1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Compaq Hot Plug Controller Driver
4 *
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
8 *
9 * All rights reserved.
10 *
11 * Send feedback to <greg@kroah.com>
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20#include <linux/proc_fs.h>
21#include <linux/pci.h>
22#include <linux/pci_hotplug.h>
23#include "../pci.h"
24#include "cpqphp.h"
25#include "cpqphp_nvram.h"
26
27
28u8 cpqhp_nic_irq;
29u8 cpqhp_disk_irq;
30
31static u16 unused_IRQ;
32
33/*
34 * detect_HRT_floating_pointer
35 *
36 * find the Hot Plug Resource Table in the specified region of memory.
37 *
38 */
39static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
40{
41 void __iomem *fp;
42 void __iomem *endp;
43 u8 temp1, temp2, temp3, temp4;
44 int status = 0;
45
46 endp = (end - sizeof(struct hrt) + 1);
47
48 for (fp = begin; fp <= endp; fp += 16) {
49 temp1 = readb(addr: fp + SIG0);
50 temp2 = readb(addr: fp + SIG1);
51 temp3 = readb(addr: fp + SIG2);
52 temp4 = readb(addr: fp + SIG3);
53 if (temp1 == '$' &&
54 temp2 == 'H' &&
55 temp3 == 'R' &&
56 temp4 == 'T') {
57 status = 1;
58 break;
59 }
60 }
61
62 if (!status)
63 fp = NULL;
64
65 dbg("Discovered Hotplug Resource Table at %p\n", fp);
66 return fp;
67}
68
69
70int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
71{
72 struct pci_bus *child;
73 int num;
74
75 pci_lock_rescan_remove();
76
77 if (func->pci_dev == NULL)
78 func->pci_dev = pci_get_domain_bus_and_slot(domain: 0, bus: func->bus,
79 PCI_DEVFN(func->device,
80 func->function));
81
82 /* No pci device, we need to create it then */
83 if (func->pci_dev == NULL) {
84 dbg("INFO: pci_dev still null\n");
85
86 num = pci_scan_slot(bus: ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
87 if (num)
88 pci_bus_add_devices(bus: ctrl->pci_dev->bus);
89
90 func->pci_dev = pci_get_domain_bus_and_slot(domain: 0, bus: func->bus,
91 PCI_DEVFN(func->device,
92 func->function));
93 if (func->pci_dev == NULL) {
94 dbg("ERROR: pci_dev still null\n");
95 goto out;
96 }
97 }
98
99 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
100 pci_hp_add_bridge(dev: func->pci_dev);
101 child = func->pci_dev->subordinate;
102 if (child)
103 pci_bus_add_devices(bus: child);
104 }
105
106 pci_dev_put(dev: func->pci_dev);
107
108 out:
109 pci_unlock_rescan_remove();
110 return 0;
111}
112
113
114int cpqhp_unconfigure_device(struct pci_func *func)
115{
116 int j;
117
118 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
119
120 pci_lock_rescan_remove();
121 for (j = 0; j < 8 ; j++) {
122 struct pci_dev *temp = pci_get_domain_bus_and_slot(domain: 0,
123 bus: func->bus,
124 PCI_DEVFN(func->device,
125 j));
126 if (temp) {
127 pci_dev_put(dev: temp);
128 pci_stop_and_remove_bus_device(dev: temp);
129 }
130 }
131 pci_unlock_rescan_remove();
132 return 0;
133}
134
135static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
136{
137 u32 vendID = 0;
138
139 if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, val: &vendID) == -1)
140 return -1;
141 if (vendID == 0xffffffff)
142 return -1;
143 return pci_bus_read_config_dword(bus, devfn, where: offset, val: value);
144}
145
146
147/*
148 * cpqhp_set_irq
149 *
150 * @bus_num: bus number of PCI device
151 * @dev_num: device number of PCI device
152 * @slot: pointer to u8 where slot number will be returned
153 */
154int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
155{
156 int rc = 0;
157
158 if (cpqhp_legacy_mode) {
159 struct pci_dev *fakedev;
160 struct pci_bus *fakebus;
161 u16 temp_word;
162
163 fakedev = kmalloc(size: sizeof(*fakedev), GFP_KERNEL);
164 fakebus = kmalloc(size: sizeof(*fakebus), GFP_KERNEL);
165 if (!fakedev || !fakebus) {
166 kfree(objp: fakedev);
167 kfree(objp: fakebus);
168 return -ENOMEM;
169 }
170
171 fakedev->devfn = dev_num << 3;
172 fakedev->bus = fakebus;
173 fakebus->number = bus_num;
174 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
175 __func__, dev_num, bus_num, int_pin, irq_num);
176 rc = pcibios_set_irq_routing(dev: fakedev, pin: int_pin - 1, irq: irq_num);
177 kfree(objp: fakedev);
178 kfree(objp: fakebus);
179 dbg("%s: rc %d\n", __func__, rc);
180 if (!rc)
181 return !rc;
182
183 /* set the Edge Level Control Register (ELCR) */
184 temp_word = inb(port: 0x4d0);
185 temp_word |= inb(port: 0x4d1) << 8;
186
187 temp_word |= 0x01 << irq_num;
188
189 /* This should only be for x86 as it sets the Edge Level
190 * Control Register
191 */
192 outb(value: (u8)(temp_word & 0xFF), port: 0x4d0);
193 outb(value: (u8)((temp_word & 0xFF00) >> 8), port: 0x4d1);
194 rc = 0;
195 }
196
197 return rc;
198}
199
200
201static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
202{
203 u16 tdevice;
204 u32 work;
205 u8 tbus;
206
207 ctrl->pci_bus->number = bus_num;
208
209 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
210 /* Scan for access first */
211 if (PCI_RefinedAccessConfig(bus: ctrl->pci_bus, devfn: tdevice, offset: 0x08, value: &work) == -1)
212 continue;
213 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
214 /* Yep we got one. Not a bridge ? */
215 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
216 *dev_num = tdevice;
217 dbg("found it !\n");
218 return 0;
219 }
220 }
221 for (tdevice = 0; tdevice < 0xFF; tdevice++) {
222 /* Scan for access first */
223 if (PCI_RefinedAccessConfig(bus: ctrl->pci_bus, devfn: tdevice, offset: 0x08, value: &work) == -1)
224 continue;
225 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
226 /* Yep we got one. bridge ? */
227 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
