1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
145{
146 bool lock = false;
147 int ret = 0;
148
149 mutex_lock(&regulator_nesting_mutex);
150
151 if (!ww_mutex_trylock(lock: &rdev->mutex, ctx: ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
156
157 if (lock) {
158 mutex_unlock(lock: &regulator_nesting_mutex);
159 ret = ww_mutex_lock(lock: &rdev->mutex, ctx: ww_ctx);
160 mutex_lock(&regulator_nesting_mutex);
161 }
162 } else {
163 lock = true;
164 }
165
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
169 }
170
171 mutex_unlock(lock: &regulator_nesting_mutex);
172
173 return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188 regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200 mutex_lock(&regulator_nesting_mutex);
201
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(lock: &rdev->mutex);
205 }
206
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209 mutex_unlock(lock: &regulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
223{
224 struct regulator_dev *held, *contended;
225 int ret;
226
227 ww_acquire_init(ctx: ww_ctx, ww_class: &regulator_ww_class);
228
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev: rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev: rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
236 }
237
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(rdev: held);
242
243 ww_mutex_lock_slow(lock: &contended->mutex, ctx: ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(rdev: contended, ww_ctx);
248
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
252 }
253 }
254
255exit:
256 ww_acquire_done(ctx: ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
271{
272 regulator_unlock(rdev: rdev2);
273 regulator_unlock(rdev: rdev1);
274 ww_acquire_fini(ctx: ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279 struct regulator_dev *c_rdev;
280 int i;
281
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285 if (rdev->supply->rdev == c_rdev)
286 return true;
287 }
288
289 return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
294{
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
297
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301 if (!c_rdev)
302 continue;
303
304 if (c_rdev->supply && !regulator_supply_is_couple(rdev: c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308 regulator_unlock_recursive(rdev: supply_rdev,
309 n_coupled: supply_n_coupled);
310 }
311
312 regulator_unlock(rdev: c_rdev);
313 }
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
320{
321 struct regulator_dev *c_rdev;
322 int i, err;
323
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327 if (!c_rdev)
328 continue;
329
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(rdev: c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
336 }
337
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
340 }
341 } else {
342 *old_contended_rdev = NULL;
343 }
344
345 if (c_rdev->supply && !regulator_supply_is_couple(rdev: c_rdev)) {
346 err = regulator_lock_recursive(rdev: c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(rdev: c_rdev);
352 goto err_unlock;
353 }
354 }
355 }
356
357 return 0;
358
359err_unlock:
360 regulator_unlock_recursive(rdev, n_coupled: i);
361
362 return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
375{
376 regulator_unlock_recursive(rdev, n_coupled: rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ctx: ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390{
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
394
395 mutex_lock(&regulator_list_mutex);
396
397 ww_acquire_init(ctx: ww_ctx, ww_class: &regulator_ww_class);
398
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(lock: &new_contended_rdev->mutex, ctx: ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
405 }
406
407 err = regulator_lock_recursive(rdev,
408 new_contended_rdev: &new_contended_rdev,
409 old_contended_rdev: &old_contended_rdev,
410 ww_ctx);
411
412 if (old_contended_rdev)
413 regulator_unlock(rdev: old_contended_rdev);
414
415 } while (err == -EDEADLK);
416
417 ww_acquire_done(ctx: ww_ctx);
418
419 mutex_unlock(lock: &regulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
435{
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
438
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(np: child, phandle_name: prop_name, index: 0);
441
442 if (!regnode) {
443 regnode = of_get_child_regulator(parent: child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
448 }
449 }
450 return NULL;
451
452err_node_put:
453 of_node_put(node: child);
454 return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
470
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473 snprintf(buf: prop_name, size: 64, fmt: "%s-supply", supply);
474 regnode = of_parse_phandle(np: dev->of_node, phandle_name: prop_name, index: 0);
475
476 if (!regnode) {
477 regnode = of_get_child_regulator(parent: dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
480
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
484 }
485 return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
491{
492 BUG_ON(*min_uV > *max_uV);
493
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
497 }
498
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
503
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
508 }
509
510 return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
525{
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
528
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = &regulator->voltage[state];
531 /*
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
534 */
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
537
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
542 }
543
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
548 }
549
550 return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
556{
557 BUG_ON(*min_uA > *max_uA);
558
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
562 }
563
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
568
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
573 }
574
575 return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
581{
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
591 }
592
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
596 }
597
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
601 */
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
606 }
607
608 return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614 if (rdev->constraints == NULL)
615 return NULL;
616
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
626 }
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632 const struct regulator_state *rstate;
633
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
637
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
641 */
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
648 }
649
650 return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655{
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
658
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
662
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, fmt: "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
671{
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674 return sprintf(buf, fmt: "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683 return sprintf(buf, fmt: "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
698 }
699 return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704 return sprintf(buf, fmt: "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712 return regulator_print_opmode(buf, mode: _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718 if (state > 0)
719 return sprintf(buf, fmt: "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, fmt: "disabled\n");
722 else
723 return sprintf(buf, fmt: "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728{
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
731
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, state: _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
735
736 return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
742{
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
746
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
750
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
781 }
782
783 return sprintf(buf, fmt: "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792 if (!rdev->constraints)
793 return sprintf(buf, fmt: "constraint not defined\n");
794
795 return sprintf(buf, fmt: "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 if (!rdev->constraints)
805 return sprintf(buf, fmt: "constraint not defined\n");
806
807 return sprintf(buf, fmt: "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 if (!rdev->constraints)
817 return sprintf(buf, fmt: "constraint not defined\n");
818
819 return sprintf(buf, fmt: "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 if (!rdev->constraints)
829 return sprintf(buf, fmt: "constraint not defined\n");
830
831 return sprintf(buf, fmt: "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837{
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
841
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
846 }
847 regulator_unlock(rdev);
848 return sprintf(buf, fmt: "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, fmt: "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, fmt: "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, fmt: "current\n");
870 }
871 return sprintf(buf, fmt: "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
877{
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880 return sprintf(buf, fmt: "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return sprintf(buf, fmt: "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898 return sprintf(buf, fmt: "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904{
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_opmode(buf,
908 mode: rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917 return regulator_print_opmode(buf,
918 mode: rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927 return regulator_print_opmode(buf,
928 mode: rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934{
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937 return regulator_print_state(buf,
938 state: rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944{
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947 return regulator_print_state(buf,
948 state: rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957 return regulator_print_state(buf,
958 state: rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964{
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
969
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
978
979 return sprintf(buf, fmt: "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
986 { \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
994 } \
995 static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1015
1016 /*
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1019 */
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1023 }
1024
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1028
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1032
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1037 }
1038
1039 current_uA += rdev->constraints->system_load;
1040
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1048 /*
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1054 */
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1058 }
1059
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1062
1063 /*
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1066 */
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev: rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1076
1077 /*
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1080 */
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1087
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, mode: &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1094 }
1095
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1100 }
1101
1102 return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1107{
1108 int ret = 0;
1109
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1118
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1122 }
1123
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1137 }
1138 }
1139
1140 return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145 const struct regulator_state *rstate;
1146
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 state: rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1151
1152 return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1163
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf: buf + count, size: len - count, fmt: "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf: buf + count, size: len - count,
1170 fmt: "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1173 }
1174
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf: buf + count, size: len - count,
1180 fmt: "at %d mV ", ret / 1000);
1181 }
1182
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf: buf + count, size: len - count, fmt: "%dmV offset ",
1185 constraints->uV_offset / 1000);
1186
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf: buf + count, size: len - count, fmt: "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf: buf + count, size: len - count,
1193 fmt: "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1196 }
1197
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf: buf + count, size: len - count,
1203 fmt: "at %d mA ", ret / 1000);
1204 }
1205
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf: buf + count, size: len - count, fmt: "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf: buf + count, size: len - count, fmt: "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf: buf + count, size: len - count, fmt: "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf: buf + count, size: len - count, fmt: "standby ");
1214
1215 if (!count)
1216 count = scnprintf(buf, size: len, fmt: "no parameters");
1217 else
1218 --count;
1219
1220 count += scnprintf(buf: buf + count, size: len - count, fmt: ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223 rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231 struct regulation_constraints *constraints = rdev->constraints;
1232
1233 print_constraints_debug(rdev);
1234
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1243{
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1246
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 min_uV: rdev->constraints->min_uV,
1260 max_uV: rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1262 }
1263
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1270 }
1271
1272 /*
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1276 */
1277 target_min = current_uV;
1278 target_max = current_uV;
1279
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1283 }
1284
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1288 }
1289
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, min_uV: target_min, max_uV: target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1300 }
1301 }
1302 }
1303
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1306 */
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1314
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1317 */
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1323 }
1324
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1328
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1333 }
1334
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1338
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1342
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1346
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1352 }
1353
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1360 }
1361
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1367 }
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1372 }
1373 }
1374
1375 return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1380{
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1383
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1386
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1390 }
1391
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1395 }
1396
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1403 }
1404
1405 return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1413{
1414 bool enable;
1415
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1421 }
1422
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1425
1426 return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1432{
1433 int ret = 0;
1434
1435 if (!set)
1436 return -EOPNOTSUPP;
1437
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limit: limits->prot,
1440 severity: REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1443
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limit: limits->err,
1446 severity: REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1449
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limit: limits->warn,
1452 severity: REGULATOR_SEVERITY_WARN);
1453
1454 return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1470
1471 ret = machine_constraints_voltage(rdev, constraints: rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1474
1475 ret = machine_constraints_current(rdev, constraints: rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1478
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1494 }
1495 }
1496
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1501 }
1502
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1507 }
1508 } else if (rdev->constraints->system_load) {
1509 /*
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1512 */
1513 drms_uA_update(rdev);
1514 }
1515
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1530 }
1531 }
1532
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1538 }
1539 }
1540
1541 /*
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1550 *
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1554 */
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1558
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1566 }
1567 }
1568
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 set: ops->set_over_current_protection,
1572 limits: &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1578 }
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1581 }
1582
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 set: ops->set_over_voltage_protection,
1586 limits: &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1592 }
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1595 }
1596
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 set: ops->set_under_voltage_protection,
1600 limits: &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1606 }
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1609 }
1610
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 set: ops->set_thermal_protection,
1614 limits: &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1620 }
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1623 }
1624
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1633 }
1634 }
1635
1636 /*
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1642 */
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1646
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1652 }
1653
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1656 */
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1660 */
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1663
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1667 */
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(regulator: rdev->supply))) {
1671 ret = regulator_enable(regulator: rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(regulator: rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1676 }
1677 }
1678
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1683 }
1684
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1689 }
1690
1691 print_constraints(rdev);
1692 return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1706{
1707 int err;
1708
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711 if (!try_module_get(module: supply_rdev->owner))
1712 return -ENODEV;
1713
1714 rdev->supply = create_regulator(rdev: supply_rdev, dev: &rdev->dev, supply_name: "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(module: supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1719 }
1720 supply_rdev->open_count++;
1721
1722 return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1739{
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1742
1743 if (supply == NULL)
1744 return -EINVAL;
1745
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1750
1751 new_node = kzalloc(size: sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1754
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1757
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(s: consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(objp: new_node);
1762 return -ENOMEM;
1763 }
1764 }
1765
1766 mutex_lock(&regulator_list_mutex);
1767 list_for_each_entry(node, &regulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1773 }
1774
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1777
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1785 }
1786
1787 list_add(new: &new_node->list, head: &regulator_map_list);
1788 mutex_unlock(lock: &regulator_list_mutex);
1789
1790 return 0;
1791
1792fail:
1793 mutex_unlock(lock: &regulator_list_mutex);
1794 kfree(objp: new_node->dev_name);
1795 kfree(objp: new_node);
1796 return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801 struct regulator_map *node, *n;
1802
1803 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(entry: &node->list);
1806 kfree(objp: node->dev_name);
1807 kfree(objp: node);
1808 }
1809 }
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1816{
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1821
1822 if (!c)
1823 return 0;
1824
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1828
1829 ret = snprintf(buf, PAGE_SIZE,
1830 fmt: "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1844
1845 ret = simple_read_from_buffer(to: user_buf, count, ppos, from: buf, available: ret);
1846 kfree(objp: buf);
1847
1848 return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE 64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1866{
1867 struct regulator *regulator;
1868 int err = 0;
1869
1870 lockdep_assert_held_once(&rdev->mutex.base);
1871
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1875
1876 size = snprintf(buf, REG_STR_SIZE, fmt: "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1880
1881 supply_name = kstrdup(s: buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(s: supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1888 }
1889
1890 regulator = kzalloc(size: sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(x: supply_name);
1893 return NULL;
1894 }
1895
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1898
1899 list_add(new: &regulator->list, head: &rdev->consumer_list);
1900
1901 if (dev) {
1902 regulator->dev = dev;
1903
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(kobj: &rdev->dev.kobj, target: &dev->kobj,
1906 name: supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1911 }
1912 }
1913
1914 if (err != -EEXIST)
1915 regulator->debugfs = debugfs_create_dir(name: supply_name, parent: rdev->debugfs);
1916 if (IS_ERR(ptr: regulator->debugfs))
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918
1919 debugfs_create_u32(name: "uA_load", mode: 0444, parent: regulator->debugfs,
1920 value: &regulator->uA_load);
1921 debugfs_create_u32(name: "min_uV", mode: 0444, parent: regulator->debugfs,
1922 value: &regulator->voltage[PM_SUSPEND_ON].min_uV);
1923 debugfs_create_u32(name: "max_uV", mode: 0444, parent: regulator->debugfs,
1924 value: &regulator->voltage[PM_SUSPEND_ON].max_uV);
1925 debugfs_create_file(name: "constraint_flags", mode: 0444, parent: regulator->debugfs,
1926 data: regulator, fops: &constraint_flags_fops);
1927
1928 /*
1929 * Check now if the regulator is an always on regulator - if
1930 * it is then we don't need to do nearly so much work for
1931 * enable/disable calls.
1932 */
1933 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934 _regulator_is_enabled(rdev))
1935 regulator->always_on = true;
1936
1937 return regulator;
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942 if (rdev->constraints && rdev->constraints->enable_time)
1943 return rdev->constraints->enable_time;
1944 if (rdev->desc->ops->enable_time)
1945 return rdev->desc->ops->enable_time(rdev);
1946 return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950 struct device *dev, const char *supply)
1951{
1952 struct regulator_supply_alias *map;
1953
1954 list_for_each_entry(map, &regulator_supply_alias_list, list)
1955 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956 return map;
1957
1958 return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963 struct regulator_supply_alias *map;
1964
1965 map = regulator_find_supply_alias(dev: *dev, supply: *supply);
1966 if (map) {
1967 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968 *supply, map->alias_supply,
1969 dev_name(map->alias_dev));
1970 *dev = map->alias_dev;
1971 *supply = map->alias_supply;
1972 }
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977 struct regulator_dev *r = dev_to_rdev(dev);
1978
1979 return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984 struct device *dev;
1985
1986 dev = class_find_device(class: &regulator_class, NULL, data: name, match: regulator_match);
1987
1988 return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004 const char *supply)
2005{
2006 struct regulator_dev *r = NULL;
2007 struct device_node *node;
2008 struct regulator_map *map;
2009 const char *devname = NULL;
2010
2011 regulator_supply_alias(dev: &dev, supply: &supply);
2012
2013 /* first do a dt based lookup */
2014 if (dev && dev->of_node) {
2015 node = of_get_regulator(dev, supply);
2016 if (node) {
2017 r = of_find_regulator_by_node(np: node);
2018 of_node_put(node);
2019 if (r)
2020 return r;
2021
2022 /*
2023 * We have a node, but there is no device.
2024 * assume it has not registered yet.
2025 */
2026 return ERR_PTR(error: -EPROBE_DEFER);
2027 }
2028 }
2029
2030 /* if not found, try doing it non-dt way */
2031 if (dev)
2032 devname = dev_name(dev);
2033
2034 mutex_lock(&regulator_list_mutex);
2035 list_for_each_entry(map, &regulator_map_list, list) {
2036 /* If the mapping has a device set up it must match */
2037 if (map->dev_name &&
2038 (!devname || strcmp(map->dev_name, devname)))
2039 continue;
2040
2041 if (strcmp(map->supply, supply) == 0 &&
2042 get_device(dev: &map->regulator->dev)) {
2043 r = map->regulator;
2044 break;
2045 }
2046 }
2047 mutex_unlock(lock: &regulator_list_mutex);
2048
2049 if (r)
2050 return r;
2051
2052 r = regulator_lookup_by_name(name: supply);
2053 if (r)
2054 return r;
2055
2056 return ERR_PTR(error: -ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061 struct regulator_dev *r;
2062 struct device *dev = rdev->dev.parent;
2063 struct ww_acquire_ctx ww_ctx;
2064 int ret = 0;
2065
2066 /* No supply to resolve? */
2067 if (!rdev->supply_name)
2068 return 0;
2069
2070 /* Supply already resolved? (fast-path without locking contention) */
2071 if (rdev->supply)
2072 return 0;
2073
2074 r = regulator_dev_lookup(dev, supply: rdev->supply_name);
2075 if (IS_ERR(ptr: r)) {
2076 ret = PTR_ERR(ptr: r);
2077
2078 /* Did the lookup explicitly defer for us? */
2079 if (ret == -EPROBE_DEFER)
2080 goto out;
2081
2082 if (have_full_constraints()) {
2083 r = dummy_regulator_rdev;
2084 get_device(dev: &r->dev);
2085 } else {
2086 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087 rdev->supply_name, rdev->desc->name);
2088 ret = -EPROBE_DEFER;
2089 goto out;
2090 }
2091 }
2092
2093 if (r == rdev) {
2094 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095 rdev->desc->name, rdev->supply_name);
2096 if (!have_full_constraints()) {
2097 ret = -EINVAL;
2098 goto out;
2099 }
2100 r = dummy_regulator_rdev;
2101 get_device(dev: &r->dev);
2102 }
2103
2104 /*
2105 * If the supply's parent device is not the same as the
2106 * regulator's parent device, then ensure the parent device
2107 * is bound before we resolve the supply, in case the parent
2108 * device get probe deferred and unregisters the supply.
2109 */
2110 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111 if (!device_is_bound(dev: r->dev.parent)) {
2112 put_device(dev: &r->dev);
2113 ret = -EPROBE_DEFER;
2114 goto out;
2115 }
2116 }
2117
2118 /* Recursively resolve the supply of the supply */
2119 ret = regulator_resolve_supply(rdev: r);
2120 if (ret < 0) {
2121 put_device(dev: &r->dev);
2122 goto out;
2123 }
2124
2125 /*
2126 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127 * between rdev->supply null check and setting rdev->supply in
2128 * set_supply() from concurrent tasks.
2129 */
2130 regulator_lock_two(rdev1: rdev, rdev2: r, ww_ctx: &ww_ctx);
2131
2132 /* Supply just resolved by a concurrent task? */
2133 if (rdev->supply) {
2134 regulator_unlock_two(rdev1: rdev, rdev2: r, ww_ctx: &ww_ctx);
2135 put_device(dev: &r->dev);
2136 goto out;
2137 }
2138
2139 ret = set_supply(rdev, supply_rdev: r);
2140 if (ret < 0) {
2141 regulator_unlock_two(rdev1: rdev, rdev2: r, ww_ctx: &ww_ctx);
2142 put_device(dev: &r->dev);
2143 goto out;
2144 }
2145
2146 regulator_unlock_two(rdev1: rdev, rdev2: r, ww_ctx: &ww_ctx);
2147
2148 /*
2149 * In set_machine_constraints() we may have turned this regulator on
2150 * but we couldn't propagate to the supply if it hadn't been resolved
2151 * yet. Do it now.
