1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2009-2010 Intel Corporation
4 *
5 * Authors:
6 * Jesse Barnes <jbarnes@virtuousgeek.org>
7 */
8
9/*
10 * Some Intel Ibex Peak based platforms support so-called "intelligent
11 * power sharing", which allows the CPU and GPU to cooperate to maximize
12 * performance within a given TDP (thermal design point). This driver
13 * performs the coordination between the CPU and GPU, monitors thermal and
14 * power statistics in the platform, and initializes power monitoring
15 * hardware. It also provides a few tunables to control behavior. Its
16 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
17 * by tracking power and thermal budget; secondarily it can boost turbo
18 * performance by allocating more power or thermal budget to the CPU or GPU
19 * based on available headroom and activity.
20 *
21 * The basic algorithm is driven by a 5s moving average of temperature. If
22 * thermal headroom is available, the CPU and/or GPU power clamps may be
23 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
24 * we scale back the clamp. Aside from trigger events (when we're critically
25 * close or over our TDP) we don't adjust the clamps more than once every
26 * five seconds.
27 *
28 * The thermal device (device 31, function 6) has a set of registers that
29 * are updated by the ME firmware. The ME should also take the clamp values
30 * written to those registers and write them to the CPU, but we currently
31 * bypass that functionality and write the CPU MSR directly.
32 *
33 * UNSUPPORTED:
34 * - dual MCP configs
35 *
36 * TODO:
37 * - handle CPU hotplug
38 * - provide turbo enable/disable api
39 *
40 * Related documents:
41 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
42 * - CDI 401376 - Ibex Peak EDS
43 * - ref 26037, 26641 - IPS BIOS spec
44 * - ref 26489 - Nehalem BIOS writer's guide
45 * - ref 26921 - Ibex Peak BIOS Specification
46 */
47
48#include <linux/debugfs.h>
49#include <linux/delay.h>
50#include <linux/interrupt.h>
51#include <linux/kernel.h>
52#include <linux/kthread.h>
53#include <linux/module.h>
54#include <linux/pci.h>
55#include <linux/sched.h>
56#include <linux/sched/loadavg.h>
57#include <linux/seq_file.h>
58#include <linux/string.h>
59#include <linux/tick.h>
60#include <linux/timer.h>
61#include <linux/dmi.h>
62#include <drm/i915_drm.h>
63#include <asm/msr.h>
64#include <asm/processor.h>
65#include "intel_ips.h"
66
67#include <linux/io-64-nonatomic-lo-hi.h>
68
69#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
70
71/*
72 * Package level MSRs for monitor/control
73 */
74#define PLATFORM_INFO 0xce
75#define PLATFORM_TDP (1<<29)
76#define PLATFORM_RATIO (1<<28)
77
78#define IA32_MISC_ENABLE 0x1a0
79#define IA32_MISC_TURBO_EN (1ULL<<38)
80
81#define TURBO_POWER_CURRENT_LIMIT 0x1ac
82#define TURBO_TDC_OVR_EN (1UL<<31)
83#define TURBO_TDC_MASK (0x000000007fff0000UL)
84#define TURBO_TDC_SHIFT (16)
85#define TURBO_TDP_OVR_EN (1UL<<15)
86#define TURBO_TDP_MASK (0x0000000000003fffUL)
87
88/*
89 * Core/thread MSRs for monitoring
90 */
91#define IA32_PERF_CTL 0x199
92#define IA32_PERF_TURBO_DIS (1ULL<<32)
93
94/*
95 * Thermal PCI device regs
96 */
97#define THM_CFG_TBAR 0x10
98#define THM_CFG_TBAR_HI 0x14
99
100#define THM_TSIU 0x00
101#define THM_TSE 0x01
102#define TSE_EN 0xb8
103#define THM_TSS 0x02
104#define THM_TSTR 0x03
105#define THM_TSTTP 0x04
106#define THM_TSCO 0x08
107#define THM_TSES 0x0c
108#define THM_TSGPEN 0x0d
109#define TSGPEN_HOT_LOHI (1<<1)
110#define TSGPEN_CRIT_LOHI (1<<2)
111#define THM_TSPC 0x0e
112#define THM_PPEC 0x10
113#define THM_CTA 0x12
114#define THM_PTA 0x14
115#define PTA_SLOPE_MASK (0xff00)
116#define PTA_SLOPE_SHIFT 8
117#define PTA_OFFSET_MASK (0x00ff)
118#define THM_MGTA 0x16
119#define MGTA_SLOPE_MASK (0xff00)
120#define MGTA_SLOPE_SHIFT 8
121#define MGTA_OFFSET_MASK (0x00ff)
122#define THM_TRC 0x1a
123#define TRC_CORE2_EN (1<<15)
124#define TRC_THM_EN (1<<12)
125#define TRC_C6_WAR (1<<8)
126#define TRC_CORE1_EN (1<<7)
127#define TRC_CORE_PWR (1<<6)
128#define TRC_PCH_EN (1<<5)
129#define TRC_MCH_EN (1<<4)
130#define TRC_DIMM4 (1<<3)
131#define TRC_DIMM3 (1<<2)
132#define TRC_DIMM2 (1<<1)
133#define TRC_DIMM1 (1<<0)
134#define THM_TES 0x20
135#define THM_TEN 0x21
136#define TEN_UPDATE_EN 1
137#define THM_PSC 0x24
138#define PSC_NTG (1<<0) /* No GFX turbo support */
139#define PSC_NTPC (1<<1) /* No CPU turbo support */
140#define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
141#define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
142#define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
143#define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
144#define PSP_PBRT (1<<4) /* BIOS run time support */
145#define THM_CTV1 0x30
146#define CTV_TEMP_ERROR (1<<15)
147#define CTV_TEMP_MASK 0x3f
148#define CTV_
149#define THM_CTV2 0x32
150#define THM_CEC 0x34 /* undocumented power accumulator in joules */
151#define THM_AE 0x3f
152#define THM_HTS 0x50 /* 32 bits */
153#define HTS_PCPL_MASK (0x7fe00000)
154#define HTS_PCPL_SHIFT 21
155#define HTS_GPL_MASK (0x001ff000)
156#define HTS_GPL_SHIFT 12
157#define HTS_PP_MASK (0x00000c00)
158#define HTS_PP_SHIFT 10
159#define HTS_PP_DEF 0
160#define HTS_PP_PROC 1
161#define HTS_PP_BAL 2
162#define HTS_PP_GFX 3
163#define HTS_PCTD_DIS (1<<9)
164#define HTS_GTD_DIS (1<<8)
165#define HTS_PTL_MASK (0x000000fe)
166#define HTS_PTL_SHIFT 1
167#define HTS_NVV (1<<0)
168#define THM_HTSHI 0x54 /* 16 bits */
169#define HTS2_PPL_MASK (0x03ff)
170#define HTS2_PRST_MASK (0x3c00)
171#define HTS2_PRST_SHIFT 10
