1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Thunderbolt driver - bus logic (NHI independent)
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2019, Intel Corporation
7 */
8
9#include <linux/slab.h>
10#include <linux/errno.h>
11#include <linux/delay.h>
12#include <linux/pm_runtime.h>
13#include <linux/platform_data/x86/apple.h>
14
15#include "tb.h"
16#include "tb_regs.h"
17#include "tunnel.h"
18
19#define TB_TIMEOUT 100 /* ms */
20#define TB_RELEASE_BW_TIMEOUT 10000 /* ms */
21
22/*
23 * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
24 * direction. This is 40G - 10% guard band bandwidth.
25 */
26#define TB_ASYM_MIN (40000 * 90 / 100)
27
28/*
29 * Threshold bandwidth (in Mb/s) that is used to switch the links to
30 * asymmetric and back. This is selected as 45G which means when the
31 * request is higher than this, we switch the link to asymmetric, and
32 * when it is less than this we switch it back. The 45G is selected so
33 * that we still have 27G (of the total 72G) for bulk PCIe traffic when
34 * switching back to symmetric.
35 */
36#define TB_ASYM_THRESHOLD 45000
37
38#define MAX_GROUPS 7 /* max Group_ID is 7 */
39
40static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
41module_param_named(asym_threshold, asym_threshold, uint, 0444);
42MODULE_PARM_DESC(asym_threshold,
43 "threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
44 __MODULE_STRING(TB_ASYM_THRESHOLD) ")");
45
46/**
47 * struct tb_cm - Simple Thunderbolt connection manager
48 * @tunnel_list: List of active tunnels
49 * @dp_resources: List of available DP resources for DP tunneling
50 * @hotplug_active: tb_handle_hotplug will stop progressing plug
51 * events and exit if this is not set (it needs to
52 * acquire the lock one more time). Used to drain wq
53 * after cfg has been paused.
54 * @remove_work: Work used to remove any unplugged routers after
55 * runtime resume
56 * @groups: Bandwidth groups used in this domain.
57 */
58struct tb_cm {
59 struct list_head tunnel_list;
60 struct list_head dp_resources;
61 bool hotplug_active;
62 struct delayed_work remove_work;
63 struct tb_bandwidth_group groups[MAX_GROUPS];
64};
65
66static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
67{
68 return ((void *)tcm - sizeof(struct tb));
69}
70
71struct tb_hotplug_event {
72 struct work_struct work;
73 struct tb *tb;
74 u64 route;
75 u8 port;
76 bool unplug;
77};
78
79static void tb_handle_hotplug(struct work_struct *work);
80
81static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
82{
83 struct tb_hotplug_event *ev;
84
85 ev = kmalloc(size: sizeof(*ev), GFP_KERNEL);
86 if (!ev)
87 return;
88
89 ev->tb = tb;
90 ev->route = route;
91 ev->port = port;
92 ev->unplug = unplug;
93 INIT_WORK(&ev->work, tb_handle_hotplug);
94 queue_work(wq: tb->wq, work: &ev->work);
95}
96
97/* enumeration & hot plug handling */
98
99static void tb_add_dp_resources(struct tb_switch *sw)
100{
101 struct tb_cm *tcm = tb_priv(tb: sw->tb);
102 struct tb_port *port;
103
104 tb_switch_for_each_port(sw, port) {
105 if (!tb_port_is_dpin(port))
106 continue;
107
108 if (!tb_switch_query_dp_resource(sw, in: port))
109 continue;
110
111 /*
112 * If DP IN on device router exist, position it at the
113 * beginning of the DP resources list, so that it is used
114 * before DP IN of the host router. This way external GPU(s)
115 * will be prioritized when pairing DP IN to a DP OUT.
116 */
117 if (tb_route(sw))
118 list_add(new: &port->list, head: &tcm->dp_resources);
119 else
120 list_add_tail(new: &port->list, head: &tcm->dp_resources);
121
122 tb_port_dbg(port, "DP IN resource available\n");
123 }
124}
125
126static void tb_remove_dp_resources(struct tb_switch *sw)
127{
128 struct tb_cm *tcm = tb_priv(tb: sw->tb);
129 struct tb_port *port, *tmp;
130
131 /* Clear children resources first */
132 tb_switch_for_each_port(sw, port) {
133 if (tb_port_has_remote(port))
134 tb_remove_dp_resources(sw: port->remote->sw);
135 }
136
137 list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
138 if (port->sw == sw) {
139 tb_port_dbg(port, "DP OUT resource unavailable\n");
140 list_del_init(entry: &port->list);
141 }
142 }
143}
144
145static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
146{
147 struct tb_cm *tcm = tb_priv(tb);
148 struct tb_port *p;
149
150 list_for_each_entry(p, &tcm->dp_resources, list) {
151 if (p == port)
152 return;
153 }
154
155 tb_port_dbg(port, "DP %s resource available discovered\n",
156 tb_port_is_dpin(port) ? "IN" : "OUT");
157 list_add_tail(new: &port->list, head: &tcm->dp_resources);
158}
159
160static void tb_discover_dp_resources(struct tb *tb)
161{
162 struct tb_cm *tcm = tb_priv(tb);
163 struct tb_tunnel *tunnel;
164
165 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
166 if (tb_tunnel_is_dp(tunnel))
167 tb_discover_dp_resource(tb, port: tunnel->dst_port);
168 }
169}
170
171/* Enables CL states up to host router */
172static int tb_enable_clx(struct tb_switch *sw)
173{
174 struct tb_cm *tcm = tb_priv(tb: sw->tb);
175 unsigned int clx = TB_CL0S | TB_CL1;
176 const struct tb_tunnel *tunnel;
177 int ret;
178
179 /*
180 * Currently only enable CLx for the first link. This is enough
181 * to allow the CPU to save energy at least on Intel hardware
182 * and makes it slightly simpler to implement. We may change
183 * this in the future to cover the whole topology if it turns
184 * out to be beneficial.
185 */
186 while (sw && tb_switch_depth(sw) > 1)
187 sw = tb_switch_parent(sw);
188
189 if (!sw)
190 return 0;
191
192 if (tb_switch_depth(sw) != 1)
193 return 0;
194
195 /*
196 * If we are re-enabling then check if there is an active DMA
197 * tunnel and in that case bail out.
198 */
199 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
200 if (tb_tunnel_is_dma(tunnel)) {
201 if (tb_tunnel_port_on_path(tunnel, port: tb_upstream_port(sw)))
202 return 0;
203 }
204 }
205
206 /*
207 * Initially try with CL2. If that's not supported by the
208 * topology try with CL0s and CL1 and then give up.
209 */
210 ret = tb_switch_clx_enable(sw, clx: clx | TB_CL2);
211 if (ret == -EOPNOTSUPP)
212 ret = tb_switch_clx_enable(sw, clx);
213 return ret == -EOPNOTSUPP ? 0 : ret;
214}
215
216/**
217 * tb_disable_clx() - Disable CL states up to host router
218 * @sw: Router to start
219 *
220 * Disables CL states from @sw up to the host router. Returns true if
221 * any CL state were disabled. This can be used to figure out whether
222 * the link was setup by us or the boot firmware so we don't
223 * accidentally enable them if they were not enabled during discovery.
224 */
225static bool tb_disable_clx(struct tb_switch *sw)
226{
227 bool disabled = false;
228
229 do {
230 int ret;
231
232 ret = tb_switch_clx_disable(sw);
233 if (ret > 0)
234 disabled = true;
235 else if (ret < 0)
236 tb_sw_warn(sw, "failed to disable CL states\n");
237
238 sw = tb_switch_parent(sw);
239 } while (sw);
240
241 return disabled;
242}
243
244static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
245{
246 struct tb_switch *sw;
247
248 sw = tb_to_switch(dev);
249 if (!sw)
250 return 0;
251
252 if (tb_switch_tmu_is_configured(sw, mode: TB_SWITCH_TMU_MODE_LOWRES)) {
253 enum tb_switch_tmu_mode mode;
254 int ret;
255
256 if (tb_switch_clx_is_enabled(sw, TB_CL1))
257 mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
258 else
259 mode = TB_SWITCH_TMU_MODE_HIFI_BI;
260
261 ret = tb_switch_tmu_configure(sw, mode);
262 if (ret)
263 return ret;
264
265 return tb_switch_tmu_enable(sw);
266 }
267
268 return 0;
269}
270
271static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
272{
273 struct tb_switch *sw;
274
275 if (!tunnel)
276 return;
277
278 /*
279 * Once first DP tunnel is established we change the TMU
280 * accuracy of first depth child routers (and the host router)
281 * to the highest. This is needed for the DP tunneling to work
282 * but also allows CL0s.
283 *
284 * If both routers are v2 then we don't need to do anything as
285 * they are using enhanced TMU mode that allows all CLx.
286 */
287 sw = tunnel->tb->root_switch;
288 device_for_each_child(dev: &sw->dev, NULL, fn: tb_increase_switch_tmu_accuracy);
289}
290
291static int tb_enable_tmu(struct tb_switch *sw)
292{
293 int ret;
294
295 /*
296 * If both routers at the end of the link are v2 we simply
297 * enable the enhanched uni-directional mode. That covers all
298 * the CL states. For v1 and before we need to use the normal
299 * rate to allow CL1 (when supported). Otherwise we keep the TMU
300 * running at the highest accuracy.
