;
848 struct dev_pm_opp *opp;
849
850 opp = _find_key_floor(dev, key: &temp, index: 0, available: true, read: _read_level, NULL);
851 *level = temp;
852 return opp;
853}
854EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
855
856/**
857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
858 * @dev: device for which we do this operation
859 * @bw: start bandwidth
860 * @index: which bandwidth to compare, in case of OPPs with several values
861 *
862 * Search for the matching floor *available* OPP from a starting bandwidth
863 * for a device.
864 *
865 * Return: matching *opp and refreshes *bw accordingly, else returns
866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
867 * values can be:
868 * EINVAL: for bad pointer
869 * ERANGE: no match found for search
870 * ENODEV: if device not found in list of registered devices
871 *
872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
873 * use.
874 */
875struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
876 int index)
877{
878 unsigned long temp = *bw;
879 struct dev_pm_opp *opp;
880
881 opp = _find_key_ceil(dev, key: &temp, index, available: true, read: _read_bw, NULL);
882 *bw = temp;
883 return opp;
884}
885EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
886
887/**
888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
889 * @dev: device for which we do this operation
890 * @bw: start bandwidth
891 * @index: which bandwidth to compare, in case of OPPs with several values
892 *
893 * Search for the matching floor *available* OPP from a starting bandwidth
894 * for a device.
895 *
896 * Return: matching *opp and refreshes *bw accordingly, else returns
897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
898 * values can be:
899 * EINVAL: for bad pointer
900 * ERANGE: no match found for search
901 * ENODEV: if device not found in list of registered devices
902 *
903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
904 * use.
905 */
906struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
907 unsigned int *bw, int index)
908{
909 unsigned long temp = *bw;
910 struct dev_pm_opp *opp;
911
912 opp = _find_key_floor(dev, key: &temp, index, available: true, read: _read_bw, NULL);
913 *bw = temp;
914 return opp;
915}
916EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
917
918static int _set_opp_voltage(struct device *dev, struct regulator *reg,
919 struct dev_pm_opp_supply *supply)
920{
921 int ret;
922
923 /* Regulator not available for device */
924 if (IS_ERR(ptr: reg)) {
925 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
926 PTR_ERR(reg));
927 return 0;
928 }
929
930 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
931 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
932
933 ret = regulator_set_voltage_triplet(regulator: reg, min_uV: supply->u_volt_min,
934 target_uV: supply->u_volt, max_uV: supply->u_volt_max);
935 if (ret)
936 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
937 __func__, supply->u_volt_min, supply->u_volt,
938 supply->u_volt_max, ret);
939
940 return ret;
941}
942
943static int
944_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
945 struct dev_pm_opp *opp, void *data, bool scaling_down)
946{
947 unsigned long *target = data;
948 unsigned long freq;
949 int ret;
950
951 /* One of target and opp must be available */
952 if (target) {
953 freq = *target;
954 } else if (opp) {
955 freq = opp->rates[0];
956 } else {
957 WARN_ON(1);
958 return -EINVAL;
959 }
960
961 ret = clk_set_rate(clk: opp_table->clk, rate: freq);
962 if (ret) {
963 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
964 ret);
965 } else {
966 opp_table->current_rate_single_clk = freq;
967 }
968
969 return ret;
970}
971
972/*
973 * Simple implementation for configuring multiple clocks. Configure clocks in
974 * the order in which they are present in the array while scaling up.
975 */
976int dev_pm_opp_config_clks_simple(struct device *dev,
977 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
978 bool scaling_down)
979{
980 int ret, i;
981
982 if (scaling_down) {
983 for (i = opp_table->clk_count - 1; i >= 0; i--) {
984 ret = clk_set_rate(clk: opp_table->clks[i], rate: opp->rates[i]);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 return ret;
989 }
990 }
991 } else {
992 for (i = 0; i < opp_table->clk_count; i++) {
993 ret = clk_set_rate(clk: opp_table->clks[i], rate: opp->rates[i]);
994 if (ret) {
995 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
996 ret);
997 return ret;
998 }
999 }
1000 }
1001
1002 return 0;
1003}
1004EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
1006static int _opp_config_regulator_single(struct device *dev,
1007 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008 struct regulator **regulators, unsigned int count)
1009{
1010 struct regulator *reg = regulators[0];
1011 int ret;
1012
1013 /* This function only supports single regulator per device */
1014 if (WARN_ON(count > 1)) {
1015 dev_err(dev, "multiple regulators are not supported\n");
1016 return -EINVAL;
1017 }
1018
1019 ret = _set_opp_voltage(dev, reg, supply: new_opp->supplies);
1020 if (ret)
1021 return ret;
1022
1023 /*
1024 * Enable the regulator after setting its voltages, otherwise it breaks
1025 * some boot-enabled regulators.
1026 */
1027 if (unlikely(!new_opp->opp_table->enabled)) {
1028 ret = regulator_enable(regulator: reg);
1029 if (ret < 0)
1030 dev_warn(dev, "Failed to enable regulator: %d", ret);
1031 }
1032
1033 return 0;
1034}
1035
1036static int _set_opp_bw(const struct opp_table *opp_table,
1037 struct dev_pm_opp *opp, struct device *dev)
1038{
1039 u32 avg, peak;
1040 int i, ret;
1041
1042 if (!opp_table->paths)
1043 return 0;
1044
1045 for (i = 0; i < opp_table->path_count; i++) {
1046 if (!opp) {
1047 avg = 0;
1048 peak = 0;
1049 } else {
1050 avg = opp->bandwidth[i].avg;
1051 peak = opp->bandwidth[i].peak;
1052 }
1053 ret = icc_set_bw(path: opp_table->paths[i], avg_bw: avg, peak_bw: peak);
1054 if (ret) {
1055 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056 opp ? "set" : "remove", i, ret);
1057 return ret;
1058 }
1059 }
1060
1061 return 0;
1062}
1063
1064/* This is only called for PM domain for now */
1065static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066 struct dev_pm_opp *opp, bool up)
1067{
1068 struct device **devs = opp_table->required_devs;
1069 struct dev_pm_opp *required_opp;
1070 int index, target, delta, ret;
1071
1072 if (!devs)
1073 return 0;
1074
1075 /* required-opps not fully initialized yet */
1076 if (lazy_linking_pending(opp_table))
1077 return -EBUSY;
1078
1079 /* Scaling up? Set required OPPs in normal order, else reverse */
1080 if (up) {
1081 index = 0;
1082 target = opp_table->required_opp_count;
1083 delta = 1;
1084 } else {
1085 index = opp_table->required_opp_count - 1;
1086 target = -1;
1087 delta = -1;
1088 }
1089
1090 while (index != target) {
1091 if (devs[index]) {
1092 required_opp = opp ? opp->required_opps[index] : NULL;
1093
1094 ret = dev_pm_opp_set_opp(dev: devs[index], opp: required_opp);
1095 if (ret)
1096 return ret;
1097 }
1098
1099 index += delta;
1100 }
1101
1102 return 0;
1103}
1104
1105static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106 struct dev_pm_opp *opp)
1107{
1108 unsigned int level = 0;
1109 int ret = 0;
1110
1111 if (opp) {
1112 if (opp->level == OPP_LEVEL_UNSET)
1113 return 0;
1114
1115 level = opp->level;
1116 }
1117
1118 /* Request a new performance state through the device's PM domain. */
1119 ret = dev_pm_domain_set_performance_state(dev, state: level);
1120 if (ret)
1121 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122 ret);
1123
1124 return ret;
1125}
1126
1127static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128{
1129 struct dev_pm_opp *opp = ERR_PTR(error: -ENODEV);
1130 unsigned long freq;
1131
1132 if (!IS_ERR(ptr: opp_table->clk)) {
1133 freq = clk_get_rate(clk: opp_table->clk);
1134 opp = _find_freq_ceil(opp_table, freq: &freq);
1135 }
1136
1137 /*
1138 * Unable to find the current OPP ? Pick the first from the list since
1139 * it is in ascending order, otherwise rest of the code will need to
1140 * make special checks to validate current_opp.
1141 */
1142 if (IS_ERR(ptr: opp)) {
1143 mutex_lock(&opp_table->lock);
1144 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145 dev_pm_opp_get(opp);
1146 mutex_unlock(lock: &opp_table->lock);
1147 }
1148
1149 opp_table->current_opp = opp;
1150}
1151
1152static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153{
1154 int ret;
1155
1156 if (!opp_table->enabled)
1157 return 0;
1158
1159 /*
1160 * Some drivers need to support cases where some platforms may
1161 * have OPP table for the device, while others don't and
1162 * opp_set_rate() just needs to behave like clk_set_rate().
