1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thermal sensor driver for Allwinner SOC
4 * Copyright (C) 2019 Yangtao Li
5 *
6 * Based on the work of Icenowy Zheng <icenowy@aosc.io>
7 * Based on the work of Ondrej Jirman <megous@megous.com>
8 * Based on the work of Josef Gajdusek <atx@atx.name>
9 */
10
11#include <linux/bitmap.h>
12#include <linux/clk.h>
13#include <linux/device.h>
14#include <linux/interrupt.h>
15#include <linux/module.h>
16#include <linux/nvmem-consumer.h>
17#include <linux/of.h>
18#include <linux/of_platform.h>
19#include <linux/platform_device.h>
20#include <linux/regmap.h>
21#include <linux/reset.h>
22#include <linux/slab.h>
23#include <linux/thermal.h>
24
25#include "thermal_hwmon.h"
26
27#define MAX_SENSOR_NUM 4
28
29#define FT_TEMP_MASK GENMASK(11, 0)
30#define TEMP_CALIB_MASK GENMASK(11, 0)
31#define CALIBRATE_DEFAULT 0x800
32
33#define SUN8I_THS_CTRL0 0x00
34#define SUN8I_THS_CTRL2 0x40
35#define SUN8I_THS_IC 0x44
36#define SUN8I_THS_IS 0x48
37#define SUN8I_THS_MFC 0x70
38#define SUN8I_THS_TEMP_CALIB 0x74
39#define SUN8I_THS_TEMP_DATA 0x80
40
41#define SUN50I_THS_CTRL0 0x00
42#define SUN50I_H6_THS_ENABLE 0x04
43#define SUN50I_H6_THS_PC 0x08
44#define SUN50I_H6_THS_DIC 0x10
45#define SUN50I_H6_THS_DIS 0x20
46#define SUN50I_H6_THS_MFC 0x30
47#define SUN50I_H6_THS_TEMP_CALIB 0xa0
48#define SUN50I_H6_THS_TEMP_DATA 0xc0
49
50#define SUN8I_THS_CTRL0_T_ACQ0(x) (GENMASK(15, 0) & (x))
51#define SUN8I_THS_CTRL2_T_ACQ1(x) ((GENMASK(15, 0) & (x)) << 16)
52#define SUN8I_THS_DATA_IRQ_STS(x) BIT(x + 8)
53
54#define SUN50I_THS_CTRL0_T_ACQ(x) (GENMASK(15, 0) & ((x) - 1))
55#define SUN50I_THS_CTRL0_T_SAMPLE_PER(x) ((GENMASK(15, 0) & ((x) - 1)) << 16)
56#define SUN50I_THS_FILTER_EN BIT(2)
57#define SUN50I_THS_FILTER_TYPE(x) (GENMASK(1, 0) & (x))
58#define SUN50I_H6_THS_PC_TEMP_PERIOD(x) ((GENMASK(19, 0) & (x)) << 12)
59#define SUN50I_H6_THS_DATA_IRQ_STS(x) BIT(x)
60
61struct tsensor {
62 struct ths_device *tmdev;
63 struct thermal_zone_device *tzd;
64 int id;
65};
66
67struct ths_thermal_chip {
68 bool has_mod_clk;
69 bool has_bus_clk_reset;
70 bool needs_sram;
71 int sensor_num;
72 int offset;
73 int scale;
74 int ft_deviation;
75 int temp_data_base;
76 int (*calibrate)(struct ths_device *tmdev,
77 u16 *caldata, int callen);
78 int (*init)(struct ths_device *tmdev);
79 unsigned long (*irq_ack)(struct ths_device *tmdev);
80 int (*calc_temp)(struct ths_device *tmdev,
81 int id, int reg);
82};
83
84struct ths_device {
85 const struct ths_thermal_chip *chip;
86 struct device *dev;
87 struct regmap *regmap;
88 struct regmap_field *sram_regmap_field;
89 struct reset_control *reset;
90 struct clk *bus_clk;
91 struct clk *mod_clk;
92 struct tsensor sensor[MAX_SENSOR_NUM];
93};
94
95/* The H616 needs to have a bit 16 in the SRAM control register cleared. */
96static const struct reg_field sun8i_ths_sram_reg_field = REG_FIELD(0x0, 16, 16);
97
98/* Temp Unit: millidegree Celsius */
99static int sun8i_ths_calc_temp(struct ths_device *tmdev,
100 int id, int reg)
101{
102 return tmdev->chip->offset - (reg * tmdev->chip->scale / 10);
103}
104
105static int sun50i_h5_calc_temp(struct ths_device *tmdev,