228 pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, val: &tbus);
229 /* XXX: no recursion, wtf? */
230 dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
231 return 0;
232 }
233 }
234
235 return -1;
236}
237
238
239static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
240{
241 int loop, len;
242 u32 work;
243 u8 tbus, tdevice, tslot;
244
245 len = cpqhp_routing_table_length();
246 for (loop = 0; loop < len; ++loop) {
247 tbus = cpqhp_routing_table->slots[loop].bus;
248 tdevice = cpqhp_routing_table->slots[loop].devfn;
249 tslot = cpqhp_routing_table->slots[loop].slot;
250
251 if (tslot == slot) {
252 *bus_num = tbus;
253 *dev_num = tdevice;
254 ctrl->pci_bus->number = tbus;
255 pci_bus_read_config_dword(bus: ctrl->pci_bus, devfn: *dev_num, PCI_VENDOR_ID, val: &work);
256 if (!nobridge || (work == 0xffffffff))
257 return 0;
258
259 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
260 pci_bus_read_config_dword(bus: ctrl->pci_bus, devfn: *dev_num, PCI_CLASS_REVISION, val: &work);
261 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
262
263 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
264 pci_bus_read_config_byte(bus: ctrl->pci_bus, devfn: *dev_num, PCI_SECONDARY_BUS, val: &tbus);
265 dbg("Scan bus for Non Bridge: bus %d\n", tbus);
266 if (PCI_ScanBusForNonBridge(ctrl, bus_num: tbus, dev_num) == 0) {
267 *bus_num = tbus;
268 return 0;
269 }
270 } else
271 return 0;
272 }
273 }
274 return -1;
275}
276
277
278int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
279{
280 /* plain (bridges allowed) */
281 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, nobridge: 0);
282}
283
284
285/* More PCI configuration routines; this time centered around hotplug
286 * controller
287 */
288
289
290/*
291 * cpqhp_save_config
292 *
293 * Reads configuration for all slots in a PCI bus and saves info.
294 *
295 * Note: For non-hot plug buses, the slot # saved is the device #
296 *
297 * returns 0 if success
298 */
299int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
300{
301 long rc;
302 u8 class_code;
303 u8 header_type;
304 u32 ID;
305 u8 secondary_bus;
306 struct pci_func *new_slot;
307 int sub_bus;
308 int FirstSupported;
309 int LastSupported;
310 int max_functions;
311 int function;
312 u8 DevError;
313 int device = 0;
314 int cloop = 0;
315 int stop_it;
316 int index;
317 u16 devfn;
318
319 /* Decide which slots are supported */
320
321 if (is_hot_plug) {
322 /*
323 * is_hot_plug is the slot mask
324 */
325 FirstSupported = is_hot_plug >> 4;
326 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
327 } else {
328 FirstSupported = 0;
329 LastSupported = 0x1F;
330 }
331
332 /* Save PCI configuration space for all devices in supported slots */
333 ctrl->pci_bus->number = busnumber;
334 for (device = FirstSupported; device <= LastSupported; device++) {
335 ID = 0xFFFFFFFF;
336 rc = pci_bus_read_config_dword(bus: ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, val: &ID);
337
338 if (ID == 0xFFFFFFFF) {
339 if (is_hot_plug) {
340 /* Setup slot structure with entry for empty
341 * slot
342 */
343 new_slot = cpqhp_slot_create(busnumber);
344 if (new_slot == NULL)
345 return 1;
346
347 new_slot->bus = (u8) busnumber;
348 new_slot->device = (u8) device;
349 new_slot->function = 0;
350 new_slot->is_a_board = 0;
351 new_slot->presence_save = 0;
352 new_slot->switch_save = 0;
353 }
354 continue;
355 }
356
357 rc = pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(device, 0), where: 0x0B, val: &class_code);
358 if (rc)
359 return rc;
360
361 rc = pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, val: &header_type);
362 if (rc)
363 return rc;
364
365 /* If multi-function device, set max_functions to 8 */
366 if (header_type & PCI_HEADER_TYPE_MFD)
367 max_functions = 8;
368 else
369 max_functions = 1;
370
371 function = 0;
372
373 do {
374 DevError = 0;
375 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
376 /* Recurse the subordinate bus
377 * get the subordinate bus number
378 */
379 rc = pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, val: &secondary_bus);
380 if (rc) {
381 return rc;
382 } else {
383 sub_bus = (int) secondary_bus;
384
385 /* Save secondary bus cfg spc
386 * with this recursive call.
387 */
388 rc = cpqhp_save_config(ctrl, busnumber: sub_bus, is_hot_plug: 0);
389 if (rc)
390 return rc;
391 ctrl->pci_bus->number = busnumber;
392 }
393 }
394
395 index = 0;
396 new_slot = cpqhp_slot_find(bus: busnumber, device, index: index++);
397 while (new_slot &&
398 (new_slot->function != (u8) function))
399 new_slot = cpqhp_slot_find(bus: busnumber, device, index: index++);
400
401 if (!new_slot) {
402 /* Setup slot structure. */
403 new_slot = cpqhp_slot_create(busnumber);
404 if (new_slot == NULL)
405 return 1;
406 }
407
408 new_slot->bus = (u8) busnumber;
409 new_slot->device = (u8) device;
410 new_slot->function = (u8) function;
411 new_slot->is_a_board = 1;
412 new_slot->switch_save = 0x10;
413 /* In case of unsupported board */
414 new_slot->status = DevError;
415 devfn = (new_slot->device << 3) | new_slot->function;
416 new_slot->pci_dev = pci_get_domain_bus_and_slot(domain: 0,
417 bus: new_slot->bus, devfn);
418
419 for (cloop = 0; cloop < 0x20; cloop++) {
420 rc = pci_bus_read_config_dword(bus: ctrl->pci_bus, PCI_DEVFN(device, function), where: cloop << 2, val: (u32 *) &(new_slot->config_space[cloop]));
421 if (rc)
422 return rc;
423 }
424
425 pci_dev_put(dev: new_slot->pci_dev);
426
427 function++;
428
429 stop_it = 0;
430
431 /* this loop skips to the next present function
432 * reading in Class Code and Header type.