172#define HTS2_PRST_UNLOADED 0
173#define HTS2_PRST_RUNNING 1
174#define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
175#define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
176#define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
177#define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
178#define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
179#define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
180#define THM_PTL 0x56
181#define THM_MGTV 0x58
182#define TV_MASK 0x000000000000ff00
183#define TV_SHIFT 8
184#define THM_PTV 0x60
185#define PTV_MASK 0x00ff
186#define THM_MMGPC 0x64
187#define THM_MPPC 0x66
188#define THM_MPCPC 0x68
189#define THM_TSPIEN 0x82
190#define TSPIEN_AUX_LOHI (1<<0)
191#define TSPIEN_HOT_LOHI (1<<1)
192#define TSPIEN_CRIT_LOHI (1<<2)
193#define TSPIEN_AUX2_LOHI (1<<3)
194#define THM_TSLOCK 0x83
195#define THM_ATR 0x84
196#define THM_TOF 0x87
197#define THM_STS 0x98
198#define STS_PCPL_MASK (0x7fe00000)
199#define STS_PCPL_SHIFT 21
200#define STS_GPL_MASK (0x001ff000)
201#define STS_GPL_SHIFT 12
202#define STS_PP_MASK (0x00000c00)
203#define STS_PP_SHIFT 10
204#define STS_PP_DEF 0
205#define STS_PP_PROC 1
206#define STS_PP_BAL 2
207#define STS_PP_GFX 3
208#define STS_PCTD_DIS (1<<9)
209#define STS_GTD_DIS (1<<8)
210#define STS_PTL_MASK (0x000000fe)
211#define STS_PTL_SHIFT 1
212#define STS_NVV (1<<0)
213#define THM_SEC 0x9c
214#define SEC_ACK (1<<0)
215#define THM_TC3 0xa4
216#define THM_TC1 0xa8
217#define STS_PPL_MASK (0x0003ff00)
218#define STS_PPL_SHIFT 16
219#define THM_TC2 0xac
220#define THM_DTV 0xb0
221#define THM_ITV 0xd8
222#define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
223#define ITV_ME_SEQNO_SHIFT (16)
224#define ITV_MCH_TEMP_MASK 0x0000ff00
225#define ITV_MCH_TEMP_SHIFT (8)
226#define ITV_PCH_TEMP_MASK 0x000000ff
227
228#define thm_readb(off) readb(ips->regmap + (off))
229#define thm_readw(off) readw(ips->regmap + (off))
230#define thm_readl(off) readl(ips->regmap + (off))
231#define thm_readq(off) readq(ips->regmap + (off))
232
233#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
234#define thm_writew(off, val) writew((val), ips->regmap + (off))
235#define thm_writel(off, val) writel((val), ips->regmap + (off))
236
237static const int IPS_ADJUST_PERIOD = 5000; /* ms */
238static bool late_i915_load = false;
239
240/* For initial average collection */
241static const int IPS_SAMPLE_PERIOD = 200; /* ms */
242static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
243#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
244
245/* Per-SKU limits */
246struct ips_mcp_limits {
247 int mcp_power_limit; /* mW units */
248 int core_power_limit;
249 int mch_power_limit;
250 int core_temp_limit; /* degrees C */
251 int mch_temp_limit;
252};
253
254/* Max temps are -10 degrees C to avoid PROCHOT# */
255
256static struct ips_mcp_limits ips_sv_limits = {
257 .mcp_power_limit = 35000,
258 .core_power_limit = 29000,
259 .mch_power_limit = 20000,
260 .core_temp_limit = 95,
261 .mch_temp_limit = 90
262};
263
264static struct ips_mcp_limits ips_lv_limits = {
265 .mcp_power_limit = 25000,
266 .core_power_limit = 21000,
267 .mch_power_limit = 13000,
268 .core_temp_limit = 95,
269 .mch_temp_limit = 90
270};
271
272static struct ips_mcp_limits ips_ulv_limits = {
273 .mcp_power_limit = 18000,
274 .core_power_limit = 14000,
275 .mch_power_limit = 11000,
276 .core_temp_limit = 95,
277 .mch_temp_limit = 90
278};
279
280struct ips_driver {
281 struct device *dev;
282 void __iomem *regmap;
283 int irq;
284
285 struct task_struct *monitor;
286 struct task_struct *adjust;
287 struct dentry *debug_root;
288 struct timer_list timer;
289
290 /* Average CPU core temps (all averages in .01 degrees C for precision) */
291 u16 ctv1_avg_temp;
292 u16 ctv2_avg_temp;
293 /* GMCH average */
294 u16 mch_avg_temp;
295 /* Average for the CPU (both cores?) */
296 u16 mcp_avg_temp;
297 /* Average power consumption (in mW) */
298 u32 cpu_avg_power;
299 u32 mch_avg_power;
300
301 /* Offset values */
302 u16 cta_val;
303 u16 pta_val;
304 u16 mgta_val;
305
306 /* Maximums & prefs, protected by turbo status lock */
307 spinlock_t turbo_status_lock;
308 u16 mcp_temp_limit;
309 u16 mcp_power_limit;
310 u16 core_power_limit;
311 u16 mch_power_limit;
312 bool cpu_turbo_enabled;
313 bool __cpu_turbo_on;
314 bool gpu_turbo_enabled;
315 bool __gpu_turbo_on;
316 bool gpu_preferred;
317 bool poll_turbo_status;
318 bool second_cpu;
319 bool turbo_toggle_allowed;
320 struct ips_mcp_limits *limits;
321
322 /* Optional MCH interfaces for if i915 is in use */
323 unsigned long (*read_mch_val)(void);
324 bool (*gpu_raise)(void);
325 bool (*gpu_lower)(void);
326 bool (*gpu_busy)(void);
327 bool (*gpu_turbo_disable)(void);
328
329 /* For restoration at unload */
330 u64 orig_turbo_limit;
331 u64 orig_turbo_ratios;
332};
333
334static bool
335ips_gpu_turbo_enabled(struct ips_driver *ips);
336
337/**
338 * ips_cpu_busy - is CPU busy?
339 * @ips: IPS driver struct
340 *
341 * Check CPU for load to see whether we should increase its thermal budget.
342 *
343 * RETURNS:
344 * True if the CPU could use more power, false otherwise.
345 */
346static bool ips_cpu_busy(struct ips_driver *ips)
347{
348 if ((avenrun[0] >> FSHIFT) > 1)
349 return true;
350
351 return false;
352}
353
354/**
355 * ips_cpu_raise - raise CPU power clamp
356 * @ips: IPS driver struct
357 *
358 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
359 * this platform.
360 *
361 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
362 * long as we haven't hit the TDP limit for the SKU).