106 int id, int reg)
107{
108 if (reg >= 0x500)
109 return -1191 * reg / 10 + 223000;
110 else if (!id)
111 return -1452 * reg / 10 + 259000;
112 else
113 return -1590 * reg / 10 + 276000;
114}
115
116static int sun8i_ths_get_temp(struct thermal_zone_device *tz, int *temp)
117{
118 struct tsensor *s = thermal_zone_device_priv(tzd: tz);
119 struct ths_device *tmdev = s->tmdev;
120 int val = 0;
121
122 regmap_read(map: tmdev->regmap, reg: tmdev->chip->temp_data_base +
123 0x4 * s->id, val: &val);
124
125 /* ths have no data yet */
126 if (!val)
127 return -EAGAIN;
128
129 *temp = tmdev->chip->calc_temp(tmdev, s->id, val);
130 /*
131 * According to the original sdk, there are some platforms(rarely)
132 * that add a fixed offset value after calculating the temperature
133 * value. We can't simply put it on the formula for calculating the
134 * temperature above, because the formula for calculating the
135 * temperature above is also used when the sensor is calibrated. If
136 * do this, the correct calibration formula is hard to know.
137 */
138 *temp += tmdev->chip->ft_deviation;
139
140 return 0;
141}
142
143static const struct thermal_zone_device_ops ths_ops = {
144 .get_temp = sun8i_ths_get_temp,
145};
146
147static const struct regmap_config config = {
148 .reg_bits = 32,
149 .val_bits = 32,
150 .reg_stride = 4,
151 .fast_io = true,
152 .max_register = 0xfc,
153};
154
155static unsigned long sun8i_h3_irq_ack(struct ths_device *tmdev)
156{
157 unsigned long irq_bitmap = 0;
158 int i, state;
159
160 regmap_read(map: tmdev->regmap, SUN8I_THS_IS, val: &state);
161
162 for (i = 0; i < tmdev->chip->sensor_num; i++) {
163 if (state & SUN8I_THS_DATA_IRQ_STS(i)) {
164 regmap_write(map: tmdev->regmap, SUN8I_THS_IS,
165 SUN8I_THS_DATA_IRQ_STS(i));
166 bitmap_set(map: &irq_bitmap, start: i, nbits: 1);
167 }
168 }
169
170 return irq_bitmap;
171}
172
173static unsigned long sun50i_h6_irq_ack(struct ths_device *tmdev)
174{
175 unsigned long irq_bitmap = 0;
176 int i, state;
177
178 regmap_read(map: tmdev->regmap, SUN50I_H6_THS_DIS, val: &state);
179
180 for (i = 0; i < tmdev->chip->sensor_num; i++) {
181 if (state & SUN50I_H6_THS_DATA_IRQ_STS(i)) {
182 regmap_write(map: tmdev->regmap, SUN50I_H6_THS_DIS,
183 SUN50I_H6_THS_DATA_IRQ_STS(i));
184 bitmap_set(map: &irq_bitmap, start: i, nbits: 1);
185 }
186 }
187
188 return irq_bitmap;
189}
190
191static irqreturn_t sun8i_irq_thread(int irq, void *data)
192{
193 struct ths_device *tmdev = data;
194 unsigned long irq_bitmap = tmdev->chip->irq_ack(tmdev);
195 int i;
196
197 for_each_set_bit(i, &irq_bitmap, tmdev->chip->sensor_num) {
198 /* We allow some zones to not register. */
199 if (IS_ERR(ptr: tmdev->sensor[i].tzd))
200 continue;
201 thermal_zone_device_update(tmdev->sensor[i].tzd,
202 THERMAL_EVENT_UNSPECIFIED);
203 }
204
205 return IRQ_HANDLED;
206}
207
208static int sun8i_h3_ths_calibrate(struct ths_device *tmdev,
209 u16 *caldata, int callen)
210{
211 int i;
212
213 if (!caldata[0] || callen < 2 * tmdev->chip->sensor_num)
214 return -EINVAL;
215
216 for (i = 0; i < tmdev->chip->sensor_num; i++) {
217 int offset = (i % 2) << 4;
218