433 */
434 while ((function < max_functions) && (!stop_it)) {
435 rc = pci_bus_read_config_dword(bus: ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, val: &ID);
436 if (ID == 0xFFFFFFFF) {
437 function++;
438 continue;
439 }
440 rc = pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(device, function), where: 0x0B, val: &class_code);
441 if (rc)
442 return rc;
443
444 rc = pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, val: &header_type);
445 if (rc)
446 return rc;
447
448 stop_it++;
449 }
450
451 } while (function < max_functions);
452 } /* End of FOR loop */
453
454 return 0;
455}
456
457
458/*
459 * cpqhp_save_slot_config
460 *
461 * Saves configuration info for all PCI devices in a given slot
462 * including subordinate buses.
463 *
464 * returns 0 if success
465 */
466int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
467{
468 long rc;
469 u8 class_code;
470 u8 header_type;
471 u32 ID;
472 u8 secondary_bus;
473 int sub_bus;
474 int max_functions;
475 int function = 0;
476 int cloop;
477 int stop_it;
478
479 ID = 0xFFFFFFFF;
480
481 ctrl->pci_bus->number = new_slot->bus;
482 pci_bus_read_config_dword(bus: ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, val: &ID);
483
484 if (ID == 0xFFFFFFFF)
485 return 2;
486
487 pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), where: 0x0B, val: &class_code);
488 pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, val: &header_type);
489
490 if (header_type & PCI_HEADER_TYPE_MFD)
491 max_functions = 8;
492 else
493 max_functions = 1;
494
495 while (function < max_functions) {
496 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
497 /* Recurse the subordinate bus */
498 pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, val: &secondary_bus);
499
500 sub_bus = (int) secondary_bus;
501
502 /* Save the config headers for the secondary
503 * bus.
504 */
505 rc = cpqhp_save_config(ctrl, busnumber: sub_bus, is_hot_plug: 0);
506 if (rc)
507 return(rc);
508 ctrl->pci_bus->number = new_slot->bus;
509
510 }
511
512 new_slot->status = 0;
513
514 for (cloop = 0; cloop < 0x20; cloop++)
515 pci_bus_read_config_dword(bus: ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), where: cloop << 2, val: (u32 *) &(new_slot->config_space[cloop]));
516
517 function++;
518
519 stop_it = 0;
520
521 /* this loop skips to the next present function
522 * reading in the Class Code and the Header type.
523 */
524 while ((function < max_functions) && (!stop_it)) {
525 pci_bus_read_config_dword(bus: ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, val: &ID);
526
527 if (ID == 0xFFFFFFFF)
528 function++;
529 else {
530 pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), where: 0x0B, val: &class_code);
531 pci_bus_read_config_byte(bus: ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, val: &header_type);
532 stop_it++;
533 }
534 }
535
536 }
537
538 return 0;
539}
540
541
542/*
543 * cpqhp_save_base_addr_length
544 *
545 * Saves the length of all base address registers for the
546 * specified slot. this is for hot plug REPLACE
547 *
548 * returns 0 if success
549 */
550int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
551{
552 u8 cloop;
553 u8 header_type;
554 u8 secondary_bus;
555 u8 type;
556 int sub_bus;
557 u32 temp_register;
558 u32 base;
559 u32 rc;
560 struct pci_func *next;
561 int index = 0;
562 struct pci_bus *pci_bus = ctrl->pci_bus;
563 unsigned int devfn;
564
565 func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
566
567 while (func != NULL) {
568 pci_bus->number = func->bus;
569 devfn = PCI_DEVFN(func->device, func->function);
570
571 /* Check for Bridge */
572 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_HEADER_TYPE, val: &header_type);
573
574 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
575 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_SECONDARY_BUS, val: &secondary_bus);
576
577 sub_bus = (int) secondary_bus;
578
579 next = cpqhp_slot_list[sub_bus];
580
581 while (next != NULL) {
582 rc = cpqhp_save_base_addr_length(ctrl, func: next);
583 if (rc)
584 return rc;
585
586 next = next->next;
587 }
588 pci_bus->number = func->bus;
589
590 /* FIXME: this loop is duplicated in the non-bridge
591 * case. The two could be rolled together Figure out
592 * IO and memory base lengths
593 */
594 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
595 temp_register = 0xFFFFFFFF;
596 pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: temp_register);
597 pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &base);
598 /* If this register is implemented */
599 if (base) {
600 if (base & 0x01L) {
601 /* IO base
602 * set base = amount of IO space
603 * requested
604 */
605 base = base & 0xFFFFFFFE;
606 base = (~base) + 1;
607
608 type = 1;
609 } else {
610 /* memory base */
611 base = base & 0xFFFFFFF0;
612 base = (~base) + 1;
613
614 type = 0;
615 }
616 } else {
617 base = 0x0L;
618 type = 0;
619 }
620
621 /* Save information in slot structure */
622 func->base_length[(cloop - 0x10) >> 2] =
623 base;
624 func->base_type[(cloop - 0x10) >> 2] = type;
625
626 } /* End of base register loop */
627
628 } else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
629 /* Figure out IO and memory base lengths */
630 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
631 temp_register = 0xFFFFFFFF;
632 pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: temp_register);
633 pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &base);
634
635 /* If this register is implemented */
636 if (base) {
637 if (base & 0x01L) {
638 /* IO base
639 * base = amount of IO space
640 * requested
641 */
642 base = base & 0xFFFFFFFE;
643 base = (~base) + 1;
644
645 type = 1;
646 } else {
647 /* memory base
648 * base = amount of memory
649 * space requested
650 */
651 base = base & 0xFFFFFFF0;
652 base = (~base) + 1;
653
654 type = 0;
655 }
656 } else {
657 base = 0x0L;
658 type = 0;
659 }
660
661 /* Save information in slot structure */
662 func->base_length[(cloop - 0x10) >> 2] = base;
663 func->base_type[(cloop - 0x10) >> 2] = type;
664
665 } /* End of base register loop */
666
667 } else { /* Some other unknown header type */
668 }
669
670 /* find the next device in this slot */
671 func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
672 }
673
674 return(0);
675}
676
677
678/*
679 * cpqhp_save_used_resources
680 *
681 * Stores used resource information for existing boards. this is
682 * for boards that were in the system when this driver was loaded.