301 */
302 ret = tb_switch_tmu_configure(sw,
303 mode: TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
304 if (ret == -EOPNOTSUPP) {
305 if (tb_switch_clx_is_enabled(sw, TB_CL1))
306 ret = tb_switch_tmu_configure(sw,
307 mode: TB_SWITCH_TMU_MODE_LOWRES);
308 else
309 ret = tb_switch_tmu_configure(sw,
310 mode: TB_SWITCH_TMU_MODE_HIFI_BI);
311 }
312 if (ret)
313 return ret;
314
315 /* If it is already enabled in correct mode, don't touch it */
316 if (tb_switch_tmu_is_enabled(sw))
317 return 0;
318
319 ret = tb_switch_tmu_disable(sw);
320 if (ret)
321 return ret;
322
323 ret = tb_switch_tmu_post_time(sw);
324 if (ret)
325 return ret;
326
327 return tb_switch_tmu_enable(sw);
328}
329
330static void tb_switch_discover_tunnels(struct tb_switch *sw,
331 struct list_head *list,
332 bool alloc_hopids)
333{
334 struct tb *tb = sw->tb;
335 struct tb_port *port;
336
337 tb_switch_for_each_port(sw, port) {
338 struct tb_tunnel *tunnel = NULL;
339
340 switch (port->config.type) {
341 case TB_TYPE_DP_HDMI_IN:
342 tunnel = tb_tunnel_discover_dp(tb, in: port, alloc_hopid: alloc_hopids);
343 tb_increase_tmu_accuracy(tunnel);
344 break;
345
346 case TB_TYPE_PCIE_DOWN:
347 tunnel = tb_tunnel_discover_pci(tb, down: port, alloc_hopid: alloc_hopids);
348 break;
349
350 case TB_TYPE_USB3_DOWN:
351 tunnel = tb_tunnel_discover_usb3(tb, down: port, alloc_hopid: alloc_hopids);
352 break;
353
354 default:
355 break;
356 }
357
358 if (tunnel)
359 list_add_tail(new: &tunnel->list, head: list);
360 }
361
362 tb_switch_for_each_port(sw, port) {
363 if (tb_port_has_remote(port)) {
364 tb_switch_discover_tunnels(sw: port->remote->sw, list,
365 alloc_hopids);
366 }
367 }
368}
369
370static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
371{
372 if (tb_switch_is_usb4(sw: port->sw))
373 return usb4_port_configure_xdomain(port, xd);
374 return tb_lc_configure_xdomain(port);
375}
376
377static void tb_port_unconfigure_xdomain(struct tb_port *port)
378{
379 if (tb_switch_is_usb4(sw: port->sw))
380 usb4_port_unconfigure_xdomain(port);
381 else
382 tb_lc_unconfigure_xdomain(port);
383}
384
385static void tb_scan_xdomain(struct tb_port *port)
386{
387 struct tb_switch *sw = port->sw;
388 struct tb *tb = sw->tb;
389 struct tb_xdomain *xd;
390 u64 route;
391
392 if (!tb_is_xdomain_enabled())
393 return;
394
395 route = tb_downstream_route(port);
396 xd = tb_xdomain_find_by_route(tb, route);
397 if (xd) {
398 tb_xdomain_put(xd);
399 return;
400 }
401
402 xd = tb_xdomain_alloc(tb, parent: &sw->dev, route, local_uuid: tb->root_switch->uuid,
403 NULL);
404 if (xd) {
405 tb_port_at(route, sw)->xdomain = xd;
406 tb_port_configure_xdomain(port, xd);
407 tb_xdomain_add(xd);
408 }
409}
410
411/**
412 * tb_find_unused_port() - return the first inactive port on @sw
413 * @sw: Switch to find the port on
414 * @type: Port type to look for
415 */
416static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
417 enum tb_port_type type)
418{
419 struct tb_port *port;
420
421 tb_switch_for_each_port(sw, port) {
422 if (tb_is_upstream_port(port))
423 continue;
424 if (port->config.type != type)
425 continue;
426 if (!port->cap_adap)
427 continue;
428 if (tb_port_is_enabled(port))
429 continue;
430 return port;
431 }
432 return NULL;
433}
434
435static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
436 const struct tb_port *port)
437{
438 struct tb_port *down;
439
440 down = usb4_switch_map_usb3_down(sw, port);
441 if (down && !tb_usb3_port_is_enabled(port: down))
442 return down;
443 return NULL;
444}
445
446static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
447 struct tb_port *src_port,
448 struct tb_port *dst_port)
449{
450 struct tb_cm *tcm = tb_priv(tb);
451 struct tb_tunnel *tunnel;
452
453 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
454 if (tunnel->type == type &&
455 ((src_port && src_port == tunnel->src_port) ||
456 (dst_port && dst_port == tunnel->dst_port))) {
457 return tunnel;
458 }
459 }
460
461 return NULL;
462}
463
464static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
465 struct tb_port *src_port,
466 struct tb_port *dst_port)
467{
468 struct tb_port *port, *usb3_down;
469 struct tb_switch *sw;
470
471 /* Pick the router that is deepest in the topology */
472 if (tb_port_path_direction_downstream(src: src_port, dst: dst_port))
473 sw = dst_port->sw;
474 else
475 sw = src_port->sw;
476
477 /* Can't be the host router */
478 if (sw == tb->root_switch)
479 return NULL;
480
481 /* Find the downstream USB4 port that leads to this router */
482 port = tb_port_at(route: tb_route(sw), sw: tb->root_switch);
483 /* Find the corresponding host router USB3 downstream port */
484 usb3_down = usb4_switch_map_usb3_down(sw: tb->root_switch, port);
485 if (!usb3_down)
486 return NULL;
487
488 return tb_find_tunnel(tb, type: TB_TUNNEL_USB3, src_port: usb3_down, NULL);
489}
490
491/**
492 * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
493 * @tb: Domain structure
494 * @src_port: Source protocol adapter
495 * @dst_port: Destination protocol adapter
496 * @port: USB4 port the consumed bandwidth is calculated
497 * @consumed_up: Consumed upsream bandwidth (Mb/s)
498 * @consumed_down: Consumed downstream bandwidth (Mb/s)
499 *
500 * Calculates consumed USB3 and PCIe bandwidth at @port between path
501 * from @src_port to @dst_port. Does not take tunnel starting from
502 * @src_port and ending from @src_port into account.
503 */
504static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
505 struct tb_port *src_port,
506 struct tb_port *dst_port,
507 struct tb_port *port,
508 int *consumed_up,
509 int *consumed_down)
510{
511 int pci_consumed_up, pci_consumed_down;
512 struct tb_tunnel *tunnel;
513
514 *consumed_up = *consumed_down = 0;
515
516 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
517 if (tunnel && tunnel->src_port != src_port &&
518 tunnel->dst_port != dst_port) {
519 int ret;
520
521 ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
522 consumed_down);
523 if (ret)
524 return ret;
525 }
526
527 /*
528 * If there is anything reserved for PCIe bulk traffic take it
529 * into account here too.
530 */
531 if (tb_tunnel_reserved_pci(port, reserved_up: &pci_consumed_up, reserved_down: &pci_consumed_down)) {
532 *consumed_up += pci_consumed_up;
533 *consumed_down += pci_consumed_down;
534 }
535
536 return 0;
537}
538
539/**
540 * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
541 * @tb: Domain structure
542 * @src_port: Source protocol adapter
543 * @dst_port: Destination protocol adapter
544 * @port: USB4 port the consumed bandwidth is calculated
545 * @consumed_up: Consumed upsream bandwidth (Mb/s)
546 * @consumed_down: Consumed downstream bandwidth (Mb/s)
547 *
548 * Calculates consumed DP bandwidth at @port between path from @src_port
549 * to @dst_port. Does not take tunnel starting from @src_port and ending
550 * from @src_port into account.
551 *
552 * If there is bandwidth reserved for any of the groups between
553 * @src_port and @dst_port (but not yet used) that is also taken into
554 * account in the returned consumed bandwidth.
555 */
556static int tb_consumed_dp_bandwidth(struct tb *tb,
557 struct tb_port *src_port,
558 struct tb_port *dst_port,
559 struct tb_port *port,
560 int *consumed_up,
561 int *consumed_down)
562{
563 int group_reserved[MAX_GROUPS] = {};
564 struct tb_cm *tcm = tb_priv(tb);
565 struct tb_tunnel *tunnel;
566 bool downstream;
567 int i, ret;
568
569 *consumed_up = *consumed_down = 0;
570
571 /*
572 * Find all DP tunnels that cross the port and reduce
573 * their consumed bandwidth from the available.
574 */
575 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
576 const struct tb_bandwidth_group *group;
577 int dp_consumed_up, dp_consumed_down;
578
579 if (tb_tunnel_is_invalid(tunnel))
580 continue;
581
582 if (!tb_tunnel_is_dp(tunnel))
583 continue;
584
585 if (!tb_tunnel_port_on_path(tunnel, port))
586 continue;
587
588 /*
589 * Calculate what is reserved for groups crossing the
590 * same ports only once (as that is reserved for all the
591 * tunnels in the group).
592 */
593 group = tunnel->src_port->group;
594 if (group && group->reserved && !group_reserved[group->index])
595 group_reserved[group->index] = group->reserved;
596
597 /*
598 * Ignore the DP tunnel between src_port and dst_port
599 * because it is the same tunnel and we may be
600 * re-calculating estimated bandwidth.
601 */
602 if (tunnel->src_port == src_port &&
603 tunnel->dst_port == dst_port)
604 continue;
605
606 ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up: &dp_consumed_up,
607 consumed_down: &dp_consumed_down);
608 if (ret)
609 return ret;
610
611 *consumed_up += dp_consumed_up;
612 *consumed_down += dp_consumed_down;
613 }
614
615 downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port);
616 for (i = 0; i < ARRAY_SIZE(group_reserved); i++) {
617 if (downstream)
618 *consumed_down += group_reserved[i];
619 else
620 *consumed_up += group_reserved[i];
621 }
622
623 return 0;
624}
625
626static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
627 struct tb_port *port)
628{
629 bool downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port);
630 enum tb_link_width width;
631
632 if (tb_is_upstream_port(port))
633 width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
634 else
635 width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
636
637 return tb_port_width_supported(port, width);
638}
639
640/**
641 * tb_maximum_bandwidth() - Maximum bandwidth over a single link
642 * @tb: Domain structure
643 * @src_port: Source protocol adapter
644 * @dst_port: Destination protocol adapter
645 * @port: USB4 port the total bandwidth is calculated
646 * @max_up: Maximum upstream bandwidth (Mb/s)
647 * @max_down: Maximum downstream bandwidth (Mb/s)
648 * @include_asym: Include bandwidth if the link is switched from
649 * symmetric to asymmetric
650 *
651 * Returns maximum possible bandwidth in @max_up and @max_down over a
652 * single link at @port. If @include_asym is set then includes the
653 * additional banwdith if the links are transitioned into asymmetric to
654 * direction from @src_port to @dst_port.
655 */
656static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
657 struct tb_port *dst_port, struct tb_port *port,
658 int *max_up, int *max_down, bool include_asym)
659{
660 bool downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port);
661 int link_speed, link_width, up_bw, down_bw;
662
663 /*
664 * Can include asymmetric, only if it is actually supported by
665 * the lane adapter.
666 */
667 if (!tb_asym_supported(src_port, dst_port, port))
668 include_asym = false;
669
670 if (tb_is_upstream_port(port)) {
671 link_speed = port->sw->link_speed;
672 /*
673 * sw->link_width is from upstream perspective so we use
674 * the opposite for downstream of the host router.
675 */
676 if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
677 up_bw = link_speed * 3 * 1000;
678 down_bw = link_speed * 1 * 1000;
679 } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
680 up_bw = link_speed * 1 * 1000;
681 down_bw = link_speed * 3 * 1000;
682 } else if (include_asym) {
683 /*
684 * The link is symmetric at the moment but we
685 * can switch it to asymmetric as needed. Report
686 * this bandwidth as available (even though it
687 * is not yet enabled).
688 */
689 if (downstream) {
690 up_bw = link_speed * 1 * 1000;
691 down_bw = link_speed * 3 * 1000;
692 } else {
693 up_bw = link_speed * 3 * 1000;
694 down_bw = link_speed * 1 * 1000;
695 }
696 } else {
697 up_bw = link_speed * port->sw->link_width * 1000;
698 down_bw = up_bw;
699 }
700 } else {
701 link_speed = tb_port_get_link_speed(port);
702 if (link_speed < 0)
703 return link_speed;
704
705 link_width = tb_port_get_link_width(port);
706 if (link_width < 0)
707 return link_width;
708
709 if (link_width == TB_LINK_WIDTH_ASYM_TX) {
710 up_bw = link_speed * 1 * 1000;
711 down_bw = link_speed * 3 * 1000;
712 } else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
713 up_bw = link_speed * 3 * 1000;
714 down_bw = link_speed * 1 * 1000;
715 } else if (include_asym) {
716 /*
717 * The link is symmetric at the moment but we
718 * can switch it to asymmetric as needed. Report
719 * this bandwidth as available (even though it
720 * is not yet enabled).
721 */
722 if (downstream) {
723 up_bw = link_speed * 1 * 1000;
724 down_bw = link_speed * 3 * 1000;
725 } else {
726 up_bw = link_speed * 3 * 1000;
727 down_bw = link_speed * 1 * 1000;
728 }
729 } else {
730 up_bw = link_speed * link_width * 1000;
731 down_bw = up_bw;
732 }
733 }
734
735 /* Leave 10% guard band */
736 *max_up = up_bw - up_bw / 10;
737 *max_down = down_bw - down_bw / 10;
738
739 tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
740 return 0;
741}
742
743/**
744 * tb_available_bandwidth() - Available bandwidth for tunneling
745 * @tb: Domain structure
746 * @src_port: Source protocol adapter
747 * @dst_port: Destination protocol adapter
748 * @available_up: Available bandwidth upstream (Mb/s)
749 * @available_down: Available bandwidth downstream (Mb/s)
750 * @include_asym: Include bandwidth if the link is switched from
751 * symmetric to asymmetric
752 *
753 * Calculates maximum available bandwidth for protocol tunneling between
754 * @src_port and @dst_port at the moment. This is minimum of maximum
755 * link bandwidth across all links reduced by currently consumed
756 * bandwidth on that link.
757 *
758 * If @include_asym is true then includes also bandwidth that can be
759 * added when the links are transitioned into asymmetric (but does not
760 * transition the links).