219 regmap_update_bits(map: tmdev->regmap,
220 SUN8I_THS_TEMP_CALIB + (4 * (i >> 1)),
221 TEMP_CALIB_MASK << offset,
222 val: caldata[i] << offset);
223 }
224
225 return 0;
226}
227
228static int sun50i_h6_ths_calibrate(struct ths_device *tmdev,
229 u16 *caldata, int callen)
230{
231 struct device *dev = tmdev->dev;
232 int i, ft_temp;
233
234 if (!caldata[0])
235 return -EINVAL;
236
237 /*
238 * efuse layout:
239 *
240 * 0 11 16 27 32 43 48 57
241 * +----------+-----------+-----------+-----------+
242 * | temp | |sensor0| |sensor1| |sensor2| |
243 * +----------+-----------+-----------+-----------+
244 * ^ ^ ^
245 * | | |
246 * | | sensor3[11:8]
247 * | sensor3[7:4]
248 * sensor3[3:0]
249 *
250 * The calibration data on the H6 is the ambient temperature and
251 * sensor values that are filled during the factory test stage.
252 *
253 * The unit of stored FT temperature is 0.1 degree celsius.
254 *
255 * We need to calculate a delta between measured and caluclated
256 * register values and this will become a calibration offset.
257 */
258 ft_temp = (caldata[0] & FT_TEMP_MASK) * 100;
259
260 for (i = 0; i < tmdev->chip->sensor_num; i++) {
261 int sensor_reg, sensor_temp, cdata, offset;
262
263 if (i == 3)
264 sensor_reg = (caldata[1] >> 12)
265 | ((caldata[2] >> 12) << 4)
266 | ((caldata[3] >> 12) << 8);
267 else
268 sensor_reg = caldata[i + 1] & TEMP_CALIB_MASK;
269
270 sensor_temp = tmdev->chip->calc_temp(tmdev, i, sensor_reg);
271
272 /*
273 * Calibration data is CALIBRATE_DEFAULT - (calculated
274 * temperature from sensor reading at factory temperature
275 * minus actual factory temperature) * 14.88 (scale from
276 * temperature to register values)
277 */
278 cdata = CALIBRATE_DEFAULT -
279 ((sensor_temp - ft_temp) * 10 / tmdev->chip->scale);
280 if (cdata & ~TEMP_CALIB_MASK) {
281 /*
282 * Calibration value more than 12-bit, but calibration
283 * register is 12-bit. In this case, ths hardware can
284 * still work without calibration, although the data
285 * won't be so accurate.
286 */
287 dev_warn(dev, "sensor%d is not calibrated.\n", i);
288 continue;
289 }
290
291 offset = (i % 2) * 16;
292 regmap_update_bits(map: tmdev->regmap,
293 SUN50I_H6_THS_TEMP_CALIB + (i / 2 * 4),
294 TEMP_CALIB_MASK << offset,
295 val: cdata << offset);
296 }
297
298 return 0;
299}
300
301static int sun8i_ths_calibrate(struct ths_device *tmdev)
302{
303 struct nvmem_cell *calcell;
304 struct device *dev = tmdev->dev;
305 u16 *caldata;
306 size_t callen;
307 int ret = 0;
308
309 calcell = nvmem_cell_get(dev, id: "calibration");
310 if (IS_ERR(ptr: calcell)) {
311 if (PTR_ERR(ptr: calcell) == -EPROBE_DEFER)
312 return -EPROBE_DEFER;
313 /*
314 * Even if the external calibration data stored in sid is
315 * not accessible, the THS hardware can still work, although
316 * the data won't be so accurate.
317 *
318 * The default value of calibration register is 0x800 for
319 * every sensor, and the calibration value is usually 0x7xx
320 * or 0x8xx, so they won't be away from the default value
321 * for a lot.
322 *
323 * So here we do not return error if the calibration data is
324 * not available, except the probe needs deferring.