683 * this function is for hot plug ADD
684 *
685 * returns 0 if success
686 */
687int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
688{
689 u8 cloop;
690 u8 header_type;
691 u8 secondary_bus;
692 u8 temp_byte;
693 u8 b_base;
694 u8 b_length;
695 u16 command;
696 u16 save_command;
697 u16 w_base;
698 u16 w_length;
699 u32 temp_register;
700 u32 save_base;
701 u32 base;
702 int index = 0;
703 struct pci_resource *mem_node;
704 struct pci_resource *p_mem_node;
705 struct pci_resource *io_node;
706 struct pci_resource *bus_node;
707 struct pci_bus *pci_bus = ctrl->pci_bus;
708 unsigned int devfn;
709
710 func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
711
712 while ((func != NULL) && func->is_a_board) {
713 pci_bus->number = func->bus;
714 devfn = PCI_DEVFN(func->device, func->function);
715
716 /* Save the command register */
717 pci_bus_read_config_word(bus: pci_bus, devfn, PCI_COMMAND, val: &save_command);
718
719 /* disable card */
720 command = 0x00;
721 pci_bus_write_config_word(bus: pci_bus, devfn, PCI_COMMAND, val: command);
722
723 /* Check for Bridge */
724 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_HEADER_TYPE, val: &header_type);
725
726 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
727 /* Clear Bridge Control Register */
728 command = 0x00;
729 pci_bus_write_config_word(bus: pci_bus, devfn, PCI_BRIDGE_CONTROL, val: command);
730 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_SECONDARY_BUS, val: &secondary_bus);
731 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_SUBORDINATE_BUS, val: &temp_byte);
732
733 bus_node = kmalloc(size: sizeof(*bus_node), GFP_KERNEL);
734 if (!bus_node)
735 return -ENOMEM;
736
737 bus_node->base = secondary_bus;
738 bus_node->length = temp_byte - secondary_bus + 1;
739
740 bus_node->next = func->bus_head;
741 func->bus_head = bus_node;
742
743 /* Save IO base and Limit registers */
744 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_IO_BASE, val: &b_base);
745 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_IO_LIMIT, val: &b_length);
746
747 if ((b_base <= b_length) && (save_command & 0x01)) {
748 io_node = kmalloc(size: sizeof(*io_node), GFP_KERNEL);
749 if (!io_node)
750 return -ENOMEM;
751
752 io_node->base = (b_base & 0xF0) << 8;
753 io_node->length = (b_length - b_base + 0x10) << 8;
754
755 io_node->next = func->io_head;
756 func->io_head = io_node;
757 }
758
759 /* Save memory base and Limit registers */
760 pci_bus_read_config_word(bus: pci_bus, devfn, PCI_MEMORY_BASE, val: &w_base);
761 pci_bus_read_config_word(bus: pci_bus, devfn, PCI_MEMORY_LIMIT, val: &w_length);
762
763 if ((w_base <= w_length) && (save_command & 0x02)) {
764 mem_node = kmalloc(size: sizeof(*mem_node), GFP_KERNEL);
765 if (!mem_node)
766 return -ENOMEM;
767
768 mem_node->base = w_base << 16;
769 mem_node->length = (w_length - w_base + 0x10) << 16;
770
771 mem_node->next = func->mem_head;
772 func->mem_head = mem_node;
773 }
774
775 /* Save prefetchable memory base and Limit registers */
776 pci_bus_read_config_word(bus: pci_bus, devfn, PCI_PREF_MEMORY_BASE, val: &w_base);
777 pci_bus_read_config_word(bus: pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, val: &w_length);
778
779 if ((w_base <= w_length) && (save_command & 0x02)) {
780 p_mem_node = kmalloc(size: sizeof(*p_mem_node), GFP_KERNEL);
781 if (!p_mem_node)
782 return -ENOMEM;
783
784 p_mem_node->base = w_base << 16;
785 p_mem_node->length = (w_length - w_base + 0x10) << 16;
786
787 p_mem_node->next = func->p_mem_head;
788 func->p_mem_head = p_mem_node;
789 }
790 /* Figure out IO and memory base lengths */
791 for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
792 pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &save_base);
793
794 temp_register = 0xFFFFFFFF;
795 pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: temp_register);
796 pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &base);
797
798 temp_register = base;
799
800 /* If this register is implemented */
801 if (base) {
802 if (((base & 0x03L) == 0x01)
803 && (save_command & 0x01)) {
804 /* IO base
805 * set temp_register = amount
806 * of IO space requested
807 */
808 temp_register = base & 0xFFFFFFFE;
809 temp_register = (~temp_register) + 1;
810
811 io_node = kmalloc(size: sizeof(*io_node),
812 GFP_KERNEL);
813 if (!io_node)
814 return -ENOMEM;
815
816 io_node->base =
817 save_base & (~0x03L);
818 io_node->length = temp_register;
819
820 io_node->next = func->io_head;
821 func->io_head = io_node;
822 } else
823 if (((base & 0x0BL) == 0x08)
824 && (save_command & 0x02)) {
825 /* prefetchable memory base */
826 temp_register = base & 0xFFFFFFF0;