363 */
364static void ips_cpu_raise(struct ips_driver *ips)
365{
366 u64 turbo_override;
367 u16 cur_tdp_limit, new_tdp_limit;
368
369 if (!ips->cpu_turbo_enabled)
370 return;
371
372 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
373
374 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
375 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
376
377 /* Clamp to SKU TDP limit */
378 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
379 new_tdp_limit = cur_tdp_limit;
380
381 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
382
383 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
384 wrmsrl(TURBO_POWER_CURRENT_LIMIT, val: turbo_override);
385
386 turbo_override &= ~TURBO_TDP_MASK;
387 turbo_override |= new_tdp_limit;
388
389 wrmsrl(TURBO_POWER_CURRENT_LIMIT, val: turbo_override);
390}
391
392/**
393 * ips_cpu_lower - lower CPU power clamp
394 * @ips: IPS driver struct
395 *
396 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
397 *
398 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
399 * as low as the platform limits will allow (though we could go lower there
400 * wouldn't be much point).
401 */
402static void ips_cpu_lower(struct ips_driver *ips)
403{
404 u64 turbo_override;
405 u16 cur_limit, new_limit;
406
407 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
408
409 cur_limit = turbo_override & TURBO_TDP_MASK;
410 new_limit = cur_limit - 8; /* 1W decrease */
411
412 /* Clamp to SKU TDP limit */
413 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
414 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
415
416 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
417
418 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
419 wrmsrl(TURBO_POWER_CURRENT_LIMIT, val: turbo_override);
420
421 turbo_override &= ~TURBO_TDP_MASK;
422 turbo_override |= new_limit;
423
424 wrmsrl(TURBO_POWER_CURRENT_LIMIT, val: turbo_override);
425}
426
427/**
428 * do_enable_cpu_turbo - internal turbo enable function
429 * @data: unused
430 *
431 * Internal function for actually updating MSRs. When we enable/disable
432 * turbo, we need to do it on each CPU; this function is the one called
433 * by on_each_cpu() when needed.
434 */
435static void do_enable_cpu_turbo(void *data)
436{
437 u64 perf_ctl;
438
439 rdmsrl(IA32_PERF_CTL, perf_ctl);
440 if (perf_ctl & IA32_PERF_TURBO_DIS) {
441 perf_ctl &= ~IA32_PERF_TURBO_DIS;
442 wrmsrl(IA32_PERF_CTL, val: perf_ctl);
443 }
444}
445
446/**
447 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
448 * @ips: IPS driver struct
449 *
450 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
451 * all logical threads.
452 */
453static void ips_enable_cpu_turbo(struct ips_driver *ips)
454{
455 /* Already on, no need to mess with MSRs */
456 if (ips->__cpu_turbo_on)
457 return;
458
459 if (ips->turbo_toggle_allowed)
460 on_each_cpu(func: do_enable_cpu_turbo, info: ips, wait: 1);
461
462 ips->__cpu_turbo_on = true;
463}
464
465/**
466 * do_disable_cpu_turbo - internal turbo disable function
467 * @data: unused
468 *
469 * Internal function for actually updating MSRs. When we enable/disable
470 * turbo, we need to do it on each CPU; this function is the one called
471 * by on_each_cpu() when needed.
472 */
473static void do_disable_cpu_turbo(void *data)
474{
475 u64 perf_ctl;
476
477 rdmsrl(IA32_PERF_CTL, perf_ctl);
478 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
479 perf_ctl |= IA32_PERF_TURBO_DIS;
480 wrmsrl(IA32_PERF_CTL, val: perf_ctl);
481 }
482}
483
484/**
485 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
486 * @ips: IPS driver struct
487 *
488 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
489 * all logical threads.
490 */
491static void ips_disable_cpu_turbo(struct ips_driver *ips)
492{
493 /* Already off, leave it */
494 if (!ips->__cpu_turbo_on)
495 return;
496
497 if (ips->turbo_toggle_allowed)
498 on_each_cpu(func: do_disable_cpu_turbo, info: ips, wait: 1);
499
500 ips->__cpu_turbo_on = false;
501}
502
503/**
504 * ips_gpu_busy - is GPU busy?
505 * @ips: IPS driver struct
506 *
507 * Check GPU for load to see whether we should increase its thermal budget.
508 * We need to call into the i915 driver in this case.
509 *
510 * RETURNS:
511 * True if the GPU could use more power, false otherwise.
512 */
513static bool ips_gpu_busy(struct ips_driver *ips)
514{
515 if (!ips_gpu_turbo_enabled(ips))
516 return false;
517
518 return ips->gpu_busy();
519}
520
521/**
522 * ips_gpu_raise - raise GPU power clamp
523 * @ips: IPS driver struct
524 *
525 * Raise the GPU frequency/power if possible. We need to call into the
526 * i915 driver in this case.
527 */
528static void ips_gpu_raise(struct ips_driver *ips)
529{
530 if (!ips_gpu_turbo_enabled(ips))
531 return;
532
533 if (!ips->gpu_raise())
534 ips->gpu_turbo_enabled = false;
535
536 return;
537}
538
539/**
540 * ips_gpu_lower - lower GPU power clamp
541 * @ips: IPS driver struct
542 *
543 * Lower GPU frequency/power if possible. Need to call i915.
544 */
545static void ips_gpu_lower(struct ips_driver *ips)
546{
547 if (!ips_gpu_turbo_enabled(ips))
548 return;
549
550 if (!ips->gpu_lower())
551 ips->gpu_turbo_enabled = false;
552
553 return;
554}
555
556/**
557 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
558 * @ips: IPS driver struct
559 *
560 * Call into the graphics driver indicating that it can safely use
561 * turbo mode.
562 */
563static void ips_enable_gpu_turbo(struct ips_driver *ips)
564{
565 if (ips->__gpu_turbo_on)
566 return;
567 ips->__gpu_turbo_on = true;
568}
569
570/**
571 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
572 * @ips: IPS driver struct
573 *
574 * Request that the graphics driver disable turbo mode.
575 */
576static void ips_disable_gpu_turbo(struct ips_driver *ips)
577{
578 /* Avoid calling i915 if turbo is already disabled */
579 if (!ips->__gpu_turbo_on)
580 return;
581
582 if (!ips->gpu_turbo_disable())
583 dev_err(ips->dev, "failed to disable graphics turbo\n");
584 else
585 ips->__gpu_turbo_on = false;
586}
587
588/**
589 * mcp_exceeded - check whether we're outside our thermal & power limits
590 * @ips: IPS driver struct
591 *
592 * Check whether the MCP is over its thermal or power budget.