1163 */
1164 if (!_get_opp_count(opp_table))
1165 return 0;
1166
1167 ret = _set_opp_bw(opp_table, NULL, dev);
1168 if (ret)
1169 return ret;
1170
1171 if (opp_table->regulators)
1172 regulator_disable(regulator: opp_table->regulators[0]);
1173
1174 ret = _set_opp_level(dev, opp_table, NULL);
1175 if (ret)
1176 goto out;
1177
1178 ret = _set_required_opps(dev, opp_table, NULL, up: false);
1179
1180out:
1181 opp_table->enabled = false;
1182 return ret;
1183}
1184
1185static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186 struct dev_pm_opp *opp, void *clk_data, bool forced)
1187{
1188 struct dev_pm_opp *old_opp;
1189 int scaling_down, ret;
1190
1191 if (unlikely(!opp))
1192 return _disable_opp_table(dev, opp_table);
1193
1194 /* Find the currently set OPP if we don't know already */
1195 if (unlikely(!opp_table->current_opp))
1196 _find_current_opp(dev, opp_table);
1197
1198 old_opp = opp_table->current_opp;
1199
1200 /* Return early if nothing to do */
1201 if (!forced && old_opp == opp && opp_table->enabled) {
1202 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203 return 0;
1204 }
1205
1206 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210
1211 scaling_down = _opp_compare_key(opp_table, opp1: old_opp, opp2: opp);
1212 if (scaling_down == -1)
1213 scaling_down = 0;
1214
1215 /* Scaling up? Configure required OPPs before frequency */
1216 if (!scaling_down) {
1217 ret = _set_required_opps(dev, opp_table, opp, up: true);
1218 if (ret) {
1219 dev_err(dev, "Failed to set required opps: %d\n", ret);
1220 return ret;
1221 }
1222
1223 ret = _set_opp_level(dev, opp_table, opp);
1224 if (ret)
1225 return ret;
1226
1227 ret = _set_opp_bw(opp_table, opp, dev);
1228 if (ret) {
1229 dev_err(dev, "Failed to set bw: %d\n", ret);
1230 return ret;
1231 }
1232
1233 if (opp_table->config_regulators) {
1234 ret = opp_table->config_regulators(dev, old_opp, opp,
1235 opp_table->regulators,
1236 opp_table->regulator_count);
1237 if (ret) {
1238 dev_err(dev, "Failed to set regulator voltages: %d\n",
1239 ret);
1240 return ret;
1241 }
1242 }
1243 }
1244
1245 if (opp_table->config_clks) {
1246 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1247 if (ret)
1248 return ret;
1249 }
1250
1251 /* Scaling down? Configure required OPPs after frequency */
1252 if (scaling_down) {
1253 if (opp_table->config_regulators) {
1254 ret = opp_table->config_regulators(dev, old_opp, opp,
1255 opp_table->regulators,
1256 opp_table->regulator_count);
1257 if (ret) {
1258 dev_err(dev, "Failed to set regulator voltages: %d\n",
1259 ret);
1260 return ret;
1261 }
1262 }
1263
1264 ret = _set_opp_bw(opp_table, opp, dev);
1265 if (ret) {
1266 dev_err(dev, "Failed to set bw: %d\n", ret);
1267 return ret;
1268 }
1269
1270 ret = _set_opp_level(dev, opp_table, opp);
1271 if (ret)
1272 return ret;
1273
1274 ret = _set_required_opps(dev, opp_table, opp, up: false);
1275 if (ret) {
1276 dev_err(dev, "Failed to set required opps: %d\n", ret);
1277 return ret;
1278 }
1279 }
1280
1281 opp_table->enabled = true;
1282 dev_pm_opp_put(opp: old_opp);
1283
1284 /* Make sure current_opp doesn't get freed */
1285 dev_pm_opp_get(opp);
1286 opp_table->current_opp = opp;
1287
1288 return ret;
1289}
1290
1291/**
1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293 * @dev: device for which we do this operation
1294 * @target_freq: frequency to achieve
1295 *
1296 * This configures the power-supplies to the levels specified by the OPP
1297 * corresponding to the target_freq, and programs the clock to a value <=
1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299 * provided by the opp, should have already rounded to the target OPP's
1300 * frequency.
1301 */
1302int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303{
1304 struct opp_table *opp_table;
1305 unsigned long freq = 0, temp_freq;
1306 struct dev_pm_opp *opp = NULL;
1307 bool forced = false;
1308 int ret;
1309
1310 opp_table = _find_opp_table(dev);
1311 if (IS_ERR(ptr: opp_table)) {
1312 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313 return PTR_ERR(ptr: opp_table);
1314 }
1315
1316 if (target_freq) {
1317 /*
1318 * For IO devices which require an OPP on some platforms/SoCs
1319 * while just needing to scale the clock on some others
1320 * we look for empty OPP tables with just a clock handle and
1321 * scale only the clk. This makes dev_pm_opp_set_rate()
1322 * equivalent to a clk_set_rate()
1323 */
1324 if (!_get_opp_count(opp_table)) {
1325 ret = opp_table->config_clks(dev, opp_table, NULL,
1326 &target_freq, false);
1327 goto put_opp_table;
1328 }
1329
1330 freq = clk_round_rate(clk: opp_table->clk, rate: target_freq);
1331 if ((long)freq <= 0)
1332 freq = target_freq;
1333
1334 /*
1335 * The clock driver may support finer resolution of the
1336 * frequencies than the OPP table, don't update the frequency we
1337 * pass to clk_set_rate() here.
1338 */
1339 temp_freq = freq;
1340 opp = _find_freq_ceil(opp_table, freq: &temp_freq);
1341 if (IS_ERR(ptr: opp)) {
1342 ret = PTR_ERR(ptr: opp);
1343 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344 __func__, freq, ret);
1345 goto put_opp_table;
1346 }
1347
1348 /*
1349 * An OPP entry specifies the highest frequency at which other
1350 * properties of the OPP entry apply. Even if the new OPP is
1351 * same as the old one, we may still reach here for a different
1352 * value of the frequency. In such a case, do not abort but
1353 * configure the hardware to the desired frequency forcefully.
1354 */
1355 forced = opp_table->current_rate_single_clk != freq;
1356 }
1357
1358 ret = _set_opp(dev, opp_table, opp, clk_data: &freq, forced);
1359
1360 if (freq)
1361 dev_pm_opp_put(opp);
1362
1363put_opp_table:
1364 dev_pm_opp_put_opp_table(opp_table);
1365 return ret;
1366}
1367EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369/**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
1379int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380{
1381 struct opp_table *opp_table;
1382 int ret;
1383
1384 opp_table = _find_opp_table(dev);
1385 if (IS_ERR(ptr: opp_table)) {
1386 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387 return PTR_ERR(ptr: opp_table);
1388 }
1389
1390 ret = _set_opp(dev, opp_table, opp, NULL, forced: false);
1391 dev_pm_opp_put_opp_table(opp_table);
1392
1393 return ret;
1394}
1395EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396
1397/* OPP-dev Helpers */
1398static void _remove_opp_dev(struct opp_device *opp_dev,
1399 struct opp_table *opp_table)
1400{
1401 opp_debug_unregister(opp_dev, opp_table);
1402 list_del(entry: &opp_dev->node);
1403 kfree(objp: opp_dev);
1404}
1405
1406struct opp_device *_add_opp_dev(const struct device *dev,
1407 struct opp_table *opp_table)
1408{
1409 struct opp_device *opp_dev;
1410
1411 opp_dev = kzalloc(size: sizeof(*opp_dev), GFP_KERNEL);
1412 if (!opp_dev)
1413 return NULL;
1414
1415 /* Initialize opp-dev */
1416 opp_dev->dev = dev;
1417
1418 mutex_lock(&opp_table->lock);
1419 list_add(new: &opp_dev->node, head: &opp_table->dev_list);
1420 mutex_unlock(lock: &opp_table->lock);
1421
1422 /* Create debugfs entries for the opp_table */
1423 opp_debug_register(opp_dev, opp_table);
1424
1425 return opp_dev;
1426}
1427
1428static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429{
1430 struct opp_table *opp_table;
1431 struct opp_device *opp_dev;
1432 int ret;
1433
1434 /*
1435 * Allocate a new OPP table. In the infrequent case where a new
1436 * device is needed to be added, we pay this penalty.