761 */
762static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
763 struct tb_port *dst_port, int *available_up,
764 int *available_down, bool include_asym)
765{
766 struct tb_port *port;
767 int ret;
768
769 /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
770 *available_up = *available_down = 120000;
771
772 /* Find the minimum available bandwidth over all links */
773 tb_for_each_port_on_path(src_port, dst_port, port) {
774 int max_up, max_down, consumed_up, consumed_down;
775
776 if (!tb_port_is_null(port))
777 continue;
778
779 ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
780 max_up: &max_up, max_down: &max_down, include_asym);
781 if (ret)
782 return ret;
783
784 ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
785 port, consumed_up: &consumed_up,
786 consumed_down: &consumed_down);
787 if (ret)
788 return ret;
789 max_up -= consumed_up;
790 max_down -= consumed_down;
791
792 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
793 consumed_up: &consumed_up, consumed_down: &consumed_down);
794 if (ret)
795 return ret;
796 max_up -= consumed_up;
797 max_down -= consumed_down;
798
799 if (max_up < *available_up)
800 *available_up = max_up;
801 if (max_down < *available_down)
802 *available_down = max_down;
803 }
804
805 if (*available_up < 0)
806 *available_up = 0;
807 if (*available_down < 0)
808 *available_down = 0;
809
810 return 0;
811}
812
813static int tb_release_unused_usb3_bandwidth(struct tb *tb,
814 struct tb_port *src_port,
815 struct tb_port *dst_port)
816{
817 struct tb_tunnel *tunnel;
818
819 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
820 return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
821}
822
823static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
824 struct tb_port *dst_port)
825{
826 int ret, available_up, available_down;
827 struct tb_tunnel *tunnel;
828
829 tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
830 if (!tunnel)
831 return;
832
833 tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
834
835 /*
836 * Calculate available bandwidth for the first hop USB3 tunnel.
837 * That determines the whole USB3 bandwidth for this branch.
838 */
839 ret = tb_available_bandwidth(tb, src_port: tunnel->src_port, dst_port: tunnel->dst_port,
840 available_up: &available_up, available_down: &available_down, include_asym: false);
841 if (ret) {
842 tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
843 return;
844 }
845
846 tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
847 available_down);
848
849 tb_tunnel_reclaim_available_bandwidth(tunnel, available_up: &available_up, available_down: &available_down);
850}
851
852static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
853{
854 struct tb_switch *parent = tb_switch_parent(sw);
855 int ret, available_up, available_down;
856 struct tb_port *up, *down, *port;
857 struct tb_cm *tcm = tb_priv(tb);
858 struct tb_tunnel *tunnel;
859
860 if (!tb_acpi_may_tunnel_usb3()) {
861 tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
862 return 0;
863 }
864
865 up = tb_switch_find_port(sw, type: TB_TYPE_USB3_UP);
866 if (!up)
867 return 0;
868
869 if (!sw->link_usb4)
870 return 0;
871
872 /*
873 * Look up available down port. Since we are chaining it should
874 * be found right above this switch.
875 */
876 port = tb_switch_downstream_port(sw);
877 down = tb_find_usb3_down(sw: parent, port);
878 if (!down)
879 return 0;
880
881 if (tb_route(sw: parent)) {
882 struct tb_port *parent_up;
883 /*
884 * Check first that the parent switch has its upstream USB3
885 * port enabled. Otherwise the chain is not complete and
886 * there is no point setting up a new tunnel.
887 */
888 parent_up = tb_switch_find_port(sw: parent, type: TB_TYPE_USB3_UP);
889 if (!parent_up || !tb_port_is_enabled(port: parent_up))
890 return 0;
891
892 /* Make all unused bandwidth available for the new tunnel */
893 ret = tb_release_unused_usb3_bandwidth(tb, src_port: down, dst_port: up);
894 if (ret)
895 return ret;
896 }
897
898 ret = tb_available_bandwidth(tb, src_port: down, dst_port: up, available_up: &available_up, available_down: &available_down,
899 include_asym: false);
900 if (ret)
901 goto err_reclaim;
902
903 tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
904 available_up, available_down);
905
906 tunnel = tb_tunnel_alloc_usb3(tb, up, down, max_up: available_up,
907 max_down: available_down);
908 if (!tunnel) {
909 ret = -ENOMEM;
910 goto err_reclaim;
911 }
912
913 if (tb_tunnel_activate(tunnel)) {
914 tb_port_info(up,
915 "USB3 tunnel activation failed, aborting\n");
916 ret = -EIO;
917 goto err_free;
918 }
919
920 list_add_tail(new: &tunnel->list, head: &tcm->tunnel_list);
921 if (tb_route(sw: parent))
922 tb_reclaim_usb3_bandwidth(tb, src_port: down, dst_port: up);
923
924 return 0;
925
926err_free:
927 tb_tunnel_free(tunnel);
928err_reclaim:
929 if (tb_route(sw: parent))
930 tb_reclaim_usb3_bandwidth(tb, src_port: down, dst_port: up);
931
932 return ret;
933}
934
935static int tb_create_usb3_tunnels(struct tb_switch *sw)
936{
937 struct tb_port *port;
938 int ret;
939
940 if (!tb_acpi_may_tunnel_usb3())
941 return 0;
942
943 if (tb_route(sw)) {
944 ret = tb_tunnel_usb3(tb: sw->tb, sw);
945 if (ret)
946 return ret;
947 }
948
949 tb_switch_for_each_port(sw, port) {
950 if (!tb_port_has_remote(port))
951 continue;
952 ret = tb_create_usb3_tunnels(sw: port->remote->sw);
953 if (ret)
954 return ret;
955 }
956
957 return 0;
958}
959
960/**
961 * tb_configure_asym() - Transition links to asymmetric if needed
962 * @tb: Domain structure
963 * @src_port: Source adapter to start the transition
964 * @dst_port: Destination adapter
965 * @requested_up: Additional bandwidth (Mb/s) required upstream
966 * @requested_down: Additional bandwidth (Mb/s) required downstream
967 *
968 * Transition links between @src_port and @dst_port into asymmetric, with
969 * three lanes in the direction from @src_port towards @dst_port and one lane
970 * in the opposite direction, if the bandwidth requirements
971 * (requested + currently consumed) on that link exceed @asym_threshold.
972 *
973 * Must be called with available >= requested over all links.
974 */
975static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
976 struct tb_port *dst_port, int requested_up,
977 int requested_down)
978{
979 bool clx = false, clx_disabled = false, downstream;
980 struct tb_switch *sw;
981 struct tb_port *up;
982 int ret = 0;
983
984 if (!asym_threshold)
985 return 0;
986
987 downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port);
988 /* Pick up router deepest in the hierarchy */
989 if (downstream)
990 sw = dst_port->sw;
991 else
992 sw = src_port->sw;
993
994 tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
995 struct tb_port *down = tb_switch_downstream_port(sw: up->sw);
996 enum tb_link_width width_up, width_down;
997 int consumed_up, consumed_down;
998
999 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port: up,
1000 consumed_up: &consumed_up, consumed_down: &consumed_down);
1001 if (ret)
1002 break;
1003
1004 if (downstream) {
1005 /*
1006 * Downstream so make sure upstream is within the 36G
1007 * (40G - guard band 10%), and the requested is above
1008 * what the threshold is.
1009 */
1010 if (consumed_up + requested_up >= TB_ASYM_MIN) {
1011 ret = -ENOBUFS;
1012 break;
1013 }
1014 /* Does consumed + requested exceed the threshold */
1015 if (consumed_down + requested_down < asym_threshold)
1016 continue;
1017
1018 width_up = TB_LINK_WIDTH_ASYM_RX;
1019 width_down = TB_LINK_WIDTH_ASYM_TX;
1020 } else {
1021 /* Upstream, the opposite of above */
1022 if (consumed_down + requested_down >= TB_ASYM_MIN) {
1023 ret = -ENOBUFS;
1024 break;
1025 }
1026 if (consumed_up + requested_up < asym_threshold)
1027 continue;
1028
1029 width_up = TB_LINK_WIDTH_ASYM_TX;
1030 width_down = TB_LINK_WIDTH_ASYM_RX;
1031 }
1032
1033 if (up->sw->link_width == width_up)
1034 continue;
1035
1036 if (!tb_port_width_supported(port: up, width: width_up) ||
1037 !tb_port_width_supported(port: down, width: width_down))
1038 continue;
1039
1040 /*
1041 * Disable CL states before doing any transitions. We
1042 * delayed it until now that we know there is a real
1043 * transition taking place.
1044 */
1045 if (!clx_disabled) {
1046 clx = tb_disable_clx(sw);
1047 clx_disabled = true;
1048 }
1049
1050 tb_sw_dbg(up->sw, "configuring asymmetric link\n");
1051
1052 /*
1053 * Here requested + consumed > threshold so we need to
1054 * transtion the link into asymmetric now.
1055 */
1056 ret = tb_switch_set_link_width(sw: up->sw, width: width_up);
1057 if (ret) {
1058 tb_sw_warn(up->sw, "failed to set link width\n");
1059 break;
1060 }
1061 }
1062
1063 /* Re-enable CL states if they were previosly enabled */
1064 if (clx)
1065 tb_enable_clx(sw);
1066
1067 return ret;
1068}
1069
1070/**
1071 * tb_configure_sym() - Transition links to symmetric if possible
1072 * @tb: Domain structure
1073 * @src_port: Source adapter to start the transition
1074 * @dst_port: Destination adapter
1075 * @keep_asym: Keep asymmetric link if preferred
1076 *
1077 * Goes over each link from @src_port to @dst_port and tries to
1078 * transition the link to symmetric if the currently consumed bandwidth
1079 * allows and link asymmetric preference is ignored (if @keep_asym is %false).
1080 */
1081static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
1082 struct tb_port *dst_port, bool keep_asym)
1083{
1084 bool clx = false, clx_disabled = false, downstream;
1085 struct tb_switch *sw;
1086 struct tb_port *up;
1087 int ret = 0;
1088
1089 if (!asym_threshold)
1090 return 0;
1091
1092 downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port);
1093 /* Pick up router deepest in the hierarchy */
1094 if (downstream)
1095 sw = dst_port->sw;
1096 else
1097 sw = src_port->sw;
1098
1099 tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
1100 int consumed_up, consumed_down;
1101
1102 /* Already symmetric */
1103 if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
1104 continue;
1105 /* Unplugged, no need to switch */
1106 if (up->sw->is_unplugged)
1107 continue;
1108
1109 ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port: up,
1110 consumed_up: &consumed_up, consumed_down: &consumed_down);
1111 if (ret)
1112 break;
1113
1114 if (downstream) {
1115 /*
1116 * Downstream so we want the consumed_down < threshold.
1117 * Upstream traffic should be less than 36G (40G
1118 * guard band 10%) as the link was configured asymmetric
1119 * already.
1120 */
1121 if (consumed_down >= asym_threshold)
1122 continue;
1123 } else {
1124 if (consumed_up >= asym_threshold)
1125 continue;
1126 }
1127
1128 if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
1129 continue;
1130
1131 /*
1132 * Here consumed < threshold so we can transition the
1133 * link to symmetric.
1134 *
1135 * However, if the router prefers asymmetric link we
1136 * honor that (unless @keep_asym is %false).
1137 */
1138 if (keep_asym &&
1139 up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) {
1140 tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n");
1141 continue;
1142 }
1143
1144 /* Disable CL states before doing any transitions */
1145 if (!clx_disabled) {
1146 clx = tb_disable_clx(sw);
1147 clx_disabled = true;
1148 }
1149
1150 tb_sw_dbg(up->sw, "configuring symmetric link\n");
1151
1152 ret = tb_switch_set_link_width(sw: up->sw, width: TB_LINK_WIDTH_DUAL);
1153 if (ret) {
1154 tb_sw_warn(up->sw, "failed to set link width\n");
1155 break;
1156 }
1157 }
1158
1159 /* Re-enable CL states if they were previosly enabled */
1160 if (clx)
1161 tb_enable_clx(sw);
1162
1163 return ret;
1164}
1165
1166static void tb_configure_link(struct tb_port *down, struct tb_port *up,
1167 struct tb_switch *sw)
1168{
1169 struct tb *tb = sw->tb;
1170
1171 /* Link the routers using both links if available */
1172 down->remote = up;
1173 up->remote = down;
1174 if (down->dual_link_port && up->dual_link_port) {
1175 down->dual_link_port->remote = up->dual_link_port;
1176 up->dual_link_port->remote = down->dual_link_port;
1177 }
1178
1179 /*
1180 * Enable lane bonding if the link is currently two single lane
1181 * links.
1182 */
1183 if (sw->link_width < TB_LINK_WIDTH_DUAL)
1184 tb_switch_set_link_width(sw, width: TB_LINK_WIDTH_DUAL);
1185
1186 /*
1187 * Device router that comes up as symmetric link is
1188 * connected deeper in the hierarchy, we transition the links
1189 * above into symmetric if bandwidth allows.