593 *
594 * Returns: %true if the temp or power has exceeded its maximum, else %false
595 */
596static bool mcp_exceeded(struct ips_driver *ips)
597{
598 unsigned long flags;
599 bool ret = false;
600 u32 temp_limit;
601 u32 avg_power;
602
603 spin_lock_irqsave(&ips->turbo_status_lock, flags);
604
605 temp_limit = ips->mcp_temp_limit * 100;
606 if (ips->mcp_avg_temp > temp_limit)
607 ret = true;
608
609 avg_power = ips->cpu_avg_power + ips->mch_avg_power;
610 if (avg_power > ips->mcp_power_limit)
611 ret = true;
612
613 spin_unlock_irqrestore(lock: &ips->turbo_status_lock, flags);
614
615 return ret;
616}
617
618/**
619 * cpu_exceeded - check whether a CPU core is outside its limits
620 * @ips: IPS driver struct
621 * @cpu: CPU number to check
622 *
623 * Check a given CPU's average temp or power is over its limit.
624 *
625 * Returns: %true if the temp or power has exceeded its maximum, else %false
626 */
627static bool cpu_exceeded(struct ips_driver *ips, int cpu)
628{
629 unsigned long flags;
630 int avg;
631 bool ret = false;
632
633 spin_lock_irqsave(&ips->turbo_status_lock, flags);
634 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
635 if (avg > (ips->limits->core_temp_limit * 100))
636 ret = true;
637 if (ips->cpu_avg_power > ips->core_power_limit * 100)
638 ret = true;
639 spin_unlock_irqrestore(lock: &ips->turbo_status_lock, flags);
640
641 if (ret)
642 dev_info(ips->dev, "CPU power or thermal limit exceeded\n");
643
644 return ret;
645}
646
647/**
648 * mch_exceeded - check whether the GPU is over budget
649 * @ips: IPS driver struct
650 *
651 * Check the MCH temp & power against their maximums.
652 *
653 * Returns: %true if the temp or power has exceeded its maximum, else %false
654 */
655static bool mch_exceeded(struct ips_driver *ips)
656{
657 unsigned long flags;
658 bool ret = false;
659
660 spin_lock_irqsave(&ips->turbo_status_lock, flags);
661 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
662 ret = true;
663 if (ips->mch_avg_power > ips->mch_power_limit)
664 ret = true;
665 spin_unlock_irqrestore(lock: &ips->turbo_status_lock, flags);
666
667 return ret;
668}
669
670/**
671 * verify_limits - verify BIOS provided limits
672 * @ips: IPS structure
673 *
674 * BIOS can optionally provide non-default limits for power and temp. Check
675 * them here and use the defaults if the BIOS values are not provided or
676 * are otherwise unusable.
677 */
678static void verify_limits(struct ips_driver *ips)
679{
680 if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
681 ips->mcp_power_limit > 35000)
682 ips->mcp_power_limit = ips->limits->mcp_power_limit;
683
684 if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
685 ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
686 ips->mcp_temp_limit > 150)
687 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
688 ips->limits->mch_temp_limit);
689}
690
691/**
692 * update_turbo_limits - get various limits & settings from regs
693 * @ips: IPS driver struct
694 *
695 * Update the IPS power & temp limits, along with turbo enable flags,
696 * based on latest register contents.
697 *
698 * Used at init time and for runtime BIOS support, which requires polling
699 * the regs for updates (as a result of AC->DC transition for example).
700 *
701 * LOCKING:
702 * Caller must hold turbo_status_lock (outside of init)
703 */
704static void update_turbo_limits(struct ips_driver *ips)
705{
706 u32 hts = thm_readl(THM_HTS);
707
708 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
709 /*
710 * Disable turbo for now, until we can figure out why the power figures
711 * are wrong
712 */
713 ips->cpu_turbo_enabled = false;
714
715 if (ips->gpu_busy)
716 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
717
718 ips->core_power_limit = thm_readw(THM_MPCPC);
719 ips->mch_power_limit = thm_readw(THM_MMGPC);
720 ips->mcp_temp_limit = thm_readw(THM_PTL);
721 ips->mcp_power_limit = thm_readw(THM_MPPC);
722
723 verify_limits(ips);
724 /* Ignore BIOS CPU vs GPU pref */
725}
726
727/**
728 * ips_adjust - adjust power clamp based on thermal state
729 * @data: ips driver structure
730 *
731 * Wake up every 5s or so and check whether we should adjust the power clamp.
732 * Check CPU and GPU load to determine which needs adjustment. There are
733 * several things to consider here:
734 * - do we need to adjust up or down?
735 * - is CPU busy?
736 * - is GPU busy?
737 * - is CPU in turbo?
738 * - is GPU in turbo?
739 * - is CPU or GPU preferred? (CPU is default)
740 *
741 * So, given the above, we do the following:
742 * - up (TDP available)
743 * - CPU not busy, GPU not busy - nothing
744 * - CPU busy, GPU not busy - adjust CPU up
745 * - CPU not busy, GPU busy - adjust GPU up
746 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
747 * non-preferred unit if necessary
748 * - down (at TDP limit)
749 * - adjust both CPU and GPU down if possible
750 *
751 * |cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
752 * cpu < gpu < |cpu+gpu+ cpu+ gpu+ nothing
753 * cpu < gpu >= |cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
754 * cpu >= gpu < |cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
755 * cpu >= gpu >=|cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
756 *
757 * Returns: %0
758 */
759static int ips_adjust(void *data)
760{
761 struct ips_driver *ips = data;
762 unsigned long flags;
763
764 dev_dbg(ips->dev, "starting ips-adjust thread\n");
765
766 /*
767 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
768 * often isn't recommended due to ME interaction.
769 */
770 do {
771 bool cpu_busy = ips_cpu_busy(ips);
772 bool gpu_busy = ips_gpu_busy(ips);
773
774 spin_lock_irqsave(&ips->turbo_status_lock, flags);
775 if (ips->poll_turbo_status)
776 update_turbo_limits(ips);
777 spin_unlock_irqrestore(lock: &ips->turbo_status_lock, flags);
778
779 /* Update turbo status if necessary */
780 if (ips->cpu_turbo_enabled)
781 ips_enable_cpu_turbo(ips);
782 else
783 ips_disable_cpu_turbo(ips);
784
785 if (ips->gpu_turbo_enabled)
786 ips_enable_gpu_turbo(ips);
787 else
788 ips_disable_gpu_turbo(ips);
789
790 /* We're outside our comfort zone, crank them down */
791 if (mcp_exceeded(ips)) {
792 ips_cpu_lower(ips);
793 ips_gpu_lower(ips);
794 goto sleep;
795 }
796
797 if (!cpu_exceeded(ips, cpu: 0) && cpu_busy)
798 ips_cpu_raise(ips);
799 else
800 ips_cpu_lower(ips);
801
802 if (!mch_exceeded(ips) && gpu_busy)
803 ips_gpu_raise(ips);
804 else
805 ips_gpu_lower(ips);
806
807sleep:
808 schedule_timeout_interruptible(timeout: msecs_to_jiffies(m: IPS_ADJUST_PERIOD));
809 } while (!kthread_should_stop());
810
811 dev_dbg(ips->dev, "ips-adjust thread stopped\n");
812
813 return 0;
814}
815
816/*
817 * Helpers for reading out temp/power values and calculating their
818 * averages for the decision making and monitoring functions.