2152 */
2153 if (rdev->use_count) {
2154 ret = regulator_enable(regulator: rdev->supply);
2155 if (ret < 0) {
2156 _regulator_put(regulator: rdev->supply);
2157 rdev->supply = NULL;
2158 goto out;
2159 }
2160 }
2161
2162out:
2163 return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168 enum regulator_get_type get_type)
2169{
2170 struct regulator_dev *rdev;
2171 struct regulator *regulator;
2172 struct device_link *link;
2173 int ret;
2174
2175 if (get_type >= MAX_GET_TYPE) {
2176 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177 return ERR_PTR(error: -EINVAL);
2178 }
2179
2180 if (id == NULL) {
2181 pr_err("get() with no identifier\n");
2182 return ERR_PTR(error: -EINVAL);
2183 }
2184
2185 rdev = regulator_dev_lookup(dev, supply: id);
2186 if (IS_ERR(ptr: rdev)) {
2187 ret = PTR_ERR(ptr: rdev);
2188
2189 /*
2190 * If regulator_dev_lookup() fails with error other
2191 * than -ENODEV our job here is done, we simply return it.
2192 */
2193 if (ret != -ENODEV)
2194 return ERR_PTR(error: ret);
2195
2196 if (!have_full_constraints()) {
2197 dev_warn(dev,
2198 "incomplete constraints, dummy supplies not allowed\n");
2199 return ERR_PTR(error: -ENODEV);
2200 }
2201
2202 switch (get_type) {
2203 case NORMAL_GET:
2204 /*
2205 * Assume that a regulator is physically present and
2206 * enabled, even if it isn't hooked up, and just
2207 * provide a dummy.
2208 */
2209 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210 rdev = dummy_regulator_rdev;
2211 get_device(dev: &rdev->dev);
2212 break;
2213
2214 case EXCLUSIVE_GET:
2215 dev_warn(dev,
2216 "dummy supplies not allowed for exclusive requests\n");
2217 fallthrough;
2218
2219 default:
2220 return ERR_PTR(error: -ENODEV);
2221 }
2222 }
2223
2224 if (rdev->exclusive) {
2225 regulator = ERR_PTR(error: -EPERM);
2226 put_device(dev: &rdev->dev);
2227 return regulator;
2228 }
2229
2230 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231 regulator = ERR_PTR(error: -EBUSY);
2232 put_device(dev: &rdev->dev);
2233 return regulator;
2234 }
2235
2236 mutex_lock(&regulator_list_mutex);
2237 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238 mutex_unlock(lock: &regulator_list_mutex);
2239
2240 if (ret != 0) {
2241 regulator = ERR_PTR(error: -EPROBE_DEFER);
2242 put_device(dev: &rdev->dev);
2243 return regulator;
2244 }
2245
2246 ret = regulator_resolve_supply(rdev);
2247 if (ret < 0) {
2248 regulator = ERR_PTR(error: ret);
2249 put_device(dev: &rdev->dev);
2250 return regulator;
2251 }
2252
2253 if (!try_module_get(module: rdev->owner)) {
2254 regulator = ERR_PTR(error: -EPROBE_DEFER);
2255 put_device(dev: &rdev->dev);
2256 return regulator;
2257 }
2258
2259 regulator_lock(rdev);
2260 regulator = create_regulator(rdev, dev, supply_name: id);
2261 regulator_unlock(rdev);
2262 if (regulator == NULL) {
2263 regulator = ERR_PTR(error: -ENOMEM);
2264 module_put(module: rdev->owner);
2265 put_device(dev: &rdev->dev);
2266 return regulator;
2267 }
2268
2269 rdev->open_count++;
2270 if (get_type == EXCLUSIVE_GET) {
2271 rdev->exclusive = 1;
2272
2273 ret = _regulator_is_enabled(rdev);
2274 if (ret > 0) {
2275 rdev->use_count = 1;
2276 regulator->enable_count = 1;
2277
2278 /* Propagate the regulator state to its supply */
2279 if (rdev->supply) {
2280 ret = regulator_enable(regulator: rdev->supply);
2281 if (ret < 0) {
2282 destroy_regulator(regulator);
2283 module_put(module: rdev->owner);
2284 put_device(dev: &rdev->dev);
2285 return ERR_PTR(error: ret);
2286 }
2287 }
2288 } else {
2289 rdev->use_count = 0;
2290 regulator->enable_count = 0;
2291 }
2292 }
2293
2294 link = device_link_add(consumer: dev, supplier: &rdev->dev, DL_FLAG_STATELESS);
2295 if (!IS_ERR_OR_NULL(ptr: link))
2296 regulator->device_link = true;
2297
2298 return regulator;
2299}
2300
2301/**
2302 * regulator_get - lookup and obtain a reference to a regulator.
2303 * @dev: device for regulator "consumer"
2304 * @id: Supply name or regulator ID.
2305 *
2306 * Returns a struct regulator corresponding to the regulator producer,
2307 * or IS_ERR() condition containing errno.
2308 *
2309 * Use of supply names configured via set_consumer_device_supply() is
2310 * strongly encouraged. It is recommended that the supply name used
2311 * should match the name used for the supply and/or the relevant
2312 * device pins in the datasheet.
2313 */
2314struct regulator *regulator_get(struct device *dev, const char *id)
2315{
2316 return _regulator_get(dev, id, get_type: NORMAL_GET);
2317}
2318EXPORT_SYMBOL_GPL(regulator_get);
2319
2320/**
2321 * regulator_get_exclusive - obtain exclusive access to a regulator.
2322 * @dev: device for regulator "consumer"
2323 * @id: Supply name or regulator ID.
2324 *
2325 * Returns a struct regulator corresponding to the regulator producer,
2326 * or IS_ERR() condition containing errno. Other consumers will be
2327 * unable to obtain this regulator while this reference is held and the
2328 * use count for the regulator will be initialised to reflect the current
2329 * state of the regulator.
2330 *
2331 * This is intended for use by consumers which cannot tolerate shared
2332 * use of the regulator such as those which need to force the
2333 * regulator off for correct operation of the hardware they are
2334 * controlling.
2335 *
2336 * Use of supply names configured via set_consumer_device_supply() is
2337 * strongly encouraged. It is recommended that the supply name used
2338 * should match the name used for the supply and/or the relevant
2339 * device pins in the datasheet.
2340 */
2341struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2342{
2343 return _regulator_get(dev, id, get_type: EXCLUSIVE_GET);
2344}
2345EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2346
2347/**
2348 * regulator_get_optional - obtain optional access to a regulator.
2349 * @dev: device for regulator "consumer"
2350 * @id: Supply name or regulator ID.
2351 *
2352 * Returns a struct regulator corresponding to the regulator producer,
2353 * or IS_ERR() condition containing errno.
2354 *
2355 * This is intended for use by consumers for devices which can have
2356 * some supplies unconnected in normal use, such as some MMC devices.
2357 * It can allow the regulator core to provide stub supplies for other
2358 * supplies requested using normal regulator_get() calls without
2359 * disrupting the operation of drivers that can handle absent
2360 * supplies.
2361 *
2362 * Use of supply names configured via set_consumer_device_supply() is
2363 * strongly encouraged. It is recommended that the supply name used
2364 * should match the name used for the supply and/or the relevant
2365 * device pins in the datasheet.
2366 */
2367struct regulator *regulator_get_optional(struct device *dev, const char *id)
2368{
2369 return _regulator_get(dev, id, get_type: OPTIONAL_GET);
2370}
2371EXPORT_SYMBOL_GPL(regulator_get_optional);
2372
2373static void destroy_regulator(struct regulator *regulator)
2374{
2375 struct regulator_dev *rdev = regulator->rdev;
2376
2377 debugfs_remove_recursive(dentry: regulator->debugfs);
2378
2379 if (regulator->dev) {
2380 if (regulator->device_link)
2381 device_link_remove(consumer: regulator->dev, supplier: &rdev->dev);
2382
2383 /* remove any sysfs entries */
2384 sysfs_remove_link(kobj: &rdev->dev.kobj, name: regulator->supply_name);
2385 }
2386
2387 regulator_lock(rdev);
2388 list_del(entry: &regulator->list);
2389
2390 rdev->open_count--;
2391 rdev->exclusive = 0;
2392 regulator_unlock(rdev);
2393
2394 kfree_const(x: regulator->supply_name);
2395 kfree(objp: regulator);
2396}
2397
2398/* regulator_list_mutex lock held by regulator_put() */
2399static void _regulator_put(struct regulator *regulator)
2400{
2401 struct regulator_dev *rdev;
2402
2403 if (IS_ERR_OR_NULL(ptr: regulator))
2404 return;
2405
2406 lockdep_assert_held_once(&regulator_list_mutex);
2407
2408 /* Docs say you must disable before calling regulator_put() */
2409 WARN_ON(regulator->enable_count);
2410
2411 rdev = regulator->rdev;
2412
2413 destroy_regulator(regulator);
2414
2415 module_put(module: rdev->owner);
2416 put_device(dev: &rdev->dev);
2417}
2418
2419/**
2420 * regulator_put - "free" the regulator source
2421 * @regulator: regulator source
2422 *
2423 * Note: drivers must ensure that all regulator_enable calls made on this
2424 * regulator source are balanced by regulator_disable calls prior to calling
2425 * this function.
2426 */
2427void regulator_put(struct regulator *regulator)
2428{
2429 mutex_lock(&regulator_list_mutex);
2430 _regulator_put(regulator);
2431 mutex_unlock(lock: &regulator_list_mutex);
2432}
2433EXPORT_SYMBOL_GPL(regulator_put);
2434
2435/**
2436 * regulator_register_supply_alias - Provide device alias for supply lookup
2437 *
2438 * @dev: device that will be given as the regulator "consumer"
2439 * @id: Supply name or regulator ID
2440 * @alias_dev: device that should be used to lookup the supply
2441 * @alias_id: Supply name or regulator ID that should be used to lookup the
2442 * supply
2443 *
2444 * All lookups for id on dev will instead be conducted for alias_id on
2445 * alias_dev.
2446 */
2447int regulator_register_supply_alias(struct device *dev, const char *id,
2448 struct device *alias_dev,
2449 const char *alias_id)
2450{
2451 struct regulator_supply_alias *map;
2452
2453 map = regulator_find_supply_alias(dev, supply: id);
2454 if (map)
2455 return -EEXIST;
2456
2457 map = kzalloc(size: sizeof(struct regulator_supply_alias), GFP_KERNEL);
2458 if (!map)
2459 return -ENOMEM;
2460
2461 map->src_dev = dev;
2462 map->src_supply = id;
2463 map->alias_dev = alias_dev;
2464 map->alias_supply = alias_id;
2465
2466 list_add(new: &map->list, head: &regulator_supply_alias_list);
2467
2468 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2469 id, dev_name(dev), alias_id, dev_name(alias_dev));
2470
2471 return 0;
2472}
2473EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2474
2475/**
2476 * regulator_unregister_supply_alias - Remove device alias
2477 *
2478 * @dev: device that will be given as the regulator "consumer"
2479 * @id: Supply name or regulator ID
2480 *
2481 * Remove a lookup alias if one exists for id on dev.
2482 */
2483void regulator_unregister_supply_alias(struct device *dev, const char *id)
2484{
2485 struct regulator_supply_alias *map;
2486
2487 map = regulator_find_supply_alias(dev, supply: id);
2488 if (map) {
2489 list_del(entry: &map->list);
2490 kfree(objp: map);
2491 }
2492}
2493EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2494
2495/**
2496 * regulator_bulk_register_supply_alias - register multiple aliases
2497 *
2498 * @dev: device that will be given as the regulator "consumer"
2499 * @id: List of supply names or regulator IDs
2500 * @alias_dev: device that should be used to lookup the supply
2501 * @alias_id: List of supply names or regulator IDs that should be used to
2502 * lookup the supply
2503 * @num_id: Number of aliases to register
2504 *
2505 * @return 0 on success, an errno on failure.
2506 *
2507 * This helper function allows drivers to register several supply
2508 * aliases in one operation. If any of the aliases cannot be
2509 * registered any aliases that were registered will be removed
2510 * before returning to the caller.
2511 */
2512int regulator_bulk_register_supply_alias(struct device *dev,
2513 const char *const *id,
2514 struct device *alias_dev,
2515 const char *const *alias_id,
2516 int num_id)
2517{
2518 int i;
2519 int ret;
2520
2521 for (i = 0; i < num_id; ++i) {
2522 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2523 alias_id[i]);
2524 if (ret < 0)
2525 goto err;
2526 }
2527
2528 return 0;
2529
2530err:
2531 dev_err(dev,
2532 "Failed to create supply alias %s,%s -> %s,%s\n",
2533 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2534
2535 while (--i >= 0)
2536 regulator_unregister_supply_alias(dev, id[i]);
2537
2538 return ret;
2539}
2540EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2541
2542/**
2543 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2544 *
2545 * @dev: device that will be given as the regulator "consumer"
2546 * @id: List of supply names or regulator IDs
2547 * @num_id: Number of aliases to unregister
2548 *
2549 * This helper function allows drivers to unregister several supply
2550 * aliases in one operation.
2551 */
2552void regulator_bulk_unregister_supply_alias(struct device *dev,
2553 const char *const *id,
2554 int num_id)
2555{
2556 int i;
2557
2558 for (i = 0; i < num_id; ++i)
2559 regulator_unregister_supply_alias(dev, id[i]);
2560}
2561EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2562
2563
2564/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2565static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2566 const struct regulator_config *config)
2567{
2568 struct regulator_enable_gpio *pin, *new_pin;
2569 struct gpio_desc *gpiod;
2570
2571 gpiod = config->ena_gpiod;
2572 new_pin = kzalloc(size: sizeof(*new_pin), GFP_KERNEL);
2573
2574 mutex_lock(&regulator_list_mutex);
2575
2576 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2577 if (pin->gpiod == gpiod) {
2578 rdev_dbg(rdev, "GPIO is already used\n");
2579 goto update_ena_gpio_to_rdev;
2580 }
2581 }
2582
2583 if (new_pin == NULL) {
2584 mutex_unlock(lock: &regulator_list_mutex);
2585 return -ENOMEM;
2586 }
2587
2588 pin = new_pin;
2589 new_pin = NULL;
2590
2591 pin->gpiod = gpiod;
2592 list_add(new: &pin->list, head: &regulator_ena_gpio_list);
2593
2594update_ena_gpio_to_rdev:
2595 pin->request_count++;
2596 rdev->ena_pin = pin;
2597
2598 mutex_unlock(lock: &regulator_list_mutex);
2599 kfree(objp: new_pin);
2600
2601 return 0;
2602}
2603
2604static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2605{
2606 struct regulator_enable_gpio *pin, *n;
2607
2608 if (!rdev->ena_pin)
2609 return;
2610
2611 /* Free the GPIO only in case of no use */
2612 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2613 if (pin != rdev->ena_pin)
2614 continue;
2615
2616 if (--pin->request_count)
2617 break;
2618
2619 gpiod_put(desc: pin->gpiod);
2620 list_del(entry: &pin->list);
2621 kfree(objp: pin);
2622 break;
2623 }
2624
2625 rdev->ena_pin = NULL;
2626}
2627
2628/**
2629 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2630 * @rdev: regulator_dev structure
2631 * @enable: enable GPIO at initial use?
2632 *
2633 * GPIO is enabled in case of initial use. (enable_count is 0)
2634 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2635 */
2636static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2637{
2638 struct regulator_enable_gpio *pin = rdev->ena_pin;
2639
2640 if (!pin)
2641 return -EINVAL;
2642
2643 if (enable) {
2644 /* Enable GPIO at initial use */
2645 if (pin->enable_count == 0)
2646 gpiod_set_value_cansleep(desc: pin->gpiod, value: 1);
2647
2648 pin->enable_count++;
2649 } else {
2650 if (pin->enable_count > 1) {
2651 pin->enable_count--;
2652 return 0;
2653 }
2654
2655 /* Disable GPIO if not used */
2656 if (pin->enable_count <= 1) {
2657 gpiod_set_value_cansleep(desc: pin->gpiod, value: 0);
2658 pin->enable_count = 0;
2659 }
2660 }
2661
2662 return 0;
2663}
2664
2665/**
2666 * _regulator_delay_helper - a delay helper function
2667 * @delay: time to delay in microseconds
2668 *
2669 * Delay for the requested amount of time as per the guidelines in:
2670 *
2671 * Documentation/timers/timers-howto.rst
2672 *
2673 * The assumption here is that these regulator operations will never used in
2674 * atomic context and therefore sleeping functions can be used.
2675 */
2676static void _regulator_delay_helper(unsigned int delay)
2677{
2678 unsigned int ms = delay / 1000;
2679 unsigned int us = delay % 1000;
2680
2681 if (ms > 0) {
2682 /*
2683 * For small enough values, handle super-millisecond
2684 * delays in the usleep_range() call below.
2685 */
2686 if (ms < 20)
2687 us += ms * 1000;
2688 else
2689 msleep(msecs: ms);
2690 }
2691
2692 /*
2693 * Give the scheduler some room to coalesce with any other
2694 * wakeup sources. For delays shorter than 10 us, don't even
2695 * bother setting up high-resolution timers and just busy-
2696 * loop.
2697 */
2698 if (us >= 10)
2699 usleep_range(min: us, max: us + 100);
2700 else
2701 udelay(us);
2702}
2703
2704/**
2705 * _regulator_check_status_enabled
2706 *
2707 * A helper function to check if the regulator status can be interpreted
2708 * as 'regulator is enabled'.
2709 * @rdev: the regulator device to check
2710 *
2711 * Return:
2712 * * 1 - if status shows regulator is in enabled state
2713 * * 0 - if not enabled state
2714 * * Error Value - as received from ops->get_status()
2715 */
2716static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2717{
2718 int ret = rdev->desc->ops->get_status(rdev);
2719
2720 if (ret < 0) {
2721 rdev_info(rdev, "get_status returned error: %d\n", ret);
2722 return ret;
2723 }
2724
2725 switch (ret) {
2726 case REGULATOR_STATUS_OFF:
2727 case REGULATOR_STATUS_ERROR:
2728 case REGULATOR_STATUS_UNDEFINED:
2729 return 0;
2730 default:
2731 return 1;
2732 }
2733}
2734
2735static int _regulator_do_enable(struct regulator_dev *rdev)
2736{
2737 int ret, delay;
2738
2739 /* Query before enabling in case configuration dependent. */
2740 ret = _regulator_get_enable_time(rdev);
2741 if (ret >= 0) {
2742 delay = ret;
2743 } else {
2744 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2745 delay = 0;
2746 }
2747
2748 trace_regulator_enable(name: rdev_get_name(rdev));
2749
2750 if (rdev->desc->off_on_delay) {
2751 /* if needed, keep a distance of off_on_delay from last time
2752 * this regulator was disabled.