1190 */
1191 if (tb_switch_depth(sw) > 1 &&
1192 tb_port_get_link_generation(port: up) >= 4 &&
1193 up->sw->link_width == TB_LINK_WIDTH_DUAL) {
1194 struct tb_port *host_port;
1195
1196 host_port = tb_port_at(route: tb_route(sw), sw: tb->root_switch);
1197 tb_configure_sym(tb, src_port: host_port, dst_port: up, keep_asym: false);
1198 }
1199
1200 /* Set the link configured */
1201 tb_switch_configure_link(sw);
1202}
1203
1204static void tb_scan_port(struct tb_port *port);
1205
1206/*
1207 * tb_scan_switch() - scan for and initialize downstream switches
1208 */
1209static void tb_scan_switch(struct tb_switch *sw)
1210{
1211 struct tb_port *port;
1212
1213 pm_runtime_get_sync(dev: &sw->dev);
1214
1215 tb_switch_for_each_port(sw, port)
1216 tb_scan_port(port);
1217
1218 pm_runtime_mark_last_busy(dev: &sw->dev);
1219 pm_runtime_put_autosuspend(dev: &sw->dev);
1220}
1221
1222/*
1223 * tb_scan_port() - check for and initialize switches below port
1224 */
1225static void tb_scan_port(struct tb_port *port)
1226{
1227 struct tb_cm *tcm = tb_priv(tb: port->sw->tb);
1228 struct tb_port *upstream_port;
1229 bool discovery = false;
1230 struct tb_switch *sw;
1231
1232 if (tb_is_upstream_port(port))
1233 return;
1234
1235 if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
1236 !tb_dp_port_is_enabled(port)) {
1237 tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
1238 tb_queue_hotplug(tb: port->sw->tb, route: tb_route(sw: port->sw), port: port->port,
1239 unplug: false);
1240 return;
1241 }
1242
1243 if (port->config.type != TB_TYPE_PORT)
1244 return;
1245 if (port->dual_link_port && port->link_nr)
1246 return; /*
1247 * Downstream switch is reachable through two ports.
1248 * Only scan on the primary port (link_nr == 0).
1249 */
1250
1251 if (port->usb4)
1252 pm_runtime_get_sync(dev: &port->usb4->dev);
1253
1254 if (tb_wait_for_port(port, wait_if_unplugged: false) <= 0)
1255 goto out_rpm_put;
1256 if (port->remote) {
1257 tb_port_dbg(port, "port already has a remote\n");
1258 goto out_rpm_put;
1259 }
1260
1261 tb_retimer_scan(port, add: true);
1262
1263 sw = tb_switch_alloc(tb: port->sw->tb, parent: &port->sw->dev,
1264 route: tb_downstream_route(port));
1265 if (IS_ERR(ptr: sw)) {
1266 /*
1267 * If there is an error accessing the connected switch
1268 * it may be connected to another domain. Also we allow
1269 * the other domain to be connected to a max depth switch.
1270 */
1271 if (PTR_ERR(ptr: sw) == -EIO || PTR_ERR(ptr: sw) == -EADDRNOTAVAIL)
1272 tb_scan_xdomain(port);
1273 goto out_rpm_put;
1274 }
1275
1276 if (tb_switch_configure(sw)) {
1277 tb_switch_put(sw);
1278 goto out_rpm_put;
1279 }
1280
1281 /*
1282 * If there was previously another domain connected remove it
1283 * first.
1284 */
1285 if (port->xdomain) {
1286 tb_xdomain_remove(xd: port->xdomain);
1287 tb_port_unconfigure_xdomain(port);
1288 port->xdomain = NULL;
1289 }
1290
1291 /*
1292 * Do not send uevents until we have discovered all existing
1293 * tunnels and know which switches were authorized already by
1294 * the boot firmware.
1295 */
1296 if (!tcm->hotplug_active) {
1297 dev_set_uevent_suppress(dev: &sw->dev, val: true);
1298 discovery = true;
1299 }
1300
1301 /*
1302 * At the moment Thunderbolt 2 and beyond (devices with LC) we
1303 * can support runtime PM.
1304 */
1305 sw->rpm = sw->generation > 1;
1306
1307 if (tb_switch_add(sw)) {
1308 tb_switch_put(sw);
1309 goto out_rpm_put;
1310 }
1311
1312 upstream_port = tb_upstream_port(sw);
1313 tb_configure_link(down: port, up: upstream_port, sw);
1314
1315 /*
1316 * CL0s and CL1 are enabled and supported together.
1317 * Silently ignore CLx enabling in case CLx is not supported.
1318 */
1319 if (discovery)
1320 tb_sw_dbg(sw, "discovery, not touching CL states\n");
1321 else if (tb_enable_clx(sw))
1322 tb_sw_warn(sw, "failed to enable CL states\n");
1323
1324 if (tb_enable_tmu(sw))
1325 tb_sw_warn(sw, "failed to enable TMU\n");
1326
1327 /*
1328 * Configuration valid needs to be set after the TMU has been
1329 * enabled for the upstream port of the router so we do it here.
1330 */
1331 tb_switch_configuration_valid(sw);
1332
1333 /* Scan upstream retimers */
1334 tb_retimer_scan(port: upstream_port, add: true);
1335
1336 /*
1337 * Create USB 3.x tunnels only when the switch is plugged to the
1338 * domain. This is because we scan the domain also during discovery
1339 * and want to discover existing USB 3.x tunnels before we create
1340 * any new.
1341 */
1342 if (tcm->hotplug_active && tb_tunnel_usb3(tb: sw->tb, sw))
1343 tb_sw_warn(sw, "USB3 tunnel creation failed\n");
1344
1345 tb_add_dp_resources(sw);
1346 tb_scan_switch(sw);
1347
1348out_rpm_put:
1349 if (port->usb4) {
1350 pm_runtime_mark_last_busy(dev: &port->usb4->dev);
1351 pm_runtime_put_autosuspend(dev: &port->usb4->dev);
1352 }
1353}
1354
1355static void
1356tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
1357{
1358 struct tb_tunnel *first_tunnel;
1359 struct tb *tb = group->tb;
1360 struct tb_port *in;
1361 int ret;
1362
1363 tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
1364 group->index);
1365
1366 first_tunnel = NULL;
1367 list_for_each_entry(in, &group->ports, group_list) {
1368 int estimated_bw, estimated_up, estimated_down;
1369 struct tb_tunnel *tunnel;
1370 struct tb_port *out;
1371
1372 if (!usb4_dp_port_bandwidth_mode_enabled(port: in))
1373 continue;
1374
1375 tunnel = tb_find_tunnel(tb, type: TB_TUNNEL_DP, src_port: in, NULL);
1376 if (WARN_ON(!tunnel))
1377 break;
1378
1379 if (!first_tunnel) {
1380 /*
1381 * Since USB3 bandwidth is shared by all DP
1382 * tunnels under the host router USB4 port, even
1383 * if they do not begin from the host router, we
1384 * can release USB3 bandwidth just once and not
1385 * for each tunnel separately.
1386 */
1387 first_tunnel = tunnel;
1388 ret = tb_release_unused_usb3_bandwidth(tb,
1389 src_port: first_tunnel->src_port, dst_port: first_tunnel->dst_port);
1390 if (ret) {
1391 tb_tunnel_warn(tunnel,
1392 "failed to release unused bandwidth\n");
1393 break;
1394 }
1395 }
1396
1397 out = tunnel->dst_port;
1398 ret = tb_available_bandwidth(tb, src_port: in, dst_port: out, available_up: &estimated_up,
1399 available_down: &estimated_down, include_asym: true);
1400 if (ret) {
1401 tb_tunnel_warn(tunnel,
1402 "failed to re-calculate estimated bandwidth\n");
1403 break;
1404 }
1405
1406 /*
1407 * Estimated bandwidth includes:
1408 * - already allocated bandwidth for the DP tunnel
1409 * - available bandwidth along the path
1410 * - bandwidth allocated for USB 3.x but not used.
1411 */
1412 if (tb_tunnel_direction_downstream(tunnel))
1413 estimated_bw = estimated_down;
1414 else
1415 estimated_bw = estimated_up;
1416
1417 /*
1418 * If there is reserved bandwidth for the group that is
1419 * not yet released we report that too.
1420 */
1421 tb_tunnel_dbg(tunnel,
1422 "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n",
1423 estimated_bw, group->reserved,
1424 estimated_bw + group->reserved);
1425
1426 if (usb4_dp_port_set_estimated_bandwidth(port: in,
1427 bw: estimated_bw + group->reserved))
1428 tb_tunnel_warn(tunnel,
1429 "failed to update estimated bandwidth\n");
1430 }
1431
1432 if (first_tunnel)
1433 tb_reclaim_usb3_bandwidth(tb, src_port: first_tunnel->src_port,
1434 dst_port: first_tunnel->dst_port);
1435
1436 tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
1437}
1438
1439static void tb_recalc_estimated_bandwidth(struct tb *tb)
1440{
1441 struct tb_cm *tcm = tb_priv(tb);
1442 int i;
1443
1444 tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
1445
1446 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1447 struct tb_bandwidth_group *group = &tcm->groups[i];
1448
1449 if (!list_empty(head: &group->ports))
1450 tb_recalc_estimated_bandwidth_for_group(group);
1451 }
1452
1453 tb_dbg(tb, "bandwidth re-calculation done\n");
1454}
1455
1456static bool __release_group_bandwidth(struct tb_bandwidth_group *group)
1457{
1458 if (group->reserved) {
1459 tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index,
1460 group->reserved);
1461 group->reserved = 0;
1462 return true;
1463 }
1464 return false;
1465}
1466
1467static void __configure_group_sym(struct tb_bandwidth_group *group)
1468{
1469 struct tb_tunnel *tunnel;
1470 struct tb_port *in;
1471
1472 if (list_empty(head: &group->ports))
1473 return;
1474
1475 /*
1476 * All the tunnels in the group go through the same USB4 links
1477 * so we find the first one here and pass the IN and OUT
1478 * adapters to tb_configure_sym() which now transitions the
1479 * links back to symmetric if bandwidth requirement < asym_threshold.
1480 *
1481 * We do this here to avoid unnecessary transitions (for example
1482 * if the graphics released bandwidth for other tunnel in the
1483 * same group).
1484 */
1485 in = list_first_entry(&group->ports, struct tb_port, group_list);
1486 tunnel = tb_find_tunnel(tb: group->tb, type: TB_TUNNEL_DP, src_port: in, NULL);
1487 if (tunnel)
1488 tb_configure_sym(tb: group->tb, src_port: in, dst_port: tunnel->dst_port, keep_asym: true);
1489}
1490
1491static void tb_bandwidth_group_release_work(struct work_struct *work)
1492{
1493 struct tb_bandwidth_group *group =
1494 container_of(work, typeof(*group), release_work.work);
1495 struct tb *tb = group->tb;
1496
1497 mutex_lock(&tb->lock);
1498 if (__release_group_bandwidth(group))
1499 tb_recalc_estimated_bandwidth(tb);
1500 __configure_group_sym(group);
1501 mutex_unlock(lock: &tb->lock);
1502}
1503
1504static void tb_init_bandwidth_groups(struct tb_cm *tcm)
1505{
1506 int i;
1507
1508 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1509 struct tb_bandwidth_group *group = &tcm->groups[i];
1510
1511 group->tb = tcm_to_tb(tcm);
1512 group->index = i + 1;
1513 INIT_LIST_HEAD(list: &group->ports);
1514 INIT_DELAYED_WORK(&group->release_work,
1515 tb_bandwidth_group_release_work);
1516 }
1517}
1518
1519static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
1520 struct tb_port *in)
1521{
1522 if (!group || WARN_ON(in->group))
1523 return;
1524
1525 in->group = group;
1526 list_add_tail(new: &in->group_list, head: &group->ports);
1527
1528 tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
1529}
1530
1531static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
1532{
1533 int i;
1534
1535 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1536 struct tb_bandwidth_group *group = &tcm->groups[i];
1537
1538 if (list_empty(head: &group->ports))
1539 return group;
1540 }
1541
1542 return NULL;
1543}
1544
1545static struct tb_bandwidth_group *
1546tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1547 struct tb_port *out)
1548{
1549 struct tb_bandwidth_group *group;
1550 struct tb_tunnel *tunnel;
1551
1552 /*
1553 * Find all DP tunnels that go through all the same USB4 links
1554 * as this one. Because we always setup tunnels the same way we
1555 * can just check for the routers at both ends of the tunnels
1556 * and if they are the same we have a match.