1437 */
1438 opp_table = kzalloc(size: sizeof(*opp_table), GFP_KERNEL);
1439 if (!opp_table)
1440 return ERR_PTR(error: -ENOMEM);
1441
1442 mutex_init(&opp_table->lock);
1443 INIT_LIST_HEAD(list: &opp_table->dev_list);
1444 INIT_LIST_HEAD(list: &opp_table->lazy);
1445
1446 opp_table->clk = ERR_PTR(error: -ENODEV);
1447
1448 /* Mark regulator count uninitialized */
1449 opp_table->regulator_count = -1;
1450
1451 opp_dev = _add_opp_dev(dev, opp_table);
1452 if (!opp_dev) {
1453 ret = -ENOMEM;
1454 goto err;
1455 }
1456
1457 _of_init_opp_table(opp_table, dev, index);
1458
1459 /* Find interconnect path(s) for the device */
1460 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461 if (ret) {
1462 if (ret == -EPROBE_DEFER)
1463 goto remove_opp_dev;
1464
1465 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466 __func__, ret);
1467 }
1468
1469 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470 INIT_LIST_HEAD(list: &opp_table->opp_list);
1471 kref_init(kref: &opp_table->kref);
1472
1473 return opp_table;
1474
1475remove_opp_dev:
1476 _of_clear_opp_table(opp_table);
1477 _remove_opp_dev(opp_dev, opp_table);
1478 mutex_destroy(lock: &opp_table->lock);
1479err:
1480 kfree(objp: opp_table);
1481 return ERR_PTR(error: ret);
1482}
1483
1484void _get_opp_table_kref(struct opp_table *opp_table)
1485{
1486 kref_get(kref: &opp_table->kref);
1487}
1488
1489static struct opp_table *_update_opp_table_clk(struct device *dev,
1490 struct opp_table *opp_table,
1491 bool getclk)
1492{
1493 int ret;
1494
1495 /*
1496 * Return early if we don't need to get clk or we have already done it
1497 * earlier.
1498 */
1499 if (!getclk || IS_ERR(ptr: opp_table) || !IS_ERR(ptr: opp_table->clk) ||
1500 opp_table->clks)
1501 return opp_table;
1502
1503 /* Find clk for the device */
1504 opp_table->clk = clk_get(dev, NULL);
1505
1506 ret = PTR_ERR_OR_ZERO(ptr: opp_table->clk);
1507 if (!ret) {
1508 opp_table->config_clks = _opp_config_clk_single;
1509 opp_table->clk_count = 1;
1510 return opp_table;
1511 }
1512
1513 if (ret == -ENOENT) {
1514 /*
1515 * There are few platforms which don't want the OPP core to
1516 * manage device's clock settings. In such cases neither the
1517 * platform provides the clks explicitly to us, nor the DT
1518 * contains a valid clk entry. The OPP nodes in DT may still
1519 * contain "opp-hz" property though, which we need to parse and
1520 * allow the platform to find an OPP based on freq later on.
1521 *
1522 * This is a simple solution to take care of such corner cases,
1523 * i.e. make the clk_count 1, which lets us allocate space for
1524 * frequency in opp->rates and also parse the entries in DT.
1525 */
1526 opp_table->clk_count = 1;
1527
1528 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529 return opp_table;
1530 }
1531
1532 dev_pm_opp_put_opp_table(opp_table);
1533 dev_err_probe(dev, err: ret, fmt: "Couldn't find clock\n");
1534
1535 return ERR_PTR(error: ret);
1536}
1537
1538/*
1539 * We need to make sure that the OPP table for a device doesn't get added twice,
1540 * if this routine gets called in parallel with the same device pointer.
1541 *
1542 * The simplest way to enforce that is to perform everything (find existing
1543 * table and if not found, create a new one) under the opp_table_lock, so only
1544 * one creator gets access to the same. But that expands the critical section
1545 * under the lock and may end up causing circular dependencies with frameworks
1546 * like debugfs, interconnect or clock framework as they may be direct or
1547 * indirect users of OPP core.
1548 *
1549 * And for that reason we have to go for a bit tricky implementation here, which
1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551 * of adding an OPP table and others should wait for it to finish.
1552 */
1553struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554 bool getclk)
1555{
1556 struct opp_table *opp_table;
1557
1558again:
1559 mutex_lock(&opp_table_lock);
1560
1561 opp_table = _find_opp_table_unlocked(dev);
1562 if (!IS_ERR(ptr: opp_table))
1563 goto unlock;
1564
1565 /*
1566 * The opp_tables list or an OPP table's dev_list is getting updated by
1567 * another user, wait for it to finish.
1568 */
1569 if (unlikely(opp_tables_busy)) {
1570 mutex_unlock(lock: &opp_table_lock);
1571 cpu_relax();
1572 goto again;
1573 }
1574
1575 opp_tables_busy = true;
1576 opp_table = _managed_opp(dev, index);
1577
1578 /* Drop the lock to reduce the size of critical section */
1579 mutex_unlock(lock: &opp_table_lock);
1580
1581 if (opp_table) {
1582 if (!_add_opp_dev(dev, opp_table)) {
1583 dev_pm_opp_put_opp_table(opp_table);
1584 opp_table = ERR_PTR(error: -ENOMEM);
1585 }
1586
1587 mutex_lock(&opp_table_lock);
1588 } else {
1589 opp_table = _allocate_opp_table(dev, index);
1590
1591 mutex_lock(&opp_table_lock);
1592 if (!IS_ERR(ptr: opp_table))
1593 list_add(new: &opp_table->node, head: &opp_tables);
1594 }
1595
1596 opp_tables_busy = false;
1597
1598unlock:
1599 mutex_unlock(lock: &opp_table_lock);
1600
1601 return _update_opp_table_clk(dev, opp_table, getclk);
1602}
1603
1604static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605{
1606 return _add_opp_table_indexed(dev, index: 0, getclk);
1607}
1608
1609struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610{
1611 return _find_opp_table(dev);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614
1615static void _opp_table_kref_release(struct kref *kref)
1616{
1617 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618 struct opp_device *opp_dev, *temp;
1619 int i;
1620
1621 /* Drop the lock as soon as we can */
1622 list_del(entry: &opp_table->node);
1623 mutex_unlock(lock: &opp_table_lock);
1624
1625 if (opp_table->current_opp)
1626 dev_pm_opp_put(opp: opp_table->current_opp);
1627
1628 _of_clear_opp_table(opp_table);
1629
1630 /* Release automatically acquired single clk */
1631 if (!IS_ERR(ptr: opp_table->clk))
1632 clk_put(clk: opp_table->clk);
1633
1634 if (opp_table->paths) {
1635 for (i = 0; i < opp_table->path_count; i++)
1636 icc_put(path: opp_table->paths[i]);
1637 kfree(objp: opp_table->paths);
1638 }
1639
1640 WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1643 _remove_opp_dev(opp_dev, opp_table);
1644
1645 mutex_destroy(lock: &opp_table->lock);
1646 kfree(objp: opp_table);
1647}
1648
1649void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650{
1651 kref_put_mutex(kref: &opp_table->kref, release: _opp_table_kref_release,
1652 lock: &opp_table_lock);
1653}
1654EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655
1656void _opp_free(struct dev_pm_opp *opp)
1657{
1658 kfree(objp: opp);
1659}
1660
1661static void _opp_kref_release(struct kref *kref)
1662{
1663 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664 struct opp_table *opp_table = opp->opp_table;
1665
1666 list_del(entry: &opp->node);
1667 mutex_unlock(lock: &opp_table->lock);
1668
1669 /*
1670 * Notify the changes in the availability of the operable
1671 * frequency/voltage list.
1672 */
1673 blocking_notifier_call_chain(nh: &opp_table->head, val: OPP_EVENT_REMOVE, v: opp);
1674 _of_clear_opp(opp_table, opp);
1675 opp_debug_remove_one(opp);
1676 kfree(objp: opp);
1677}
1678
1679void dev_pm_opp_get(struct dev_pm_opp *opp)
1680{
1681 kref_get(kref: &opp->kref);
1682}
1683
1684void dev_pm_opp_put(struct dev_pm_opp *opp)
1685{
1686 kref_put_mutex(kref: &opp->kref, release: _opp_kref_release, lock: &opp->opp_table->lock);
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689
1690/**
1691 * dev_pm_opp_remove() - Remove an OPP from OPP table
1692 * @dev: device for which we do this operation
1693 * @freq: OPP to remove with matching 'freq'
1694 *
1695 * This function removes an opp from the opp table.
1696 */
1697void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698{
1699 struct dev_pm_opp *opp = NULL, *iter;
1700 struct opp_table *opp_table;
1701
1702 opp_table = _find_opp_table(dev);
1703 if (IS_ERR(ptr: opp_table))
1704 return;
1705
1706 if (!assert_single_clk(opp_table))
1707 goto put_table;
1708
1709 mutex_lock(&opp_table->lock);
1710
1711 list_for_each_entry(iter, &opp_table->opp_list, node) {
1712 if (iter->rates[0] == freq) {
1713 opp = iter;
1714 break;
1715 }
1716 }
1717
1718 mutex_unlock(lock: &opp_table->lock);
1719
1720 if (opp) {
1721 dev_pm_opp_put(opp);
1722
1723 /* Drop the reference taken by dev_pm_opp_add() */
1724 dev_pm_opp_put_opp_table(opp_table);
1725 } else {
1726 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727 __func__, freq);
1728 }
1729
1730put_table:
1731 /* Drop the reference taken by _find_opp_table() */
1732 dev_pm_opp_put_opp_table(opp_table);
1733}
1734EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735
1736static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737 bool dynamic)
1738{
1739 struct dev_pm_opp *opp = NULL, *temp;
1740
1741 mutex_lock(&opp_table->lock);
1742 list_for_each_entry(temp, &opp_table->opp_list, node) {
1743 /*
1744 * Refcount must be dropped only once for each OPP by OPP core,
1745 * do that with help of "removed" flag.