2753 */
2754 ktime_t end = ktime_add_us(kt: rdev->last_off, usec: rdev->desc->off_on_delay);
2755 s64 remaining = ktime_us_delta(later: end, earlier: ktime_get_boottime());
2756
2757 if (remaining > 0)
2758 _regulator_delay_helper(delay: remaining);
2759 }
2760
2761 if (rdev->ena_pin) {
2762 if (!rdev->ena_gpio_state) {
2763 ret = regulator_ena_gpio_ctrl(rdev, enable: true);
2764 if (ret < 0)
2765 return ret;
2766 rdev->ena_gpio_state = 1;
2767 }
2768 } else if (rdev->desc->ops->enable) {
2769 ret = rdev->desc->ops->enable(rdev);
2770 if (ret < 0)
2771 return ret;
2772 } else {
2773 return -EINVAL;
2774 }
2775
2776 /* Allow the regulator to ramp; it would be useful to extend
2777 * this for bulk operations so that the regulators can ramp
2778 * together.
2779 */
2780 trace_regulator_enable_delay(name: rdev_get_name(rdev));
2781
2782 /* If poll_enabled_time is set, poll upto the delay calculated
2783 * above, delaying poll_enabled_time uS to check if the regulator
2784 * actually got enabled.
2785 * If the regulator isn't enabled after our delay helper has expired,
2786 * return -ETIMEDOUT.
2787 */
2788 if (rdev->desc->poll_enabled_time) {
2789 int time_remaining = delay;
2790
2791 while (time_remaining > 0) {
2792 _regulator_delay_helper(delay: rdev->desc->poll_enabled_time);
2793
2794 if (rdev->desc->ops->get_status) {
2795 ret = _regulator_check_status_enabled(rdev);
2796 if (ret < 0)
2797 return ret;
2798 else if (ret)
2799 break;
2800 } else if (rdev->desc->ops->is_enabled(rdev))
2801 break;
2802
2803 time_remaining -= rdev->desc->poll_enabled_time;
2804 }
2805
2806 if (time_remaining <= 0) {
2807 rdev_err(rdev, "Enabled check timed out\n");
2808 return -ETIMEDOUT;
2809 }
2810 } else {
2811 _regulator_delay_helper(delay);
2812 }
2813
2814 trace_regulator_enable_complete(name: rdev_get_name(rdev));
2815
2816 return 0;
2817}
2818
2819/**
2820 * _regulator_handle_consumer_enable - handle that a consumer enabled
2821 * @regulator: regulator source
2822 *
2823 * Some things on a regulator consumer (like the contribution towards total
2824 * load on the regulator) only have an effect when the consumer wants the
2825 * regulator enabled. Explained in example with two consumers of the same
2826 * regulator:
2827 * consumer A: set_load(100); => total load = 0
2828 * consumer A: regulator_enable(); => total load = 100
2829 * consumer B: set_load(1000); => total load = 100
2830 * consumer B: regulator_enable(); => total load = 1100
2831 * consumer A: regulator_disable(); => total_load = 1000
2832 *
2833 * This function (together with _regulator_handle_consumer_disable) is
2834 * responsible for keeping track of the refcount for a given regulator consumer
2835 * and applying / unapplying these things.
2836 *
2837 * Returns 0 upon no error; -error upon error.
2838 */
2839static int _regulator_handle_consumer_enable(struct regulator *regulator)
2840{
2841 int ret;
2842 struct regulator_dev *rdev = regulator->rdev;
2843
2844 lockdep_assert_held_once(&rdev->mutex.base);
2845
2846 regulator->enable_count++;
2847 if (regulator->uA_load && regulator->enable_count == 1) {
2848 ret = drms_uA_update(rdev);
2849 if (ret)
2850 regulator->enable_count--;
2851 return ret;
2852 }
2853
2854 return 0;
2855}
2856
2857/**
2858 * _regulator_handle_consumer_disable - handle that a consumer disabled
2859 * @regulator: regulator source
2860 *
2861 * The opposite of _regulator_handle_consumer_enable().
2862 *
2863 * Returns 0 upon no error; -error upon error.
2864 */
2865static int _regulator_handle_consumer_disable(struct regulator *regulator)
2866{
2867 struct regulator_dev *rdev = regulator->rdev;
2868
2869 lockdep_assert_held_once(&rdev->mutex.base);
2870
2871 if (!regulator->enable_count) {
2872 rdev_err(rdev, "Underflow of regulator enable count\n");
2873 return -EINVAL;
2874 }
2875
2876 regulator->enable_count--;
2877 if (regulator->uA_load && regulator->enable_count == 0)
2878 return drms_uA_update(rdev);
2879
2880 return 0;
2881}
2882
2883/* locks held by regulator_enable() */
2884static int _regulator_enable(struct regulator *regulator)
2885{
2886 struct regulator_dev *rdev = regulator->rdev;
2887 int ret;
2888
2889 lockdep_assert_held_once(&rdev->mutex.base);
2890
2891 if (rdev->use_count == 0 && rdev->supply) {
2892 ret = _regulator_enable(regulator: rdev->supply);
2893 if (ret < 0)
2894 return ret;
2895 }
2896
2897 /* balance only if there are regulators coupled */
2898 if (rdev->coupling_desc.n_coupled > 1) {
2899 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2900 if (ret < 0)
2901 goto err_disable_supply;
2902 }
2903
2904 ret = _regulator_handle_consumer_enable(regulator);
2905 if (ret < 0)
2906 goto err_disable_supply;
2907
2908 if (rdev->use_count == 0) {
2909 /*
2910 * The regulator may already be enabled if it's not switchable
2911 * or was left on
2912 */
2913 ret = _regulator_is_enabled(rdev);
2914 if (ret == -EINVAL || ret == 0) {
2915 if (!regulator_ops_is_valid(rdev,
2916 REGULATOR_CHANGE_STATUS)) {
2917 ret = -EPERM;
2918 goto err_consumer_disable;
2919 }
2920
2921 ret = _regulator_do_enable(rdev);
2922 if (ret < 0)
2923 goto err_consumer_disable;
2924
2925 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2926 NULL);
2927 } else if (ret < 0) {
2928 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2929 goto err_consumer_disable;
2930 }
2931 /* Fallthrough on positive return values - already enabled */
2932 }
2933
2934 if (regulator->enable_count == 1)
2935 rdev->use_count++;
2936
2937 return 0;
2938
2939err_consumer_disable:
2940 _regulator_handle_consumer_disable(regulator);
2941
2942err_disable_supply:
2943 if (rdev->use_count == 0 && rdev->supply)
2944 _regulator_disable(regulator: rdev->supply);
2945
2946 return ret;
2947}
2948
2949/**
2950 * regulator_enable - enable regulator output
2951 * @regulator: regulator source
2952 *
2953 * Request that the regulator be enabled with the regulator output at
2954 * the predefined voltage or current value. Calls to regulator_enable()
2955 * must be balanced with calls to regulator_disable().
2956 *
2957 * NOTE: the output value can be set by other drivers, boot loader or may be
2958 * hardwired in the regulator.
2959 */
2960int regulator_enable(struct regulator *regulator)
2961{
2962 struct regulator_dev *rdev = regulator->rdev;
2963 struct ww_acquire_ctx ww_ctx;
2964 int ret;
2965
2966 regulator_lock_dependent(rdev, ww_ctx: &ww_ctx);
2967 ret = _regulator_enable(regulator);
2968 regulator_unlock_dependent(rdev, ww_ctx: &ww_ctx);
2969
2970 return ret;
2971}
2972EXPORT_SYMBOL_GPL(regulator_enable);
2973
2974static int _regulator_do_disable(struct regulator_dev *rdev)
2975{
2976 int ret;
2977
2978 trace_regulator_disable(name: rdev_get_name(rdev));
2979
2980 if (rdev->ena_pin) {
2981 if (rdev->ena_gpio_state) {
2982 ret = regulator_ena_gpio_ctrl(rdev, enable: false);
2983 if (ret < 0)
2984 return ret;
2985 rdev->ena_gpio_state = 0;
2986 }
2987
2988 } else if (rdev->desc->ops->disable) {
2989 ret = rdev->desc->ops->disable(rdev);
2990 if (ret != 0)
2991 return ret;
2992 }
2993
2994 if (rdev->desc->off_on_delay)
2995 rdev->last_off = ktime_get_boottime();
2996
2997 trace_regulator_disable_complete(name: rdev_get_name(rdev));
2998
2999 return 0;
3000}
3001
3002/* locks held by regulator_disable() */
3003static int _regulator_disable(struct regulator *regulator)
3004{
3005 struct regulator_dev *rdev = regulator->rdev;
3006 int ret = 0;
3007
3008 lockdep_assert_held_once(&rdev->mutex.base);
3009
3010 if (WARN(regulator->enable_count == 0,
3011 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3012 return -EIO;
3013
3014 if (regulator->enable_count == 1) {
3015 /* disabling last enable_count from this regulator */
3016 /* are we the last user and permitted to disable ? */
3017 if (rdev->use_count == 1 &&
3018 (rdev->constraints && !rdev->constraints->always_on)) {
3019
3020 /* we are last user */
3021 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3022 ret = _notifier_call_chain(rdev,
3023 REGULATOR_EVENT_PRE_DISABLE,
3024 NULL);
3025 if (ret & NOTIFY_STOP_MASK)
3026 return -EINVAL;
3027
3028 ret = _regulator_do_disable(rdev);
3029 if (ret < 0) {
3030 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3031 _notifier_call_chain(rdev,
3032 REGULATOR_EVENT_ABORT_DISABLE,
3033 NULL);
3034 return ret;
3035 }
3036 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3037 NULL);
3038 }
3039
3040 rdev->use_count = 0;
3041 } else if (rdev->use_count > 1) {
3042 rdev->use_count--;
3043 }
3044 }
3045
3046 if (ret == 0)
3047 ret = _regulator_handle_consumer_disable(regulator);
3048
3049 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3050 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3051
3052 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3053 ret = _regulator_disable(regulator: rdev->supply);
3054
3055 return ret;
3056}
3057
3058/**
3059 * regulator_disable - disable regulator output
3060 * @regulator: regulator source
3061 *
3062 * Disable the regulator output voltage or current. Calls to
3063 * regulator_enable() must be balanced with calls to
3064 * regulator_disable().
3065 *
3066 * NOTE: this will only disable the regulator output if no other consumer
3067 * devices have it enabled, the regulator device supports disabling and
3068 * machine constraints permit this operation.
3069 */
3070int regulator_disable(struct regulator *regulator)
3071{
3072 struct regulator_dev *rdev = regulator->rdev;
3073 struct ww_acquire_ctx ww_ctx;
3074 int ret;
3075
3076 regulator_lock_dependent(rdev, ww_ctx: &ww_ctx);
3077 ret = _regulator_disable(regulator);
3078 regulator_unlock_dependent(rdev, ww_ctx: &ww_ctx);
3079
3080 return ret;
3081}
3082EXPORT_SYMBOL_GPL(regulator_disable);
3083
3084/* locks held by regulator_force_disable() */
3085static int _regulator_force_disable(struct regulator_dev *rdev)
3086{
3087 int ret = 0;
3088
3089 lockdep_assert_held_once(&rdev->mutex.base);
3090
3091 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3092 REGULATOR_EVENT_PRE_DISABLE, NULL);
3093 if (ret & NOTIFY_STOP_MASK)
3094 return -EINVAL;
3095
3096 ret = _regulator_do_disable(rdev);
3097 if (ret < 0) {
3098 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3099 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3100 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3101 return ret;
3102 }
3103
3104 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105 REGULATOR_EVENT_DISABLE, NULL);
3106
3107 return 0;
3108}
3109
3110/**
3111 * regulator_force_disable - force disable regulator output
3112 * @regulator: regulator source
3113 *
3114 * Forcibly disable the regulator output voltage or current.
3115 * NOTE: this *will* disable the regulator output even if other consumer
3116 * devices have it enabled. This should be used for situations when device
3117 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3118 */
3119int regulator_force_disable(struct regulator *regulator)
3120{
3121 struct regulator_dev *rdev = regulator->rdev;
3122 struct ww_acquire_ctx ww_ctx;
3123 int ret;
3124
3125 regulator_lock_dependent(rdev, ww_ctx: &ww_ctx);
3126
3127 ret = _regulator_force_disable(rdev: regulator->rdev);
3128
3129 if (rdev->coupling_desc.n_coupled > 1)
3130 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3131
3132 if (regulator->uA_load) {
3133 regulator->uA_load = 0;
3134 ret = drms_uA_update(rdev);
3135 }
3136
3137 if (rdev->use_count != 0 && rdev->supply)
3138 _regulator_disable(regulator: rdev->supply);
3139
3140 regulator_unlock_dependent(rdev, ww_ctx: &ww_ctx);
3141
3142 return ret;
3143}
3144EXPORT_SYMBOL_GPL(regulator_force_disable);
3145
3146static void regulator_disable_work(struct work_struct *work)
3147{
3148 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3149 disable_work.work);
3150 struct ww_acquire_ctx ww_ctx;
3151 int count, i, ret;
3152 struct regulator *regulator;
3153 int total_count = 0;
3154
3155 regulator_lock_dependent(rdev, ww_ctx: &ww_ctx);
3156
3157 /*
3158 * Workqueue functions queue the new work instance while the previous
3159 * work instance is being processed. Cancel the queued work instance
3160 * as the work instance under processing does the job of the queued
3161 * work instance.
3162 */
3163 cancel_delayed_work(dwork: &rdev->disable_work);
3164
3165 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3166 count = regulator->deferred_disables;
3167
3168 if (!count)
3169 continue;
3170
3171 total_count += count;
3172 regulator->deferred_disables = 0;
3173
3174 for (i = 0; i < count; i++) {
3175 ret = _regulator_disable(regulator);
3176 if (ret != 0)
3177 rdev_err(rdev, "Deferred disable failed: %pe\n",
3178 ERR_PTR(ret));
3179 }
3180 }
3181 WARN_ON(!total_count);
3182
3183 if (rdev->coupling_desc.n_coupled > 1)
3184 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3185
3186 regulator_unlock_dependent(rdev, ww_ctx: &ww_ctx);
3187}
3188
3189/**
3190 * regulator_disable_deferred - disable regulator output with delay
3191 * @regulator: regulator source
3192 * @ms: milliseconds until the regulator is disabled
3193 *
3194 * Execute regulator_disable() on the regulator after a delay. This
3195 * is intended for use with devices that require some time to quiesce.
3196 *
3197 * NOTE: this will only disable the regulator output if no other consumer
3198 * devices have it enabled, the regulator device supports disabling and
3199 * machine constraints permit this operation.
3200 */
3201int regulator_disable_deferred(struct regulator *regulator, int ms)
3202{
3203 struct regulator_dev *rdev = regulator->rdev;
3204
3205 if (!ms)
3206 return regulator_disable(regulator);
3207
3208 regulator_lock(rdev);
3209 regulator->deferred_disables++;
3210 mod_delayed_work(wq: system_power_efficient_wq, dwork: &rdev->disable_work,
3211 delay: msecs_to_jiffies(m: ms));
3212 regulator_unlock(rdev);
3213
3214 return 0;
3215}
3216EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3217
3218static int _regulator_is_enabled(struct regulator_dev *rdev)
3219{
3220 /* A GPIO control always takes precedence */
3221 if (rdev->ena_pin)
3222 return rdev->ena_gpio_state;
3223
3224 /* If we don't know then assume that the regulator is always on */
3225 if (!rdev->desc->ops->is_enabled)
3226 return 1;
3227
3228 return rdev->desc->ops->is_enabled(rdev);
3229}
3230
3231static int _regulator_list_voltage(struct regulator_dev *rdev,
3232 unsigned selector, int lock)
3233{
3234 const struct regulator_ops *ops = rdev->desc->ops;
3235 int ret;
3236
3237 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3238 return rdev->desc->fixed_uV;
3239
3240 if (ops->list_voltage) {
3241 if (selector >= rdev->desc->n_voltages)
3242 return -EINVAL;
3243 if (selector < rdev->desc->linear_min_sel)
3244 return 0;
3245 if (lock)
3246 regulator_lock(rdev);
3247 ret = ops->list_voltage(rdev, selector);
3248 if (lock)
3249 regulator_unlock(rdev);
3250 } else if (rdev->is_switch && rdev->supply) {
3251 ret = _regulator_list_voltage(rdev: rdev->supply->rdev,
3252 selector, lock);
3253 } else {
3254 return -EINVAL;
3255 }
3256
3257 if (ret > 0) {
3258 if (ret < rdev->constraints->min_uV)
3259 ret = 0;
3260 else if (ret > rdev->constraints->max_uV)
3261 ret = 0;
3262 }
3263
3264 return ret;
3265}
3266
3267/**
3268 * regulator_is_enabled - is the regulator output enabled
3269 * @regulator: regulator source
3270 *
3271 * Returns positive if the regulator driver backing the source/client
3272 * has requested that the device be enabled, zero if it hasn't, else a
3273 * negative errno code.
3274 *
3275 * Note that the device backing this regulator handle can have multiple
3276 * users, so it might be enabled even if regulator_enable() was never
3277 * called for this particular source.
3278 */
3279int regulator_is_enabled(struct regulator *regulator)
3280{
3281 int ret;
3282
3283 if (regulator->always_on)
3284 return 1;
3285
3286 regulator_lock(rdev: regulator->rdev);
3287 ret = _regulator_is_enabled(rdev: regulator->rdev);
3288 regulator_unlock(rdev: regulator->rdev);
3289
3290 return ret;
3291}
3292EXPORT_SYMBOL_GPL(regulator_is_enabled);
3293
3294/**
3295 * regulator_count_voltages - count regulator_list_voltage() selectors
3296 * @regulator: regulator source
3297 *
3298 * Returns number of selectors, or negative errno. Selectors are
3299 * numbered starting at zero, and typically correspond to bitfields
3300 * in hardware registers.
3301 */
3302int regulator_count_voltages(struct regulator *regulator)
3303{
3304 struct regulator_dev *rdev = regulator->rdev;
3305
3306 if (rdev->desc->n_voltages)
3307 return rdev->desc->n_voltages;
3308
3309 if (!rdev->is_switch || !rdev->supply)
3310 return -EINVAL;
3311
3312 return regulator_count_voltages(regulator: rdev->supply);
3313}
3314EXPORT_SYMBOL_GPL(regulator_count_voltages);
3315
3316/**
3317 * regulator_list_voltage - enumerate supported voltages
3318 * @regulator: regulator source
3319 * @selector: identify voltage to list
3320 * Context: can sleep
3321 *
3322 * Returns a voltage that can be passed to @regulator_set_voltage(),
3323 * zero if this selector code can't be used on this system, or a
3324 * negative errno.
3325 */
3326int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3327{
3328 return _regulator_list_voltage(rdev: regulator->rdev, selector, lock: 1);
3329}
3330EXPORT_SYMBOL_GPL(regulator_list_voltage);
3331
3332/**
3333 * regulator_get_regmap - get the regulator's register map
3334 * @regulator: regulator source
3335 *
3336 * Returns the register map for the given regulator, or an ERR_PTR value
3337 * if the regulator doesn't use regmap.
3338 */
3339struct regmap *regulator_get_regmap(struct regulator *regulator)
3340{
3341 struct regmap *map = regulator->rdev->regmap;
3342
3343 return map ? map : ERR_PTR(error: -EOPNOTSUPP);
3344}
3345
3346/**
3347 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3348 * @regulator: regulator source
3349 * @vsel_reg: voltage selector register, output parameter
3350 * @vsel_mask: mask for voltage selector bitfield, output parameter
3351 *
3352 * Returns the hardware register offset and bitmask used for setting the
3353 * regulator voltage. This might be useful when configuring voltage-scaling
3354 * hardware or firmware that can make I2C requests behind the kernel's back,
3355 * for example.