819 */
820
821static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
822{
823 u64 total = 0;
824 int i;
825 u16 avg;
826
827 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
828 total += (u64)(array[i] * 100);
829
830 do_div(total, IPS_SAMPLE_COUNT);
831
832 avg = (u16)total;
833
834 return avg;
835}
836
837static u16 read_mgtv(struct ips_driver *ips)
838{
839 u16 __maybe_unused ret;
840 u64 slope, offset;
841 u64 val;
842
843 val = thm_readq(THM_MGTV);
844 val = (val & TV_MASK) >> TV_SHIFT;
845
846 slope = offset = thm_readw(THM_MGTA);
847 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
848 offset = offset & MGTA_OFFSET_MASK;
849
850 ret = ((val * slope + 0x40) >> 7) + offset;
851
852 return 0; /* MCH temp reporting buggy */
853}
854
855static u16 read_ptv(struct ips_driver *ips)
856{
857 u16 val;
858
859 val = thm_readw(THM_PTV) & PTV_MASK;
860
861 return val;
862}
863
864static u16 read_ctv(struct ips_driver *ips, int cpu)
865{
866 int reg = cpu ? THM_CTV2 : THM_CTV1;
867 u16 val;
868
869 val = thm_readw(reg);
870 if (!(val & CTV_TEMP_ERROR))
871 val = (val) >> 6; /* discard fractional component */
872 else
873 val = 0;
874
875 return val;
876}
877
878static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
879{
880 u32 val;
881 u32 ret;
882
883 /*
884 * CEC is in joules/65535. Take difference over time to
885 * get watts.
886 */
887 val = thm_readl(THM_CEC);
888
889 /* period is in ms and we want mW */
890 ret = (((val - *last) * 1000) / period);
891 ret = (ret * 1000) / 65535;
892 *last = val;
893
894 return 0;
895}
896
897static const u16 temp_decay_factor = 2;
898static u16 update_average_temp(u16 avg, u16 val)
899{
900 u16 ret;
901
902 /* Multiply by 100 for extra precision */
903 ret = (val * 100 / temp_decay_factor) +
904 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
905 return ret;
906}
907
908static const u16 power_decay_factor = 2;
909static u16 update_average_power(u32 avg, u32 val)
910{
911 u32 ret;
912
913 ret = (val / power_decay_factor) +
914 (((power_decay_factor - 1) * avg) / power_decay_factor);
915
916 return ret;
917}
918
919static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
920{
921 u64 total = 0;
922 u32 avg;
923 int i;
924
925 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
926 total += array[i];
927
928 do_div(total, IPS_SAMPLE_COUNT);
929 avg = (u32)total;
930
931 return avg;
932}
933
934static void monitor_timeout(struct timer_list *t)
935{
936 struct ips_driver *ips = from_timer(ips, t, timer);
937 wake_up_process(tsk: ips->monitor);
938}
939
940/**
941 * ips_monitor - temp/power monitoring thread
942 * @data: ips driver structure
943 *
944 * This is the main function for the IPS driver. It monitors power and
945 * temperature in the MCP and adjusts CPU and GPU power clamps accordingly.
946 *
947 * We keep a 5s moving average of power consumption and temperature. Using
948 * that data, along with CPU vs GPU preference, we adjust the power clamps
949 * up or down.
950 *
951 * Returns: %0 on success or -errno on error
952 */
953static int ips_monitor(void *data)
954{
955 struct ips_driver *ips = data;
956 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
957 int i;
958 u32 *cpu_samples, *mchp_samples, old_cpu_power;
959 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
960 u8 cur_seqno, last_seqno;
961
962 mcp_samples = kcalloc(IPS_SAMPLE_COUNT, size: sizeof(u16), GFP_KERNEL);
963 ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, size: sizeof(u16), GFP_KERNEL);
964 ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, size: sizeof(u16), GFP_KERNEL);
965 mch_samples = kcalloc(IPS_SAMPLE_COUNT, size: sizeof(u16), GFP_KERNEL);
966 cpu_samples = kcalloc(IPS_SAMPLE_COUNT, size: sizeof(u32), GFP_KERNEL);
967 mchp_samples = kcalloc(IPS_SAMPLE_COUNT, size: sizeof(u32), GFP_KERNEL);
968 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
969 !cpu_samples || !mchp_samples) {
970 dev_err(ips->dev,
971 "failed to allocate sample array, ips disabled\n");
972 kfree(objp: mcp_samples);
973 kfree(objp: ctv1_samples);
974 kfree(objp: ctv2_samples);
975 kfree(objp: mch_samples);
976 kfree(objp: cpu_samples);
977 kfree(objp: mchp_samples);
978 return -ENOMEM;
979 }
980
981 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
982 ITV_ME_SEQNO_SHIFT;
983 seqno_timestamp = get_jiffies_64();
984
985 old_cpu_power = thm_readl(THM_CEC);
986 schedule_timeout_interruptible(timeout: msecs_to_jiffies(m: IPS_SAMPLE_PERIOD));
987
988 /* Collect an initial average */
989 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
990 u32 mchp, cpu_power;
991 u16 val;
992
993 mcp_samples[i] = read_ptv(ips);
994
995 val = read_ctv(ips, cpu: 0);
996 ctv1_samples[i] = val;
997
998 val = read_ctv(ips, cpu: 1);
999 ctv2_samples[i] = val;
1000
1001 val = read_mgtv(ips);
1002 mch_samples[i] = val;
1003
1004 cpu_power = get_cpu_power(ips, last: &old_cpu_power,
1005 period: IPS_SAMPLE_PERIOD);
1006 cpu_samples[i] = cpu_power;
1007
1008 if (ips->read_mch_val) {
1009 mchp = ips->read_mch_val();
1010 mchp_samples[i] = mchp;
1011 }
1012
1013 schedule_timeout_interruptible(timeout: msecs_to_jiffies(m: IPS_SAMPLE_PERIOD));
1014 if (kthread_should_stop())
1015 break;
1016 }
1017
1018 ips->mcp_avg_temp = calc_avg_temp(ips, array: mcp_samples);
1019 ips->ctv1_avg_temp = calc_avg_temp(ips, array: ctv1_samples);
1020 ips->ctv2_avg_temp = calc_avg_temp(ips, array: ctv2_samples);
1021 ips->mch_avg_temp = calc_avg_temp(ips, array: mch_samples);
1022 ips->cpu_avg_power = calc_avg_power(ips, array: cpu_samples);
1023 ips->mch_avg_power = calc_avg_power(ips, array: mchp_samples);
1024 kfree(objp: mcp_samples);
1025 kfree(objp: ctv1_samples);
1026 kfree(objp: ctv2_samples);
1027 kfree(objp: mch_samples);
1028 kfree(objp: cpu_samples);
1029 kfree(objp: mchp_samples);
1030
1031 /* Start the adjustment thread now that we have data */
1032 wake_up_process(tsk: ips->adjust);
1033
1034 /*
1035 * Ok, now we have an initial avg. From here on out, we track the
1036 * running avg using a decaying average calculation. This allows
1037 * us to reduce the sample frequency if the CPU and GPU are idle.