1746 */
1747 if (!temp->removed && dynamic == temp->dynamic) {
1748 opp = temp;
1749 break;
1750 }
1751 }
1752
1753 mutex_unlock(lock: &opp_table->lock);
1754 return opp;
1755}
1756
1757/*
1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759 * happen lock less to avoid circular dependency issues. This routine must be
1760 * called without the opp_table->lock held.
1761 */
1762static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763{
1764 struct dev_pm_opp *opp;
1765
1766 while ((opp = _opp_get_next(opp_table, dynamic))) {
1767 opp->removed = true;
1768 dev_pm_opp_put(opp);
1769
1770 /* Drop the references taken by dev_pm_opp_add() */
1771 if (dynamic)
1772 dev_pm_opp_put_opp_table(opp_table);
1773 }
1774}
1775
1776bool _opp_remove_all_static(struct opp_table *opp_table)
1777{
1778 mutex_lock(&opp_table->lock);
1779
1780 if (!opp_table->parsed_static_opps) {
1781 mutex_unlock(lock: &opp_table->lock);
1782 return false;
1783 }
1784
1785 if (--opp_table->parsed_static_opps) {
1786 mutex_unlock(lock: &opp_table->lock);
1787 return true;
1788 }
1789
1790 mutex_unlock(lock: &opp_table->lock);
1791
1792 _opp_remove_all(opp_table, dynamic: false);
1793 return true;
1794}
1795
1796/**
1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798 * @dev: device for which we do this operation
1799 *
1800 * This function removes all dynamically created OPPs from the opp table.
1801 */
1802void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803{
1804 struct opp_table *opp_table;
1805
1806 opp_table = _find_opp_table(dev);
1807 if (IS_ERR(ptr: opp_table))
1808 return;
1809
1810 _opp_remove_all(opp_table, dynamic: true);
1811
1812 /* Drop the reference taken by _find_opp_table() */
1813 dev_pm_opp_put_opp_table(opp_table);
1814}
1815EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816
1817struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818{
1819 struct dev_pm_opp *opp;
1820 int supply_count, supply_size, icc_size, clk_size;
1821
1822 /* Allocate space for at least one supply */
1823 supply_count = opp_table->regulator_count > 0 ?
1824 opp_table->regulator_count : 1;
1825 supply_size = sizeof(*opp->supplies) * supply_count;
1826 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828
1829 /* allocate new OPP node and supplies structures */
1830 opp = kzalloc(size: sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831 if (!opp)
1832 return NULL;
1833
1834 /* Put the supplies, bw and clock at the end of the OPP structure */
1835 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836
1837 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838
1839 if (icc_size)
1840 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841
1842 INIT_LIST_HEAD(list: &opp->node);
1843
1844 opp->level = OPP_LEVEL_UNSET;
1845
1846 return opp;
1847}
1848
1849static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850 struct opp_table *opp_table)
1851{
1852 struct regulator *reg;
1853 int i;
1854
1855 if (!opp_table->regulators)
1856 return true;
1857
1858 for (i = 0; i < opp_table->regulator_count; i++) {
1859 reg = opp_table->regulators[i];
1860
1861 if (!regulator_is_supported_voltage(regulator: reg,
1862 min_uV: opp->supplies[i].u_volt_min,
1863 max_uV: opp->supplies[i].u_volt_max)) {
1864 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865 __func__, opp->supplies[i].u_volt_min,
1866 opp->supplies[i].u_volt_max);
1867 return false;
1868 }
1869 }
1870
1871 return true;
1872}
1873
1874static int _opp_compare_rate(struct opp_table *opp_table,
1875 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876{
1877 int i;
1878
1879 for (i = 0; i < opp_table->clk_count; i++) {
1880 if (opp1->rates[i] != opp2->rates[i])
1881 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882 }
1883
1884 /* Same rates for both OPPs */
1885 return 0;
1886}
1887
1888static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889 struct dev_pm_opp *opp2)
1890{
1891 int i;
1892
1893 for (i = 0; i < opp_table->path_count; i++) {
1894 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896 }
1897
1898 /* Same bw for both OPPs */
1899 return 0;
1900}
1901
1902/*
1903 * Returns
1904 * 0: opp1 == opp2
1905 * 1: opp1 > opp2
1906 * -1: opp1 < opp2
1907 */
1908int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909 struct dev_pm_opp *opp2)
1910{
1911 int ret;
1912
1913 ret = _opp_compare_rate(opp_table, opp1, opp2);
1914 if (ret)
1915 return ret;
1916
1917 ret = _opp_compare_bw(opp_table, opp1, opp2);
1918 if (ret)
1919 return ret;
1920
1921 if (opp1->level != opp2->level)
1922 return opp1->level < opp2->level ? -1 : 1;
1923
1924 /* Duplicate OPPs */
1925 return 0;
1926}
1927
1928static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929 struct opp_table *opp_table,
1930 struct list_head **head)
1931{
1932 struct dev_pm_opp *opp;
1933 int opp_cmp;
1934
1935 /*
1936 * Insert new OPP in order of increasing frequency and discard if
1937 * already present.
1938 *
1939 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940 * loop, don't replace it with head otherwise it will become an infinite
1941 * loop.
1942 */
1943 list_for_each_entry(opp, &opp_table->opp_list, node) {
1944 opp_cmp = _opp_compare_key(opp_table, opp1: new_opp, opp2: opp);
1945 if (opp_cmp > 0) {
1946 *head = &opp->node;
1947 continue;
1948 }
1949
1950 if (opp_cmp < 0)
1951 return 0;
1952
1953 /* Duplicate OPPs */
1954 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956 opp->available, new_opp->rates[0],
1957 new_opp->supplies[0].u_volt, new_opp->available);
1958
1959 /* Should we compare voltages for all regulators here ? */
1960 return opp->available &&
1961 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962 }
1963
1964 return 0;
1965}
1966
1967void _required_opps_available(struct dev_pm_opp *opp, int count)
1968{
1969 int i;
1970
1971 for (i = 0; i < count; i++) {
1972 if (opp->required_opps[i]->available)
1973 continue;
1974
1975 opp->available = false;
1976 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978 return;
1979 }
1980}
1981
1982/*
1983 * Returns:
1984 * 0: On success. And appropriate error message for duplicate OPPs.
1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987 * sure we don't print error messages unnecessarily if different parts of
1988 * kernel try to initialize the OPP table.
1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990 * should be considered an error by the callers of _opp_add().
1991 */
1992int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993 struct opp_table *opp_table)
1994{
1995 struct list_head *head;
1996 int ret;
1997
1998 mutex_lock(&opp_table->lock);
1999 head = &opp_table->opp_list;
2000
2001 ret = _opp_is_duplicate(dev, new_opp, opp_table, head: &head);
2002 if (ret) {
2003 mutex_unlock(lock: &opp_table->lock);
2004 return ret;
2005 }
2006
2007 list_add(new: &new_opp->node, head);
2008 mutex_unlock(lock: &opp_table->lock);
2009
2010 new_opp->opp_table = opp_table;
2011 kref_init(kref: &new_opp->kref);
2012
2013 opp_debug_create_one(opp: new_opp, opp_table);
2014
2015 if (!_opp_supported_by_regulators(opp: new_opp, opp_table)) {
2016 new_opp->available = false;
2017 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018 __func__, new_opp->rates[0]);
2019 }
2020
2021 /* required-opps not fully initialized yet */
2022 if (lazy_linking_pending(opp_table))
2023 return 0;
2024
2025 _required_opps_available(opp: new_opp, count: opp_table->required_opp_count);
2026
2027 return 0;
2028}
2029
2030/**
2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032 * @opp_table: OPP table
2033 * @dev: device for which we do this operation
2034 * @data: The OPP data for the OPP to add
2035 * @dynamic: Dynamically added OPPs.
2036 *
2037 * This function adds an opp definition to the opp table and returns status.
2038 * The opp is made available by default and it can be controlled using
2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040 *
2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042 * and freed by dev_pm_opp_of_remove_table.