3356 *
3357 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3358 * and 0 is returned, otherwise a negative errno is returned.
3359 */
3360int regulator_get_hardware_vsel_register(struct regulator *regulator,
3361 unsigned *vsel_reg,
3362 unsigned *vsel_mask)
3363{
3364 struct regulator_dev *rdev = regulator->rdev;
3365 const struct regulator_ops *ops = rdev->desc->ops;
3366
3367 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3368 return -EOPNOTSUPP;
3369
3370 *vsel_reg = rdev->desc->vsel_reg;
3371 *vsel_mask = rdev->desc->vsel_mask;
3372
3373 return 0;
3374}
3375EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3376
3377/**
3378 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3379 * @regulator: regulator source
3380 * @selector: identify voltage to list
3381 *
3382 * Converts the selector to a hardware-specific voltage selector that can be
3383 * directly written to the regulator registers. The address of the voltage
3384 * register can be determined by calling @regulator_get_hardware_vsel_register.
3385 *
3386 * On error a negative errno is returned.
3387 */
3388int regulator_list_hardware_vsel(struct regulator *regulator,
3389 unsigned selector)
3390{
3391 struct regulator_dev *rdev = regulator->rdev;
3392 const struct regulator_ops *ops = rdev->desc->ops;
3393
3394 if (selector >= rdev->desc->n_voltages)
3395 return -EINVAL;
3396 if (selector < rdev->desc->linear_min_sel)
3397 return 0;
3398 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3399 return -EOPNOTSUPP;
3400
3401 return selector;
3402}
3403EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3404
3405/**
3406 * regulator_get_linear_step - return the voltage step size between VSEL values
3407 * @regulator: regulator source
3408 *
3409 * Returns the voltage step size between VSEL values for linear
3410 * regulators, or return 0 if the regulator isn't a linear regulator.
3411 */
3412unsigned int regulator_get_linear_step(struct regulator *regulator)
3413{
3414 struct regulator_dev *rdev = regulator->rdev;
3415
3416 return rdev->desc->uV_step;
3417}
3418EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3419
3420/**
3421 * regulator_is_supported_voltage - check if a voltage range can be supported
3422 *
3423 * @regulator: Regulator to check.
3424 * @min_uV: Minimum required voltage in uV.
3425 * @max_uV: Maximum required voltage in uV.
3426 *
3427 * Returns a boolean.
3428 */
3429int regulator_is_supported_voltage(struct regulator *regulator,
3430 int min_uV, int max_uV)
3431{
3432 struct regulator_dev *rdev = regulator->rdev;
3433 int i, voltages, ret;
3434
3435 /* If we can't change voltage check the current voltage */
3436 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3437 ret = regulator_get_voltage(regulator);
3438 if (ret >= 0)
3439 return min_uV <= ret && ret <= max_uV;
3440 else
3441 return ret;
3442 }
3443
3444 /* Any voltage within constrains range is fine? */
3445 if (rdev->desc->continuous_voltage_range)
3446 return min_uV >= rdev->constraints->min_uV &&
3447 max_uV <= rdev->constraints->max_uV;
3448
3449 ret = regulator_count_voltages(regulator);
3450 if (ret < 0)
3451 return 0;
3452 voltages = ret;
3453
3454 for (i = 0; i < voltages; i++) {
3455 ret = regulator_list_voltage(regulator, i);
3456
3457 if (ret >= min_uV && ret <= max_uV)
3458 return 1;
3459 }
3460
3461 return 0;
3462}
3463EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3464
3465static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3466 int max_uV)
3467{
3468 const struct regulator_desc *desc = rdev->desc;
3469
3470 if (desc->ops->map_voltage)
3471 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3472
3473 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3474 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3475
3476 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3477 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3478
3479 if (desc->ops->list_voltage ==
3480 regulator_list_voltage_pickable_linear_range)
3481 return regulator_map_voltage_pickable_linear_range(rdev,
3482 min_uV, max_uV);
3483
3484 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3485}
3486
3487static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3488 int min_uV, int max_uV,
3489 unsigned *selector)
3490{
3491 struct pre_voltage_change_data data;
3492 int ret;
3493
3494 data.old_uV = regulator_get_voltage_rdev(rdev);
3495 data.min_uV = min_uV;
3496 data.max_uV = max_uV;
3497 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3498 data: &data);
3499 if (ret & NOTIFY_STOP_MASK)
3500 return -EINVAL;
3501
3502 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3503 if (ret >= 0)
3504 return ret;
3505
3506 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3507 data: (void *)data.old_uV);
3508
3509 return ret;
3510}
3511
3512static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3513 int uV, unsigned selector)
3514{
3515 struct pre_voltage_change_data data;
3516 int ret;
3517
3518 data.old_uV = regulator_get_voltage_rdev(rdev);
3519 data.min_uV = uV;
3520 data.max_uV = uV;
3521 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3522 data: &data);
3523 if (ret & NOTIFY_STOP_MASK)
3524 return -EINVAL;
3525
3526 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3527 if (ret >= 0)
3528 return ret;
3529
3530 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3531 data: (void *)data.old_uV);
3532
3533 return ret;
3534}
3535
3536static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3537 int uV, int new_selector)
3538{
3539 const struct regulator_ops *ops = rdev->desc->ops;
3540 int diff, old_sel, curr_sel, ret;
3541
3542 /* Stepping is only needed if the regulator is enabled. */
3543 if (!_regulator_is_enabled(rdev))
3544 goto final_set;
3545
3546 if (!ops->get_voltage_sel)
3547 return -EINVAL;
3548
3549 old_sel = ops->get_voltage_sel(rdev);
3550 if (old_sel < 0)
3551 return old_sel;
3552
3553 diff = new_selector - old_sel;
3554 if (diff == 0)
3555 return 0; /* No change needed. */
3556
3557 if (diff > 0) {
3558 /* Stepping up. */
3559 for (curr_sel = old_sel + rdev->desc->vsel_step;
3560 curr_sel < new_selector;
3561 curr_sel += rdev->desc->vsel_step) {
3562 /*
3563 * Call the callback directly instead of using
3564 * _regulator_call_set_voltage_sel() as we don't
3565 * want to notify anyone yet. Same in the branch
3566 * below.
3567 */
3568 ret = ops->set_voltage_sel(rdev, curr_sel);
3569 if (ret)
3570 goto try_revert;
3571 }
3572 } else {
3573 /* Stepping down. */
3574 for (curr_sel = old_sel - rdev->desc->vsel_step;
3575 curr_sel > new_selector;
3576 curr_sel -= rdev->desc->vsel_step) {
3577 ret = ops->set_voltage_sel(rdev, curr_sel);
3578 if (ret)
3579 goto try_revert;
3580 }
3581 }
3582
3583final_set:
3584 /* The final selector will trigger the notifiers. */
3585 return _regulator_call_set_voltage_sel(rdev, uV, selector: new_selector);
3586
3587try_revert:
3588 /*
3589 * At least try to return to the previous voltage if setting a new
3590 * one failed.
3591 */
3592 (void)ops->set_voltage_sel(rdev, old_sel);
3593 return ret;
3594}
3595
3596static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3597 int old_uV, int new_uV)
3598{
3599 unsigned int ramp_delay = 0;
3600
3601 if (rdev->constraints->ramp_delay)
3602 ramp_delay = rdev->constraints->ramp_delay;
3603 else if (rdev->desc->ramp_delay)
3604 ramp_delay = rdev->desc->ramp_delay;
3605 else if (rdev->constraints->settling_time)
3606 return rdev->constraints->settling_time;
3607 else if (rdev->constraints->settling_time_up &&
3608 (new_uV > old_uV))
3609 return rdev->constraints->settling_time_up;
3610 else if (rdev->constraints->settling_time_down &&
3611 (new_uV < old_uV))
3612 return rdev->constraints->settling_time_down;
3613
3614 if (ramp_delay == 0)
3615 return 0;
3616
3617 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3618}
3619
3620static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3621 int min_uV, int max_uV)
3622{
3623 int ret;
3624 int delay = 0;
3625 int best_val = 0;
3626 unsigned int selector;
3627 int old_selector = -1;
3628 const struct regulator_ops *ops = rdev->desc->ops;
3629 int old_uV = regulator_get_voltage_rdev(rdev);
3630
3631 trace_regulator_set_voltage(name: rdev_get_name(rdev), min: min_uV, max: max_uV);
3632
3633 min_uV += rdev->constraints->uV_offset;
3634 max_uV += rdev->constraints->uV_offset;
3635
3636 /*
3637 * If we can't obtain the old selector there is not enough
3638 * info to call set_voltage_time_sel().
3639 */
3640 if (_regulator_is_enabled(rdev) &&
3641 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3642 old_selector = ops->get_voltage_sel(rdev);
3643 if (old_selector < 0)
3644 return old_selector;
3645 }
3646
3647 if (ops->set_voltage) {
3648 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3649 selector: &selector);
3650
3651 if (ret >= 0) {
3652 if (ops->list_voltage)
3653 best_val = ops->list_voltage(rdev,
3654 selector);
3655 else
3656 best_val = regulator_get_voltage_rdev(rdev);
3657 }
3658
3659 } else if (ops->set_voltage_sel) {
3660 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3661 if (ret >= 0) {
3662 best_val = ops->list_voltage(rdev, ret);
3663 if (min_uV <= best_val && max_uV >= best_val) {
3664 selector = ret;
3665 if (old_selector == selector)
3666 ret = 0;
3667 else if (rdev->desc->vsel_step)
3668 ret = _regulator_set_voltage_sel_step(
3669 rdev, uV: best_val, new_selector: selector);
3670 else
3671 ret = _regulator_call_set_voltage_sel(
3672 rdev, uV: best_val, selector);
3673 } else {
3674 ret = -EINVAL;
3675 }
3676 }
3677 } else {
3678 ret = -EINVAL;
3679 }
3680
3681 if (ret)
3682 goto out;
3683
3684 if (ops->set_voltage_time_sel) {
3685 /*
3686 * Call set_voltage_time_sel if successfully obtained
3687 * old_selector
3688 */
3689 if (old_selector >= 0 && old_selector != selector)
3690 delay = ops->set_voltage_time_sel(rdev, old_selector,
3691 selector);
3692 } else {
3693 if (old_uV != best_val) {
3694 if (ops->set_voltage_time)
3695 delay = ops->set_voltage_time(rdev, old_uV,
3696 best_val);
3697 else
3698 delay = _regulator_set_voltage_time(rdev,
3699 old_uV,
3700 new_uV: best_val);
3701 }
3702 }
3703
3704 if (delay < 0) {
3705 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3706 delay = 0;
3707 }
3708
3709 /* Insert any necessary delays */
3710 _regulator_delay_helper(delay);
3711
3712 if (best_val >= 0) {
3713 unsigned long data = best_val;
3714
3715 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3716 data: (void *)data);
3717 }
3718
3719out:
3720 trace_regulator_set_voltage_complete(name: rdev_get_name(rdev), value: best_val);
3721
3722 return ret;
3723}
3724
3725static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3726 int min_uV, int max_uV, suspend_state_t state)
3727{
3728 struct regulator_state *rstate;
3729 int uV, sel;
3730
3731 rstate = regulator_get_suspend_state(rdev, state);
3732 if (rstate == NULL)
3733 return -EINVAL;
3734
3735 if (min_uV < rstate->min_uV)
3736 min_uV = rstate->min_uV;
3737 if (max_uV > rstate->max_uV)
3738 max_uV = rstate->max_uV;
3739
3740 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3741 if (sel < 0)
3742 return sel;
3743
3744 uV = rdev->desc->ops->list_voltage(rdev, sel);
3745 if (uV >= min_uV && uV <= max_uV)
3746 rstate->uV = uV;
3747
3748 return 0;
3749}
3750
3751static int regulator_set_voltage_unlocked(struct regulator *regulator,
3752 int min_uV, int max_uV,
3753 suspend_state_t state)
3754{
3755 struct regulator_dev *rdev = regulator->rdev;
3756 struct regulator_voltage *voltage = &regulator->voltage[state];
3757 int ret = 0;
3758 int old_min_uV, old_max_uV;
3759 int current_uV;
3760
3761 /* If we're setting the same range as last time the change
3762 * should be a noop (some cpufreq implementations use the same
3763 * voltage for multiple frequencies, for example).
3764 */
3765 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3766 goto out;
3767
3768 /* If we're trying to set a range that overlaps the current voltage,
3769 * return successfully even though the regulator does not support
3770 * changing the voltage.
3771 */
3772 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3773 current_uV = regulator_get_voltage_rdev(rdev);
3774 if (min_uV <= current_uV && current_uV <= max_uV) {
3775 voltage->min_uV = min_uV;
3776 voltage->max_uV = max_uV;
3777 goto out;
3778 }
3779 }
3780
3781 /* sanity check */
3782 if (!rdev->desc->ops->set_voltage &&
3783 !rdev->desc->ops->set_voltage_sel) {
3784 ret = -EINVAL;
3785 goto out;
3786 }
3787
3788 /* constraints check */
3789 ret = regulator_check_voltage(rdev, min_uV: &min_uV, max_uV: &max_uV);
3790 if (ret < 0)
3791 goto out;
3792
3793 /* restore original values in case of error */
3794 old_min_uV = voltage->min_uV;
3795 old_max_uV = voltage->max_uV;
3796 voltage->min_uV = min_uV;
3797 voltage->max_uV = max_uV;
3798
3799 /* for not coupled regulators this will just set the voltage */
3800 ret = regulator_balance_voltage(rdev, state);
3801 if (ret < 0) {
3802 voltage->min_uV = old_min_uV;
3803 voltage->max_uV = old_max_uV;
3804 }
3805
3806out:
3807 return ret;
3808}
3809
3810int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3811 int max_uV, suspend_state_t state)
3812{
3813 int best_supply_uV = 0;
3814 int supply_change_uV = 0;
3815 int ret;
3816
3817 if (rdev->supply &&
3818 regulator_ops_is_valid(rdev: rdev->supply->rdev,
3819 REGULATOR_CHANGE_VOLTAGE) &&
3820 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3821 rdev->desc->ops->get_voltage_sel))) {
3822 int current_supply_uV;
3823 int selector;
3824
3825 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3826 if (selector < 0) {
3827 ret = selector;
3828 goto out;
3829 }
3830
3831 best_supply_uV = _regulator_list_voltage(rdev, selector, lock: 0);
3832 if (best_supply_uV < 0) {
3833 ret = best_supply_uV;
3834 goto out;
3835 }
3836
3837 best_supply_uV += rdev->desc->min_dropout_uV;
3838
3839 current_supply_uV = regulator_get_voltage_rdev(rdev: rdev->supply->rdev);
3840 if (current_supply_uV < 0) {
3841 ret = current_supply_uV;
3842 goto out;
3843 }
3844
3845 supply_change_uV = best_supply_uV - current_supply_uV;
3846 }
3847
3848 if (supply_change_uV > 0) {
3849 ret = regulator_set_voltage_unlocked(regulator: rdev->supply,
3850 min_uV: best_supply_uV, INT_MAX, state);
3851 if (ret) {
3852 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3853 ERR_PTR(ret));
3854 goto out;
3855 }
3856 }
3857
3858 if (state == PM_SUSPEND_ON)
3859 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3860 else
3861 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3862 max_uV, state);
3863 if (ret < 0)
3864 goto out;
3865
3866 if (supply_change_uV < 0) {
3867 ret = regulator_set_voltage_unlocked(regulator: rdev->supply,
3868 min_uV: best_supply_uV, INT_MAX, state);
3869 if (ret)
3870 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3871 ERR_PTR(ret));
3872 /* No need to fail here */
3873 ret = 0;
3874 }
3875
3876out:
3877 return ret;
3878}
3879EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3880
3881static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3882 int *current_uV, int *min_uV)
3883{
3884 struct regulation_constraints *constraints = rdev->constraints;
3885
3886 /* Limit voltage change only if necessary */
3887 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3888 return 1;
3889
3890 if (*current_uV < 0) {
3891 *current_uV = regulator_get_voltage_rdev(rdev);
3892
3893 if (*current_uV < 0)
3894 return *current_uV;
3895 }
3896
3897 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3898 return 1;
3899
3900 /* Clamp target voltage within the given step */
3901 if (*current_uV < *min_uV)
3902 *min_uV = min(*current_uV + constraints->max_uV_step,
3903 *min_uV);
3904 else
3905 *min_uV = max(*current_uV - constraints->max_uV_step,
3906 *min_uV);
3907
3908 return 0;
3909}
3910
3911static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3912 int *current_uV,
3913 int *min_uV, int *max_uV,
3914 suspend_state_t state,
3915 int n_coupled)
3916{
3917 struct coupling_desc *c_desc = &rdev->coupling_desc;
3918 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3919 struct regulation_constraints *constraints = rdev->constraints;
3920 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3921 int max_current_uV = 0, min_current_uV = INT_MAX;
3922 int highest_min_uV = 0, target_uV, possible_uV;
3923 int i, ret, max_spread;
3924 bool done;
3925
3926 *current_uV = -1;
3927
3928 /*
3929 * If there are no coupled regulators, simply set the voltage
3930 * demanded by consumers.
3931 */
3932 if (n_coupled == 1) {
3933 /*
3934 * If consumers don't provide any demands, set voltage
3935 * to min_uV
3936 */
3937 desired_min_uV = constraints->min_uV;
3938 desired_max_uV = constraints->max_uV;
3939
3940 ret = regulator_check_consumers(rdev,
3941 min_uV: &desired_min_uV,
3942 max_uV: &desired_max_uV, state);
3943 if (ret < 0)
3944 return ret;
3945
3946 done = true;
3947
3948 goto finish;
3949 }
3950
3951 /* Find highest min desired voltage */
3952 for (i = 0; i < n_coupled; i++) {
3953 int tmp_min = 0;
3954 int tmp_max = INT_MAX;
3955
3956 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3957
3958 ret = regulator_check_consumers(rdev: c_rdevs[i],
3959 min_uV: &tmp_min,
3960 max_uV: &tmp_max, state);
3961 if (ret < 0)
3962 return ret;
3963
3964 ret = regulator_check_voltage(rdev: c_rdevs[i], min_uV: &tmp_min, max_uV: &tmp_max);
3965 if (ret < 0)
3966 return ret;
3967
3968 highest_min_uV = max(highest_min_uV, tmp_min);
3969
3970 if (i == 0) {
3971 desired_min_uV = tmp_min;
3972 desired_max_uV = tmp_max;
3973 }
3974 }
3975
3976 max_spread = constraints->max_spread[0];
3977
3978 /*
3979 * Let target_uV be equal to the desired one if possible.
3980 * If not, set it to minimum voltage, allowed by other coupled
3981 * regulators.
3982 */
3983 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3984
3985 /*
3986 * Find min and max voltages, which currently aren't violating
3987 * max_spread.