325 */
326 goto out;
327 }
328
329 caldata = nvmem_cell_read(cell: calcell, len: &callen);
330 if (IS_ERR(ptr: caldata)) {
331 ret = PTR_ERR(ptr: caldata);
332 goto out;
333 }
334
335 tmdev->chip->calibrate(tmdev, caldata, callen);
336
337 kfree(objp: caldata);
338out:
339 if (!IS_ERR(ptr: calcell))
340 nvmem_cell_put(cell: calcell);
341 return ret;
342}
343
344static void sun8i_ths_reset_control_assert(void *data)
345{
346 reset_control_assert(rstc: data);
347}
348
349static struct regmap *sun8i_ths_get_sram_regmap(struct device_node *node)
350{
351 struct device_node *sram_node;
352 struct platform_device *sram_pdev;
353 struct regmap *regmap = NULL;
354
355 sram_node = of_parse_phandle(np: node, phandle_name: "allwinner,sram", index: 0);
356 if (!sram_node)
357 return ERR_PTR(error: -ENODEV);
358
359 sram_pdev = of_find_device_by_node(np: sram_node);
360 if (!sram_pdev) {
361 /* platform device might not be probed yet */
362 regmap = ERR_PTR(error: -EPROBE_DEFER);
363 goto out_put_node;
364 }
365
366 /* If no regmap is found then the other device driver is at fault */
367 regmap = dev_get_regmap(dev: &sram_pdev->dev, NULL);
368 if (!regmap)
369 regmap = ERR_PTR(error: -EINVAL);
370
371 platform_device_put(pdev: sram_pdev);
372out_put_node:
373 of_node_put(node: sram_node);
374 return regmap;
375}
376
377static int sun8i_ths_resource_init(struct ths_device *tmdev)
378{
379 struct device *dev = tmdev->dev;
380 struct platform_device *pdev = to_platform_device(dev);
381 void __iomem *base;
382 int ret;
383
384 base = devm_platform_ioremap_resource(pdev, index: 0);
385 if (IS_ERR(ptr: base))
386 return PTR_ERR(ptr: base);
387
388 tmdev->regmap = devm_regmap_init_mmio(dev, base, &config);
389 if (IS_ERR(ptr: tmdev->regmap))
390 return PTR_ERR(ptr: tmdev->regmap);
391
392 if (tmdev->chip->has_bus_clk_reset) {
393 tmdev->reset = devm_reset_control_get(dev, NULL);
394 if (IS_ERR(ptr: tmdev->reset))
395 return PTR_ERR(ptr: tmdev->reset);
396
397 ret = reset_control_deassert(rstc: tmdev->reset);
398 if (ret)
399 return ret;
400
401 ret = devm_add_action_or_reset(dev, sun8i_ths_reset_control_assert,
402 tmdev->reset);
403 if (ret)
404 return ret;
405
406 tmdev->bus_clk = devm_clk_get_enabled(dev: &pdev->dev, id: "bus");
407 if (IS_ERR(ptr: tmdev->bus_clk))
408 return PTR_ERR(ptr: tmdev->bus_clk);
409 }
410
411 if (tmdev->chip->has_mod_clk) {
412 tmdev->mod_clk = devm_clk_get_enabled(dev: &pdev->dev, id: "mod");
413 if (IS_ERR(ptr: tmdev->mod_clk))
414 return PTR_ERR(ptr: tmdev->mod_clk);
415 }
416
417 ret = clk_set_rate(clk: tmdev->mod_clk, rate: 24000000);
418 if (ret)
419 return ret;
420
421 if (tmdev->chip->needs_sram) {
422 struct regmap *regmap;
423
424 regmap = sun8i_ths_get_sram_regmap(node: dev->of_node);
425 if (IS_ERR(ptr: regmap))
426 return PTR_ERR(ptr: regmap);
427 tmdev->sram_regmap_field = devm_regmap_field_alloc(dev,
428 regmap,
429 reg_field: sun8i_ths_sram_reg_field);
430 if (IS_ERR(ptr: tmdev->sram_regmap_field))
431 return PTR_ERR(ptr: tmdev->sram_regmap_field);
432 }
433
434 ret = sun8i_ths_calibrate(tmdev);
435 if (ret)
436 return ret;
437
438 return 0;
439}
440