2043 *
2044 * Return:
2045 * 0 On success OR
2046 * Duplicate OPPs (both freq and volt are same) and opp->available
2047 * -EEXIST Freq are same and volt are different OR
2048 * Duplicate OPPs (both freq and volt are same) and !opp->available
2049 * -ENOMEM Memory allocation failure
2050 */
2051int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052 struct dev_pm_opp_data *data, bool dynamic)
2053{
2054 struct dev_pm_opp *new_opp;
2055 unsigned long tol, u_volt = data->u_volt;
2056 int ret;
2057
2058 if (!assert_single_clk(opp_table))
2059 return -EINVAL;
2060
2061 new_opp = _opp_allocate(opp_table);
2062 if (!new_opp)
2063 return -ENOMEM;
2064
2065 /* populate the opp table */
2066 new_opp->rates[0] = data->freq;
2067 new_opp->level = data->level;
2068 new_opp->turbo = data->turbo;
2069 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2070 new_opp->supplies[0].u_volt = u_volt;
2071 new_opp->supplies[0].u_volt_min = u_volt - tol;
2072 new_opp->supplies[0].u_volt_max = u_volt + tol;
2073 new_opp->available = true;
2074 new_opp->dynamic = dynamic;
2075
2076 ret = _opp_add(dev, new_opp, opp_table);
2077 if (ret) {
2078 /* Don't return error for duplicate OPPs */
2079 if (ret == -EBUSY)
2080 ret = 0;
2081 goto free_opp;
2082 }
2083
2084 /*
2085 * Notify the changes in the availability of the operable
2086 * frequency/voltage list.
2087 */
2088 blocking_notifier_call_chain(nh: &opp_table->head, val: OPP_EVENT_ADD, v: new_opp);
2089 return 0;
2090
2091free_opp:
2092 _opp_free(opp: new_opp);
2093
2094 return ret;
2095}
2096
2097/*
2098 * This is required only for the V2 bindings, and it enables a platform to
2099 * specify the hierarchy of versions it supports. OPP layer will then enable
2100 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2101 * property.
2102 */
2103static int _opp_set_supported_hw(struct opp_table *opp_table,
2104 const u32 *versions, unsigned int count)
2105{
2106 /* Another CPU that shares the OPP table has set the property ? */
2107 if (opp_table->supported_hw)
2108 return 0;
2109
2110 opp_table->supported_hw = kmemdup(p: versions, size: count * sizeof(*versions),
2111 GFP_KERNEL);
2112 if (!opp_table->supported_hw)
2113 return -ENOMEM;
2114
2115 opp_table->supported_hw_count = count;
2116
2117 return 0;
2118}
2119
2120static void _opp_put_supported_hw(struct opp_table *opp_table)
2121{
2122 if (opp_table->supported_hw) {
2123 kfree(objp: opp_table->supported_hw);
2124 opp_table->supported_hw = NULL;
2125 opp_table->supported_hw_count = 0;
2126 }
2127}
2128
2129/*
2130 * This is required only for the V2 bindings, and it enables a platform to
2131 * specify the extn to be used for certain property names. The properties to
2132 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2133 * should postfix the property name with -<name> while looking for them.
2134 */
2135static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2136{
2137 /* Another CPU that shares the OPP table has set the property ? */
2138 if (!opp_table->prop_name) {
2139 opp_table->prop_name = kstrdup(s: name, GFP_KERNEL);
2140 if (!opp_table->prop_name)
2141 return -ENOMEM;
2142 }
2143
2144 return 0;
2145}
2146
2147static void _opp_put_prop_name(struct opp_table *opp_table)
2148{
2149 if (opp_table->prop_name) {
2150 kfree(objp: opp_table->prop_name);
2151 opp_table->prop_name = NULL;
2152 }
2153}
2154
2155/*
2156 * In order to support OPP switching, OPP layer needs to know the name of the
2157 * device's regulators, as the core would be required to switch voltages as
2158 * well.
2159 *
2160 * This must be called before any OPPs are initialized for the device.
2161 */
2162static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2163 const char * const names[])
2164{
2165 const char * const *temp = names;
2166 struct regulator *reg;
2167 int count = 0, ret, i;
2168
2169 /* Count number of regulators */
2170 while (*temp++)
2171 count++;
2172
2173 if (!count)
2174 return -EINVAL;
2175
2176 /* Another CPU that shares the OPP table has set the regulators ? */
2177 if (opp_table->regulators)
2178 return 0;
2179
2180 opp_table->regulators = kmalloc_array(n: count,
2181 size: sizeof(*opp_table->regulators),
2182 GFP_KERNEL);
2183 if (!opp_table->regulators)
2184 return -ENOMEM;
2185
2186 for (i = 0; i < count; i++) {
2187 reg = regulator_get_optional(dev, id: names[i]);
2188 if (IS_ERR(ptr: reg)) {
2189 ret = dev_err_probe(dev, err: PTR_ERR(ptr: reg),
2190 fmt: "%s: no regulator (%s) found\n",
2191 __func__, names[i]);
2192 goto free_regulators;
2193 }
2194
2195 opp_table->regulators[i] = reg;
2196 }
2197
2198 opp_table->regulator_count = count;
2199
2200 /* Set generic config_regulators() for single regulators here */
2201 if (count == 1)
2202 opp_table->config_regulators = _opp_config_regulator_single;
2203
2204 return 0;
2205
2206free_regulators:
2207 while (i != 0)
2208 regulator_put(regulator: opp_table->regulators[--i]);
2209
2210 kfree(objp: opp_table->regulators);
2211 opp_table->regulators = NULL;
2212 opp_table->regulator_count = -1;
2213
2214 return ret;
2215}
2216
2217static void _opp_put_regulators(struct opp_table *opp_table)
2218{
2219 int i;
2220
2221 if (!opp_table->regulators)
2222 return;
2223
2224 if (opp_table->enabled) {
2225 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2226 regulator_disable(regulator: opp_table->regulators[i]);
2227 }
2228
2229 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2230 regulator_put(regulator: opp_table->regulators[i]);
2231
2232 kfree(objp: opp_table->regulators);
2233 opp_table->regulators = NULL;
2234 opp_table->regulator_count = -1;
2235}
2236
2237static void _put_clks(struct opp_table *opp_table, int count)
2238{
2239 int i;
2240
2241 for (i = count - 1; i >= 0; i--)
2242 clk_put(clk: opp_table->clks[i]);
2243
2244 kfree(objp: opp_table->clks);
2245 opp_table->clks = NULL;
2246}
2247
2248/*
2249 * In order to support OPP switching, OPP layer needs to get pointers to the
2250 * clocks for the device. Simple cases work fine without using this routine
2251 * (i.e. by passing connection-id as NULL), but for a device with multiple
2252 * clocks available, the OPP core needs to know the exact names of the clks to
2253 * use.
2254 *
2255 * This must be called before any OPPs are initialized for the device.
2256 */
2257static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2258 const char * const names[],
2259 config_clks_t config_clks)
2260{
2261 const char * const *temp = names;
2262 int count = 0, ret, i;
2263 struct clk *clk;
2264
2265 /* Count number of clks */
2266 while (*temp++)
2267 count++;
2268
2269 /*
2270 * This is a special case where we have a single clock, whose connection
2271 * id name is NULL, i.e. first two entries are NULL in the array.
2272 */
2273 if (!count && !names[1])
2274 count = 1;
2275
2276 /* Fail early for invalid configurations */
2277 if (!count || (!config_clks && count > 1))
2278 return -EINVAL;
2279
2280 /* Another CPU that shares the OPP table has set the clkname ? */
2281 if (opp_table->clks)
2282 return 0;
2283
2284 opp_table->clks = kmalloc_array(n: count, size: sizeof(*opp_table->clks),
2285 GFP_KERNEL);
2286 if (!opp_table->clks)
2287 return -ENOMEM;
2288
2289 /* Find clks for the device */
2290 for (i = 0; i < count; i++) {
2291 clk = clk_get(dev, id: names[i]);
2292 if (IS_ERR(ptr: clk)) {
2293 ret = dev_err_probe(dev, err: PTR_ERR(ptr: clk),
2294 fmt: "%s: Couldn't find clock with name: %s\n",
2295 __func__, names[i]);
2296 goto free_clks;
2297 }
2298
2299 opp_table->clks[i] = clk;
2300 }
2301
2302 opp_table->clk_count = count;
2303 opp_table->config_clks = config_clks;
2304
2305 /* Set generic single clk set here */
2306 if (count == 1) {
2307 if (!opp_table->config_clks)
2308 opp_table->config_clks = _opp_config_clk_single;
2309
2310 /*
2311 * We could have just dropped the "clk" field and used "clks"
2312 * everywhere. Instead we kept the "clk" field around for
2313 * following reasons:
2314 *
2315 * - avoiding clks[0] everywhere else.
2316 * - not running single clk helpers for multiple clk usecase by
2317 * mistake.
2318 *
2319 * Since this is single-clk case, just update the clk pointer
2320 * too.