1038 */
1039 old_cpu_power = thm_readl(THM_CEC);
1040 schedule_timeout_interruptible(timeout: msecs_to_jiffies(m: IPS_SAMPLE_PERIOD));
1041 last_sample_period = IPS_SAMPLE_PERIOD;
1042
1043 timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
1044 do {
1045 u32 cpu_val, mch_val;
1046 u16 val;
1047
1048 /* MCP itself */
1049 val = read_ptv(ips);
1050 ips->mcp_avg_temp = update_average_temp(avg: ips->mcp_avg_temp, val);
1051
1052 /* Processor 0 */
1053 val = read_ctv(ips, cpu: 0);
1054 ips->ctv1_avg_temp =
1055 update_average_temp(avg: ips->ctv1_avg_temp, val);
1056 /* Power */
1057 cpu_val = get_cpu_power(ips, last: &old_cpu_power,
1058 period: last_sample_period);
1059 ips->cpu_avg_power =
1060 update_average_power(avg: ips->cpu_avg_power, val: cpu_val);
1061
1062 if (ips->second_cpu) {
1063 /* Processor 1 */
1064 val = read_ctv(ips, cpu: 1);
1065 ips->ctv2_avg_temp =
1066 update_average_temp(avg: ips->ctv2_avg_temp, val);
1067 }
1068
1069 /* MCH */
1070 val = read_mgtv(ips);
1071 ips->mch_avg_temp = update_average_temp(avg: ips->mch_avg_temp, val);
1072 /* Power */
1073 if (ips->read_mch_val) {
1074 mch_val = ips->read_mch_val();
1075 ips->mch_avg_power =
1076 update_average_power(avg: ips->mch_avg_power,
1077 val: mch_val);
1078 }
1079
1080 /*
1081 * Make sure ME is updating thermal regs.
1082 * Note:
1083 * If it's been more than a second since the last update,
1084 * the ME is probably hung.
1085 */
1086 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1087 ITV_ME_SEQNO_SHIFT;
1088 if (cur_seqno == last_seqno &&
1089 time_after(jiffies, seqno_timestamp + HZ)) {
1090 dev_warn(ips->dev,
1091 "ME failed to update for more than 1s, likely hung\n");
1092 } else {
1093 seqno_timestamp = get_jiffies_64();
1094 last_seqno = cur_seqno;
1095 }
1096
1097 last_msecs = jiffies_to_msecs(j: jiffies);
1098 expire = jiffies + msecs_to_jiffies(m: IPS_SAMPLE_PERIOD);
1099
1100 __set_current_state(TASK_INTERRUPTIBLE);
1101 mod_timer(timer: &ips->timer, expires: expire);
1102 schedule();
1103
1104 /* Calculate actual sample period for power averaging */
1105 last_sample_period = jiffies_to_msecs(j: jiffies) - last_msecs;
1106 if (!last_sample_period)
1107 last_sample_period = 1;
1108 } while (!kthread_should_stop());
1109
1110 del_timer_sync(timer: &ips->timer);
1111
1112 dev_dbg(ips->dev, "ips-monitor thread stopped\n");
1113
1114 return 0;
1115}
1116
1117/**
1118 * ips_irq_handler - handle temperature triggers and other IPS events
1119 * @irq: irq number
1120 * @arg: unused
1121 *
1122 * Handle temperature limit trigger events, generally by lowering the clamps.
1123 * If we're at a critical limit, we clamp back to the lowest possible value
1124 * to prevent emergency shutdown.
1125 *
1126 * Returns: IRQ_NONE or IRQ_HANDLED
1127 */
1128static irqreturn_t ips_irq_handler(int irq, void *arg)
1129{
1130 struct ips_driver *ips = arg;
1131 u8 tses = thm_readb(THM_TSES);
1132 u8 tes = thm_readb(THM_TES);
1133
1134 if (!tses && !tes)
1135 return IRQ_NONE;
1136
1137 dev_info(ips->dev, "TSES: 0x%02x\n", tses);
1138 dev_info(ips->dev, "TES: 0x%02x\n", tes);
1139
1140 /* STS update from EC? */
1141 if (tes & 1) {
1142 u32 sts, tc1;
1143
1144 sts = thm_readl(THM_STS);
1145 tc1 = thm_readl(THM_TC1);
1146
1147 if (sts & STS_NVV) {
1148 spin_lock(lock: &ips->turbo_status_lock);
1149 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1150 STS_PCPL_SHIFT;
1151 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1152 STS_GPL_SHIFT;
1153 /* ignore EC CPU vs GPU pref */
1154 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1155 /*
1156 * Disable turbo for now, until we can figure
1157 * out why the power figures are wrong
1158 */
1159 ips->cpu_turbo_enabled = false;
1160 if (ips->gpu_busy)
1161 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1162 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1163 STS_PTL_SHIFT;
1164 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1165 STS_PPL_SHIFT;
1166 verify_limits(ips);
1167 spin_unlock(lock: &ips->turbo_status_lock);
1168
1169 thm_writeb(THM_SEC, SEC_ACK);
1170 }
1171 thm_writeb(THM_TES, tes);
1172 }
1173
1174 /* Thermal trip */
1175 if (tses) {
1176 dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n",
1177 tses);
1178 thm_writeb(THM_TSES, tses);
1179 }
1180
1181 return IRQ_HANDLED;
1182}
1183
1184#ifndef CONFIG_DEBUG_FS
1185static void ips_debugfs_init(struct ips_driver *ips) { return; }
1186static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1187#else
1188
1189/* Expose current state and limits in debugfs if possible */
1190
1191static int cpu_temp_show(struct seq_file *m, void *data)
1192{
1193 struct ips_driver *ips = m->private;
1194
1195 seq_printf(m, fmt: "%d.%02d\n", ips->ctv1_avg_temp / 100,
1196 ips->ctv1_avg_temp % 100);
1197
1198 return 0;
1199}
1200DEFINE_SHOW_ATTRIBUTE(cpu_temp);
1201
1202static int cpu_power_show(struct seq_file *m, void *data)
1203{
1204 struct ips_driver *ips = m->private;
1205
1206 seq_printf(m, fmt: "%dmW\n", ips->cpu_avg_power);
1207
1208 return 0;
1209}
1210DEFINE_SHOW_ATTRIBUTE(cpu_power);
1211
1212static int cpu_clamp_show(struct seq_file *m, void *data)
1213{
1214 u64 turbo_override;
1215 int tdp, tdc;
1216
1217 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1218
1219 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1220 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1221