1557 */
1558 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1559 if (!tb_tunnel_is_dp(tunnel))
1560 continue;
1561
1562 if (tunnel->src_port->sw == in->sw &&
1563 tunnel->dst_port->sw == out->sw) {
1564 group = tunnel->src_port->group;
1565 if (group) {
1566 tb_bandwidth_group_attach_port(group, in);
1567 return group;
1568 }
1569 }
1570 }
1571
1572 /* Pick up next available group then */
1573 group = tb_find_free_bandwidth_group(tcm);
1574 if (group)
1575 tb_bandwidth_group_attach_port(group, in);
1576 else
1577 tb_port_warn(in, "no available bandwidth groups\n");
1578
1579 return group;
1580}
1581
1582static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
1583 struct tb_port *out)
1584{
1585 if (usb4_dp_port_bandwidth_mode_enabled(port: in)) {
1586 int index, i;
1587
1588 index = usb4_dp_port_group_id(port: in);
1589 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
1590 if (tcm->groups[i].index == index) {
1591 tb_bandwidth_group_attach_port(group: &tcm->groups[i], in);
1592 return;
1593 }
1594 }
1595 }
1596
1597 tb_attach_bandwidth_group(tcm, in, out);
1598}
1599
1600static void tb_detach_bandwidth_group(struct tb_port *in)
1601{
1602 struct tb_bandwidth_group *group = in->group;
1603
1604 if (group) {
1605 in->group = NULL;
1606 list_del_init(entry: &in->group_list);
1607
1608 tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
1609
1610 /* No more tunnels so release the reserved bandwidth if any */
1611 if (list_empty(head: &group->ports)) {
1612 cancel_delayed_work(dwork: &group->release_work);
1613 __release_group_bandwidth(group);
1614 }
1615 }
1616}
1617
1618static void tb_discover_tunnels(struct tb *tb)
1619{
1620 struct tb_cm *tcm = tb_priv(tb);
1621 struct tb_tunnel *tunnel;
1622
1623 tb_switch_discover_tunnels(sw: tb->root_switch, list: &tcm->tunnel_list, alloc_hopids: true);
1624
1625 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1626 if (tb_tunnel_is_pci(tunnel)) {
1627 struct tb_switch *parent = tunnel->dst_port->sw;
1628
1629 while (parent != tunnel->src_port->sw) {
1630 parent->boot = true;
1631 parent = tb_switch_parent(sw: parent);
1632 }
1633 } else if (tb_tunnel_is_dp(tunnel)) {
1634 struct tb_port *in = tunnel->src_port;
1635 struct tb_port *out = tunnel->dst_port;
1636
1637 /* Keep the domain from powering down */
1638 pm_runtime_get_sync(dev: &in->sw->dev);
1639 pm_runtime_get_sync(dev: &out->sw->dev);
1640
1641 tb_discover_bandwidth_group(tcm, in, out);
1642 }
1643 }
1644}
1645
1646static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
1647{
1648 struct tb_port *src_port, *dst_port;
1649 struct tb *tb;
1650
1651 if (!tunnel)
1652 return;
1653
1654 tb_tunnel_deactivate(tunnel);
1655 list_del(entry: &tunnel->list);
1656
1657 tb = tunnel->tb;
1658 src_port = tunnel->src_port;
1659 dst_port = tunnel->dst_port;
1660
1661 switch (tunnel->type) {
1662 case TB_TUNNEL_DP:
1663 tb_detach_bandwidth_group(in: src_port);
1664 /*
1665 * In case of DP tunnel make sure the DP IN resource is
1666 * deallocated properly.
1667 */
1668 tb_switch_dealloc_dp_resource(sw: src_port->sw, in: src_port);
1669 /*
1670 * If bandwidth on a link is < asym_threshold
1671 * transition the link to symmetric.
1672 */
1673 tb_configure_sym(tb, src_port, dst_port, keep_asym: true);
1674 /* Now we can allow the domain to runtime suspend again */
1675 pm_runtime_mark_last_busy(dev: &dst_port->sw->dev);
1676 pm_runtime_put_autosuspend(dev: &dst_port->sw->dev);
1677 pm_runtime_mark_last_busy(dev: &src_port->sw->dev);
1678 pm_runtime_put_autosuspend(dev: &src_port->sw->dev);
1679 fallthrough;
1680
1681 case TB_TUNNEL_USB3:
1682 tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
1683 break;
1684
1685 default:
1686 /*
1687 * PCIe and DMA tunnels do not consume guaranteed
1688 * bandwidth.
1689 */
1690 break;
1691 }
1692
1693 tb_tunnel_free(tunnel);
1694}
1695
1696/*
1697 * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
1698 */
1699static void tb_free_invalid_tunnels(struct tb *tb)
1700{
1701 struct tb_cm *tcm = tb_priv(tb);
1702 struct tb_tunnel *tunnel;
1703 struct tb_tunnel *n;
1704
1705 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
1706 if (tb_tunnel_is_invalid(tunnel))
1707 tb_deactivate_and_free_tunnel(tunnel);
1708 }
1709}
1710
1711/*
1712 * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
1713 */
1714static void tb_free_unplugged_children(struct tb_switch *sw)
1715{
1716 struct tb_port *port;
1717
1718 tb_switch_for_each_port(sw, port) {
1719 if (!tb_port_has_remote(port))
1720 continue;
1721
1722 if (port->remote->sw->is_unplugged) {
1723 tb_retimer_remove_all(port);
1724 tb_remove_dp_resources(sw: port->remote->sw);
1725 tb_switch_unconfigure_link(sw: port->remote->sw);
1726 tb_switch_set_link_width(sw: port->remote->sw,
1727 width: TB_LINK_WIDTH_SINGLE);
1728 tb_switch_remove(sw: port->remote->sw);
1729 port->remote = NULL;
1730 if (port->dual_link_port)
1731 port->dual_link_port->remote = NULL;
1732 } else {
1733 tb_free_unplugged_children(sw: port->remote->sw);
1734 }
1735 }
1736}
1737
1738static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
1739 const struct tb_port *port)
1740{
1741 struct tb_port *down = NULL;
1742
1743 /*
1744 * To keep plugging devices consistently in the same PCIe
1745 * hierarchy, do mapping here for switch downstream PCIe ports.
1746 */
1747 if (tb_switch_is_usb4(sw)) {
1748 down = usb4_switch_map_pcie_down(sw, port);
1749 } else if (!tb_route(sw)) {
1750 int phy_port = tb_phy_port_from_link(link: port->port);
1751 int index;
1752
1753 /*
1754 * Hard-coded Thunderbolt port to PCIe down port mapping
1755 * per controller.
1756 */
1757 if (tb_switch_is_cactus_ridge(sw) ||
1758 tb_switch_is_alpine_ridge(sw))
1759 index = !phy_port ? 6 : 7;
1760 else if (tb_switch_is_falcon_ridge(sw))
1761 index = !phy_port ? 6 : 8;
1762 else if (tb_switch_is_titan_ridge(sw))
1763 index = !phy_port ? 8 : 9;
1764 else
1765 goto out;
1766
1767 /* Validate the hard-coding */
1768 if (WARN_ON(index > sw->config.max_port_number))
1769 goto out;
1770
1771 down = &sw->ports[index];
1772 }
1773
1774 if (down) {
1775 if (WARN_ON(!tb_port_is_pcie_down(down)))
1776 goto out;
1777 if (tb_pci_port_is_enabled(port: down))
1778 goto out;
1779
1780 return down;
1781 }
1782
1783out:
1784 return tb_find_unused_port(sw, type: TB_TYPE_PCIE_DOWN);
1785}
1786
1787static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
1788{
1789 struct tb_port *host_port, *port;
1790 struct tb_cm *tcm = tb_priv(tb);
1791
1792 host_port = tb_route(sw: in->sw) ?
1793 tb_port_at(route: tb_route(sw: in->sw), sw: tb->root_switch) : NULL;
1794
1795 list_for_each_entry(port, &tcm->dp_resources, list) {
1796 if (!tb_port_is_dpout(port))
1797 continue;
1798
1799 if (tb_port_is_enabled(port)) {
1800 tb_port_dbg(port, "DP OUT in use\n");
1801 continue;
1802 }
1803
1804 /* Needs to be on different routers */
1805 if (in->sw == port->sw) {
1806 tb_port_dbg(port, "skipping DP OUT on same router\n");
1807 continue;
1808 }
1809
1810 tb_port_dbg(port, "DP OUT available\n");
1811
1812 /*
1813 * Keep the DP tunnel under the topology starting from
1814 * the same host router downstream port.
1815 */
1816 if (host_port && tb_route(sw: port->sw)) {
1817 struct tb_port *p;
1818
1819 p = tb_port_at(route: tb_route(sw: port->sw), sw: tb->root_switch);
1820 if (p != host_port)
1821 continue;
1822 }
1823
1824 return port;
1825 }
1826
1827 return NULL;
1828}
1829
1830static bool tb_tunnel_one_dp(struct tb *tb, struct tb_port *in,
1831 struct tb_port *out)
1832{
1833 int available_up, available_down, ret, link_nr;
1834 struct tb_cm *tcm = tb_priv(tb);
1835 int consumed_up, consumed_down;
1836 struct tb_tunnel *tunnel;
1837
1838 /*
1839 * This is only applicable to links that are not bonded (so
1840 * when Thunderbolt 1 hardware is involved somewhere in the
1841 * topology). For these try to share the DP bandwidth between
1842 * the two lanes.
1843 */
1844 link_nr = 1;
1845 list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
1846 if (tb_tunnel_is_dp(tunnel)) {
1847 link_nr = 0;
1848 break;
1849 }
1850 }
1851
1852 /*
1853 * DP stream needs the domain to be active so runtime resume
1854 * both ends of the tunnel.
1855 *
1856 * This should bring the routers in the middle active as well
1857 * and keeps the domain from runtime suspending while the DP
1858 * tunnel is active.
1859 */
1860 pm_runtime_get_sync(dev: &in->sw->dev);
1861 pm_runtime_get_sync(dev: &out->sw->dev);
1862
1863 if (tb_switch_alloc_dp_resource(sw: in->sw, in)) {
1864 tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
1865 goto err_rpm_put;
1866 }
1867
1868 if (!tb_attach_bandwidth_group(tcm, in, out))
1869 goto err_dealloc_dp;
1870
1871 /* Make all unused USB3 bandwidth available for the new DP tunnel */
1872 ret = tb_release_unused_usb3_bandwidth(tb, src_port: in, dst_port: out);
1873 if (ret) {
1874 tb_warn(tb, "failed to release unused bandwidth\n");
1875 goto err_detach_group;
1876 }
1877
1878 ret = tb_available_bandwidth(tb, src_port: in, dst_port: out, available_up: &available_up, available_down: &available_down,
1879 include_asym: true);
1880 if (ret)
1881 goto err_reclaim_usb;
1882
1883 tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
1884 available_up, available_down);
1885
1886 tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, max_up: available_up,
1887 max_down: available_down);
1888 if (!tunnel) {
1889 tb_port_dbg(out, "could not allocate DP tunnel\n");
1890 goto err_reclaim_usb;
1891 }
1892
1893 if (tb_tunnel_activate(tunnel)) {
1894 tb_port_info(out, "DP tunnel activation failed, aborting\n");
1895 goto err_free;
1896 }
1897
1898 /* If fail reading tunnel's consumed bandwidth, tear it down */
1899 ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up: &consumed_up, consumed_down: &consumed_down);
1900 if (ret)
1901 goto err_deactivate;
1902
1903 list_add_tail(new: &tunnel->list, head: &tcm->tunnel_list);
1904
1905 tb_reclaim_usb3_bandwidth(tb, src_port: in, dst_port: out);
1906 /*
1907 * Transition the links to asymmetric if the consumption exceeds
1908 * the threshold.