2321 */
2322 opp_table->clk = opp_table->clks[0];
2323 }
2324
2325 return 0;
2326
2327free_clks:
2328 _put_clks(opp_table, count: i);
2329 return ret;
2330}
2331
2332static void _opp_put_clknames(struct opp_table *opp_table)
2333{
2334 if (!opp_table->clks)
2335 return;
2336
2337 opp_table->config_clks = NULL;
2338 opp_table->clk = ERR_PTR(error: -ENODEV);
2339
2340 _put_clks(opp_table, count: opp_table->clk_count);
2341}
2342
2343/*
2344 * This is useful to support platforms with multiple regulators per device.
2345 *
2346 * This must be called before any OPPs are initialized for the device.
2347 */
2348static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2349 struct device *dev, config_regulators_t config_regulators)
2350{
2351 /* Another CPU that shares the OPP table has set the helper ? */
2352 if (!opp_table->config_regulators)
2353 opp_table->config_regulators = config_regulators;
2354
2355 return 0;
2356}
2357
2358static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2359{
2360 if (opp_table->config_regulators)
2361 opp_table->config_regulators = NULL;
2362}
2363
2364static void _opp_detach_genpd(struct opp_table *opp_table)
2365{
2366 int index;
2367
2368 for (index = 0; index < opp_table->required_opp_count; index++) {
2369 if (!opp_table->required_devs[index])
2370 continue;
2371
2372 dev_pm_domain_detach(dev: opp_table->required_devs[index], power_off: false);
2373 opp_table->required_devs[index] = NULL;
2374 }
2375}
2376
2377/*
2378 * Multiple generic power domains for a device are supported with the help of
2379 * virtual genpd devices, which are created for each consumer device - genpd
2380 * pair. These are the device structures which are attached to the power domain
2381 * and are required by the OPP core to set the performance state of the genpd.
2382 * The same API also works for the case where single genpd is available and so
2383 * we don't need to support that separately.
2384 *
2385 * This helper will normally be called by the consumer driver of the device
2386 * "dev", as only that has details of the genpd names.
2387 *
2388 * This helper needs to be called once with a list of all genpd to attach.
2389 * Otherwise the original device structure will be used instead by the OPP core.
2390 *
2391 * The order of entries in the names array must match the order in which
2392 * "required-opps" are added in DT.
2393 */
2394static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2395 const char * const *names, struct device ***virt_devs)
2396{
2397 struct device *virt_dev;
2398 int index = 0, ret = -EINVAL;
2399 const char * const *name = names;
2400
2401 if (!opp_table->required_devs) {
2402 dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2403 return -EINVAL;
2404 }
2405
2406 /* Genpd core takes care of propagation to parent genpd */
2407 if (opp_table->is_genpd) {
2408 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2409 return -EOPNOTSUPP;
2410 }
2411
2412 /* Checking only the first one is enough ? */
2413 if (opp_table->required_devs[0])
2414 return 0;
2415
2416 while (*name) {
2417 if (index >= opp_table->required_opp_count) {
2418 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2419 *name, opp_table->required_opp_count, index);
2420 goto err;
2421 }
2422
2423 virt_dev = dev_pm_domain_attach_by_name(dev, name: *name);
2424 if (IS_ERR_OR_NULL(ptr: virt_dev)) {
2425 ret = virt_dev ? PTR_ERR(ptr: virt_dev) : -ENODEV;
2426 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2427 goto err;
2428 }
2429
2430 /*
2431 * Add the virtual genpd device as a user of the OPP table, so
2432 * we can call dev_pm_opp_set_opp() on it directly.
2433 *
2434 * This will be automatically removed when the OPP table is
2435 * removed, don't need to handle that here.
2436 */
2437 if (!_add_opp_dev(dev: virt_dev, opp_table: opp_table->required_opp_tables[index])) {
2438 ret = -ENOMEM;
2439 goto err;
2440 }
2441
2442 opp_table->required_devs[index] = virt_dev;
2443 index++;
2444 name++;
2445 }
2446
2447 if (virt_devs)
2448 *virt_devs = opp_table->required_devs;
2449
2450 return 0;
2451
2452err:
2453 _opp_detach_genpd(opp_table);
2454 return ret;
2455
2456}
2457
2458static int _opp_set_required_devs(struct opp_table *opp_table,
2459 struct device *dev,
2460 struct device **required_devs)
2461{
2462 int i;
2463
2464 if (!opp_table->required_devs) {
2465 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2466 return -EINVAL;
2467 }
2468
2469 /* Another device that shares the OPP table has set the required devs ? */
2470 if (opp_table->required_devs[0])
2471 return 0;
2472
2473 for (i = 0; i < opp_table->required_opp_count; i++) {
2474 /* Genpd core takes care of propagation to parent genpd */
2475 if (required_devs[i] && opp_table->is_genpd &&
2476 opp_table->required_opp_tables[i]->is_genpd) {
2477 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2478 return -EOPNOTSUPP;
2479 }
2480
2481 opp_table->required_devs[i] = required_devs[i];
2482 }
2483
2484 return 0;
2485}
2486
2487static void _opp_put_required_devs(struct opp_table *opp_table)
2488{
2489 int i;
2490
2491 for (i = 0; i < opp_table->required_opp_count; i++)
2492 opp_table->required_devs[i] = NULL;
2493}
2494
2495static void _opp_clear_config(struct opp_config_data *data)
2496{
2497 if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2498 _opp_put_required_devs(opp_table: data->opp_table);
2499 else if (data->flags & OPP_CONFIG_GENPD)
2500 _opp_detach_genpd(opp_table: data->opp_table);
2501
2502 if (data->flags & OPP_CONFIG_REGULATOR)
2503 _opp_put_regulators(opp_table: data->opp_table);
2504 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2505 _opp_put_supported_hw(opp_table: data->opp_table);
2506 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2507 _opp_put_config_regulators_helper(opp_table: data->opp_table);
2508 if (data->flags & OPP_CONFIG_PROP_NAME)
2509 _opp_put_prop_name(opp_table: data->opp_table);
2510 if (data->flags & OPP_CONFIG_CLK)
2511 _opp_put_clknames(opp_table: data->opp_table);
2512
2513 dev_pm_opp_put_opp_table(data->opp_table);
2514 kfree(objp: data);
2515}
2516
2517/**
2518 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2519 * @dev: Device for which configuration is being set.
2520 * @config: OPP configuration.
2521 *
2522 * This allows all device OPP configurations to be performed at once.
2523 *
2524 * This must be called before any OPPs are initialized for the device. This may
2525 * be called multiple times for the same OPP table, for example once for each
2526 * CPU that share the same table. This must be balanced by the same number of
2527 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2528 *
2529 * This returns a token to the caller, which must be passed to
2530 * dev_pm_opp_clear_config() to free the resources later. The value of the
2531 * returned token will be >= 1 for success and negative for errors. The minimum
2532 * value of 1 is chosen here to make it easy for callers to manage the resource.
2533 */
2534int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2535{
2536 struct opp_table *opp_table;
2537 struct opp_config_data *data;
2538 unsigned int id;
2539 int ret;
2540
2541 data = kmalloc(size: sizeof(*data), GFP_KERNEL);
2542 if (!data)
2543 return -ENOMEM;
2544
2545 opp_table = _add_opp_table(dev, getclk: false);
2546 if (IS_ERR(ptr: opp_table)) {
2547 kfree(objp: data);
2548 return PTR_ERR(ptr: opp_table);
2549 }
2550
2551 data->opp_table = opp_table;
2552 data->flags = 0;
2553
2554 /* This should be called before OPPs are initialized */
2555 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2556 ret = -EBUSY;
2557 goto err;
2558 }
2559
2560 /* Configure clocks */
2561 if (config->clk_names) {
2562 ret = _opp_set_clknames(opp_table, dev, names: config->clk_names,
2563 config_clks: config->config_clks);
2564 if (ret)
2565 goto err;
2566
2567 data->flags |= OPP_CONFIG_CLK;
2568 } else if (config->config_clks) {
2569 /* Don't allow config callback without clocks */
2570 ret = -EINVAL;
2571 goto err;
2572 }
2573
2574 /* Configure property names */
2575 if (config->prop_name) {
2576 ret = _opp_set_prop_name(opp_table, name: config->prop_name);
2577 if (ret)
2578 goto err;
2579
2580 data->flags |= OPP_CONFIG_PROP_NAME;
2581 }
2582
2583 /* Configure config_regulators helper */
2584 if (config->config_regulators) {
2585 ret = _opp_set_config_regulators_helper(opp_table, dev,
2586 config_regulators: config->config_regulators);
2587 if (ret)
2588 goto err;
2589
2590 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2591 }
2592
2593 /* Configure supported hardware */
2594 if (config->supported_hw) {
2595 ret = _opp_set_supported_hw(opp_table, versions: config->supported_hw,
2596 count: config->supported_hw_count);
2597 if (ret)
2598 goto err;
2599
2600 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2601 }
2602
2603 /* Configure supplies */
2604 if (config->regulator_names) {
2605 ret = _opp_set_regulators(opp_table, dev,
2606 names: config->regulator_names);
2607 if (ret)
2608 goto err;
2609
2610 data->flags |= OPP_CONFIG_REGULATOR;
2611 }
2612
2613 /* Attach genpds */
2614 if (config->genpd_names) {
2615 if (config->required_devs)
2616 goto err;
2617
2618 ret = _opp_attach_genpd(opp_table, dev, names: config->genpd_names,
2619 virt_devs: config->virt_devs);
2620 if (ret)
2621 goto err;
2622
2623 data->flags |= OPP_CONFIG_GENPD;
2624 } else if (config->required_devs) {
2625 ret = _opp_set_required_devs(opp_table, dev,
2626 required_devs: config->required_devs);
2627 if (ret)
2628 goto err;
2629
2630 data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2631 }
2632
2633 ret = xa_alloc(xa: &opp_configs, id: &id, entry: data, XA_LIMIT(1, INT_MAX),
2634 GFP_KERNEL);
2635 if (ret)
2636 goto err;
2637
2638 return id;
2639
2640err:
2641 _opp_clear_config(data);
2642 return ret;
2643}
2644EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2645
2646/**
2647 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2648 * @token: The token returned by dev_pm_opp_set_config() previously.