827 temp_register = (~temp_register) + 1;
828
829 p_mem_node = kmalloc(size: sizeof(*p_mem_node),
830 GFP_KERNEL);
831 if (!p_mem_node)
832 return -ENOMEM;
833
834 p_mem_node->base = save_base & (~0x0FL);
835 p_mem_node->length = temp_register;
836
837 p_mem_node->next = func->p_mem_head;
838 func->p_mem_head = p_mem_node;
839 } else
840 if (((base & 0x0BL) == 0x00)
841 && (save_command & 0x02)) {
842 /* prefetchable memory base */
843 temp_register = base & 0xFFFFFFF0;
844 temp_register = (~temp_register) + 1;
845
846 mem_node = kmalloc(size: sizeof(*mem_node),
847 GFP_KERNEL);
848 if (!mem_node)
849 return -ENOMEM;
850
851 mem_node->base = save_base & (~0x0FL);
852 mem_node->length = temp_register;
853
854 mem_node->next = func->mem_head;
855 func->mem_head = mem_node;
856 } else
857 return(1);
858 }
859 } /* End of base register loop */
860 /* Standard header */
861 } else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
862 /* Figure out IO and memory base lengths */
863 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
864 pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &save_base);
865
866 temp_register = 0xFFFFFFFF;
867 pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: temp_register);
868 pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &base);
869
870 temp_register = base;
871
872 /* If this register is implemented */
873 if (base) {
874 if (((base & 0x03L) == 0x01)
875 && (save_command & 0x01)) {
876 /* IO base
877 * set temp_register = amount
878 * of IO space requested
879 */
880 temp_register = base & 0xFFFFFFFE;
881 temp_register = (~temp_register) + 1;
882
883 io_node = kmalloc(size: sizeof(*io_node),
884 GFP_KERNEL);
885 if (!io_node)
886 return -ENOMEM;
887
888 io_node->base = save_base & (~0x01L);
889 io_node->length = temp_register;
890
891 io_node->next = func->io_head;
892 func->io_head = io_node;
893 } else
894 if (((base & 0x0BL) == 0x08)
895 && (save_command & 0x02)) {
896 /* prefetchable memory base */
897 temp_register = base & 0xFFFFFFF0;
898 temp_register = (~temp_register) + 1;
899
900 p_mem_node = kmalloc(size: sizeof(*p_mem_node),
901 GFP_KERNEL);
902 if (!p_mem_node)
903 return -ENOMEM;
904
905 p_mem_node->base = save_base & (~0x0FL);
906 p_mem_node->length = temp_register;
907
908 p_mem_node->next = func->p_mem_head;
909 func->p_mem_head = p_mem_node;
910 } else
911 if (((base & 0x0BL) == 0x00)
912 && (save_command & 0x02)) {
913 /* prefetchable memory base */
914 temp_register = base & 0xFFFFFFF0;
915 temp_register = (~temp_register) + 1;
916
917 mem_node = kmalloc(size: sizeof(*mem_node),
918 GFP_KERNEL);
919 if (!mem_node)
920 return -ENOMEM;
921
922 mem_node->base = save_base & (~0x0FL);
923 mem_node->length = temp_register;
924
925 mem_node->next = func->mem_head;
926 func->mem_head = mem_node;
927 } else
928 return(1);
929 }
930 } /* End of base register loop */
931 }
932
933 /* find the next device in this slot */
934 func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
935 }
936
937 return 0;
938}
939
940
941/*
942 * cpqhp_configure_board
943 *
944 * Copies saved configuration information to one slot.
945 * this is called recursively for bridge devices.
946 * this is for hot plug REPLACE!
947 *
948 * returns 0 if success
949 */
950int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
951{
952 int cloop;
953 u8 header_type;
954 u8 secondary_bus;
955 int sub_bus;
956 struct pci_func *next;
957 u32 temp;
958 u32 rc;
959 int index = 0;
960 struct pci_bus *pci_bus = ctrl->pci_bus;
961 unsigned int devfn;
962
963 func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
964
965 while (func != NULL) {
966 pci_bus->number = func->bus;
967 devfn = PCI_DEVFN(func->device, func->function);
968
969 /* Start at the top of config space so that the control
970 * registers are programmed last
971 */
972 for (cloop = 0x3C; cloop > 0; cloop -= 4)
973 pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: func->config_space[cloop >> 2]);
974
975 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_HEADER_TYPE, val: &header_type);
976
977 /* If this is a bridge device, restore subordinate devices */
978 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
979 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_SECONDARY_BUS, val: &secondary_bus);
980
981 sub_bus = (int) secondary_bus;
982
983 next = cpqhp_slot_list[sub_bus];
984
985 while (next != NULL) {
986 rc = cpqhp_configure_board(ctrl, func: next);
987 if (rc)
988 return rc;
989
990 next = next->next;
991 }
992 } else {
993
994 /* Check all the base Address Registers to make sure
995 * they are the same. If not, the board is different.