3988 */
3989 for (i = 1; i < n_coupled; i++) {
3990 int tmp_act;
3991
3992 if (!_regulator_is_enabled(rdev: c_rdevs[i]))
3993 continue;
3994
3995 tmp_act = regulator_get_voltage_rdev(rdev: c_rdevs[i]);
3996 if (tmp_act < 0)
3997 return tmp_act;
3998
3999 min_current_uV = min(tmp_act, min_current_uV);
4000 max_current_uV = max(tmp_act, max_current_uV);
4001 }
4002
4003 /* There aren't any other regulators enabled */
4004 if (max_current_uV == 0) {
4005 possible_uV = target_uV;
4006 } else {
4007 /*
4008 * Correct target voltage, so as it currently isn't
4009 * violating max_spread
4010 */
4011 possible_uV = max(target_uV, max_current_uV - max_spread);
4012 possible_uV = min(possible_uV, min_current_uV + max_spread);
4013 }
4014
4015 if (possible_uV > desired_max_uV)
4016 return -EINVAL;
4017
4018 done = (possible_uV == target_uV);
4019 desired_min_uV = possible_uV;
4020
4021finish:
4022 /* Apply max_uV_step constraint if necessary */
4023 if (state == PM_SUSPEND_ON) {
4024 ret = regulator_limit_voltage_step(rdev, current_uV,
4025 min_uV: &desired_min_uV);
4026 if (ret < 0)
4027 return ret;
4028
4029 if (ret == 0)
4030 done = false;
4031 }
4032
4033 /* Set current_uV if wasn't done earlier in the code and if necessary */
4034 if (n_coupled > 1 && *current_uV == -1) {
4035
4036 if (_regulator_is_enabled(rdev)) {
4037 ret = regulator_get_voltage_rdev(rdev);
4038 if (ret < 0)
4039 return ret;
4040
4041 *current_uV = ret;
4042 } else {
4043 *current_uV = desired_min_uV;
4044 }
4045 }
4046
4047 *min_uV = desired_min_uV;
4048 *max_uV = desired_max_uV;
4049
4050 return done;
4051}
4052
4053int regulator_do_balance_voltage(struct regulator_dev *rdev,
4054 suspend_state_t state, bool skip_coupled)
4055{
4056 struct regulator_dev **c_rdevs;
4057 struct regulator_dev *best_rdev;
4058 struct coupling_desc *c_desc = &rdev->coupling_desc;
4059 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4060 unsigned int delta, best_delta;
4061 unsigned long c_rdev_done = 0;
4062 bool best_c_rdev_done;
4063
4064 c_rdevs = c_desc->coupled_rdevs;
4065 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4066
4067 /*
4068 * Find the best possible voltage change on each loop. Leave the loop
4069 * if there isn't any possible change.
4070 */
4071 do {
4072 best_c_rdev_done = false;
4073 best_delta = 0;
4074 best_min_uV = 0;
4075 best_max_uV = 0;
4076 best_c_rdev = 0;
4077 best_rdev = NULL;
4078
4079 /*
4080 * Find highest difference between optimal voltage
4081 * and current voltage.
4082 */
4083 for (i = 0; i < n_coupled; i++) {
4084 /*
4085 * optimal_uV is the best voltage that can be set for
4086 * i-th regulator at the moment without violating
4087 * max_spread constraint in order to balance
4088 * the coupled voltages.
4089 */
4090 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4091
4092 if (test_bit(i, &c_rdev_done))
4093 continue;
4094
4095 ret = regulator_get_optimal_voltage(rdev: c_rdevs[i],
4096 current_uV: &current_uV,
4097 min_uV: &optimal_uV,
4098 max_uV: &optimal_max_uV,
4099 state, n_coupled);
4100 if (ret < 0)
4101 goto out;
4102
4103 delta = abs(optimal_uV - current_uV);
4104
4105 if (delta && best_delta <= delta) {
4106 best_c_rdev_done = ret;
4107 best_delta = delta;
4108 best_rdev = c_rdevs[i];
4109 best_min_uV = optimal_uV;
4110 best_max_uV = optimal_max_uV;
4111 best_c_rdev = i;
4112 }
4113 }
4114
4115 /* Nothing to change, return successfully */
4116 if (!best_rdev) {
4117 ret = 0;
4118 goto out;
4119 }
4120
4121 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4122 best_max_uV, state);
4123
4124 if (ret < 0)
4125 goto out;
4126
4127 if (best_c_rdev_done)
4128 set_bit(nr: best_c_rdev, addr: &c_rdev_done);
4129
4130 } while (n_coupled > 1);
4131
4132out:
4133 return ret;
4134}
4135
4136static int regulator_balance_voltage(struct regulator_dev *rdev,
4137 suspend_state_t state)
4138{
4139 struct coupling_desc *c_desc = &rdev->coupling_desc;
4140 struct regulator_coupler *coupler = c_desc->coupler;
4141 bool skip_coupled = false;
4142
4143 /*
4144 * If system is in a state other than PM_SUSPEND_ON, don't check
4145 * other coupled regulators.
4146 */
4147 if (state != PM_SUSPEND_ON)
4148 skip_coupled = true;
4149
4150 if (c_desc->n_resolved < c_desc->n_coupled) {
4151 rdev_err(rdev, "Not all coupled regulators registered\n");
4152 return -EPERM;
4153 }
4154
4155 /* Invoke custom balancer for customized couplers */
4156 if (coupler && coupler->balance_voltage)
4157 return coupler->balance_voltage(coupler, rdev, state);
4158
4159 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4160}
4161
4162/**
4163 * regulator_set_voltage - set regulator output voltage
4164 * @regulator: regulator source
4165 * @min_uV: Minimum required voltage in uV
4166 * @max_uV: Maximum acceptable voltage in uV
4167 *
4168 * Sets a voltage regulator to the desired output voltage. This can be set
4169 * during any regulator state. IOW, regulator can be disabled or enabled.
4170 *
4171 * If the regulator is enabled then the voltage will change to the new value
4172 * immediately otherwise if the regulator is disabled the regulator will
4173 * output at the new voltage when enabled.
4174 *
4175 * NOTE: If the regulator is shared between several devices then the lowest
4176 * request voltage that meets the system constraints will be used.
4177 * Regulator system constraints must be set for this regulator before
4178 * calling this function otherwise this call will fail.
4179 */
4180int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4181{
4182 struct ww_acquire_ctx ww_ctx;
4183 int ret;
4184
4185 regulator_lock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4186
4187 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4188 PM_SUSPEND_ON);
4189
4190 regulator_unlock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4191
4192 return ret;
4193}
4194EXPORT_SYMBOL_GPL(regulator_set_voltage);
4195
4196static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4197 suspend_state_t state, bool en)
4198{
4199 struct regulator_state *rstate;
4200
4201 rstate = regulator_get_suspend_state(rdev, state);
4202 if (rstate == NULL)
4203 return -EINVAL;
4204
4205 if (!rstate->changeable)
4206 return -EPERM;
4207
4208 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4209
4210 return 0;
4211}
4212
4213int regulator_suspend_enable(struct regulator_dev *rdev,
4214 suspend_state_t state)
4215{
4216 return regulator_suspend_toggle(rdev, state, en: true);
4217}
4218EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4219
4220int regulator_suspend_disable(struct regulator_dev *rdev,
4221 suspend_state_t state)
4222{
4223 struct regulator *regulator;
4224 struct regulator_voltage *voltage;
4225
4226 /*
4227 * if any consumer wants this regulator device keeping on in
4228 * suspend states, don't set it as disabled.
4229 */
4230 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4231 voltage = &regulator->voltage[state];
4232 if (voltage->min_uV || voltage->max_uV)
4233 return 0;
4234 }
4235
4236 return regulator_suspend_toggle(rdev, state, en: false);
4237}
4238EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4239
4240static int _regulator_set_suspend_voltage(struct regulator *regulator,
4241 int min_uV, int max_uV,
4242 suspend_state_t state)
4243{
4244 struct regulator_dev *rdev = regulator->rdev;
4245 struct regulator_state *rstate;
4246
4247 rstate = regulator_get_suspend_state(rdev, state);
4248 if (rstate == NULL)
4249 return -EINVAL;
4250
4251 if (rstate->min_uV == rstate->max_uV) {
4252 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4253 return -EPERM;
4254 }
4255
4256 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4257}
4258
4259int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4260 int max_uV, suspend_state_t state)
4261{
4262 struct ww_acquire_ctx ww_ctx;
4263 int ret;
4264
4265 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4266 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4267 return -EINVAL;
4268
4269 regulator_lock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4270
4271 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4272 max_uV, state);
4273
4274 regulator_unlock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4275
4276 return ret;
4277}
4278EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4279
4280/**
4281 * regulator_set_voltage_time - get raise/fall time
4282 * @regulator: regulator source
4283 * @old_uV: starting voltage in microvolts
4284 * @new_uV: target voltage in microvolts
4285 *
4286 * Provided with the starting and ending voltage, this function attempts to
4287 * calculate the time in microseconds required to rise or fall to this new
4288 * voltage.
4289 */
4290int regulator_set_voltage_time(struct regulator *regulator,
4291 int old_uV, int new_uV)
4292{
4293 struct regulator_dev *rdev = regulator->rdev;
4294 const struct regulator_ops *ops = rdev->desc->ops;
4295 int old_sel = -1;
4296 int new_sel = -1;
4297 int voltage;
4298 int i;
4299
4300 if (ops->set_voltage_time)
4301 return ops->set_voltage_time(rdev, old_uV, new_uV);
4302 else if (!ops->set_voltage_time_sel)
4303 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4304
4305 /* Currently requires operations to do this */
4306 if (!ops->list_voltage || !rdev->desc->n_voltages)
4307 return -EINVAL;
4308
4309 for (i = 0; i < rdev->desc->n_voltages; i++) {
4310 /* We only look for exact voltage matches here */
4311 if (i < rdev->desc->linear_min_sel)
4312 continue;
4313
4314 if (old_sel >= 0 && new_sel >= 0)
4315 break;
4316
4317 voltage = regulator_list_voltage(regulator, i);
4318 if (voltage < 0)
4319 return -EINVAL;
4320 if (voltage == 0)
4321 continue;
4322 if (voltage == old_uV)
4323 old_sel = i;
4324 if (voltage == new_uV)
4325 new_sel = i;
4326 }
4327
4328 if (old_sel < 0 || new_sel < 0)
4329 return -EINVAL;
4330
4331 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4332}
4333EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4334
4335/**
4336 * regulator_set_voltage_time_sel - get raise/fall time
4337 * @rdev: regulator source device
4338 * @old_selector: selector for starting voltage
4339 * @new_selector: selector for target voltage
4340 *
4341 * Provided with the starting and target voltage selectors, this function
4342 * returns time in microseconds required to rise or fall to this new voltage
4343 *
4344 * Drivers providing ramp_delay in regulation_constraints can use this as their
4345 * set_voltage_time_sel() operation.
4346 */
4347int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4348 unsigned int old_selector,
4349 unsigned int new_selector)
4350{
4351 int old_volt, new_volt;
4352
4353 /* sanity check */
4354 if (!rdev->desc->ops->list_voltage)
4355 return -EINVAL;
4356
4357 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4358 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4359
4360 if (rdev->desc->ops->set_voltage_time)
4361 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4362 new_volt);
4363 else
4364 return _regulator_set_voltage_time(rdev, old_uV: old_volt, new_uV: new_volt);
4365}
4366EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4367
4368int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4369{
4370 int ret;
4371
4372 regulator_lock(rdev);
4373
4374 if (!rdev->desc->ops->set_voltage &&
4375 !rdev->desc->ops->set_voltage_sel) {
4376 ret = -EINVAL;
4377 goto out;
4378 }
4379
4380 /* balance only, if regulator is coupled */
4381 if (rdev->coupling_desc.n_coupled > 1)
4382 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4383 else
4384 ret = -EOPNOTSUPP;
4385
4386out:
4387 regulator_unlock(rdev);
4388 return ret;
4389}
4390
4391/**
4392 * regulator_sync_voltage - re-apply last regulator output voltage
4393 * @regulator: regulator source
4394 *
4395 * Re-apply the last configured voltage. This is intended to be used
4396 * where some external control source the consumer is cooperating with
4397 * has caused the configured voltage to change.
4398 */
4399int regulator_sync_voltage(struct regulator *regulator)
4400{
4401 struct regulator_dev *rdev = regulator->rdev;
4402 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4403 int ret, min_uV, max_uV;
4404
4405 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4406 return 0;
4407
4408 regulator_lock(rdev);
4409
4410 if (!rdev->desc->ops->set_voltage &&
4411 !rdev->desc->ops->set_voltage_sel) {
4412 ret = -EINVAL;
4413 goto out;
4414 }
4415
4416 /* This is only going to work if we've had a voltage configured. */
4417 if (!voltage->min_uV && !voltage->max_uV) {
4418 ret = -EINVAL;
4419 goto out;
4420 }
4421
4422 min_uV = voltage->min_uV;
4423 max_uV = voltage->max_uV;
4424
4425 /* This should be a paranoia check... */
4426 ret = regulator_check_voltage(rdev, min_uV: &min_uV, max_uV: &max_uV);
4427 if (ret < 0)
4428 goto out;
4429
4430 ret = regulator_check_consumers(rdev, min_uV: &min_uV, max_uV: &max_uV, state: 0);
4431 if (ret < 0)
4432 goto out;
4433
4434 /* balance only, if regulator is coupled */
4435 if (rdev->coupling_desc.n_coupled > 1)
4436 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4437 else
4438 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4439
4440out:
4441 regulator_unlock(rdev);
4442 return ret;
4443}
4444EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4445
4446int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4447{
4448 int sel, ret;
4449 bool bypassed;
4450
4451 if (rdev->desc->ops->get_bypass) {
4452 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4453 if (ret < 0)
4454 return ret;
4455 if (bypassed) {
4456 /* if bypassed the regulator must have a supply */
4457 if (!rdev->supply) {
4458 rdev_err(rdev,
4459 "bypassed regulator has no supply!\n");
4460 return -EPROBE_DEFER;
4461 }
4462
4463 return regulator_get_voltage_rdev(rdev: rdev->supply->rdev);
4464 }
4465 }
4466
4467 if (rdev->desc->ops->get_voltage_sel) {
4468 sel = rdev->desc->ops->get_voltage_sel(rdev);
4469 if (sel < 0)
4470 return sel;
4471 ret = rdev->desc->ops->list_voltage(rdev, sel);
4472 } else if (rdev->desc->ops->get_voltage) {
4473 ret = rdev->desc->ops->get_voltage(rdev);
4474 } else if (rdev->desc->ops->list_voltage) {
4475 ret = rdev->desc->ops->list_voltage(rdev, 0);
4476 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4477 ret = rdev->desc->fixed_uV;
4478 } else if (rdev->supply) {
4479 ret = regulator_get_voltage_rdev(rdev: rdev->supply->rdev);
4480 } else if (rdev->supply_name) {
4481 return -EPROBE_DEFER;
4482 } else {
4483 return -EINVAL;
4484 }
4485
4486 if (ret < 0)
4487 return ret;
4488 return ret - rdev->constraints->uV_offset;
4489}
4490EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4491
4492/**
4493 * regulator_get_voltage - get regulator output voltage
4494 * @regulator: regulator source
4495 *
4496 * This returns the current regulator voltage in uV.
4497 *
4498 * NOTE: If the regulator is disabled it will return the voltage value. This
4499 * function should not be used to determine regulator state.
4500 */
4501int regulator_get_voltage(struct regulator *regulator)
4502{
4503 struct ww_acquire_ctx ww_ctx;
4504 int ret;
4505
4506 regulator_lock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4507 ret = regulator_get_voltage_rdev(regulator->rdev);
4508 regulator_unlock_dependent(rdev: regulator->rdev, ww_ctx: &ww_ctx);
4509
4510 return ret;
4511}
4512EXPORT_SYMBOL_GPL(regulator_get_voltage);
4513
4514/**
4515 * regulator_set_current_limit - set regulator output current limit
4516 * @regulator: regulator source
4517 * @min_uA: Minimum supported current in uA
4518 * @max_uA: Maximum supported current in uA
4519 *
4520 * Sets current sink to the desired output current. This can be set during
4521 * any regulator state. IOW, regulator can be disabled or enabled.
4522 *
4523 * If the regulator is enabled then the current will change to the new value
4524 * immediately otherwise if the regulator is disabled the regulator will
4525 * output at the new current when enabled.
4526 *
4527 * NOTE: Regulator system constraints must be set for this regulator before
4528 * calling this function otherwise this call will fail.
4529 */
4530int regulator_set_current_limit(struct regulator *regulator,
4531 int min_uA, int max_uA)
4532{
4533 struct regulator_dev *rdev = regulator->rdev;
4534 int ret;
4535
4536 regulator_lock(rdev);
4537
4538 /* sanity check */
4539 if (!rdev->desc->ops->set_current_limit) {
4540 ret = -EINVAL;
4541 goto out;
4542 }
4543
4544 /* constraints check */
4545 ret = regulator_check_current_limit(rdev, min_uA: &min_uA, max_uA: &max_uA);
4546 if (ret < 0)
4547 goto out;
4548
4549 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4550out:
4551 regulator_unlock(rdev);
4552 return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4555
4556static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4557{
4558 /* sanity check */
4559 if (!rdev->desc->ops->get_current_limit)
4560 return -EINVAL;
4561
4562 return rdev->desc->ops->get_current_limit(rdev);
4563}
4564
4565static int _regulator_get_current_limit(struct regulator_dev *rdev)
4566{
4567 int ret;
4568
4569 regulator_lock(rdev);
4570 ret = _regulator_get_current_limit_unlocked(rdev);
4571 regulator_unlock(rdev);
4572
4573 return ret;
4574}
4575
4576/**
4577 * regulator_get_current_limit - get regulator output current
4578 * @regulator: regulator source
4579 *
4580 * This returns the current supplied by the specified current sink in uA.
4581 *
4582 * NOTE: If the regulator is disabled it will return the current value. This
4583 * function should not be used to determine regulator state.
4584 */
4585int regulator_get_current_limit(struct regulator *regulator)
4586{
4587 return _regulator_get_current_limit(rdev: regulator->rdev);
4588}
4589EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4590
4591/**
4592 * regulator_set_mode - set regulator operating mode
4593 * @regulator: regulator source
4594 * @mode: operating mode - one of the REGULATOR_MODE constants
4595 *
4596 * Set regulator operating mode to increase regulator efficiency or improve
4597 * regulation performance.
4598 *
4599 * NOTE: Regulator system constraints must be set for this regulator before
4600 * calling this function otherwise this call will fail.
4601 */
4602int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4603{
4604 struct regulator_dev *rdev = regulator->rdev;
4605 int ret;
4606 int regulator_curr_mode;
4607
4608 regulator_lock(rdev);
4609
4610 /* sanity check */
4611 if (!rdev->desc->ops->set_mode) {
4612 ret = -EINVAL;
4613 goto out;
4614 }
4615
4616 /* return if the same mode is requested */
4617 if (rdev->desc->ops->get_mode) {
4618 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4619 if (regulator_curr_mode == mode) {
4620 ret = 0;
4621 goto out;
4622 }
4623 }
4624
4625 /* constraints check */
4626 ret = regulator_mode_constrain(rdev, mode: &mode);
4627 if (ret < 0)
4628 goto out;
4629
4630 ret = rdev->desc->ops->set_mode(rdev, mode);
4631out:
4632 regulator_unlock(rdev);
4633 return ret;
4634}
4635EXPORT_SYMBOL_GPL(regulator_set_mode);
4636
4637static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4638{
4639 /* sanity check */
4640 if (!rdev->desc->ops->get_mode)
4641 return -EINVAL;
4642
4643 return rdev->desc->ops->get_mode(rdev);
4644}
4645
4646static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4647{
4648 int ret;
4649
4650 regulator_lock(rdev);
4651 ret = _regulator_get_mode_unlocked(rdev);
4652 regulator_unlock(rdev);
4653
4654 return ret;
4655}
4656
4657/**
4658 * regulator_get_mode - get regulator operating mode
4659 * @regulator: regulator source
4660 *
4661 * Get the current regulator operating mode.