2649 *
2650 * This allows all device OPP configurations to be cleared at once. This must be
2651 * called once for each call made to dev_pm_opp_set_config(), in order to free
2652 * the OPPs properly.
2653 *
2654 * Currently the first call itself ends up freeing all the OPP configurations,
2655 * while the later ones only drop the OPP table reference. This works well for
2656 * now as we would never want to use an half initialized OPP table and want to
2657 * remove the configurations together.
2658 */
2659void dev_pm_opp_clear_config(int token)
2660{
2661 struct opp_config_data *data;
2662
2663 /*
2664 * This lets the callers call this unconditionally and keep their code
2665 * simple.
2666 */
2667 if (unlikely(token <= 0))
2668 return;
2669
2670 data = xa_erase(&opp_configs, index: token);
2671 if (WARN_ON(!data))
2672 return;
2673
2674 _opp_clear_config(data);
2675}
2676EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2677
2678static void devm_pm_opp_config_release(void *token)
2679{
2680 dev_pm_opp_clear_config((unsigned long)token);
2681}
2682
2683/**
2684 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2685 * @dev: Device for which configuration is being set.
2686 * @config: OPP configuration.
2687 *
2688 * This allows all device OPP configurations to be performed at once.
2689 * This is a resource-managed variant of dev_pm_opp_set_config().
2690 *
2691 * Return: 0 on success and errorno otherwise.
2692 */
2693int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2694{
2695 int token = dev_pm_opp_set_config(dev, config);
2696
2697 if (token < 0)
2698 return token;
2699
2700 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2701 (void *) ((unsigned long) token));
2702}
2703EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2704
2705/**
2706 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2707 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2708 * @dst_table: Required OPP table of the @src_table.
2709 * @src_opp: OPP from the @src_table.
2710 *
2711 * This function returns the OPP (present in @dst_table) pointed out by the
2712 * "required-opps" property of the @src_opp (present in @src_table).
2713 *
2714 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2715 * use.
2716 *
2717 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2718 */
2719struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2720 struct opp_table *dst_table,
2721 struct dev_pm_opp *src_opp)
2722{
2723 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(error: -ENODEV);
2724 int i;
2725
2726 if (!src_table || !dst_table || !src_opp ||
2727 !src_table->required_opp_tables)
2728 return ERR_PTR(error: -EINVAL);
2729
2730 /* required-opps not fully initialized yet */
2731 if (lazy_linking_pending(opp_table: src_table))
2732 return ERR_PTR(error: -EBUSY);
2733
2734 for (i = 0; i < src_table->required_opp_count; i++) {
2735 if (src_table->required_opp_tables[i] == dst_table) {
2736 mutex_lock(&src_table->lock);
2737
2738 list_for_each_entry(opp, &src_table->opp_list, node) {
2739 if (opp == src_opp) {
2740 dest_opp = opp->required_opps[i];
2741 dev_pm_opp_get(opp: dest_opp);
2742 break;
2743 }
2744 }
2745
2746 mutex_unlock(lock: &src_table->lock);
2747 break;
2748 }
2749 }
2750
2751 if (IS_ERR(ptr: dest_opp)) {
2752 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2753 src_table, dst_table);
2754 }
2755
2756 return dest_opp;
2757}
2758EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2759
2760/**
2761 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2762 * @src_table: OPP table which has dst_table as one of its required OPP table.
2763 * @dst_table: Required OPP table of the src_table.
2764 * @pstate: Current performance state of the src_table.
2765 *
2766 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2767 * "required-opps" property of the OPP (present in @src_table) which has
2768 * performance state set to @pstate.
2769 *
2770 * Return: Zero or positive performance state on success, otherwise negative
2771 * value on errors.
2772 */
2773int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2774 struct opp_table *dst_table,
2775 unsigned int pstate)
2776{
2777 struct dev_pm_opp *opp;
2778 int dest_pstate = -EINVAL;
2779 int i;
2780
2781 /*
2782 * Normally the src_table will have the "required_opps" property set to
2783 * point to one of the OPPs in the dst_table, but in some cases the
2784 * genpd and its master have one to one mapping of performance states
2785 * and so none of them have the "required-opps" property set. Return the
2786 * pstate of the src_table as it is in such cases.
2787 */
2788 if (!src_table || !src_table->required_opp_count)
2789 return pstate;
2790
2791 /* Both OPP tables must belong to genpds */
2792 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2793 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2794 return -EINVAL;
2795 }
2796
2797 /* required-opps not fully initialized yet */
2798 if (lazy_linking_pending(opp_table: src_table))
2799 return -EBUSY;
2800
2801 for (i = 0; i < src_table->required_opp_count; i++) {
2802 if (src_table->required_opp_tables[i]->np == dst_table->np)
2803 break;
2804 }
2805
2806 if (unlikely(i == src_table->required_opp_count)) {
2807 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2808 __func__, src_table, dst_table);
2809 return -EINVAL;
2810 }
2811
2812 mutex_lock(&src_table->lock);
2813
2814 list_for_each_entry(opp, &src_table->opp_list, node) {
2815 if (opp->level == pstate) {
2816 dest_pstate = opp->required_opps[i]->level;
2817 goto unlock;
2818 }
2819 }
2820
2821 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2822 dst_table);
2823
2824unlock:
2825 mutex_unlock(lock: &src_table->lock);
2826
2827 return dest_pstate;
2828}
2829
2830/**
2831 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2832 * @dev: The device for which we do this operation
2833 * @data: The OPP data for the OPP to add
2834 *
2835 * This function adds an opp definition to the opp table and returns status.
2836 * The opp is made available by default and it can be controlled using
2837 * dev_pm_opp_enable/disable functions.
2838 *
2839 * Return:
2840 * 0 On success OR
2841 * Duplicate OPPs (both freq and volt are same) and opp->available
2842 * -EEXIST Freq are same and volt are different OR
2843 * Duplicate OPPs (both freq and volt are same) and !opp->available
2844 * -ENOMEM Memory allocation failure
2845 */
2846int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2847{
2848 struct opp_table *opp_table;
2849 int ret;
2850
2851 opp_table = _add_opp_table(dev, getclk: true);
2852 if (IS_ERR(ptr: opp_table))
2853 return PTR_ERR(ptr: opp_table);
2854
2855 /* Fix regulator count for dynamic OPPs */
2856 opp_table->regulator_count = 1;
2857
2858 ret = _opp_add_v1(opp_table, dev, data, dynamic: true);
2859 if (ret)
2860 dev_pm_opp_put_opp_table(opp_table);
2861
2862 return ret;
2863}
2864EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2865
2866/**
2867 * _opp_set_availability() - helper to set the availability of an opp
2868 * @dev: device for which we do this operation
2869 * @freq: OPP frequency to modify availability
2870 * @availability_req: availability status requested for this opp
2871 *
2872 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2873 * which is isolated here.
2874 *
2875 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2876 * copy operation, returns 0 if no modification was done OR modification was
2877 * successful.