1909 */
1910 tb_configure_asym(tb, src_port: in, dst_port: out, requested_up: consumed_up, requested_down: consumed_down);
1911
1912 /* Update the domain with the new bandwidth estimation */
1913 tb_recalc_estimated_bandwidth(tb);
1914
1915 /*
1916 * In case of DP tunnel exists, change host router's 1st children
1917 * TMU mode to HiFi for CL0s to work.
1918 */
1919 tb_increase_tmu_accuracy(tunnel);
1920 return true;
1921
1922err_deactivate:
1923 tb_tunnel_deactivate(tunnel);
1924err_free:
1925 tb_tunnel_free(tunnel);
1926err_reclaim_usb:
1927 tb_reclaim_usb3_bandwidth(tb, src_port: in, dst_port: out);
1928err_detach_group:
1929 tb_detach_bandwidth_group(in);
1930err_dealloc_dp:
1931 tb_switch_dealloc_dp_resource(sw: in->sw, in);
1932err_rpm_put:
1933 pm_runtime_mark_last_busy(dev: &out->sw->dev);
1934 pm_runtime_put_autosuspend(dev: &out->sw->dev);
1935 pm_runtime_mark_last_busy(dev: &in->sw->dev);
1936 pm_runtime_put_autosuspend(dev: &in->sw->dev);
1937
1938 return false;
1939}
1940
1941static void tb_tunnel_dp(struct tb *tb)
1942{
1943 struct tb_cm *tcm = tb_priv(tb);
1944 struct tb_port *port, *in, *out;
1945
1946 if (!tb_acpi_may_tunnel_dp()) {
1947 tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
1948 return;
1949 }
1950
1951 /*
1952 * Find pair of inactive DP IN and DP OUT adapters and then
1953 * establish a DP tunnel between them.
1954 */
1955 tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
1956
1957 in = NULL;
1958 out = NULL;
1959 list_for_each_entry(port, &tcm->dp_resources, list) {
1960 if (!tb_port_is_dpin(port))
1961 continue;
1962
1963 if (tb_port_is_enabled(port)) {
1964 tb_port_dbg(port, "DP IN in use\n");
1965 continue;
1966 }
1967
1968 in = port;
1969 tb_port_dbg(in, "DP IN available\n");
1970
1971 out = tb_find_dp_out(tb, in: port);
1972 if (out)
1973 tb_tunnel_one_dp(tb, in, out);
1974 else
1975 tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n");
1976 }
1977
1978 if (!in)
1979 tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
1980}
1981
1982static void tb_enter_redrive(struct tb_port *port)
1983{
1984 struct tb_switch *sw = port->sw;
1985
1986 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
1987 return;
1988
1989 /*
1990 * If we get hot-unplug for the DP IN port of the host router
1991 * and the DP resource is not available anymore it means there
1992 * is a monitor connected directly to the Type-C port and we are
1993 * in "redrive" mode. For this to work we cannot enter RTD3 so
1994 * we bump up the runtime PM reference count here.
1995 */
1996 if (!tb_port_is_dpin(port))
1997 return;
1998 if (tb_route(sw))
1999 return;
2000 if (!tb_switch_query_dp_resource(sw, in: port)) {
2001 port->redrive = true;
2002 pm_runtime_get(dev: &sw->dev);
2003 tb_port_dbg(port, "enter redrive mode, keeping powered\n");
2004 }
2005}
2006
2007static void tb_exit_redrive(struct tb_port *port)
2008{
2009 struct tb_switch *sw = port->sw;
2010
2011 if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE))
2012 return;
2013
2014 if (!tb_port_is_dpin(port))
2015 return;
2016 if (tb_route(sw))
2017 return;
2018 if (port->redrive && tb_switch_query_dp_resource(sw, in: port)) {
2019 port->redrive = false;
2020 pm_runtime_put(dev: &sw->dev);
2021 tb_port_dbg(port, "exit redrive mode\n");
2022 }
2023}
2024
2025static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
2026{
2027 struct tb_port *in, *out;
2028 struct tb_tunnel *tunnel;
2029
2030 if (tb_port_is_dpin(port)) {
2031 tb_port_dbg(port, "DP IN resource unavailable\n");
2032 in = port;
2033 out = NULL;
2034 } else {
2035 tb_port_dbg(port, "DP OUT resource unavailable\n");
2036 in = NULL;
2037 out = port;
2038 }
2039
2040 tunnel = tb_find_tunnel(tb, type: TB_TUNNEL_DP, src_port: in, dst_port: out);
2041 if (tunnel)
2042 tb_deactivate_and_free_tunnel(tunnel);
2043 else
2044 tb_enter_redrive(port);
2045 list_del_init(entry: &port->list);
2046
2047 /*
2048 * See if there is another DP OUT port that can be used for
2049 * to create another tunnel.
2050 */
2051 tb_recalc_estimated_bandwidth(tb);
2052 tb_tunnel_dp(tb);
2053}
2054
2055static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
2056{
2057 struct tb_cm *tcm = tb_priv(tb);
2058 struct tb_port *p;
2059
2060 if (tb_port_is_enabled(port))
2061 return;
2062
2063 list_for_each_entry(p, &tcm->dp_resources, list) {
2064 if (p == port)
2065 return;
2066 }
2067
2068 tb_port_dbg(port, "DP %s resource available after hotplug\n",
2069 tb_port_is_dpin(port) ? "IN" : "OUT");
2070 list_add_tail(new: &port->list, head: &tcm->dp_resources);
2071 tb_exit_redrive(port);
2072
2073 /* Look for suitable DP IN <-> DP OUT pairs now */
2074 tb_tunnel_dp(tb);
2075}
2076
2077static void tb_disconnect_and_release_dp(struct tb *tb)
2078{
2079 struct tb_cm *tcm = tb_priv(tb);
2080 struct tb_tunnel *tunnel, *n;
2081
2082 /*
2083 * Tear down all DP tunnels and release their resources. They
2084 * will be re-established after resume based on plug events.
2085 */
2086 list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
2087 if (tb_tunnel_is_dp(tunnel))
2088 tb_deactivate_and_free_tunnel(tunnel);
2089 }
2090
2091 while (!list_empty(head: &tcm->dp_resources)) {
2092 struct tb_port *port;
2093
2094 port = list_first_entry(&tcm->dp_resources,
2095 struct tb_port, list);
2096 list_del_init(entry: &port->list);
2097 }
2098}
2099
2100static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
2101{
2102 struct tb_tunnel *tunnel;
2103 struct tb_port *up;
2104
2105 up = tb_switch_find_port(sw, type: TB_TYPE_PCIE_UP);
2106 if (WARN_ON(!up))
2107 return -ENODEV;
2108
2109 tunnel = tb_find_tunnel(tb, type: TB_TUNNEL_PCI, NULL, dst_port: up);
2110 if (WARN_ON(!tunnel))
2111 return -ENODEV;
2112
2113 tb_switch_xhci_disconnect(sw);
2114
2115 tb_tunnel_deactivate(tunnel);
2116 list_del(entry: &tunnel->list);
2117 tb_tunnel_free(tunnel);
2118 return 0;
2119}
2120
2121static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
2122{
2123 struct tb_port *up, *down, *port;
2124 struct tb_cm *tcm = tb_priv(tb);
2125 struct tb_tunnel *tunnel;
2126
2127 up = tb_switch_find_port(sw, type: TB_TYPE_PCIE_UP);
2128 if (!up)
2129 return 0;
2130
2131 /*
2132 * Look up available down port. Since we are chaining it should
2133 * be found right above this switch.
2134 */
2135 port = tb_switch_downstream_port(sw);
2136 down = tb_find_pcie_down(sw: tb_switch_parent(sw), port);
2137 if (!down)
2138 return 0;
2139
2140 tunnel = tb_tunnel_alloc_pci(tb, up, down);
2141 if (!tunnel)
2142 return -ENOMEM;
2143
2144 if (tb_tunnel_activate(tunnel)) {
2145 tb_port_info(up,
2146 "PCIe tunnel activation failed, aborting\n");
2147 tb_tunnel_free(tunnel);
2148 return -EIO;
2149 }
2150
2151 /*
2152 * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
2153 * here.
2154 */
2155 if (tb_switch_pcie_l1_enable(sw))
2156 tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
2157
2158 if (tb_switch_xhci_connect(sw))
2159 tb_sw_warn(sw, "failed to connect xHCI\n");
2160
2161 list_add_tail(new: &tunnel->list, head: &tcm->tunnel_list);
2162 return 0;
2163}
2164
2165static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2166 int transmit_path, int transmit_ring,
2167 int receive_path, int receive_ring)
2168{
2169 struct tb_cm *tcm = tb_priv(tb);
2170 struct tb_port *nhi_port, *dst_port;
2171 struct tb_tunnel *tunnel;
2172 struct tb_switch *sw;
2173 int ret;
2174
2175 sw = tb_to_switch(dev: xd->dev.parent);
2176 dst_port = tb_port_at(route: xd->route, sw);
2177 nhi_port = tb_switch_find_port(sw: tb->root_switch, type: TB_TYPE_NHI);
2178
2179 mutex_lock(&tb->lock);
2180
2181 /*
2182 * When tunneling DMA paths the link should not enter CL states
2183 * so disable them now.
2184 */
2185 tb_disable_clx(sw);
2186
2187 tunnel = tb_tunnel_alloc_dma(tb, nhi: nhi_port, dst: dst_port, transmit_path,
2188 transmit_ring, receive_path, receive_ring);
2189 if (!tunnel) {
2190 ret = -ENOMEM;
2191 goto err_clx;
2192 }
2193
2194 if (tb_tunnel_activate(tunnel)) {
2195 tb_port_info(nhi_port,
2196 "DMA tunnel activation failed, aborting\n");
2197 ret = -EIO;
2198 goto err_free;
2199 }
2200
2201 list_add_tail(new: &tunnel->list, head: &tcm->tunnel_list);
2202 mutex_unlock(lock: &tb->lock);
2203 return 0;
2204
2205err_free:
2206 tb_tunnel_free(tunnel);
2207err_clx:
2208 tb_enable_clx(sw);
2209 mutex_unlock(lock: &tb->lock);
2210
2211 return ret;
2212}
2213
2214static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2215 int transmit_path, int transmit_ring,
2216 int receive_path, int receive_ring)
2217{
2218 struct tb_cm *tcm = tb_priv(tb);
2219 struct tb_port *nhi_port, *dst_port;
2220 struct tb_tunnel *tunnel, *n;
2221 struct tb_switch *sw;
2222
2223 sw = tb_to_switch(dev: xd->dev.parent);
2224 dst_port = tb_port_at(route: xd->route, sw);
2225 nhi_port = tb_switch_find_port(sw: tb->root_switch, type: TB_TYPE_NHI);
2226
2227 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2228 if (!tb_tunnel_is_dma(tunnel))
2229 continue;
2230 if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
2231 continue;
2232
2233 if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
2234 receive_path, receive_ring))
2235 tb_deactivate_and_free_tunnel(tunnel);
2236 }
2237
2238 /*
2239 * Try to re-enable CL states now, it is OK if this fails
2240 * because we may still have another DMA tunnel active through
2241 * the same host router USB4 downstream port.
2242 */
2243 tb_enable_clx(sw);
2244}
2245
2246static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
2247 int transmit_path, int transmit_ring,
2248 int receive_path, int receive_ring)
2249{
2250 if (!xd->is_unplugged) {
2251 mutex_lock(&tb->lock);
2252 __tb_disconnect_xdomain_paths(tb, xd, transmit_path,
2253 transmit_ring, receive_path,
2254 receive_ring);
2255 mutex_unlock(lock: &tb->lock);
2256 }
2257 return 0;
2258}
2259
2260/* hotplug handling */
2261
2262/*
2263 * tb_handle_hotplug() - handle hotplug event
2264 *
2265 * Executes on tb->wq.