441static int sun8i_h3_thermal_init(struct ths_device *tmdev)
442{
443 int val;
444
445 /* average over 4 samples */
446 regmap_write(map: tmdev->regmap, SUN8I_THS_MFC,
447 SUN50I_THS_FILTER_EN |
448 SUN50I_THS_FILTER_TYPE(1));
449 /*
450 * clkin = 24MHz
451 * filter_samples = 4
452 * period = 0.25s
453 *
454 * x = period * clkin / 4096 / filter_samples - 1
455 * = 365
456 */
457 val = GENMASK(7 + tmdev->chip->sensor_num, 8);
458 regmap_write(map: tmdev->regmap, SUN8I_THS_IC,
459 SUN50I_H6_THS_PC_TEMP_PERIOD(365) | val);
460 /*
461 * T_acq = 20us
462 * clkin = 24MHz
463 *
464 * x = T_acq * clkin - 1
465 * = 479
466 */
467 regmap_write(map: tmdev->regmap, SUN8I_THS_CTRL0,
468 SUN8I_THS_CTRL0_T_ACQ0(479));
469 val = GENMASK(tmdev->chip->sensor_num - 1, 0);
470 regmap_write(map: tmdev->regmap, SUN8I_THS_CTRL2,
471 SUN8I_THS_CTRL2_T_ACQ1(479) | val);
472
473 return 0;
474}
475
476static int sun50i_h6_thermal_init(struct ths_device *tmdev)
477{
478 int val;
479
480 /* The H616 needs to have a bit in the SRAM control register cleared. */
481 if (tmdev->sram_regmap_field)
482 regmap_field_write(field: tmdev->sram_regmap_field, val: 0);
483
484 /*
485 * The manual recommends an overall sample frequency of 50 KHz (20us,
486 * 480 cycles at 24 MHz), which provides plenty of time for both the
487 * acquisition time (>24 cycles) and the actual conversion time
488 * (>14 cycles).
489 * The lower half of the CTRL register holds the "acquire time", in
490 * clock cycles, which the manual recommends to be 2us:
491 * 24MHz * 2us = 48 cycles.
492 * The high half of THS_CTRL encodes the sample frequency, in clock
493 * cycles: 24MHz * 20us = 480 cycles.
494 * This is explained in the H616 manual, but apparently wrongly
495 * described in the H6 manual, although the BSP code does the same
496 * for both SoCs.
497 */
498 regmap_write(map: tmdev->regmap, SUN50I_THS_CTRL0,
499 SUN50I_THS_CTRL0_T_ACQ(48) |
500 SUN50I_THS_CTRL0_T_SAMPLE_PER(480));
501 /* average over 4 samples */
502 regmap_write(map: tmdev->regmap, SUN50I_H6_THS_MFC,
503 SUN50I_THS_FILTER_EN |
504 SUN50I_THS_FILTER_TYPE(1));
505 /*
506 * clkin = 24MHz
507 * filter_samples = 4
508 * period = 0.25s
509 *
510 * x = period * clkin / 4096 / filter_samples - 1
511 * = 365
512 */
513 regmap_write(map: tmdev->regmap, SUN50I_H6_THS_PC,
514 SUN50I_H6_THS_PC_TEMP_PERIOD(365));
515 /* enable sensor */
516 val = GENMASK(tmdev->chip->sensor_num - 1, 0);
517 regmap_write(map: tmdev->regmap, SUN50I_H6_THS_ENABLE, val);
518 /* thermal data interrupt enable */
519 val = GENMASK(tmdev->chip->sensor_num - 1, 0);
520 regmap_write(map: tmdev->regmap, SUN50I_H6_THS_DIC, val);
521
522 return 0;
523}
524
525static int sun8i_ths_register(struct ths_device *tmdev)
526{
527 int i;
528
529 for (i = 0; i < tmdev->chip->sensor_num; i++) {
530 tmdev->sensor[i].tmdev = tmdev;
531 tmdev->sensor[i].id = i;
532 tmdev->sensor[i].tzd =
533 devm_thermal_of_zone_register(dev: tmdev->dev,
534 id: i,
535 data: &tmdev->sensor[i],
536 ops: &ths_ops);
537
538 /*
539 * If an individual zone fails to register for reasons
540 * other than probe deferral (eg, a bad DT) then carry
541 * on, other zones might register successfully.