2878 */
2879static int _opp_set_availability(struct device *dev, unsigned long freq,
2880 bool availability_req)
2881{
2882 struct opp_table *opp_table;
2883 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(error: -ENODEV);
2884 int r = 0;
2885
2886 /* Find the opp_table */
2887 opp_table = _find_opp_table(dev);
2888 if (IS_ERR(ptr: opp_table)) {
2889 r = PTR_ERR(ptr: opp_table);
2890 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2891 return r;
2892 }
2893
2894 if (!assert_single_clk(opp_table)) {
2895 r = -EINVAL;
2896 goto put_table;
2897 }
2898
2899 mutex_lock(&opp_table->lock);
2900
2901 /* Do we have the frequency? */
2902 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2903 if (tmp_opp->rates[0] == freq) {
2904 opp = tmp_opp;
2905 break;
2906 }
2907 }
2908
2909 if (IS_ERR(ptr: opp)) {
2910 r = PTR_ERR(ptr: opp);
2911 goto unlock;
2912 }
2913
2914 /* Is update really needed? */
2915 if (opp->available == availability_req)
2916 goto unlock;
2917
2918 opp->available = availability_req;
2919
2920 dev_pm_opp_get(opp);
2921 mutex_unlock(lock: &opp_table->lock);
2922
2923 /* Notify the change of the OPP availability */
2924 if (availability_req)
2925 blocking_notifier_call_chain(nh: &opp_table->head, val: OPP_EVENT_ENABLE,
2926 v: opp);
2927 else
2928 blocking_notifier_call_chain(nh: &opp_table->head,
2929 val: OPP_EVENT_DISABLE, v: opp);
2930
2931 dev_pm_opp_put(opp);
2932 goto put_table;
2933
2934unlock:
2935 mutex_unlock(lock: &opp_table->lock);
2936put_table:
2937 dev_pm_opp_put_opp_table(opp_table);
2938 return r;
2939}
2940
2941/**
2942 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2943 * @dev: device for which we do this operation
2944 * @freq: OPP frequency to adjust voltage of
2945 * @u_volt: new OPP target voltage
2946 * @u_volt_min: new OPP min voltage
2947 * @u_volt_max: new OPP max voltage
2948 *
2949 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2950 * copy operation, returns 0 if no modifcation was done OR modification was
2951 * successful.
2952 */
2953int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2954 unsigned long u_volt, unsigned long u_volt_min,
2955 unsigned long u_volt_max)
2956
2957{
2958 struct opp_table *opp_table;
2959 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(error: -ENODEV);
2960 int r = 0;
2961
2962 /* Find the opp_table */
2963 opp_table = _find_opp_table(dev);
2964 if (IS_ERR(ptr: opp_table)) {
2965 r = PTR_ERR(ptr: opp_table);
2966 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2967 return r;
2968 }
2969
2970 if (!assert_single_clk(opp_table)) {
2971 r = -EINVAL;
2972 goto put_table;
2973 }
2974
2975 mutex_lock(&opp_table->lock);
2976
2977 /* Do we have the frequency? */
2978 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2979 if (tmp_opp->rates[0] == freq) {
2980 opp = tmp_opp;
2981 break;
2982 }
2983 }
2984
2985 if (IS_ERR(ptr: opp)) {
2986 r = PTR_ERR(ptr: opp);
2987 goto adjust_unlock;
2988 }
2989
2990 /* Is update really needed? */
2991 if (opp->supplies->u_volt == u_volt)
2992 goto adjust_unlock;
2993
2994 opp->supplies->u_volt = u_volt;
2995 opp->supplies->u_volt_min = u_volt_min;
2996 opp->supplies->u_volt_max = u_volt_max;
2997
2998 dev_pm_opp_get(opp);
2999 mutex_unlock(lock: &opp_table->lock);
3000
3001 /* Notify the voltage change of the OPP */
3002 blocking_notifier_call_chain(nh: &opp_table->head, val: OPP_EVENT_ADJUST_VOLTAGE,
3003 v: opp);
3004
3005 dev_pm_opp_put(opp);
3006 goto put_table;
3007
3008adjust_unlock:
3009 mutex_unlock(lock: &opp_table->lock);
3010put_table:
3011 dev_pm_opp_put_opp_table(opp_table);
3012 return r;
3013}
3014EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3015
3016/**
3017 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3018 * @dev: device for which we do this operation
3019 *
3020 * Sync voltage state of the OPP table regulators.
3021 *
3022 * Return: 0 on success or a negative error value.
3023 */
3024int dev_pm_opp_sync_regulators(struct device *dev)
3025{
3026 struct opp_table *opp_table;
3027 struct regulator *reg;
3028 int i, ret = 0;
3029
3030 /* Device may not have OPP table */
3031 opp_table = _find_opp_table(dev);
3032 if (IS_ERR(ptr: opp_table))
3033 return 0;
3034
3035 /* Regulator may not be required for the device */
3036 if (unlikely(!opp_table->regulators))
3037 goto put_table;
3038
3039 /* Nothing to sync if voltage wasn't changed */
3040 if (!opp_table->enabled)
3041 goto put_table;
3042
3043 for (i = 0; i < opp_table->regulator_count; i++) {
3044 reg = opp_table->regulators[i];
3045 ret = regulator_sync_voltage(regulator: reg);
3046 if (ret)
3047 break;
3048 }
3049put_table:
3050 /* Drop reference taken by _find_opp_table() */
3051 dev_pm_opp_put_opp_table(opp_table);
3052
3053 return ret;
3054}
3055EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3056
3057/**
3058 * dev_pm_opp_enable() - Enable a specific OPP
3059 * @dev: device for which we do this operation
3060 * @freq: OPP frequency to enable
3061 *
3062 * Enables a provided opp. If the operation is valid, this returns 0, else the
3063 * corresponding error value. It is meant to be used for users an OPP available
3064 * after being temporarily made unavailable with dev_pm_opp_disable.
3065 *
3066 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3067 * copy operation, returns 0 if no modification was done OR modification was
3068 * successful.
3069 */
3070int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3071{
3072 return _opp_set_availability(dev, freq, availability_req: true);
3073}
3074EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3075
3076/**
3077 * dev_pm_opp_disable() - Disable a specific OPP
3078 * @dev: device for which we do this operation
3079 * @freq: OPP frequency to disable
3080 *
3081 * Disables a provided opp. If the operation is valid, this returns
3082 * 0, else the corresponding error value. It is meant to be a temporary
3083 * control by users to make this OPP not available until the circumstances are
3084 * right to make it available again (with a call to dev_pm_opp_enable).
3085 *
3086 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3087 * copy operation, returns 0 if no modification was done OR modification was
3088 * successful.
3089 */
3090int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3091{
3092 return _opp_set_availability(dev, freq, availability_req: false);
3093}
3094EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3095
3096/**
3097 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3098 * @dev: Device for which notifier needs to be registered
3099 * @nb: Notifier block to be registered
3100 *
3101 * Return: 0 on success or a negative error value.
3102 */
3103int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3104{
3105 struct opp_table *opp_table;
3106 int ret;
3107
3108 opp_table = _find_opp_table(dev);
3109 if (IS_ERR(ptr: opp_table))
3110 return PTR_ERR(ptr: opp_table);
3111
3112 ret = blocking_notifier_chain_register(nh: &opp_table->head, nb);
3113
3114 dev_pm_opp_put_opp_table(opp_table);
3115
3116 return ret;
3117}
3118EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3119
3120/**
3121 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3122 * @dev: Device for which notifier needs to be unregistered
3123 * @nb: Notifier block to be unregistered
3124 *
3125 * Return: 0 on success or a negative error value.
3126 */
3127int dev_pm_opp_unregister_notifier(struct device *dev,
3128 struct notifier_block *nb)
3129{
3130 struct opp_table *opp_table;
3131 int ret;
3132
3133 opp_table = _find_opp_table(dev);
3134 if (IS_ERR(ptr: opp_table))
3135 return PTR_ERR(ptr: opp_table);
3136
3137 ret = blocking_notifier_chain_unregister(nh: &opp_table->head, nb);
3138
3139 dev_pm_opp_put_opp_table(opp_table);
3140
3141 return ret;
3142}
3143EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3144
3145/**
3146 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3147 * @dev: device pointer used to lookup OPP table.
3148 *
3149 * Free both OPPs created using static entries present in DT and the
3150 * dynamically added entries.
3151 */
3152void dev_pm_opp_remove_table(struct device *dev)
3153{
3154 struct opp_table *opp_table;
3155
3156 /* Check for existing table for 'dev' */
3157 opp_table = _find_opp_table(dev);
3158 if (IS_ERR(ptr: opp_table)) {
3159 int error = PTR_ERR(ptr: opp_table);
3160
3161 if (error != -ENODEV)
3162 WARN(1, "%s: opp_table: %d\n",
3163 IS_ERR_OR_NULL(dev) ?
3164 "Invalid device" : dev_name(dev),
3165 error);
3166 return;
3167 }
3168
3169 /*
3170 * Drop the extra reference only if the OPP table was successfully added
3171 * with dev_pm_opp_of_add_table() earlier.
3172 **/
3173 if (_opp_remove_all_static(opp_table))
3174 dev_pm_opp_put_opp_table(opp_table);
3175
3176 /* Drop reference taken by _find_opp_table() */
3177 dev_pm_opp_put_opp_table(opp_table);
3178}
3179EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3180

source code of linux/drivers/opp/core.c