4662 */
4663unsigned int regulator_get_mode(struct regulator *regulator)
4664{
4665 return _regulator_get_mode(rdev: regulator->rdev);
4666}
4667EXPORT_SYMBOL_GPL(regulator_get_mode);
4668
4669static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4670{
4671 int ret = 0;
4672
4673 if (rdev->use_cached_err) {
4674 spin_lock(lock: &rdev->err_lock);
4675 ret = rdev->cached_err;
4676 spin_unlock(lock: &rdev->err_lock);
4677 }
4678 return ret;
4679}
4680
4681static int _regulator_get_error_flags(struct regulator_dev *rdev,
4682 unsigned int *flags)
4683{
4684 int cached_flags, ret = 0;
4685
4686 regulator_lock(rdev);
4687
4688 cached_flags = rdev_get_cached_err_flags(rdev);
4689
4690 if (rdev->desc->ops->get_error_flags)
4691 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4692 else if (!rdev->use_cached_err)
4693 ret = -EINVAL;
4694
4695 *flags |= cached_flags;
4696
4697 regulator_unlock(rdev);
4698
4699 return ret;
4700}
4701
4702/**
4703 * regulator_get_error_flags - get regulator error information
4704 * @regulator: regulator source
4705 * @flags: pointer to store error flags
4706 *
4707 * Get the current regulator error information.
4708 */
4709int regulator_get_error_flags(struct regulator *regulator,
4710 unsigned int *flags)
4711{
4712 return _regulator_get_error_flags(rdev: regulator->rdev, flags);
4713}
4714EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4715
4716/**
4717 * regulator_set_load - set regulator load
4718 * @regulator: regulator source
4719 * @uA_load: load current
4720 *
4721 * Notifies the regulator core of a new device load. This is then used by
4722 * DRMS (if enabled by constraints) to set the most efficient regulator
4723 * operating mode for the new regulator loading.
4724 *
4725 * Consumer devices notify their supply regulator of the maximum power
4726 * they will require (can be taken from device datasheet in the power
4727 * consumption tables) when they change operational status and hence power
4728 * state. Examples of operational state changes that can affect power
4729 * consumption are :-
4730 *
4731 * o Device is opened / closed.
4732 * o Device I/O is about to begin or has just finished.
4733 * o Device is idling in between work.
4734 *
4735 * This information is also exported via sysfs to userspace.
4736 *
4737 * DRMS will sum the total requested load on the regulator and change
4738 * to the most efficient operating mode if platform constraints allow.
4739 *
4740 * NOTE: when a regulator consumer requests to have a regulator
4741 * disabled then any load that consumer requested no longer counts
4742 * toward the total requested load. If the regulator is re-enabled
4743 * then the previously requested load will start counting again.
4744 *
4745 * If a regulator is an always-on regulator then an individual consumer's
4746 * load will still be removed if that consumer is fully disabled.
4747 *
4748 * On error a negative errno is returned.
4749 */
4750int regulator_set_load(struct regulator *regulator, int uA_load)
4751{
4752 struct regulator_dev *rdev = regulator->rdev;
4753 int old_uA_load;
4754 int ret = 0;
4755
4756 regulator_lock(rdev);
4757 old_uA_load = regulator->uA_load;
4758 regulator->uA_load = uA_load;
4759 if (regulator->enable_count && old_uA_load != uA_load) {
4760 ret = drms_uA_update(rdev);
4761 if (ret < 0)
4762 regulator->uA_load = old_uA_load;
4763 }
4764 regulator_unlock(rdev);
4765
4766 return ret;
4767}
4768EXPORT_SYMBOL_GPL(regulator_set_load);
4769
4770/**
4771 * regulator_allow_bypass - allow the regulator to go into bypass mode
4772 *
4773 * @regulator: Regulator to configure
4774 * @enable: enable or disable bypass mode
4775 *
4776 * Allow the regulator to go into bypass mode if all other consumers
4777 * for the regulator also enable bypass mode and the machine
4778 * constraints allow this. Bypass mode means that the regulator is
4779 * simply passing the input directly to the output with no regulation.
4780 */
4781int regulator_allow_bypass(struct regulator *regulator, bool enable)
4782{
4783 struct regulator_dev *rdev = regulator->rdev;
4784 const char *name = rdev_get_name(rdev);
4785 int ret = 0;
4786
4787 if (!rdev->desc->ops->set_bypass)
4788 return 0;
4789
4790 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4791 return 0;
4792
4793 regulator_lock(rdev);
4794
4795 if (enable && !regulator->bypass) {
4796 rdev->bypass_count++;
4797
4798 if (rdev->bypass_count == rdev->open_count) {
4799 trace_regulator_bypass_enable(name);
4800
4801 ret = rdev->desc->ops->set_bypass(rdev, enable);
4802 if (ret != 0)
4803 rdev->bypass_count--;
4804 else
4805 trace_regulator_bypass_enable_complete(name);
4806 }
4807
4808 } else if (!enable && regulator->bypass) {
4809 rdev->bypass_count--;
4810
4811 if (rdev->bypass_count != rdev->open_count) {
4812 trace_regulator_bypass_disable(name);
4813
4814 ret = rdev->desc->ops->set_bypass(rdev, enable);
4815 if (ret != 0)
4816 rdev->bypass_count++;
4817 else
4818 trace_regulator_bypass_disable_complete(name);
4819 }
4820 }
4821
4822 if (ret == 0)
4823 regulator->bypass = enable;
4824
4825 regulator_unlock(rdev);
4826
4827 return ret;
4828}
4829EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4830
4831/**
4832 * regulator_register_notifier - register regulator event notifier
4833 * @regulator: regulator source
4834 * @nb: notifier block
4835 *
4836 * Register notifier block to receive regulator events.
4837 */
4838int regulator_register_notifier(struct regulator *regulator,
4839 struct notifier_block *nb)
4840{
4841 return blocking_notifier_chain_register(nh: &regulator->rdev->notifier,
4842 nb);
4843}
4844EXPORT_SYMBOL_GPL(regulator_register_notifier);
4845
4846/**
4847 * regulator_unregister_notifier - unregister regulator event notifier
4848 * @regulator: regulator source
4849 * @nb: notifier block
4850 *
4851 * Unregister regulator event notifier block.
4852 */
4853int regulator_unregister_notifier(struct regulator *regulator,
4854 struct notifier_block *nb)
4855{
4856 return blocking_notifier_chain_unregister(nh: &regulator->rdev->notifier,
4857 nb);
4858}
4859EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4860
4861/* notify regulator consumers and downstream regulator consumers.
4862 * Note mutex must be held by caller.
4863 */
4864static int _notifier_call_chain(struct regulator_dev *rdev,
4865 unsigned long event, void *data)
4866{
4867 /* call rdev chain first */
4868 int ret = blocking_notifier_call_chain(nh: &rdev->notifier, val: event, v: data);
4869
4870 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4871 struct device *parent = rdev->dev.parent;
4872 const char *rname = rdev_get_name(rdev);
4873 char name[32];
4874
4875 /* Avoid duplicate debugfs directory names */
4876 if (parent && rname == rdev->desc->name) {
4877 snprintf(buf: name, size: sizeof(name), fmt: "%s-%s", dev_name(dev: parent),
4878 rname);
4879 rname = name;
4880 }
4881 reg_generate_netlink_event(reg_name: rname, event);
4882 }
4883
4884 return ret;
4885}
4886
4887int _regulator_bulk_get(struct device *dev, int num_consumers,
4888 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4889{
4890 int i;
4891 int ret;
4892
4893 for (i = 0; i < num_consumers; i++)
4894 consumers[i].consumer = NULL;
4895
4896 for (i = 0; i < num_consumers; i++) {
4897 consumers[i].consumer = _regulator_get(dev,
4898 id: consumers[i].supply, get_type);
4899 if (IS_ERR(ptr: consumers[i].consumer)) {
4900 ret = dev_err_probe(dev, err: PTR_ERR(ptr: consumers[i].consumer),
4901 fmt: "Failed to get supply '%s'",
4902 consumers[i].supply);
4903 consumers[i].consumer = NULL;
4904 goto err;
4905 }
4906
4907 if (consumers[i].init_load_uA > 0) {
4908 ret = regulator_set_load(consumers[i].consumer,
4909 consumers[i].init_load_uA);
4910 if (ret) {
4911 i++;
4912 goto err;
4913 }
4914 }
4915 }
4916
4917 return 0;
4918
4919err:
4920 while (--i >= 0)
4921 regulator_put(consumers[i].consumer);
4922
4923 return ret;
4924}
4925
4926/**
4927 * regulator_bulk_get - get multiple regulator consumers
4928 *
4929 * @dev: Device to supply
4930 * @num_consumers: Number of consumers to register
4931 * @consumers: Configuration of consumers; clients are stored here.
4932 *
4933 * @return 0 on success, an errno on failure.
4934 *
4935 * This helper function allows drivers to get several regulator
4936 * consumers in one operation. If any of the regulators cannot be
4937 * acquired then any regulators that were allocated will be freed
4938 * before returning to the caller.
4939 */
4940int regulator_bulk_get(struct device *dev, int num_consumers,
4941 struct regulator_bulk_data *consumers)
4942{
4943 return _regulator_bulk_get(dev, num_consumers, consumers, get_type: NORMAL_GET);
4944}
4945EXPORT_SYMBOL_GPL(regulator_bulk_get);
4946
4947static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4948{
4949 struct regulator_bulk_data *bulk = data;
4950
4951 bulk->ret = regulator_enable(bulk->consumer);
4952}
4953
4954/**
4955 * regulator_bulk_enable - enable multiple regulator consumers
4956 *
4957 * @num_consumers: Number of consumers
4958 * @consumers: Consumer data; clients are stored here.
4959 * @return 0 on success, an errno on failure
4960 *
4961 * This convenience API allows consumers to enable multiple regulator
4962 * clients in a single API call. If any consumers cannot be enabled
4963 * then any others that were enabled will be disabled again prior to
4964 * return.
4965 */
4966int regulator_bulk_enable(int num_consumers,
4967 struct regulator_bulk_data *consumers)
4968{
4969 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4970 int i;
4971 int ret = 0;
4972
4973 for (i = 0; i < num_consumers; i++) {
4974 async_schedule_domain(func: regulator_bulk_enable_async,
4975 data: &consumers[i], domain: &async_domain);
4976 }
4977
4978 async_synchronize_full_domain(domain: &async_domain);
4979
4980 /* If any consumer failed we need to unwind any that succeeded */
4981 for (i = 0; i < num_consumers; i++) {
4982 if (consumers[i].ret != 0) {
4983 ret = consumers[i].ret;
4984 goto err;
4985 }
4986 }
4987
4988 return 0;
4989
4990err:
4991 for (i = 0; i < num_consumers; i++) {
4992 if (consumers[i].ret < 0)
4993 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4994 ERR_PTR(consumers[i].ret));
4995 else
4996 regulator_disable(consumers[i].consumer);
4997 }
4998
4999 return ret;
5000}
5001EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5002
5003/**
5004 * regulator_bulk_disable - disable multiple regulator consumers
5005 *
5006 * @num_consumers: Number of consumers
5007 * @consumers: Consumer data; clients are stored here.
5008 * @return 0 on success, an errno on failure
5009 *
5010 * This convenience API allows consumers to disable multiple regulator
5011 * clients in a single API call. If any consumers cannot be disabled
5012 * then any others that were disabled will be enabled again prior to
5013 * return.
5014 */
5015int regulator_bulk_disable(int num_consumers,
5016 struct regulator_bulk_data *consumers)
5017{
5018 int i;
5019 int ret, r;
5020
5021 for (i = num_consumers - 1; i >= 0; --i) {
5022 ret = regulator_disable(consumers[i].consumer);
5023 if (ret != 0)
5024 goto err;
5025 }
5026
5027 return 0;
5028
5029err:
5030 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5031 for (++i; i < num_consumers; ++i) {
5032 r = regulator_enable(consumers[i].consumer);
5033 if (r != 0)
5034 pr_err("Failed to re-enable %s: %pe\n",
5035 consumers[i].supply, ERR_PTR(r));
5036 }
5037
5038 return ret;
5039}
5040EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5041
5042/**
5043 * regulator_bulk_force_disable - force disable multiple regulator consumers
5044 *
5045 * @num_consumers: Number of consumers
5046 * @consumers: Consumer data; clients are stored here.
5047 * @return 0 on success, an errno on failure
5048 *
5049 * This convenience API allows consumers to forcibly disable multiple regulator
5050 * clients in a single API call.
5051 * NOTE: This should be used for situations when device damage will
5052 * likely occur if the regulators are not disabled (e.g. over temp).
5053 * Although regulator_force_disable function call for some consumers can
5054 * return error numbers, the function is called for all consumers.
5055 */
5056int regulator_bulk_force_disable(int num_consumers,
5057 struct regulator_bulk_data *consumers)
5058{
5059 int i;
5060 int ret = 0;
5061
5062 for (i = 0; i < num_consumers; i++) {
5063 consumers[i].ret =
5064 regulator_force_disable(consumers[i].consumer);
5065
5066 /* Store first error for reporting */
5067 if (consumers[i].ret && !ret)
5068 ret = consumers[i].ret;
5069 }
5070
5071 return ret;
5072}
5073EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5074
5075/**
5076 * regulator_bulk_free - free multiple regulator consumers
5077 *
5078 * @num_consumers: Number of consumers
5079 * @consumers: Consumer data; clients are stored here.
5080 *
5081 * This convenience API allows consumers to free multiple regulator
5082 * clients in a single API call.
5083 */
5084void regulator_bulk_free(int num_consumers,
5085 struct regulator_bulk_data *consumers)
5086{
5087 int i;
5088
5089 for (i = 0; i < num_consumers; i++) {
5090 regulator_put(consumers[i].consumer);
5091 consumers[i].consumer = NULL;
5092 }
5093}
5094EXPORT_SYMBOL_GPL(regulator_bulk_free);
5095
5096/**
5097 * regulator_handle_critical - Handle events for system-critical regulators.
5098 * @rdev: The regulator device.
5099 * @event: The event being handled.
5100 *
5101 * This function handles critical events such as under-voltage, over-current,
5102 * and unknown errors for regulators deemed system-critical. On detecting such
5103 * events, it triggers a hardware protection shutdown with a defined timeout.
5104 */
5105static void regulator_handle_critical(struct regulator_dev *rdev,
5106 unsigned long event)
5107{
5108 const char *reason = NULL;
5109
5110 if (!rdev->constraints->system_critical)
5111 return;
5112
5113 switch (event) {
5114 case REGULATOR_EVENT_UNDER_VOLTAGE:
5115 reason = "System critical regulator: voltage drop detected";
5116 break;
5117 case REGULATOR_EVENT_OVER_CURRENT:
5118 reason = "System critical regulator: over-current detected";
5119 break;
5120 case REGULATOR_EVENT_FAIL:
5121 reason = "System critical regulator: unknown error";
5122 }
5123
5124 if (!reason)
5125 return;
5126
5127 hw_protection_shutdown(reason,
5128 ms_until_forced: rdev->constraints->uv_less_critical_window_ms);
5129}
5130
5131/**
5132 * regulator_notifier_call_chain - call regulator event notifier
5133 * @rdev: regulator source
5134 * @event: notifier block
5135 * @data: callback-specific data.
5136 *
5137 * Called by regulator drivers to notify clients a regulator event has
5138 * occurred.
5139 */
5140int regulator_notifier_call_chain(struct regulator_dev *rdev,
5141 unsigned long event, void *data)
5142{
5143 regulator_handle_critical(rdev, event);
5144
5145 _notifier_call_chain(rdev, event, data);
5146 return NOTIFY_DONE;
5147
5148}
5149EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5150
5151/**
5152 * regulator_mode_to_status - convert a regulator mode into a status
5153 *
5154 * @mode: Mode to convert
5155 *
5156 * Convert a regulator mode into a status.
5157 */
5158int regulator_mode_to_status(unsigned int mode)
5159{
5160 switch (mode) {
5161 case REGULATOR_MODE_FAST:
5162 return REGULATOR_STATUS_FAST;
5163 case REGULATOR_MODE_NORMAL:
5164 return REGULATOR_STATUS_NORMAL;
5165 case REGULATOR_MODE_IDLE:
5166 return REGULATOR_STATUS_IDLE;
5167 case REGULATOR_MODE_STANDBY:
5168 return REGULATOR_STATUS_STANDBY;
5169 default:
5170 return REGULATOR_STATUS_UNDEFINED;
5171 }
5172}
5173EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5174
5175static struct attribute *regulator_dev_attrs[] = {
5176 &dev_attr_name.attr,
5177 &dev_attr_num_users.attr,
5178 &dev_attr_type.attr,
5179 &dev_attr_microvolts.attr,
5180 &dev_attr_microamps.attr,
5181 &dev_attr_opmode.attr,
5182 &dev_attr_state.attr,
5183 &dev_attr_status.attr,
5184 &dev_attr_bypass.attr,
5185 &dev_attr_requested_microamps.attr,
5186 &dev_attr_min_microvolts.attr,
5187 &dev_attr_max_microvolts.attr,
5188 &dev_attr_min_microamps.attr,
5189 &dev_attr_max_microamps.attr,
5190 &dev_attr_under_voltage.attr,
5191 &dev_attr_over_current.attr,
5192 &dev_attr_regulation_out.attr,
5193 &dev_attr_fail.attr,
5194 &dev_attr_over_temp.attr,
5195 &dev_attr_under_voltage_warn.attr,
5196 &dev_attr_over_current_warn.attr,
5197 &dev_attr_over_voltage_warn.attr,
5198 &dev_attr_over_temp_warn.attr,
5199 &dev_attr_suspend_standby_state.attr,
5200 &dev_attr_suspend_mem_state.attr,
5201 &dev_attr_suspend_disk_state.attr,
5202 &dev_attr_suspend_standby_microvolts.attr,
5203 &dev_attr_suspend_mem_microvolts.attr,
5204 &dev_attr_suspend_disk_microvolts.attr,
5205 &dev_attr_suspend_standby_mode.attr,
5206 &dev_attr_suspend_mem_mode.attr,
5207 &dev_attr_suspend_disk_mode.attr,
5208 NULL
5209};
5210
5211/*
5212 * To avoid cluttering sysfs (and memory) with useless state, only
5213 * create attributes that can be meaningfully displayed.