542 */
543 if (IS_ERR(ptr: tmdev->sensor[i].tzd)) {
544 if (PTR_ERR(ptr: tmdev->sensor[i].tzd) == -EPROBE_DEFER)
545 return PTR_ERR(ptr: tmdev->sensor[i].tzd);
546 continue;
547 }
548
549 devm_thermal_add_hwmon_sysfs(dev: tmdev->dev, tz: tmdev->sensor[i].tzd);
550 }
551
552 return 0;
553}
554
555static int sun8i_ths_probe(struct platform_device *pdev)
556{
557 struct ths_device *tmdev;
558 struct device *dev = &pdev->dev;
559 int ret, irq;
560
561 tmdev = devm_kzalloc(dev, size: sizeof(*tmdev), GFP_KERNEL);
562 if (!tmdev)
563 return -ENOMEM;
564
565 tmdev->dev = dev;
566 tmdev->chip = of_device_get_match_data(dev: &pdev->dev);
567 if (!tmdev->chip)
568 return -EINVAL;
569
570 ret = sun8i_ths_resource_init(tmdev);
571 if (ret)
572 return ret;
573
574 irq = platform_get_irq(pdev, 0);
575 if (irq < 0)
576 return irq;
577
578 ret = tmdev->chip->init(tmdev);
579 if (ret)
580 return ret;
581
582 ret = sun8i_ths_register(tmdev);
583 if (ret)
584 return ret;
585
586 /*
587 * Avoid entering the interrupt handler, the thermal device is not
588 * registered yet, we deffer the registration of the interrupt to
589 * the end.
590 */
591 ret = devm_request_threaded_irq(dev, irq, NULL,
592 thread_fn: sun8i_irq_thread,
593 IRQF_ONESHOT, devname: "ths", dev_id: tmdev);
594 if (ret)
595 return ret;
596
597 return 0;
598}
599
600static const struct ths_thermal_chip sun8i_a83t_ths = {
601 .sensor_num = 3,
602 .scale = 705,
603 .offset = 191668,
604 .temp_data_base = SUN8I_THS_TEMP_DATA,
605 .calibrate = sun8i_h3_ths_calibrate,
606 .init = sun8i_h3_thermal_init,
607 .irq_ack = sun8i_h3_irq_ack,
608 .calc_temp = sun8i_ths_calc_temp,
609};
610
611static const struct ths_thermal_chip sun8i_h3_ths = {
612 .sensor_num = 1,
613 .scale = 1211,
614 .offset = 217000,
615 .has_mod_clk = true,
616 .has_bus_clk_reset = true,
617 .temp_data_base = SUN8I_THS_TEMP_DATA,
618 .calibrate = sun8i_h3_ths_calibrate,
619 .init = sun8i_h3_thermal_init,
620 .irq_ack = sun8i_h3_irq_ack,
621 .calc_temp = sun8i_ths_calc_temp,
622};
623
624static const struct ths_thermal_chip sun8i_r40_ths = {
625 .sensor_num = 2,
626 .offset = 251086,
627 .scale = 1130,
628 .has_mod_clk = true,
629 .has_bus_clk_reset = true,
630 .temp_data_base = SUN8I_THS_TEMP_DATA,
631 .calibrate = sun8i_h3_ths_calibrate,
632 .init = sun8i_h3_thermal_init,
633 .irq_ack = sun8i_h3_irq_ack,
634 .calc_temp = sun8i_ths_calc_temp,
635};
636
637static const struct ths_thermal_chip sun50i_a64_ths = {
638 .sensor_num = 3,
639 .offset = 260890,
640 .scale = 1170,
641 .has_mod_clk = true,
642 .has_bus_clk_reset = true,
643 .temp_data_base = SUN8I_THS_TEMP_DATA,
644 .calibrate = sun8i_h3_ths_calibrate,
645 .init = sun8i_h3_thermal_init,
646 .irq_ack = sun8i_h3_irq_ack,
647 .calc_temp = sun8i_ths_calc_temp,
648};
649
650static const struct ths_thermal_chip sun50i_a100_ths = {
651 .sensor_num = 3,
652 .has_bus_clk_reset = true,
653 .ft_deviation = 8000,