1222 /* Convert to .1W/A units */
1223 tdp = tdp * 10 / 8;
1224 tdc = tdc * 10 / 8;
1225
1226 /* Watts Amperes */
1227 seq_printf(m, fmt: "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1228 tdc / 10, tdc % 10);
1229
1230 return 0;
1231}
1232DEFINE_SHOW_ATTRIBUTE(cpu_clamp);
1233
1234static int mch_temp_show(struct seq_file *m, void *data)
1235{
1236 struct ips_driver *ips = m->private;
1237
1238 seq_printf(m, fmt: "%d.%02d\n", ips->mch_avg_temp / 100,
1239 ips->mch_avg_temp % 100);
1240
1241 return 0;
1242}
1243DEFINE_SHOW_ATTRIBUTE(mch_temp);
1244
1245static int mch_power_show(struct seq_file *m, void *data)
1246{
1247 struct ips_driver *ips = m->private;
1248
1249 seq_printf(m, fmt: "%dmW\n", ips->mch_avg_power);
1250
1251 return 0;
1252}
1253DEFINE_SHOW_ATTRIBUTE(mch_power);
1254
1255static void ips_debugfs_cleanup(struct ips_driver *ips)
1256{
1257 debugfs_remove_recursive(dentry: ips->debug_root);
1258}
1259
1260static void ips_debugfs_init(struct ips_driver *ips)
1261{
1262 ips->debug_root = debugfs_create_dir(name: "ips", NULL);
1263
1264 debugfs_create_file(name: "cpu_temp", mode: 0444, parent: ips->debug_root, data: ips, fops: &cpu_temp_fops);
1265 debugfs_create_file(name: "cpu_power", mode: 0444, parent: ips->debug_root, data: ips, fops: &cpu_power_fops);
1266 debugfs_create_file(name: "cpu_clamp", mode: 0444, parent: ips->debug_root, data: ips, fops: &cpu_clamp_fops);
1267 debugfs_create_file(name: "mch_temp", mode: 0444, parent: ips->debug_root, data: ips, fops: &mch_temp_fops);
1268 debugfs_create_file(name: "mch_power", mode: 0444, parent: ips->debug_root, data: ips, fops: &mch_power_fops);
1269}
1270#endif /* CONFIG_DEBUG_FS */
1271
1272/**
1273 * ips_detect_cpu - detect whether CPU supports IPS
1274 * @ips: IPS driver struct
1275 *
1276 * Walk our list and see if we're on a supported CPU. If we find one,
1277 * return the limits for it.
1278 *
1279 * Returns: the &ips_mcp_limits struct that matches the boot CPU or %NULL
1280 */
1281static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1282{
1283 u64 turbo_power, misc_en;
1284 struct ips_mcp_limits *limits = NULL;
1285 u16 tdp;
1286
1287 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1288 dev_info(ips->dev, "Non-IPS CPU detected.\n");
1289 return NULL;
1290 }
1291
1292 rdmsrl(IA32_MISC_ENABLE, misc_en);
1293 /*
1294 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1295 * turbo manually or we'll get an illegal MSR access, even though
1296 * turbo will still be available.
1297 */
1298 if (misc_en & IA32_MISC_TURBO_EN)
1299 ips->turbo_toggle_allowed = true;
1300 else
1301 ips->turbo_toggle_allowed = false;
1302
1303 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1304 limits = &ips_sv_limits;
1305 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1306 limits = &ips_lv_limits;
1307 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1308 limits = &ips_ulv_limits;
1309 else {
1310 dev_info(ips->dev, "No CPUID match found.\n");
1311 return NULL;
1312 }
1313
1314 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1315 tdp = turbo_power & TURBO_TDP_MASK;
1316
1317 /* Sanity check TDP against CPU */
1318 if (limits->core_power_limit != (tdp / 8) * 1000) {
1319 dev_info(ips->dev,
1320 "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1321 tdp / 8, limits->core_power_limit / 1000);
1322 limits->core_power_limit = (tdp / 8) * 1000;
1323 }
1324
1325 return limits;
1326}
1327
1328/**
1329 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1330 * @ips: IPS driver
1331 *
1332 * The i915 driver exports several interfaces to allow the IPS driver to
1333 * monitor and control graphics turbo mode. If we can find them, we can
1334 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1335 * thermal and power limits in the MCP.
1336 *
1337 * Returns: %true if the required symbols are found, else %false
1338 */
1339static bool ips_get_i915_syms(struct ips_driver *ips)
1340{
1341 ips->read_mch_val = symbol_get(i915_read_mch_val);
1342 if (!ips->read_mch_val)
1343 goto out_err;
1344 ips->gpu_raise = symbol_get(i915_gpu_raise);
1345 if (!ips->gpu_raise)
1346 goto out_put_mch;
1347 ips->gpu_lower = symbol_get(i915_gpu_lower);
1348 if (!ips->gpu_lower)
1349 goto out_put_raise;
1350 ips->gpu_busy = symbol_get(i915_gpu_busy);
1351 if (!ips->gpu_busy)
1352 goto out_put_lower;
1353 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1354 if (!ips->gpu_turbo_disable)
1355 goto out_put_busy;
1356
1357 return true;
1358
1359out_put_busy:
1360 symbol_put(i915_gpu_busy);
1361out_put_lower:
1362 symbol_put(i915_gpu_lower);
1363out_put_raise:
1364 symbol_put(i915_gpu_raise);
1365out_put_mch:
1366 symbol_put(i915_read_mch_val);
1367out_err:
1368 return false;
1369}
1370
1371static bool
1372ips_gpu_turbo_enabled(struct ips_driver *ips)
1373{
1374 if (!ips->gpu_busy && late_i915_load) {
1375 if (ips_get_i915_syms(ips)) {
1376 dev_info(ips->dev,
1377 "i915 driver attached, reenabling gpu turbo\n");
1378 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1379 }
1380 }
1381
1382 return ips->gpu_turbo_enabled;
1383}
1384
1385void
1386ips_link_to_i915_driver(void)
1387{
1388 /* We can't cleanly get at the various ips_driver structs from
1389 * this caller (the i915 driver), so just set a flag saying
1390 * that it's time to try getting the symbols again.