996 */
997
998 for (cloop = 16; cloop < 40; cloop += 4) {
999 pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &temp);
1000
1001 if (temp != func->config_space[cloop >> 2]) {
1002 dbg("Config space compare failure!!! offset = %x\n", cloop);
1003 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1004 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1005 return 1;
1006 }
1007 }
1008 }
1009
1010 func->configured = 1;
1011
1012 func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
1013 }
1014
1015 return 0;
1016}
1017
1018
1019/*
1020 * cpqhp_valid_replace
1021 *
1022 * this function checks to see if a board is the same as the
1023 * one it is replacing. this check will detect if the device's
1024 * vendor or device id's are the same
1025 *
1026 * returns 0 if the board is the same nonzero otherwise
1027 */
1028int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1029{
1030 u8 cloop;
1031 u8 header_type;
1032 u8 secondary_bus;
1033 u8 type;
1034 u32 temp_register = 0;
1035 u32 base;
1036 u32 rc;
1037 struct pci_func *next;
1038 int index = 0;
1039 struct pci_bus *pci_bus = ctrl->pci_bus;
1040 unsigned int devfn;
1041
1042 if (!func->is_a_board)
1043 return(ADD_NOT_SUPPORTED);
1044
1045 func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
1046
1047 while (func != NULL) {
1048 pci_bus->number = func->bus;
1049 devfn = PCI_DEVFN(func->device, func->function);
1050
1051 pci_bus_read_config_dword(bus: pci_bus, devfn, PCI_VENDOR_ID, val: &temp_register);
1052
1053 /* No adapter present */
1054 if (temp_register == 0xFFFFFFFF)
1055 return(NO_ADAPTER_PRESENT);
1056
1057 if (temp_register != func->config_space[0])
1058 return(ADAPTER_NOT_SAME);
1059
1060 /* Check for same revision number and class code */
1061 pci_bus_read_config_dword(bus: pci_bus, devfn, PCI_CLASS_REVISION, val: &temp_register);
1062
1063 /* Adapter not the same */
1064 if (temp_register != func->config_space[0x08 >> 2])
1065 return(ADAPTER_NOT_SAME);
1066
1067 /* Check for Bridge */
1068 pci_bus_read_config_byte(bus: pci_bus, devfn, PCI_HEADER_TYPE, val: &header_type);
1069
1070 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
1071 /* In order to continue checking, we must program the
1072 * bus registers in the bridge to respond to accesses
1073 * for its subordinate bus(es)
1074 */
1075
1076 temp_register = func->config_space[0x18 >> 2];
1077 pci_bus_write_config_dword(bus: pci_bus, devfn, PCI_PRIMARY_BUS, val: temp_register);
1078
1079 secondary_bus = (temp_register >> 8) & 0xFF;
1080
1081 next = cpqhp_slot_list[secondary_bus];
1082
1083 while (next != NULL) {
1084 rc = cpqhp_valid_replace(ctrl, func: next);
1085 if (rc)
1086 return rc;
1087
1088 next = next->next;
1089 }
1090
1091 }
1092 /* Check to see if it is a standard config header */
1093 else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
1094 /* Check subsystem vendor and ID */
1095 pci_bus_read_config_dword(bus: pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, val: &temp_register);
1096
1097 if (temp_register != func->config_space[0x2C >> 2]) {
1098 /* If it's a SMART-2 and the register isn't
1099 * filled in, ignore the difference because
1100 * they just have an old rev of the firmware
1101 */
1102 if (!((func->config_space[0] == 0xAE100E11)
1103 && (temp_register == 0x00L)))
1104 return(ADAPTER_NOT_SAME);
1105 }
1106 /* Figure out IO and memory base lengths */
1107 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1108 temp_register = 0xFFFFFFFF;
1109 pci_bus_write_config_dword(bus: pci_bus, devfn, where: cloop, val: temp_register);
1110 pci_bus_read_config_dword(bus: pci_bus, devfn, where: cloop, val: &base);
1111
1112 /* If this register is implemented */
1113 if (base) {
1114 if (base & 0x01L) {
1115 /* IO base
1116 * set base = amount of IO
1117 * space requested
1118 */
1119 base = base & 0xFFFFFFFE;
1120 base = (~base) + 1;
1121
1122 type = 1;
1123 } else {
1124 /* memory base */
1125 base = base & 0xFFFFFFF0;
1126 base = (~base) + 1;
1127
1128 type = 0;
1129 }
1130 } else {
1131 base = 0x0L;
1132 type = 0;
1133 }
1134
1135 /* Check information in slot structure */
1136 if (func->base_length[(cloop - 0x10) >> 2] != base)
1137 return(ADAPTER_NOT_SAME);
1138
1139 if (func->base_type[(cloop - 0x10) >> 2] != type)
1140 return(ADAPTER_NOT_SAME);
1141
1142 } /* End of base register loop */
1143
1144 } /* End of (type 0 config space) else */
1145 else {
1146 /* this is not a type 0 or 1 config space header so
1147 * we don't know how to do it
1148 */
1149 return(DEVICE_TYPE_NOT_SUPPORTED);
1150 }
1151
1152 /* Get the next function */
1153 func = cpqhp_slot_find(bus: func->bus, device: func->device, index: index++);
1154 }
1155
1156
1157 return 0;
1158}
1159
1160
1161/*
1162 * cpqhp_find_available_resources
1163 *
1164 * Finds available memory, IO, and IRQ resources for programming
1165 * devices which may be added to the system
1166 * this function is for hot plug ADD!