2266 */
2267static void tb_handle_hotplug(struct work_struct *work)
2268{
2269 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2270 struct tb *tb = ev->tb;
2271 struct tb_cm *tcm = tb_priv(tb);
2272 struct tb_switch *sw;
2273 struct tb_port *port;
2274
2275 /* Bring the domain back from sleep if it was suspended */
2276 pm_runtime_get_sync(dev: &tb->dev);
2277
2278 mutex_lock(&tb->lock);
2279 if (!tcm->hotplug_active)
2280 goto out; /* during init, suspend or shutdown */
2281
2282 sw = tb_switch_find_by_route(tb, route: ev->route);
2283 if (!sw) {
2284 tb_warn(tb,
2285 "hotplug event from non existent switch %llx:%x (unplug: %d)\n",
2286 ev->route, ev->port, ev->unplug);
2287 goto out;
2288 }
2289 if (ev->port > sw->config.max_port_number) {
2290 tb_warn(tb,
2291 "hotplug event from non existent port %llx:%x (unplug: %d)\n",
2292 ev->route, ev->port, ev->unplug);
2293 goto put_sw;
2294 }
2295 port = &sw->ports[ev->port];
2296 if (tb_is_upstream_port(port)) {
2297 tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
2298 ev->route, ev->port, ev->unplug);
2299 goto put_sw;
2300 }
2301
2302 pm_runtime_get_sync(dev: &sw->dev);
2303
2304 if (ev->unplug) {
2305 tb_retimer_remove_all(port);
2306
2307 if (tb_port_has_remote(port)) {
2308 tb_port_dbg(port, "switch unplugged\n");
2309 tb_sw_set_unplugged(sw: port->remote->sw);
2310 tb_free_invalid_tunnels(tb);
2311 tb_remove_dp_resources(sw: port->remote->sw);
2312 tb_switch_tmu_disable(sw: port->remote->sw);
2313 tb_switch_unconfigure_link(sw: port->remote->sw);
2314 tb_switch_set_link_width(sw: port->remote->sw,
2315 width: TB_LINK_WIDTH_SINGLE);
2316 tb_switch_remove(sw: port->remote->sw);
2317 port->remote = NULL;
2318 if (port->dual_link_port)
2319 port->dual_link_port->remote = NULL;
2320 /* Maybe we can create another DP tunnel */
2321 tb_recalc_estimated_bandwidth(tb);
2322 tb_tunnel_dp(tb);
2323 } else if (port->xdomain) {
2324 struct tb_xdomain *xd = tb_xdomain_get(xd: port->xdomain);
2325
2326 tb_port_dbg(port, "xdomain unplugged\n");
2327 /*
2328 * Service drivers are unbound during
2329 * tb_xdomain_remove() so setting XDomain as
2330 * unplugged here prevents deadlock if they call
2331 * tb_xdomain_disable_paths(). We will tear down
2332 * all the tunnels below.
2333 */
2334 xd->is_unplugged = true;
2335 tb_xdomain_remove(xd);
2336 port->xdomain = NULL;
2337 __tb_disconnect_xdomain_paths(tb, xd, transmit_path: -1, transmit_ring: -1, receive_path: -1, receive_ring: -1);
2338 tb_xdomain_put(xd);
2339 tb_port_unconfigure_xdomain(port);
2340 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2341 tb_dp_resource_unavailable(tb, port);
2342 } else if (!port->port) {
2343 tb_sw_dbg(sw, "xHCI disconnect request\n");
2344 tb_switch_xhci_disconnect(sw);
2345 } else {
2346 tb_port_dbg(port,
2347 "got unplug event for disconnected port, ignoring\n");
2348 }
2349 } else if (port->remote) {
2350 tb_port_dbg(port, "got plug event for connected port, ignoring\n");
2351 } else if (!port->port && sw->authorized) {
2352 tb_sw_dbg(sw, "xHCI connect request\n");
2353 tb_switch_xhci_connect(sw);
2354 } else {
2355 if (tb_port_is_null(port)) {
2356 tb_port_dbg(port, "hotplug: scanning\n");
2357 tb_scan_port(port);
2358 if (!port->remote)
2359 tb_port_dbg(port, "hotplug: no switch found\n");
2360 } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
2361 tb_dp_resource_available(tb, port);
2362 }
2363 }
2364
2365 pm_runtime_mark_last_busy(dev: &sw->dev);
2366 pm_runtime_put_autosuspend(dev: &sw->dev);
2367
2368put_sw:
2369 tb_switch_put(sw);
2370out:
2371 mutex_unlock(lock: &tb->lock);
2372
2373 pm_runtime_mark_last_busy(dev: &tb->dev);
2374 pm_runtime_put_autosuspend(dev: &tb->dev);
2375
2376 kfree(objp: ev);
2377}
2378
2379static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
2380 int *requested_down)
2381{
2382 int allocated_up, allocated_down, available_up, available_down, ret;
2383 int requested_up_corrected, requested_down_corrected, granularity;
2384 int max_up, max_down, max_up_rounded, max_down_rounded;
2385 struct tb_bandwidth_group *group;
2386 struct tb *tb = tunnel->tb;
2387 struct tb_port *in, *out;
2388 bool downstream;
2389
2390 ret = tb_tunnel_allocated_bandwidth(tunnel, allocated_up: &allocated_up, allocated_down: &allocated_down);
2391 if (ret)
2392 return ret;
2393
2394 in = tunnel->src_port;
2395 out = tunnel->dst_port;
2396
2397 tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
2398 allocated_up, allocated_down);
2399
2400 /*
2401 * If we get rounded up request from graphics side, say HBR2 x 4
2402 * that is 17500 instead of 17280 (this is because of the
2403 * granularity), we allow it too. Here the graphics has already
2404 * negotiated with the DPRX the maximum possible rates (which is
2405 * 17280 in this case).
2406 *
2407 * Since the link cannot go higher than 17280 we use that in our
2408 * calculations but the DP IN adapter Allocated BW write must be
2409 * the same value (17500) otherwise the adapter will mark it as
2410 * failed for graphics.
2411 */
2412 ret = tb_tunnel_maximum_bandwidth(tunnel, max_up: &max_up, max_down: &max_down);
2413 if (ret)
2414 goto fail;
2415
2416 ret = usb4_dp_port_granularity(port: in);
2417 if (ret < 0)
2418 goto fail;
2419 granularity = ret;
2420
2421 max_up_rounded = roundup(max_up, granularity);
2422 max_down_rounded = roundup(max_down, granularity);
2423
2424 /*
2425 * This will "fix" the request down to the maximum supported
2426 * rate * lanes if it is at the maximum rounded up level.
2427 */
2428 requested_up_corrected = *requested_up;
2429 if (requested_up_corrected == max_up_rounded)
2430 requested_up_corrected = max_up;
2431 else if (requested_up_corrected < 0)
2432 requested_up_corrected = 0;
2433 requested_down_corrected = *requested_down;
2434 if (requested_down_corrected == max_down_rounded)
2435 requested_down_corrected = max_down;
2436 else if (requested_down_corrected < 0)
2437 requested_down_corrected = 0;
2438
2439 tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
2440 requested_up_corrected, requested_down_corrected);
2441
2442 if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
2443 (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
2444 tb_tunnel_dbg(tunnel,
2445 "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
2446 requested_up_corrected, requested_down_corrected,
2447 max_up_rounded, max_down_rounded);
2448 ret = -ENOBUFS;
2449 goto fail;
2450 }
2451
2452 downstream = tb_tunnel_direction_downstream(tunnel);
2453 group = in->group;
2454
2455 if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
2456 (*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
2457 if (tunnel->bw_mode) {
2458 int reserved;
2459 /*
2460 * If requested bandwidth is less or equal than
2461 * what is currently allocated to that tunnel we
2462 * simply change the reservation of the tunnel
2463 * and add the released bandwidth for the group
2464 * for the next 10s. Then we release it for
2465 * others to use.
2466 */
2467 if (downstream)
2468 reserved = allocated_down - *requested_down;
2469 else
2470 reserved = allocated_up - *requested_up;
2471
2472 if (reserved > 0) {
2473 group->reserved += reserved;
2474 tb_dbg(tb, "group %d reserved %d total %d Mb/s\n",
2475 group->index, reserved, group->reserved);
2476
2477 /*
2478 * If it was not already pending,
2479 * schedule release now. If it is then
2480 * postpone it for the next 10s (unless
2481 * it is already running in which case
2482 * the 10s already expired and we should
2483 * give the reserved back to others).
2484 */
2485 mod_delayed_work(wq: system_wq, dwork: &group->release_work,
2486 delay: msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT));
2487 }
2488 }
2489
2490 return tb_tunnel_alloc_bandwidth(tunnel, alloc_up: requested_up,
2491 alloc_down: requested_down);
2492 }
2493
2494 /*
2495 * More bandwidth is requested. Release all the potential
2496 * bandwidth from USB3 first.
2497 */
2498 ret = tb_release_unused_usb3_bandwidth(tb, src_port: in, dst_port: out);
2499 if (ret)
2500 goto fail;
2501
2502 /*
2503 * Then go over all tunnels that cross the same USB4 ports (they
2504 * are also in the same group but we use the same function here
2505 * that we use with the normal bandwidth allocation).
2506 */
2507 ret = tb_available_bandwidth(tb, src_port: in, dst_port: out, available_up: &available_up, available_down: &available_down,
2508 include_asym: true);
2509 if (ret)
2510 goto reclaim;
2511
2512 tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n",
2513 available_up, available_down, group->reserved);
2514
2515 if ((*requested_up >= 0 &&
2516 available_up + group->reserved >= requested_up_corrected) ||
2517 (*requested_down >= 0 &&
2518 available_down + group->reserved >= requested_down_corrected)) {
2519 int released = 0;
2520
2521 /*
2522 * If bandwidth on a link is >= asym_threshold
2523 * transition the link to asymmetric.
2524 */
2525 ret = tb_configure_asym(tb, src_port: in, dst_port: out, requested_up: *requested_up,
2526 requested_down: *requested_down);
2527 if (ret) {
2528 tb_configure_sym(tb, src_port: in, dst_port: out, keep_asym: true);
2529 goto fail;
2530 }
2531
2532 ret = tb_tunnel_alloc_bandwidth(tunnel, alloc_up: requested_up,
2533 alloc_down: requested_down);
2534 if (ret) {
2535 tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
2536 tb_configure_sym(tb, src_port: in, dst_port: out, keep_asym: true);
2537 }
2538
2539 if (downstream) {
2540 if (*requested_down > available_down)
2541 released = *requested_down - available_down;
2542 } else {
2543 if (*requested_up > available_up)
2544 released = *requested_up - available_up;
2545 }
2546 if (released) {
2547 group->reserved -= released;
2548 tb_dbg(tb, "group %d released %d total %d Mb/s\n",
2549 group->index, released, group->reserved);
2550 }
2551 } else {
2552 ret = -ENOBUFS;
2553 }
2554
2555reclaim:
2556 tb_reclaim_usb3_bandwidth(tb, src_port: in, dst_port: out);
2557fail:
2558 if (ret && ret != -ENODEV) {
2559 /*
2560 * Write back the same allocated (so no change), this
2561 * makes the DPTX request fail on graphics side.
2562 */
2563 tb_tunnel_dbg(tunnel,
2564 "failing the request by rewriting allocated %d/%d Mb/s\n",
2565 allocated_up, allocated_down);
2566 tb_tunnel_alloc_bandwidth(tunnel, alloc_up: &allocated_up, alloc_down: &allocated_down);
2567 }
2568
2569 return ret;
2570}
2571
2572static void tb_handle_dp_bandwidth_request(struct work_struct *work)
2573{
2574 struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
2575 int requested_bw, requested_up, requested_down, ret;
2576 struct tb_tunnel *tunnel;
2577 struct tb *tb = ev->tb;
2578 struct tb_cm *tcm = tb_priv(tb);
2579 struct tb_switch *sw;
2580 struct tb_port *in;
2581
2582 pm_runtime_get_sync(dev: &tb->dev);
2583
2584 mutex_lock(&tb->lock);
2585 if (!tcm->hotplug_active)
2586 goto unlock;
2587
2588 sw = tb_switch_find_by_route(tb, route: ev->route);
2589 if (!sw) {
2590 tb_warn(tb, "bandwidth request from non-existent router %llx\n",
2591 ev->route);
2592 goto unlock;
2593 }
2594
2595 in = &sw->ports[ev->port];
2596 if (!tb_port_is_dpin(port: in)) {
2597 tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
2598 goto put_sw;
2599 }
2600
2601 tb_port_dbg(in, "handling bandwidth allocation request\n");
2602
2603 tunnel = tb_find_tunnel(tb, type: TB_TUNNEL_DP, src_port: in, NULL);
2604 if (!tunnel) {
2605 tb_port_warn(in, "failed to find tunnel\n");
2606 goto put_sw;
2607 }
2608
2609 if (!usb4_dp_port_bandwidth_mode_enabled(port: in)) {
2610 if (tunnel->bw_mode) {
2611 /*
2612 * Reset the tunnel back to use the legacy
2613 * allocation.