5214 */
5215static umode_t regulator_attr_is_visible(struct kobject *kobj,
5216 struct attribute *attr, int idx)
5217{
5218 struct device *dev = kobj_to_dev(kobj);
5219 struct regulator_dev *rdev = dev_to_rdev(dev);
5220 const struct regulator_ops *ops = rdev->desc->ops;
5221 umode_t mode = attr->mode;
5222
5223 /* these three are always present */
5224 if (attr == &dev_attr_name.attr ||
5225 attr == &dev_attr_num_users.attr ||
5226 attr == &dev_attr_type.attr)
5227 return mode;
5228
5229 /* some attributes need specific methods to be displayed */
5230 if (attr == &dev_attr_microvolts.attr) {
5231 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5232 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5233 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5234 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5235 return mode;
5236 return 0;
5237 }
5238
5239 if (attr == &dev_attr_microamps.attr)
5240 return ops->get_current_limit ? mode : 0;
5241
5242 if (attr == &dev_attr_opmode.attr)
5243 return ops->get_mode ? mode : 0;
5244
5245 if (attr == &dev_attr_state.attr)
5246 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5247
5248 if (attr == &dev_attr_status.attr)
5249 return ops->get_status ? mode : 0;
5250
5251 if (attr == &dev_attr_bypass.attr)
5252 return ops->get_bypass ? mode : 0;
5253
5254 if (attr == &dev_attr_under_voltage.attr ||
5255 attr == &dev_attr_over_current.attr ||
5256 attr == &dev_attr_regulation_out.attr ||
5257 attr == &dev_attr_fail.attr ||
5258 attr == &dev_attr_over_temp.attr ||
5259 attr == &dev_attr_under_voltage_warn.attr ||
5260 attr == &dev_attr_over_current_warn.attr ||
5261 attr == &dev_attr_over_voltage_warn.attr ||
5262 attr == &dev_attr_over_temp_warn.attr)
5263 return ops->get_error_flags ? mode : 0;
5264
5265 /* constraints need specific supporting methods */
5266 if (attr == &dev_attr_min_microvolts.attr ||
5267 attr == &dev_attr_max_microvolts.attr)
5268 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5269
5270 if (attr == &dev_attr_min_microamps.attr ||
5271 attr == &dev_attr_max_microamps.attr)
5272 return ops->set_current_limit ? mode : 0;
5273
5274 if (attr == &dev_attr_suspend_standby_state.attr ||
5275 attr == &dev_attr_suspend_mem_state.attr ||
5276 attr == &dev_attr_suspend_disk_state.attr)
5277 return mode;
5278
5279 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5280 attr == &dev_attr_suspend_mem_microvolts.attr ||
5281 attr == &dev_attr_suspend_disk_microvolts.attr)
5282 return ops->set_suspend_voltage ? mode : 0;
5283
5284 if (attr == &dev_attr_suspend_standby_mode.attr ||
5285 attr == &dev_attr_suspend_mem_mode.attr ||
5286 attr == &dev_attr_suspend_disk_mode.attr)
5287 return ops->set_suspend_mode ? mode : 0;
5288
5289 return mode;
5290}
5291
5292static const struct attribute_group regulator_dev_group = {
5293 .attrs = regulator_dev_attrs,
5294 .is_visible = regulator_attr_is_visible,
5295};
5296
5297static const struct attribute_group *regulator_dev_groups[] = {
5298 &regulator_dev_group,
5299 NULL
5300};
5301
5302static void regulator_dev_release(struct device *dev)
5303{
5304 struct regulator_dev *rdev = dev_get_drvdata(dev);
5305
5306 debugfs_remove_recursive(dentry: rdev->debugfs);
5307 kfree(objp: rdev->constraints);
5308 of_node_put(node: rdev->dev.of_node);
5309 kfree(objp: rdev);
5310}
5311
5312static void rdev_init_debugfs(struct regulator_dev *rdev)
5313{
5314 struct device *parent = rdev->dev.parent;
5315 const char *rname = rdev_get_name(rdev);
5316 char name[NAME_MAX];
5317
5318 /* Avoid duplicate debugfs directory names */
5319 if (parent && rname == rdev->desc->name) {
5320 snprintf(buf: name, size: sizeof(name), fmt: "%s-%s", dev_name(dev: parent),
5321 rname);
5322 rname = name;
5323 }
5324
5325 rdev->debugfs = debugfs_create_dir(name: rname, parent: debugfs_root);
5326 if (IS_ERR(ptr: rdev->debugfs))
5327 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5328
5329 debugfs_create_u32(name: "use_count", mode: 0444, parent: rdev->debugfs,
5330 value: &rdev->use_count);
5331 debugfs_create_u32(name: "open_count", mode: 0444, parent: rdev->debugfs,
5332 value: &rdev->open_count);
5333 debugfs_create_u32(name: "bypass_count", mode: 0444, parent: rdev->debugfs,
5334 value: &rdev->bypass_count);
5335}
5336
5337static int regulator_register_resolve_supply(struct device *dev, void *data)
5338{
5339 struct regulator_dev *rdev = dev_to_rdev(dev);
5340
5341 if (regulator_resolve_supply(rdev))
5342 rdev_dbg(rdev, "unable to resolve supply\n");
5343
5344 return 0;
5345}
5346
5347int regulator_coupler_register(struct regulator_coupler *coupler)
5348{
5349 mutex_lock(&regulator_list_mutex);
5350 list_add_tail(new: &coupler->list, head: &regulator_coupler_list);
5351 mutex_unlock(lock: &regulator_list_mutex);
5352
5353 return 0;
5354}
5355
5356static struct regulator_coupler *
5357regulator_find_coupler(struct regulator_dev *rdev)
5358{
5359 struct regulator_coupler *coupler;
5360 int err;
5361
5362 /*
5363 * Note that regulators are appended to the list and the generic
5364 * coupler is registered first, hence it will be attached at last
5365 * if nobody cared.
5366 */
5367 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5368 err = coupler->attach_regulator(coupler, rdev);
5369 if (!err) {
5370 if (!coupler->balance_voltage &&
5371 rdev->coupling_desc.n_coupled > 2)
5372 goto err_unsupported;
5373
5374 return coupler;
5375 }
5376
5377 if (err < 0)
5378 return ERR_PTR(error: err);
5379
5380 if (err == 1)
5381 continue;
5382
5383 break;
5384 }
5385
5386 return ERR_PTR(error: -EINVAL);
5387
5388err_unsupported:
5389 if (coupler->detach_regulator)
5390 coupler->detach_regulator(coupler, rdev);
5391
5392 rdev_err(rdev,
5393 "Voltage balancing for multiple regulator couples is unimplemented\n");
5394
5395 return ERR_PTR(error: -EPERM);
5396}
5397
5398static void regulator_resolve_coupling(struct regulator_dev *rdev)
5399{
5400 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5401 struct coupling_desc *c_desc = &rdev->coupling_desc;
5402 int n_coupled = c_desc->n_coupled;
5403 struct regulator_dev *c_rdev;
5404 int i;
5405
5406 for (i = 1; i < n_coupled; i++) {
5407 /* already resolved */
5408 if (c_desc->coupled_rdevs[i])
5409 continue;
5410
5411 c_rdev = of_parse_coupled_regulator(rdev, index: i - 1);
5412
5413 if (!c_rdev)
5414 continue;
5415
5416 if (c_rdev->coupling_desc.coupler != coupler) {
5417 rdev_err(rdev, "coupler mismatch with %s\n",
5418 rdev_get_name(c_rdev));
5419 return;
5420 }
5421
5422 c_desc->coupled_rdevs[i] = c_rdev;
5423 c_desc->n_resolved++;
5424
5425 regulator_resolve_coupling(rdev: c_rdev);
5426 }
5427}
5428
5429static void regulator_remove_coupling(struct regulator_dev *rdev)
5430{
5431 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5432 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5433 struct regulator_dev *__c_rdev, *c_rdev;
5434 unsigned int __n_coupled, n_coupled;
5435 int i, k;
5436 int err;
5437
5438 n_coupled = c_desc->n_coupled;
5439
5440 for (i = 1; i < n_coupled; i++) {
5441 c_rdev = c_desc->coupled_rdevs[i];
5442
5443 if (!c_rdev)
5444 continue;
5445
5446 regulator_lock(rdev: c_rdev);
5447
5448 __c_desc = &c_rdev->coupling_desc;
5449 __n_coupled = __c_desc->n_coupled;
5450
5451 for (k = 1; k < __n_coupled; k++) {
5452 __c_rdev = __c_desc->coupled_rdevs[k];
5453
5454 if (__c_rdev == rdev) {
5455 __c_desc->coupled_rdevs[k] = NULL;
5456 __c_desc->n_resolved--;
5457 break;
5458 }
5459 }
5460
5461 regulator_unlock(rdev: c_rdev);
5462
5463 c_desc->coupled_rdevs[i] = NULL;
5464 c_desc->n_resolved--;
5465 }
5466
5467 if (coupler && coupler->detach_regulator) {
5468 err = coupler->detach_regulator(coupler, rdev);
5469 if (err)
5470 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5471 ERR_PTR(err));
5472 }
5473
5474 kfree(objp: rdev->coupling_desc.coupled_rdevs);
5475 rdev->coupling_desc.coupled_rdevs = NULL;
5476}
5477
5478static int regulator_init_coupling(struct regulator_dev *rdev)
5479{
5480 struct regulator_dev **coupled;
5481 int err, n_phandles;
5482
5483 if (!IS_ENABLED(CONFIG_OF))
5484 n_phandles = 0;
5485 else
5486 n_phandles = of_get_n_coupled(rdev);
5487
5488 coupled = kcalloc(n: n_phandles + 1, size: sizeof(*coupled), GFP_KERNEL);
5489 if (!coupled)
5490 return -ENOMEM;
5491
5492 rdev->coupling_desc.coupled_rdevs = coupled;
5493
5494 /*
5495 * Every regulator should always have coupling descriptor filled with
5496 * at least pointer to itself.
5497 */
5498 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5499 rdev->coupling_desc.n_coupled = n_phandles + 1;
5500 rdev->coupling_desc.n_resolved++;
5501
5502 /* regulator isn't coupled */
5503 if (n_phandles == 0)
5504 return 0;
5505
5506 if (!of_check_coupling_data(rdev))
5507 return -EPERM;
5508
5509 mutex_lock(&regulator_list_mutex);
5510 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5511 mutex_unlock(lock: &regulator_list_mutex);
5512
5513 if (IS_ERR(ptr: rdev->coupling_desc.coupler)) {
5514 err = PTR_ERR(ptr: rdev->coupling_desc.coupler);
5515 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5516 return err;
5517 }
5518
5519 return 0;
5520}
5521
5522static int generic_coupler_attach(struct regulator_coupler *coupler,
5523 struct regulator_dev *rdev)
5524{
5525 if (rdev->coupling_desc.n_coupled > 2) {
5526 rdev_err(rdev,
5527 "Voltage balancing for multiple regulator couples is unimplemented\n");
5528 return -EPERM;
5529 }
5530
5531 if (!rdev->constraints->always_on) {
5532 rdev_err(rdev,
5533 "Coupling of a non always-on regulator is unimplemented\n");
5534 return -ENOTSUPP;
5535 }
5536
5537 return 0;
5538}
5539
5540static struct regulator_coupler generic_regulator_coupler = {
5541 .attach_regulator = generic_coupler_attach,
5542};
5543
5544/**
5545 * regulator_register - register regulator
5546 * @dev: the device that drive the regulator
5547 * @regulator_desc: regulator to register
5548 * @cfg: runtime configuration for regulator
5549 *
5550 * Called by regulator drivers to register a regulator.
5551 * Returns a valid pointer to struct regulator_dev on success
5552 * or an ERR_PTR() on error.
5553 */
5554struct regulator_dev *
5555regulator_register(struct device *dev,
5556 const struct regulator_desc *regulator_desc,
5557 const struct regulator_config *cfg)
5558{
5559 const struct regulator_init_data *init_data;
5560 struct regulator_config *config = NULL;
5561 static atomic_t regulator_no = ATOMIC_INIT(-1);
5562 struct regulator_dev *rdev;
5563 bool dangling_cfg_gpiod = false;
5564 bool dangling_of_gpiod = false;
5565 int ret, i;
5566 bool resolved_early = false;
5567
5568 if (cfg == NULL)
5569 return ERR_PTR(error: -EINVAL);
5570 if (cfg->ena_gpiod)
5571 dangling_cfg_gpiod = true;
5572 if (regulator_desc == NULL) {
5573 ret = -EINVAL;
5574 goto rinse;
5575 }
5576
5577 WARN_ON(!dev || !cfg->dev);
5578
5579 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5580 ret = -EINVAL;
5581 goto rinse;
5582 }
5583
5584 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5585 regulator_desc->type != REGULATOR_CURRENT) {
5586 ret = -EINVAL;
5587 goto rinse;
5588 }
5589
5590 /* Only one of each should be implemented */
5591 WARN_ON(regulator_desc->ops->get_voltage &&
5592 regulator_desc->ops->get_voltage_sel);
5593 WARN_ON(regulator_desc->ops->set_voltage &&
5594 regulator_desc->ops->set_voltage_sel);
5595
5596 /* If we're using selectors we must implement list_voltage. */
5597 if (regulator_desc->ops->get_voltage_sel &&
5598 !regulator_desc->ops->list_voltage) {
5599 ret = -EINVAL;
5600 goto rinse;
5601 }
5602 if (regulator_desc->ops->set_voltage_sel &&
5603 !regulator_desc->ops->list_voltage) {
5604 ret = -EINVAL;
5605 goto rinse;
5606 }
5607
5608 rdev = kzalloc(size: sizeof(struct regulator_dev), GFP_KERNEL);
5609 if (rdev == NULL) {
5610 ret = -ENOMEM;
5611 goto rinse;
5612 }
5613 device_initialize(dev: &rdev->dev);
5614 dev_set_drvdata(dev: &rdev->dev, data: rdev);
5615 rdev->dev.class = &regulator_class;
5616 spin_lock_init(&rdev->err_lock);
5617
5618 /*
5619 * Duplicate the config so the driver could override it after
5620 * parsing init data.
5621 */
5622 config = kmemdup(p: cfg, size: sizeof(*cfg), GFP_KERNEL);
5623 if (config == NULL) {
5624 ret = -ENOMEM;
5625 goto clean;
5626 }
5627
5628 init_data = regulator_of_get_init_data(dev, desc: regulator_desc, config,
5629 node: &rdev->dev.of_node);
5630
5631 /*
5632 * Sometimes not all resources are probed already so we need to take
5633 * that into account. This happens most the time if the ena_gpiod comes
5634 * from a gpio extender or something else.
5635 */
5636 if (PTR_ERR(ptr: init_data) == -EPROBE_DEFER) {
5637 ret = -EPROBE_DEFER;
5638 goto clean;
5639 }
5640
5641 /*
5642 * We need to keep track of any GPIO descriptor coming from the
5643 * device tree until we have handled it over to the core. If the
5644 * config that was passed in to this function DOES NOT contain
5645 * a descriptor, and the config after this call DOES contain
5646 * a descriptor, we definitely got one from parsing the device
5647 * tree.
5648 */
5649 if (!cfg->ena_gpiod && config->ena_gpiod)
5650 dangling_of_gpiod = true;
5651 if (!init_data) {
5652 init_data = config->init_data;
5653 rdev->dev.of_node = of_node_get(node: config->of_node);
5654 }
5655
5656 ww_mutex_init(lock: &rdev->mutex, ww_class: &regulator_ww_class);
5657 rdev->reg_data = config->driver_data;
5658 rdev->owner = regulator_desc->owner;
5659 rdev->desc = regulator_desc;
5660 if (config->regmap)
5661 rdev->regmap = config->regmap;
5662 else if (dev_get_regmap(dev, NULL))
5663 rdev->regmap = dev_get_regmap(dev, NULL);
5664 else if (dev->parent)
5665 rdev->regmap = dev_get_regmap(dev: dev->parent, NULL);
5666 INIT_LIST_HEAD(list: &rdev->consumer_list);
5667 INIT_LIST_HEAD(list: &rdev->list);
5668 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5669 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5670
5671 if (init_data && init_data->supply_regulator)
5672 rdev->supply_name = init_data->supply_regulator;
5673 else if (regulator_desc->supply_name)
5674 rdev->supply_name = regulator_desc->supply_name;
5675
5676 /* register with sysfs */
5677 rdev->dev.parent = config->dev;
5678 dev_set_name(dev: &rdev->dev, name: "regulator.%lu",
5679 (unsigned long) atomic_inc_return(v: &regulator_no));
5680
5681 /* set regulator constraints */
5682 if (init_data)
5683 rdev->constraints = kmemdup(p: &init_data->constraints,
5684 size: sizeof(*rdev->constraints),
5685 GFP_KERNEL);
5686 else
5687 rdev->constraints = kzalloc(size: sizeof(*rdev->constraints),
5688 GFP_KERNEL);
5689 if (!rdev->constraints) {
5690 ret = -ENOMEM;
5691 goto wash;
5692 }
5693
5694 if ((rdev->supply_name && !rdev->supply) &&
5695 (rdev->constraints->always_on ||
5696 rdev->constraints->boot_on)) {
5697 ret = regulator_resolve_supply(rdev);
5698 if (ret)
5699 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5700 ERR_PTR(ret));
5701
5702 resolved_early = true;
5703 }
5704
5705 /* perform any regulator specific init */
5706 if (init_data && init_data->regulator_init) {
5707 ret = init_data->regulator_init(rdev->reg_data);
5708 if (ret < 0)
5709 goto wash;
5710 }
5711
5712 if (config->ena_gpiod) {
5713 ret = regulator_ena_gpio_request(rdev, config);
5714 if (ret != 0) {
5715 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5716 ERR_PTR(ret));
5717 goto wash;
5718 }
5719 /* The regulator core took over the GPIO descriptor */
5720 dangling_cfg_gpiod = false;
5721 dangling_of_gpiod = false;
5722 }
5723
5724 ret = set_machine_constraints(rdev);
5725 if (ret == -EPROBE_DEFER && !resolved_early) {
5726 /* Regulator might be in bypass mode and so needs its supply
5727 * to set the constraints
5728 */
5729 /* FIXME: this currently triggers a chicken-and-egg problem
5730 * when creating -SUPPLY symlink in sysfs to a regulator
5731 * that is just being created
5732 */
5733 rdev_dbg(rdev, "will resolve supply early: %s\n",
5734 rdev->supply_name);
5735 ret = regulator_resolve_supply(rdev);
5736 if (!ret)
5737 ret = set_machine_constraints(rdev);
5738 else
5739 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5740 ERR_PTR(ret));
5741 }
5742 if (ret < 0)
5743 goto wash;
5744
5745 ret = regulator_init_coupling(rdev);
5746 if (ret < 0)
5747 goto wash;
5748
5749 /* add consumers devices */
5750 if (init_data) {
5751 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5752 ret = set_consumer_device_supply(rdev,
5753 consumer_dev_name: init_data->consumer_supplies[i].dev_name,
5754 supply: init_data->consumer_supplies[i].supply);
5755 if (ret < 0) {
5756 dev_err(dev, "Failed to set supply %s\n",
5757 init_data->consumer_supplies[i].supply);
5758 goto unset_supplies;
5759 }
5760 }
5761 }
5762
5763 if (!rdev->desc->ops->get_voltage &&
5764 !rdev->desc->ops->list_voltage &&
5765 !rdev->desc->fixed_uV)
5766 rdev->is_switch = true;
5767
5768 ret = device_add(dev: &rdev->dev);
5769 if (ret != 0)
5770 goto unset_supplies;
5771
5772 rdev_init_debugfs(rdev);
5773
5774 /* try to resolve regulators coupling since a new one was registered */
5775 mutex_lock(&regulator_list_mutex);
5776 regulator_resolve_coupling(rdev);
5777 mutex_unlock(lock: &regulator_list_mutex);
5778
5779 /* try to resolve regulators supply since a new one was registered */
5780 class_for_each_device(class: &regulator_class, NULL, NULL,
5781 fn: regulator_register_resolve_supply);
5782 kfree(objp: config);
5783 return rdev;
5784
5785unset_supplies:
5786 mutex_lock(&regulator_list_mutex);
5787 unset_regulator_supplies(rdev);
5788 regulator_remove_coupling(rdev);
5789 mutex_unlock(lock: &regulator_list_mutex);
5790wash:
5791 regulator_put(rdev->supply);
5792 kfree(objp: rdev->coupling_desc.coupled_rdevs);
5793 mutex_lock(&regulator_list_mutex);
5794 regulator_ena_gpio_free(rdev);
5795 mutex_unlock(lock: &regulator_list_mutex);
5796clean:
5797 if (dangling_of_gpiod)
5798 gpiod_put(desc: config->ena_gpiod);
5799 kfree(objp: config);
5800 put_device(dev: &rdev->dev);
5801rinse:
5802 if (dangling_cfg_gpiod)
5803 gpiod_put(desc: cfg->ena_gpiod);
5804 return ERR_PTR(error: ret);
5805}
5806EXPORT_SYMBOL_GPL(regulator_register);
5807
5808/**
5809 * regulator_unregister - unregister regulator
5810 * @rdev: regulator to unregister
5811 *
5812 * Called by regulator drivers to unregister a regulator.