1167 *
1168 * returns 0 if success
1169 */
1170int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1171{
1172 u8 temp;
1173 u8 populated_slot;
1174 u8 bridged_slot;
1175 void __iomem *one_slot;
1176 void __iomem *rom_resource_table;
1177 struct pci_func *func = NULL;
1178 int i = 10, index;
1179 u32 temp_dword, rc;
1180 struct pci_resource *mem_node;
1181 struct pci_resource *p_mem_node;
1182 struct pci_resource *io_node;
1183 struct pci_resource *bus_node;
1184
1185 rom_resource_table = detect_HRT_floating_pointer(begin: rom_start, end: rom_start+0xffff);
1186 dbg("rom_resource_table = %p\n", rom_resource_table);
1187
1188 if (rom_resource_table == NULL)
1189 return -ENODEV;
1190
1191 /* Sum all resources and setup resource maps */
1192 unused_IRQ = readl(addr: rom_resource_table + UNUSED_IRQ);
1193 dbg("unused_IRQ = %x\n", unused_IRQ);
1194
1195 temp = 0;
1196 while (unused_IRQ) {
1197 if (unused_IRQ & 1) {
1198 cpqhp_disk_irq = temp;
1199 break;
1200 }
1201 unused_IRQ = unused_IRQ >> 1;
1202 temp++;
1203 }
1204
1205 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1206 unused_IRQ = unused_IRQ >> 1;
1207 temp++;
1208
1209 while (unused_IRQ) {
1210 if (unused_IRQ & 1) {
1211 cpqhp_nic_irq = temp;
1212 break;
1213 }
1214 unused_IRQ = unused_IRQ >> 1;
1215 temp++;
1216 }
1217
1218 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1219 unused_IRQ = readl(addr: rom_resource_table + PCIIRQ);
1220
1221 temp = 0;
1222
1223 if (!cpqhp_nic_irq)
1224 cpqhp_nic_irq = ctrl->cfgspc_irq;
1225
1226 if (!cpqhp_disk_irq)
1227 cpqhp_disk_irq = ctrl->cfgspc_irq;
1228
1229 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1230
1231 rc = compaq_nvram_load(rom_start, ctrl);
1232 if (rc)
1233 return rc;
1234
1235 one_slot = rom_resource_table + sizeof(struct hrt);
1236
1237 i = readb(addr: rom_resource_table + NUMBER_OF_ENTRIES);
1238 dbg("number_of_entries = %d\n", i);
1239
1240 if (!readb(addr: one_slot + SECONDARY_BUS))
1241 return 1;
1242
1243 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1244
1245 while (i && readb(addr: one_slot + SECONDARY_BUS)) {
1246 u8 dev_func = readb(addr: one_slot + DEV_FUNC);
1247 u8 primary_bus = readb(addr: one_slot + PRIMARY_BUS);
1248 u8 secondary_bus = readb(addr: one_slot + SECONDARY_BUS);
1249 u8 max_bus = readb(addr: one_slot + MAX_BUS);
1250 u16 io_base = readw(addr: one_slot + IO_BASE);
1251 u16 io_length = readw(addr: one_slot + IO_LENGTH);
1252 u16 mem_base = readw(addr: one_slot + MEM_BASE);
1253 u16 mem_length = readw(addr: one_slot + MEM_LENGTH);
1254 u16 pre_mem_base = readw(addr: one_slot + PRE_MEM_BASE);
1255 u16 pre_mem_length = readw(addr: one_slot + PRE_MEM_LENGTH);
1256
1257 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1258 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1259 primary_bus, secondary_bus, max_bus);
1260
1261 /* If this entry isn't for our controller's bus, ignore it */
1262 if (primary_bus != ctrl->bus) {
1263 i--;
1264 one_slot += sizeof(struct slot_rt);
1265 continue;
1266 }
1267 /* find out if this entry is for an occupied slot */
1268 ctrl->pci_bus->number = primary_bus;
1269 pci_bus_read_config_dword(bus: ctrl->pci_bus, devfn: dev_func, PCI_VENDOR_ID, val: &temp_dword);
1270 dbg("temp_D_word = %x\n", temp_dword);
1271
1272 if (temp_dword != 0xFFFFFFFF) {
1273 index = 0;
1274 func = cpqhp_slot_find(bus: primary_bus, device: dev_func >> 3, index: 0);
1275
1276 while (func && (func->function != (dev_func & 0x07))) {
1277 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1278 func = cpqhp_slot_find(bus: primary_bus, device: dev_func >> 3, index: index++);
1279 }
1280
1281 /* If we can't find a match, skip this table entry */
1282 if (!func) {
1283 i--;
1284 one_slot += sizeof(struct slot_rt);
1285 continue;
1286 }
1287 /* this may not work and shouldn't be used */
1288 if (secondary_bus != primary_bus)
1289 bridged_slot = 1;
1290 else
1291 bridged_slot = 0;
1292
1293 populated_slot = 1;
1294 } else {
1295 populated_slot = 0;
1296 bridged_slot = 0;
1297 }
1298
1299
1300 /* If we've got a valid IO base, use it */
1301
1302 temp_dword = io_base + io_length;
1303
1304 if ((io_base) && (temp_dword < 0x10000)) {
1305 io_node = kmalloc(size: sizeof(*io_node), GFP_KERNEL);
1306 if (!io_node)
1307 return -ENOMEM;
1308
1309 io_node->base = io_base;
1310 io_node->length = io_length;
1311
1312 dbg("found io_node(base, length) = %x, %x\n",
1313 io_node->base, io_node->length);
1314 dbg("populated slot =%d \n", populated_slot);
1315 if (!populated_slot) {
1316 io_node->next = ctrl->io_head;
1317 ctrl->io_head = io_node;
1318 } else {
1319 io_node->next = func->io_head;
1320 func->io_head = io_node;
1321 }
1322 }
1323
1324 /* If we've got a valid memory base, use it */
1325 temp_dword = mem_base + mem_length;
1326 if ((mem_base) && (temp_dword < 0x10000)) {
1327 mem_node = kmalloc(size: sizeof(*mem_node), GFP_KERNEL);
1328 if (!mem_node)
1329 return -ENOMEM;
1330
1331 mem_node->base = mem_base << 16;
1332
1333 mem_node->length = mem_length << 16;
1334
1335 dbg("found mem_node(base, length) = %x, %x\n",
1336 mem_node->base, mem_node->length);
1337 dbg("populated slot =%d \n", populated_slot);
1338 if (!populated_slot) {
1339 mem_node->next = ctrl->mem_head;
1340 ctrl->mem_head = mem_node;
1341 } else {
1342 mem_node->next = func->mem_head;
1343 func->mem_head = mem_node;
1344 }
1345 }
1346