654 .offset = 187744,
655 .scale = 672,
656 .temp_data_base = SUN50I_H6_THS_TEMP_DATA,
657 .calibrate = sun50i_h6_ths_calibrate,
658 .init = sun50i_h6_thermal_init,
659 .irq_ack = sun50i_h6_irq_ack,
660 .calc_temp = sun8i_ths_calc_temp,
661};
662
663static const struct ths_thermal_chip sun50i_h5_ths = {
664 .sensor_num = 2,
665 .has_mod_clk = true,
666 .has_bus_clk_reset = true,
667 .temp_data_base = SUN8I_THS_TEMP_DATA,
668 .calibrate = sun8i_h3_ths_calibrate,
669 .init = sun8i_h3_thermal_init,
670 .irq_ack = sun8i_h3_irq_ack,
671 .calc_temp = sun50i_h5_calc_temp,
672};
673
674static const struct ths_thermal_chip sun50i_h6_ths = {
675 .sensor_num = 2,
676 .has_bus_clk_reset = true,
677 .ft_deviation = 7000,
678 .offset = 187744,
679 .scale = 672,
680 .temp_data_base = SUN50I_H6_THS_TEMP_DATA,
681 .calibrate = sun50i_h6_ths_calibrate,
682 .init = sun50i_h6_thermal_init,
683 .irq_ack = sun50i_h6_irq_ack,
684 .calc_temp = sun8i_ths_calc_temp,
685};
686
687static const struct ths_thermal_chip sun20i_d1_ths = {
688 .sensor_num = 1,
689 .has_bus_clk_reset = true,
690 .offset = 188552,
691 .scale = 673,
692 .temp_data_base = SUN50I_H6_THS_TEMP_DATA,
693 .calibrate = sun50i_h6_ths_calibrate,
694 .init = sun50i_h6_thermal_init,
695 .irq_ack = sun50i_h6_irq_ack,
696 .calc_temp = sun8i_ths_calc_temp,
697};
698
699static const struct ths_thermal_chip sun50i_h616_ths = {
700 .sensor_num = 4,
701 .has_bus_clk_reset = true,
702 .needs_sram = true,
703 .ft_deviation = 8000,
704 .offset = 263655,
705 .scale = 810,
706 .temp_data_base = SUN50I_H6_THS_TEMP_DATA,
707 .calibrate = sun50i_h6_ths_calibrate,
708 .init = sun50i_h6_thermal_init,
709 .irq_ack = sun50i_h6_irq_ack,
710 .calc_temp = sun8i_ths_calc_temp,
711};
712
713static const struct of_device_id of_ths_match[] = {
714 { .compatible = "allwinner,sun8i-a83t-ths", .data = &sun8i_a83t_ths },
715 { .compatible = "allwinner,sun8i-h3-ths", .data = &sun8i_h3_ths },
716 { .compatible = "allwinner,sun8i-r40-ths", .data = &sun8i_r40_ths },
717 { .compatible = "allwinner,sun50i-a64-ths", .data = &sun50i_a64_ths },
718 { .compatible = "allwinner,sun50i-a100-ths", .data = &sun50i_a100_ths },
719 { .compatible = "allwinner,sun50i-h5-ths", .data = &sun50i_h5_ths },
720 { .compatible = "allwinner,sun50i-h6-ths", .data = &sun50i_h6_ths },
721 { .compatible = "allwinner,sun20i-d1-ths", .data = &sun20i_d1_ths },
722 { .compatible = "allwinner,sun50i-h616-ths", .data = &sun50i_h616_ths },
723 { /* sentinel */ },
724};
725MODULE_DEVICE_TABLE(of, of_ths_match);
726
727static struct platform_driver ths_driver = {
728 .probe = sun8i_ths_probe,
729 .driver = {
730 .name = "sun8i-thermal",
731 .of_match_table = of_ths_match,
732 },
733};
734module_platform_driver(ths_driver);
735
736MODULE_DESCRIPTION("Thermal sensor driver for Allwinner SOC");
737MODULE_LICENSE("GPL v2");
738

source code of linux/drivers/thermal/sun8i_thermal.c