1391 */
1392 late_i915_load = true;
1393}
1394EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1395
1396static const struct pci_device_id ips_id_table[] = {
1397 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1398 { 0, }
1399};
1400
1401MODULE_DEVICE_TABLE(pci, ips_id_table);
1402
1403static int ips_blacklist_callback(const struct dmi_system_id *id)
1404{
1405 pr_info("Blacklisted intel_ips for %s\n", id->ident);
1406 return 1;
1407}
1408
1409static const struct dmi_system_id ips_blacklist[] = {
1410 {
1411 .callback = ips_blacklist_callback,
1412 .ident = "HP ProBook",
1413 .matches = {
1414 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1415 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1416 },
1417 },
1418 { } /* terminating entry */
1419};
1420
1421static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1422{
1423 u64 platform_info;
1424 struct ips_driver *ips;
1425 u32 hts;
1426 int ret = 0;
1427 u16 htshi, trc, trc_required_mask;
1428 u8 tse;
1429
1430 if (dmi_check_system(list: ips_blacklist))
1431 return -ENODEV;
1432
1433 ips = devm_kzalloc(dev: &dev->dev, size: sizeof(*ips), GFP_KERNEL);
1434 if (!ips)
1435 return -ENOMEM;
1436
1437 spin_lock_init(&ips->turbo_status_lock);
1438 ips->dev = &dev->dev;
1439
1440 ips->limits = ips_detect_cpu(ips);
1441 if (!ips->limits) {
1442 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1443 return -ENXIO;
1444 }
1445
1446 ret = pcim_enable_device(pdev: dev);
1447 if (ret) {
1448 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1449 return ret;
1450 }
1451
1452 ret = pcim_iomap_regions(pdev: dev, mask: 1 << 0, name: pci_name(pdev: dev));
1453 if (ret) {
1454 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1455 return ret;
1456 }
1457 ips->regmap = pcim_iomap_table(pdev: dev)[0];
1458
1459 pci_set_drvdata(pdev: dev, data: ips);
1460
1461 tse = thm_readb(THM_TSE);
1462 if (tse != TSE_EN) {
1463 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1464 return -ENXIO;
1465 }
1466
1467 trc = thm_readw(THM_TRC);
1468 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1469 if ((trc & trc_required_mask) != trc_required_mask) {
1470 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1471 return -ENXIO;
1472 }
1473
1474 if (trc & TRC_CORE2_EN)
1475 ips->second_cpu = true;
1476
1477 update_turbo_limits(ips);
1478 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1479 ips->mcp_power_limit / 10);
1480 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1481 ips->core_power_limit / 10);
1482 /* BIOS may update limits at runtime */
1483 if (thm_readl(THM_PSC) & PSP_PBRT)
1484 ips->poll_turbo_status = true;
1485
1486 if (!ips_get_i915_syms(ips)) {
1487 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1488 ips->gpu_turbo_enabled = false;
1489 } else {
1490 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1491 ips->gpu_turbo_enabled = true;
1492 }
1493
1494 /*
1495 * Check PLATFORM_INFO MSR to make sure this chip is
1496 * turbo capable.
1497 */
1498 rdmsrl(PLATFORM_INFO, platform_info);
1499 if (!(platform_info & PLATFORM_TDP)) {
1500 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1501 return -ENODEV;
1502 }
1503
1504 /*
1505 * IRQ handler for ME interaction
1506 * Note: don't use MSI here as the PCH has bugs.
1507 */
1508 ret = pci_alloc_irq_vectors(dev, min_vecs: 1, max_vecs: 1, PCI_IRQ_LEGACY);
1509 if (ret < 0)
1510 return ret;
1511
1512 ips->irq = pci_irq_vector(dev, nr: 0);
1513
1514 ret = request_irq(irq: ips->irq, handler: ips_irq_handler, IRQF_SHARED, name: "ips", dev: ips);
1515 if (ret) {
1516 dev_err(&dev->dev, "request irq failed, aborting\n");
1517 return ret;
1518 }
1519
1520 /* Enable aux, hot & critical interrupts */
1521 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1522 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1523 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1524
1525 /* Collect adjustment values */
1526 ips->cta_val = thm_readw(THM_CTA);
1527 ips->pta_val = thm_readw(THM_PTA);
1528 ips->mgta_val = thm_readw(THM_MGTA);
1529
1530 /* Save turbo limits & ratios */
1531 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1532
1533 ips_disable_cpu_turbo(ips);
1534 ips->cpu_turbo_enabled = false;
1535
1536 /* Create thermal adjust thread */
1537 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1538 if (IS_ERR(ptr: ips->adjust)) {
1539 dev_err(&dev->dev,
1540 "failed to create thermal adjust thread, aborting\n");
1541 ret = -ENOMEM;
1542 goto error_free_irq;
1543
1544 }
1545
1546 /*
1547 * Set up the work queue and monitor thread. The monitor thread
1548 * will wake up ips_adjust thread.
1549 */
1550 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1551 if (IS_ERR(ptr: ips->monitor)) {
1552 dev_err(&dev->dev,
1553 "failed to create thermal monitor thread, aborting\n");
1554 ret = -ENOMEM;
1555 goto error_thread_cleanup;
1556 }
1557
1558 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1559 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1560 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1561
1562 thm_writew(THM_HTSHI, htshi);
1563 thm_writel(THM_HTS, hts);
1564
1565 ips_debugfs_init(ips);
1566
1567 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1568 ips->mcp_temp_limit);
1569 return ret;
1570
1571error_thread_cleanup:
1572 kthread_stop(k: ips->adjust);
1573error_free_irq:
1574 free_irq(ips->irq, ips);
1575 pci_free_irq_vectors(dev);
1576 return ret;
1577}
1578
1579static void ips_remove(struct pci_dev *dev)
1580{
1581 struct ips_driver *ips = pci_get_drvdata(pdev: dev);
1582 u64 turbo_override;
1583
1584 ips_debugfs_cleanup(ips);
1585
1586 /* Release i915 driver */
1587 if (ips->read_mch_val)
1588 symbol_put(i915_read_mch_val);
1589 if (ips->gpu_raise)
1590 symbol_put(i915_gpu_raise);
1591 if (ips->gpu_lower)
1592 symbol_put(i915_gpu_lower);
1593 if (ips->gpu_busy)
1594 symbol_put(i915_gpu_busy);
1595 if (ips->gpu_turbo_disable)
1596 symbol_put(i915_gpu_turbo_disable);
1597
1598 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1599 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1600 wrmsrl(TURBO_POWER_CURRENT_LIMIT, val: turbo_override);
1601 wrmsrl(TURBO_POWER_CURRENT_LIMIT, val: ips->orig_turbo_limit);
1602
1603 free_irq(ips->irq, ips);
1604 pci_free_irq_vectors(dev);
1605 if (ips->adjust)
1606 kthread_stop(k: ips->adjust);
1607 if (ips->monitor)
1608 kthread_stop(k: ips->monitor);
1609 dev_dbg(&dev->dev, "IPS driver removed\n");
1610}
1611
1612static struct pci_driver ips_pci_driver = {
1613 .name = "intel ips",
1614 .id_table = ips_id_table,
1615 .probe = ips_probe,
1616 .remove = ips_remove,
1617};
1618
1619module_pci_driver(ips_pci_driver);
1620
1621MODULE_LICENSE("GPL v2");
1622MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1623MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1624

source code of linux/drivers/platform/x86/intel_ips.c