5813 */
5814void regulator_unregister(struct regulator_dev *rdev)
5815{
5816 if (rdev == NULL)
5817 return;
5818
5819 if (rdev->supply) {
5820 while (rdev->use_count--)
5821 regulator_disable(rdev->supply);
5822 regulator_put(rdev->supply);
5823 }
5824
5825 flush_work(work: &rdev->disable_work.work);
5826
5827 mutex_lock(&regulator_list_mutex);
5828
5829 WARN_ON(rdev->open_count);
5830 regulator_remove_coupling(rdev);
5831 unset_regulator_supplies(rdev);
5832 list_del(entry: &rdev->list);
5833 regulator_ena_gpio_free(rdev);
5834 device_unregister(dev: &rdev->dev);
5835
5836 mutex_unlock(lock: &regulator_list_mutex);
5837}
5838EXPORT_SYMBOL_GPL(regulator_unregister);
5839
5840#ifdef CONFIG_SUSPEND
5841/**
5842 * regulator_suspend - prepare regulators for system wide suspend
5843 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5844 *
5845 * Configure each regulator with it's suspend operating parameters for state.
5846 */
5847static int regulator_suspend(struct device *dev)
5848{
5849 struct regulator_dev *rdev = dev_to_rdev(dev);
5850 suspend_state_t state = pm_suspend_target_state;
5851 int ret;
5852 const struct regulator_state *rstate;
5853
5854 rstate = regulator_get_suspend_state_check(rdev, state);
5855 if (!rstate)
5856 return 0;
5857
5858 regulator_lock(rdev);
5859 ret = __suspend_set_state(rdev, rstate);
5860 regulator_unlock(rdev);
5861
5862 return ret;
5863}
5864
5865static int regulator_resume(struct device *dev)
5866{
5867 suspend_state_t state = pm_suspend_target_state;
5868 struct regulator_dev *rdev = dev_to_rdev(dev);
5869 struct regulator_state *rstate;
5870 int ret = 0;
5871
5872 rstate = regulator_get_suspend_state(rdev, state);
5873 if (rstate == NULL)
5874 return 0;
5875
5876 /* Avoid grabbing the lock if we don't need to */
5877 if (!rdev->desc->ops->resume)
5878 return 0;
5879
5880 regulator_lock(rdev);
5881
5882 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5883 rstate->enabled == DISABLE_IN_SUSPEND)
5884 ret = rdev->desc->ops->resume(rdev);
5885
5886 regulator_unlock(rdev);
5887
5888 return ret;
5889}
5890#else /* !CONFIG_SUSPEND */
5891
5892#define regulator_suspend NULL
5893#define regulator_resume NULL
5894
5895#endif /* !CONFIG_SUSPEND */
5896
5897#ifdef CONFIG_PM
5898static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5899 .suspend = regulator_suspend,
5900 .resume = regulator_resume,
5901};
5902#endif
5903
5904const struct class regulator_class = {
5905 .name = "regulator",
5906 .dev_release = regulator_dev_release,
5907 .dev_groups = regulator_dev_groups,
5908#ifdef CONFIG_PM
5909 .pm = &regulator_pm_ops,
5910#endif
5911};
5912/**
5913 * regulator_has_full_constraints - the system has fully specified constraints
5914 *
5915 * Calling this function will cause the regulator API to disable all
5916 * regulators which have a zero use count and don't have an always_on
5917 * constraint in a late_initcall.
5918 *
5919 * The intention is that this will become the default behaviour in a
5920 * future kernel release so users are encouraged to use this facility
5921 * now.
5922 */
5923void regulator_has_full_constraints(void)
5924{
5925 has_full_constraints = 1;
5926}
5927EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5928
5929/**
5930 * rdev_get_drvdata - get rdev regulator driver data
5931 * @rdev: regulator
5932 *
5933 * Get rdev regulator driver private data. This call can be used in the
5934 * regulator driver context.
5935 */
5936void *rdev_get_drvdata(struct regulator_dev *rdev)
5937{
5938 return rdev->reg_data;
5939}
5940EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5941
5942/**
5943 * regulator_get_drvdata - get regulator driver data
5944 * @regulator: regulator
5945 *
5946 * Get regulator driver private data. This call can be used in the consumer
5947 * driver context when non API regulator specific functions need to be called.
5948 */
5949void *regulator_get_drvdata(struct regulator *regulator)
5950{
5951 return regulator->rdev->reg_data;
5952}
5953EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5954
5955/**
5956 * regulator_set_drvdata - set regulator driver data
5957 * @regulator: regulator
5958 * @data: data
5959 */
5960void regulator_set_drvdata(struct regulator *regulator, void *data)
5961{
5962 regulator->rdev->reg_data = data;
5963}
5964EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5965
5966/**
5967 * rdev_get_id - get regulator ID
5968 * @rdev: regulator
5969 */
5970int rdev_get_id(struct regulator_dev *rdev)
5971{
5972 return rdev->desc->id;
5973}
5974EXPORT_SYMBOL_GPL(rdev_get_id);
5975
5976struct device *rdev_get_dev(struct regulator_dev *rdev)
5977{
5978 return &rdev->dev;
5979}
5980EXPORT_SYMBOL_GPL(rdev_get_dev);
5981
5982struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5983{
5984 return rdev->regmap;
5985}
5986EXPORT_SYMBOL_GPL(rdev_get_regmap);
5987
5988void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5989{
5990 return reg_init_data->driver_data;
5991}
5992EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5993
5994#ifdef CONFIG_DEBUG_FS
5995static int supply_map_show(struct seq_file *sf, void *data)
5996{
5997 struct regulator_map *map;
5998
5999 list_for_each_entry(map, &regulator_map_list, list) {
6000 seq_printf(m: sf, fmt: "%s -> %s.%s\n",
6001 rdev_get_name(map->regulator), map->dev_name,
6002 map->supply);
6003 }
6004
6005 return 0;
6006}
6007DEFINE_SHOW_ATTRIBUTE(supply_map);
6008
6009struct summary_data {
6010 struct seq_file *s;
6011 struct regulator_dev *parent;
6012 int level;
6013};
6014
6015static void regulator_summary_show_subtree(struct seq_file *s,
6016 struct regulator_dev *rdev,
6017 int level);
6018
6019static int regulator_summary_show_children(struct device *dev, void *data)
6020{
6021 struct regulator_dev *rdev = dev_to_rdev(dev);
6022 struct summary_data *summary_data = data;
6023
6024 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6025 regulator_summary_show_subtree(s: summary_data->s, rdev,
6026 level: summary_data->level + 1);
6027
6028 return 0;
6029}
6030
6031static void regulator_summary_show_subtree(struct seq_file *s,
6032 struct regulator_dev *rdev,
6033 int level)
6034{
6035 struct regulation_constraints *c;
6036 struct regulator *consumer;
6037 struct summary_data summary_data;
6038 unsigned int opmode;
6039
6040 if (!rdev)
6041 return;
6042
6043 opmode = _regulator_get_mode_unlocked(rdev);
6044 seq_printf(m: s, fmt: "%*s%-*s %3d %4d %6d %7s ",
6045 level * 3 + 1, "",
6046 30 - level * 3, rdev_get_name(rdev),
6047 rdev->use_count, rdev->open_count, rdev->bypass_count,
6048 regulator_opmode_to_str(mode: opmode));
6049
6050 seq_printf(m: s, fmt: "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6051 seq_printf(m: s, fmt: "%5dmA ",
6052 _regulator_get_current_limit_unlocked(rdev) / 1000);
6053
6054 c = rdev->constraints;
6055 if (c) {
6056 switch (rdev->desc->type) {
6057 case REGULATOR_VOLTAGE:
6058 seq_printf(m: s, fmt: "%5dmV %5dmV ",
6059 c->min_uV / 1000, c->max_uV / 1000);
6060 break;
6061 case REGULATOR_CURRENT:
6062 seq_printf(m: s, fmt: "%5dmA %5dmA ",
6063 c->min_uA / 1000, c->max_uA / 1000);
6064 break;
6065 }
6066 }
6067
6068 seq_puts(m: s, s: "\n");
6069
6070 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6071 if (consumer->dev && consumer->dev->class == &regulator_class)
6072 continue;
6073
6074 seq_printf(m: s, fmt: "%*s%-*s ",
6075 (level + 1) * 3 + 1, "",
6076 30 - (level + 1) * 3,
6077 consumer->supply_name ? consumer->supply_name :
6078 consumer->dev ? dev_name(dev: consumer->dev) : "deviceless");
6079
6080 switch (rdev->desc->type) {
6081 case REGULATOR_VOLTAGE:
6082 seq_printf(m: s, fmt: "%3d %33dmA%c%5dmV %5dmV",
6083 consumer->enable_count,
6084 consumer->uA_load / 1000,
6085 consumer->uA_load && !consumer->enable_count ?
6086 '*' : ' ',
6087 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6088 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6089 break;
6090 case REGULATOR_CURRENT:
6091 break;
6092 }
6093
6094 seq_puts(m: s, s: "\n");
6095 }
6096
6097 summary_data.s = s;
6098 summary_data.level = level;
6099 summary_data.parent = rdev;
6100
6101 class_for_each_device(class: &regulator_class, NULL, data: &summary_data,
6102 fn: regulator_summary_show_children);
6103}
6104
6105struct summary_lock_data {
6106 struct ww_acquire_ctx *ww_ctx;
6107 struct regulator_dev **new_contended_rdev;
6108 struct regulator_dev **old_contended_rdev;
6109};
6110
6111static int regulator_summary_lock_one(struct device *dev, void *data)
6112{
6113 struct regulator_dev *rdev = dev_to_rdev(dev);
6114 struct summary_lock_data *lock_data = data;
6115 int ret = 0;
6116
6117 if (rdev != *lock_data->old_contended_rdev) {
6118 ret = regulator_lock_nested(rdev, ww_ctx: lock_data->ww_ctx);
6119
6120 if (ret == -EDEADLK)
6121 *lock_data->new_contended_rdev = rdev;
6122 else
6123 WARN_ON_ONCE(ret);
6124 } else {
6125 *lock_data->old_contended_rdev = NULL;
6126 }
6127
6128 return ret;
6129}
6130
6131static int regulator_summary_unlock_one(struct device *dev, void *data)
6132{
6133 struct regulator_dev *rdev = dev_to_rdev(dev);
6134 struct summary_lock_data *lock_data = data;
6135
6136 if (lock_data) {
6137 if (rdev == *lock_data->new_contended_rdev)
6138 return -EDEADLK;
6139 }
6140
6141 regulator_unlock(rdev);
6142
6143 return 0;
6144}
6145
6146static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6147 struct regulator_dev **new_contended_rdev,
6148 struct regulator_dev **old_contended_rdev)
6149{
6150 struct summary_lock_data lock_data;
6151 int ret;
6152
6153 lock_data.ww_ctx = ww_ctx;
6154 lock_data.new_contended_rdev = new_contended_rdev;
6155 lock_data.old_contended_rdev = old_contended_rdev;
6156
6157 ret = class_for_each_device(class: &regulator_class, NULL, data: &lock_data,
6158 fn: regulator_summary_lock_one);
6159 if (ret)
6160 class_for_each_device(class: &regulator_class, NULL, data: &lock_data,
6161 fn: regulator_summary_unlock_one);
6162
6163 return ret;
6164}
6165
6166static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6167{
6168 struct regulator_dev *new_contended_rdev = NULL;
6169 struct regulator_dev *old_contended_rdev = NULL;
6170 int err;
6171
6172 mutex_lock(&regulator_list_mutex);
6173
6174 ww_acquire_init(ctx: ww_ctx, ww_class: &regulator_ww_class);
6175
6176 do {
6177 if (new_contended_rdev) {
6178 ww_mutex_lock_slow(lock: &new_contended_rdev->mutex, ctx: ww_ctx);
6179 old_contended_rdev = new_contended_rdev;
6180 old_contended_rdev->ref_cnt++;
6181 old_contended_rdev->mutex_owner = current;
6182 }
6183
6184 err = regulator_summary_lock_all(ww_ctx,
6185 new_contended_rdev: &new_contended_rdev,
6186 old_contended_rdev: &old_contended_rdev);
6187
6188 if (old_contended_rdev)
6189 regulator_unlock(rdev: old_contended_rdev);
6190
6191 } while (err == -EDEADLK);
6192
6193 ww_acquire_done(ctx: ww_ctx);
6194}
6195
6196static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6197{
6198 class_for_each_device(class: &regulator_class, NULL, NULL,
6199 fn: regulator_summary_unlock_one);
6200 ww_acquire_fini(ctx: ww_ctx);
6201
6202 mutex_unlock(lock: &regulator_list_mutex);
6203}
6204
6205static int regulator_summary_show_roots(struct device *dev, void *data)
6206{
6207 struct regulator_dev *rdev = dev_to_rdev(dev);
6208 struct seq_file *s = data;
6209
6210 if (!rdev->supply)
6211 regulator_summary_show_subtree(s, rdev, level: 0);
6212
6213 return 0;
6214}
6215
6216static int regulator_summary_show(struct seq_file *s, void *data)
6217{
6218 struct ww_acquire_ctx ww_ctx;
6219
6220 seq_puts(m: s, s: " regulator use open bypass opmode voltage current min max\n");
6221 seq_puts(m: s, s: "---------------------------------------------------------------------------------------\n");
6222
6223 regulator_summary_lock(ww_ctx: &ww_ctx);
6224
6225 class_for_each_device(class: &regulator_class, NULL, data: s,
6226 fn: regulator_summary_show_roots);
6227
6228 regulator_summary_unlock(ww_ctx: &ww_ctx);
6229
6230 return 0;
6231}
6232DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6233#endif /* CONFIG_DEBUG_FS */
6234
6235static int __init regulator_init(void)
6236{
6237 int ret;
6238
6239 ret = class_register(class: &regulator_class);
6240
6241 debugfs_root = debugfs_create_dir(name: "regulator", NULL);
6242 if (IS_ERR(ptr: debugfs_root))
6243 pr_debug("regulator: Failed to create debugfs directory\n");
6244
6245#ifdef CONFIG_DEBUG_FS
6246 debugfs_create_file(name: "supply_map", mode: 0444, parent: debugfs_root, NULL,
6247 fops: &supply_map_fops);
6248
6249 debugfs_create_file(name: "regulator_summary", mode: 0444, parent: debugfs_root,
6250 NULL, fops: &regulator_summary_fops);
6251#endif
6252 regulator_dummy_init();
6253
6254 regulator_coupler_register(coupler: &generic_regulator_coupler);
6255
6256 return ret;
6257}
6258
6259/* init early to allow our consumers to complete system booting */
6260core_initcall(regulator_init);
6261
6262static int regulator_late_cleanup(struct device *dev, void *data)
6263{
6264 struct regulator_dev *rdev = dev_to_rdev(dev);
6265 struct regulation_constraints *c = rdev->constraints;
6266 int ret;
6267
6268 if (c && c->always_on)
6269 return 0;
6270
6271 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6272 return 0;
6273
6274 regulator_lock(rdev);
6275
6276 if (rdev->use_count)
6277 goto unlock;
6278
6279 /* If reading the status failed, assume that it's off. */
6280 if (_regulator_is_enabled(rdev) <= 0)
6281 goto unlock;
6282
6283 if (have_full_constraints()) {
6284 /* We log since this may kill the system if it goes
6285 * wrong.
6286 */
6287 rdev_info(rdev, "disabling\n");
6288 ret = _regulator_do_disable(rdev);
6289 if (ret != 0)
6290 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6291 } else {
6292 /* The intention is that in future we will
6293 * assume that full constraints are provided
6294 * so warn even if we aren't going to do
6295 * anything here.
6296 */
6297 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6298 }
6299
6300unlock:
6301 regulator_unlock(rdev);
6302
6303 return 0;
6304}
6305
6306static bool regulator_ignore_unused;
6307static int __init regulator_ignore_unused_setup(char *__unused)
6308{
6309 regulator_ignore_unused = true;
6310 return 1;
6311}
6312__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6313
6314static void regulator_init_complete_work_function(struct work_struct *work)
6315{
6316 /*
6317 * Regulators may had failed to resolve their input supplies
6318 * when were registered, either because the input supply was
6319 * not registered yet or because its parent device was not
6320 * bound yet. So attempt to resolve the input supplies for
6321 * pending regulators before trying to disable unused ones.
6322 */
6323 class_for_each_device(class: &regulator_class, NULL, NULL,
6324 fn: regulator_register_resolve_supply);
6325
6326 /*
6327 * For debugging purposes, it may be useful to prevent unused
6328 * regulators from being disabled.
6329 */
6330 if (regulator_ignore_unused) {
6331 pr_warn("regulator: Not disabling unused regulators\n");
6332 return;
6333 }
6334
6335 /* If we have a full configuration then disable any regulators
6336 * we have permission to change the status for and which are
6337 * not in use or always_on. This is effectively the default
6338 * for DT and ACPI as they have full constraints.
6339 */
6340 class_for_each_device(class: &regulator_class, NULL, NULL,
6341 fn: regulator_late_cleanup);
6342}
6343
6344static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6345 regulator_init_complete_work_function);
6346
6347static int __init regulator_init_complete(void)
6348{
6349 /*
6350 * Since DT doesn't provide an idiomatic mechanism for
6351 * enabling full constraints and since it's much more natural
6352 * with DT to provide them just assume that a DT enabled
6353 * system has full constraints.
6354 */
6355 if (of_have_populated_dt())
6356 has_full_constraints = true;
6357
6358 /*
6359 * We punt completion for an arbitrary amount of time since
6360 * systems like distros will load many drivers from userspace
6361 * so consumers might not always be ready yet, this is
6362 * particularly an issue with laptops where this might bounce
6363 * the display off then on. Ideally we'd get a notification
6364 * from userspace when this happens but we don't so just wait
6365 * a bit and hope we waited long enough. It'd be better if
6366 * we'd only do this on systems that need it, and a kernel
6367 * command line option might be useful.
6368 */
6369 schedule_delayed_work(dwork: &regulator_init_complete_work,
6370 delay: msecs_to_jiffies(m: 30000));
6371
6372 return 0;
6373}
6374late_initcall_sync(regulator_init_complete);
6375

source code of linux/drivers/regulator/core.c