1347 /* If we've got a valid prefetchable memory base, and
1348 * the base + length isn't greater than 0xFFFF
1349 */
1350 temp_dword = pre_mem_base + pre_mem_length;
1351 if ((pre_mem_base) && (temp_dword < 0x10000)) {
1352 p_mem_node = kmalloc(size: sizeof(*p_mem_node), GFP_KERNEL);
1353 if (!p_mem_node)
1354 return -ENOMEM;
1355
1356 p_mem_node->base = pre_mem_base << 16;
1357
1358 p_mem_node->length = pre_mem_length << 16;
1359 dbg("found p_mem_node(base, length) = %x, %x\n",
1360 p_mem_node->base, p_mem_node->length);
1361 dbg("populated slot =%d \n", populated_slot);
1362
1363 if (!populated_slot) {
1364 p_mem_node->next = ctrl->p_mem_head;
1365 ctrl->p_mem_head = p_mem_node;
1366 } else {
1367 p_mem_node->next = func->p_mem_head;
1368 func->p_mem_head = p_mem_node;
1369 }
1370 }
1371
1372 /* If we've got a valid bus number, use it
1373 * The second condition is to ignore bus numbers on
1374 * populated slots that don't have PCI-PCI bridges
1375 */
1376 if (secondary_bus && (secondary_bus != primary_bus)) {
1377 bus_node = kmalloc(size: sizeof(*bus_node), GFP_KERNEL);
1378 if (!bus_node)
1379 return -ENOMEM;
1380
1381 bus_node->base = secondary_bus;
1382 bus_node->length = max_bus - secondary_bus + 1;
1383 dbg("found bus_node(base, length) = %x, %x\n",
1384 bus_node->base, bus_node->length);
1385 dbg("populated slot =%d \n", populated_slot);
1386 if (!populated_slot) {
1387 bus_node->next = ctrl->bus_head;
1388 ctrl->bus_head = bus_node;
1389 } else {
1390 bus_node->next = func->bus_head;
1391 func->bus_head = bus_node;
1392 }
1393 }
1394
1395 i--;
1396 one_slot += sizeof(struct slot_rt);
1397 }
1398
1399 /* If all of the following fail, we don't have any resources for
1400 * hot plug add
1401 */
1402 rc = 1;
1403 rc &= cpqhp_resource_sort_and_combine(head: &(ctrl->mem_head));
1404 rc &= cpqhp_resource_sort_and_combine(head: &(ctrl->p_mem_head));
1405 rc &= cpqhp_resource_sort_and_combine(head: &(ctrl->io_head));
1406 rc &= cpqhp_resource_sort_and_combine(head: &(ctrl->bus_head));
1407
1408 return rc;
1409}
1410
1411
1412/*
1413 * cpqhp_return_board_resources
1414 *
1415 * this routine returns all resources allocated to a board to
1416 * the available pool.
1417 *
1418 * returns 0 if success
1419 */
1420int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1421{
1422 int rc = 0;
1423 struct pci_resource *node;
1424 struct pci_resource *t_node;
1425 dbg("%s\n", __func__);
1426
1427 if (!func)
1428 return 1;
1429
1430 node = func->io_head;
1431 func->io_head = NULL;
1432 while (node) {
1433 t_node = node->next;
1434 return_resource(head: &(resources->io_head), node);
1435 node = t_node;
1436 }
1437
1438 node = func->mem_head;
1439 func->mem_head = NULL;
1440 while (node) {
1441 t_node = node->next;
1442 return_resource(head: &(resources->mem_head), node);
1443 node = t_node;
1444 }
1445
1446 node = func->p_mem_head;
1447 func->p_mem_head = NULL;
1448 while (node) {
1449 t_node = node->next;
1450 return_resource(head: &(resources->p_mem_head), node);
1451 node = t_node;
1452 }
1453
1454 node = func->bus_head;
1455 func->bus_head = NULL;
1456 while (node) {
1457 t_node = node->next;
1458 return_resource(head: &(resources->bus_head), node);
1459 node = t_node;
1460 }
1461
1462 rc |= cpqhp_resource_sort_and_combine(head: &(resources->mem_head));
1463 rc |= cpqhp_resource_sort_and_combine(head: &(resources->p_mem_head));
1464 rc |= cpqhp_resource_sort_and_combine(head: &(resources->io_head));
1465 rc |= cpqhp_resource_sort_and_combine(head: &(resources->bus_head));
1466
1467 return rc;
1468}
1469
1470
1471/*
1472 * cpqhp_destroy_resource_list
1473 *
1474 * Puts node back in the resource list pointed to by head
1475 */
1476void cpqhp_destroy_resource_list(struct resource_lists *resources)
1477{
1478 struct pci_resource *res, *tres;
1479
1480 res = resources->io_head;
1481 resources->io_head = NULL;
1482
1483 while (res) {
1484 tres = res;
1485 res = res->next;
1486 kfree(objp: tres);
1487 }
1488
1489 res = resources->mem_head;
1490 resources->mem_head = NULL;
1491
1492 while (res) {
1493 tres = res;
1494 res = res->next;
1495 kfree(objp: tres);
1496 }
1497
1498 res = resources->p_mem_head;
1499 resources->p_mem_head = NULL;
1500
1501 while (res) {
1502 tres = res;
1503 res = res->next;
1504 kfree(objp: tres);
1505 }
1506
1507 res = resources->bus_head;
1508 resources->bus_head = NULL;
1509
1510 while (res) {
1511 tres = res;
1512 res = res->next;
1513 kfree(objp: tres);
1514 }
1515}
1516
1517
1518/*
1519 * cpqhp_destroy_board_resources
1520 *
1521 * Puts node back in the resource list pointed to by head
1522 */
1523void cpqhp_destroy_board_resources(struct pci_func *func)
1524{
1525 struct pci_resource *res, *tres;
1526
1527 res = func->io_head;
1528 func->io_head = NULL;
1529
1530 while (res) {
1531 tres = res;
1532 res = res->next;
1533 kfree(objp: tres);
1534 }
1535
1536 res = func->mem_head;
1537 func->mem_head = NULL;
1538
1539 while (res) {
1540 tres = res;
1541 res = res->next;
1542 kfree(objp: tres);
1543 }
1544
1545 res = func->p_mem_head;
1546 func->p_mem_head = NULL;
1547
1548 while (res) {
1549 tres = res;
1550 res = res->next;
1551 kfree(objp: tres);
1552 }
1553
1554 res = func->bus_head;
1555 func->bus_head = NULL;
1556
1557 while (res) {
1558 tres = res;
1559 res = res->next;
1560 kfree(objp: tres);
1561 }
1562}
1563

source code of linux/drivers/pci/hotplug/cpqphp_pci.c