2614 */
2615 tunnel->bw_mode = false;
2616 tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n");
2617 } else {
2618 tb_port_warn(in, "bandwidth allocation mode not enabled\n");
2619 }
2620 goto put_sw;
2621 }
2622
2623 ret = usb4_dp_port_requested_bandwidth(port: in);
2624 if (ret < 0) {
2625 if (ret == -ENODATA) {
2626 /*
2627 * There is no request active so this means the
2628 * BW allocation mode was enabled from graphics
2629 * side. At this point we know that the graphics
2630 * driver has read the DRPX capabilities so we
2631 * can offer an better bandwidth estimatation.
2632 */
2633 tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n");
2634 tb_recalc_estimated_bandwidth(tb);
2635 } else {
2636 tb_port_warn(in, "failed to read requested bandwidth\n");
2637 }
2638 goto put_sw;
2639 }
2640 requested_bw = ret;
2641
2642 tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
2643
2644 if (tb_tunnel_direction_downstream(tunnel)) {
2645 requested_up = -1;
2646 requested_down = requested_bw;
2647 } else {
2648 requested_up = requested_bw;
2649 requested_down = -1;
2650 }
2651
2652 ret = tb_alloc_dp_bandwidth(tunnel, requested_up: &requested_up, requested_down: &requested_down);
2653 if (ret) {
2654 if (ret == -ENOBUFS)
2655 tb_tunnel_warn(tunnel,
2656 "not enough bandwidth available\n");
2657 else
2658 tb_tunnel_warn(tunnel,
2659 "failed to change bandwidth allocation\n");
2660 } else {
2661 tb_tunnel_dbg(tunnel,
2662 "bandwidth allocation changed to %d/%d Mb/s\n",
2663 requested_up, requested_down);
2664
2665 /* Update other clients about the allocation change */
2666 tb_recalc_estimated_bandwidth(tb);
2667 }
2668
2669put_sw:
2670 tb_switch_put(sw);
2671unlock:
2672 mutex_unlock(lock: &tb->lock);
2673
2674 pm_runtime_mark_last_busy(dev: &tb->dev);
2675 pm_runtime_put_autosuspend(dev: &tb->dev);
2676
2677 kfree(objp: ev);
2678}
2679
2680static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
2681{
2682 struct tb_hotplug_event *ev;
2683
2684 ev = kmalloc(size: sizeof(*ev), GFP_KERNEL);
2685 if (!ev)
2686 return;
2687
2688 ev->tb = tb;
2689 ev->route = route;
2690 ev->port = port;
2691 INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
2692 queue_work(wq: tb->wq, work: &ev->work);
2693}
2694
2695static void tb_handle_notification(struct tb *tb, u64 route,
2696 const struct cfg_error_pkg *error)
2697{
2698
2699 switch (error->error) {
2700 case TB_CFG_ERROR_PCIE_WAKE:
2701 case TB_CFG_ERROR_DP_CON_CHANGE:
2702 case TB_CFG_ERROR_DPTX_DISCOVERY:
2703 if (tb_cfg_ack_notification(ctl: tb->ctl, route, error))
2704 tb_warn(tb, "could not ack notification on %llx\n",
2705 route);
2706 break;
2707
2708 case TB_CFG_ERROR_DP_BW:
2709 if (tb_cfg_ack_notification(ctl: tb->ctl, route, error))
2710 tb_warn(tb, "could not ack notification on %llx\n",
2711 route);
2712 tb_queue_dp_bandwidth_request(tb, route, port: error->port);
2713 break;
2714
2715 default:
2716 /* Ignore for now */
2717 break;
2718 }
2719}
2720
2721/*
2722 * tb_schedule_hotplug_handler() - callback function for the control channel
2723 *
2724 * Delegates to tb_handle_hotplug.
2725 */
2726static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
2727 const void *buf, size_t size)
2728{
2729 const struct cfg_event_pkg *pkg = buf;
2730 u64 route = tb_cfg_get_route(header: &pkg->header);
2731
2732 switch (type) {
2733 case TB_CFG_PKG_ERROR:
2734 tb_handle_notification(tb, route, error: (const struct cfg_error_pkg *)buf);
2735 return;
2736 case TB_CFG_PKG_EVENT:
2737 break;
2738 default:
2739 tb_warn(tb, "unexpected event %#x, ignoring\n", type);
2740 return;
2741 }
2742
2743 if (tb_cfg_ack_plug(ctl: tb->ctl, route, port: pkg->port, unplug: pkg->unplug)) {
2744 tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
2745 pkg->port);
2746 }
2747
2748 tb_queue_hotplug(tb, route, port: pkg->port, unplug: pkg->unplug);
2749}
2750
2751static void tb_stop(struct tb *tb)
2752{
2753 struct tb_cm *tcm = tb_priv(tb);
2754 struct tb_tunnel *tunnel;
2755 struct tb_tunnel *n;
2756
2757 cancel_delayed_work(dwork: &tcm->remove_work);
2758 /* tunnels are only present after everything has been initialized */
2759 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2760 /*
2761 * DMA tunnels require the driver to be functional so we
2762 * tear them down. Other protocol tunnels can be left
2763 * intact.
2764 */
2765 if (tb_tunnel_is_dma(tunnel))
2766 tb_tunnel_deactivate(tunnel);
2767 tb_tunnel_free(tunnel);
2768 }
2769 tb_switch_remove(sw: tb->root_switch);
2770 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2771}
2772
2773static void tb_deinit(struct tb *tb)
2774{
2775 struct tb_cm *tcm = tb_priv(tb);
2776 int i;
2777
2778 /* Cancel all the release bandwidth workers */
2779 for (i = 0; i < ARRAY_SIZE(tcm->groups); i++)
2780 cancel_delayed_work_sync(dwork: &tcm->groups[i].release_work);
2781}
2782
2783static int tb_scan_finalize_switch(struct device *dev, void *data)
2784{
2785 if (tb_is_switch(dev)) {
2786 struct tb_switch *sw = tb_to_switch(dev);
2787
2788 /*
2789 * If we found that the switch was already setup by the
2790 * boot firmware, mark it as authorized now before we
2791 * send uevent to userspace.
2792 */
2793 if (sw->boot)
2794 sw->authorized = 1;
2795
2796 dev_set_uevent_suppress(dev, val: false);
2797 kobject_uevent(kobj: &dev->kobj, action: KOBJ_ADD);
2798 device_for_each_child(dev, NULL, fn: tb_scan_finalize_switch);
2799 }
2800
2801 return 0;
2802}
2803
2804static int tb_start(struct tb *tb, bool reset)
2805{
2806 struct tb_cm *tcm = tb_priv(tb);
2807 bool discover = true;
2808 int ret;
2809
2810 tb->root_switch = tb_switch_alloc(tb, parent: &tb->dev, route: 0);
2811 if (IS_ERR(ptr: tb->root_switch))
2812 return PTR_ERR(ptr: tb->root_switch);
2813
2814 /*
2815 * ICM firmware upgrade needs running firmware and in native
2816 * mode that is not available so disable firmware upgrade of the
2817 * root switch.
2818 *
2819 * However, USB4 routers support NVM firmware upgrade if they
2820 * implement the necessary router operations.
2821 */
2822 tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(sw: tb->root_switch);
2823 /* All USB4 routers support runtime PM */
2824 tb->root_switch->rpm = tb_switch_is_usb4(sw: tb->root_switch);
2825
2826 ret = tb_switch_configure(sw: tb->root_switch);
2827 if (ret) {
2828 tb_switch_put(sw: tb->root_switch);
2829 return ret;
2830 }
2831
2832 /* Announce the switch to the world */
2833 ret = tb_switch_add(sw: tb->root_switch);
2834 if (ret) {
2835 tb_switch_put(sw: tb->root_switch);
2836 return ret;
2837 }
2838
2839 /*
2840 * To support highest CLx state, we set host router's TMU to
2841 * Normal mode.
2842 */
2843 tb_switch_tmu_configure(sw: tb->root_switch, mode: TB_SWITCH_TMU_MODE_LOWRES);
2844 /* Enable TMU if it is off */
2845 tb_switch_tmu_enable(sw: tb->root_switch);
2846
2847 /*
2848 * Boot firmware might have created tunnels of its own. Since we
2849 * cannot be sure they are usable for us, tear them down and
2850 * reset the ports to handle it as new hotplug for USB4 v1
2851 * routers (for USB4 v2 and beyond we already do host reset).
2852 */
2853 if (reset && tb_switch_is_usb4(sw: tb->root_switch)) {
2854 discover = false;
2855 if (usb4_switch_version(sw: tb->root_switch) == 1)
2856 tb_switch_reset(sw: tb->root_switch);
2857 }
2858
2859 if (discover) {
2860 /* Full scan to discover devices added before the driver was loaded. */
2861 tb_scan_switch(sw: tb->root_switch);
2862 /* Find out tunnels created by the boot firmware */
2863 tb_discover_tunnels(tb);
2864 /* Add DP resources from the DP tunnels created by the boot firmware */
2865 tb_discover_dp_resources(tb);
2866 }
2867
2868 /*
2869 * If the boot firmware did not create USB 3.x tunnels create them
2870 * now for the whole topology.
2871 */
2872 tb_create_usb3_tunnels(sw: tb->root_switch);
2873 /* Add DP IN resources for the root switch */
2874 tb_add_dp_resources(sw: tb->root_switch);
2875 /* Make the discovered switches available to the userspace */
2876 device_for_each_child(dev: &tb->root_switch->dev, NULL,
2877 fn: tb_scan_finalize_switch);
2878
2879 /* Allow tb_handle_hotplug to progress events */
2880 tcm->hotplug_active = true;
2881 return 0;
2882}
2883
2884static int tb_suspend_noirq(struct tb *tb)
2885{
2886 struct tb_cm *tcm = tb_priv(tb);
2887
2888 tb_dbg(tb, "suspending...\n");
2889 tb_disconnect_and_release_dp(tb);
2890 tb_switch_suspend(sw: tb->root_switch, runtime: false);
2891 tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
2892 tb_dbg(tb, "suspend finished\n");
2893
2894 return 0;
2895}
2896
2897static void tb_restore_children(struct tb_switch *sw)
2898{
2899 struct tb_port *port;
2900
2901 /* No need to restore if the router is already unplugged */
2902 if (sw->is_unplugged)
2903 return;
2904
2905 if (tb_enable_clx(sw))
2906 tb_sw_warn(sw, "failed to re-enable CL states\n");
2907
2908 if (tb_enable_tmu(sw))
2909 tb_sw_warn(sw, "failed to restore TMU configuration\n");
2910
2911 tb_switch_configuration_valid(sw);
2912
2913 tb_switch_for_each_port(sw, port) {
2914 if (!tb_port_has_remote(port) && !port->xdomain)
2915 continue;
2916
2917 if (port->remote) {
2918 tb_switch_set_link_width(sw: port->remote->sw,
2919 width: port->remote->sw->link_width);
2920 tb_switch_configure_link(sw: port->remote->sw);
2921
2922 tb_restore_children(sw: port->remote->sw);
2923 } else if (port->xdomain) {
2924 tb_port_configure_xdomain(port, xd: port->xdomain);
2925 }
2926 }
2927}
2928
2929static int tb_resume_noirq(struct tb *tb)
2930{
2931 struct tb_cm *tcm = tb_priv(tb);
2932 struct tb_tunnel *tunnel, *n;
2933 unsigned int usb3_delay = 0;
2934 LIST_HEAD(tunnels);
2935
2936 tb_dbg(tb, "resuming...\n");
2937
2938 /*
2939 * For non-USB4 hosts (Apple systems) remove any PCIe devices
2940 * the firmware might have setup.
2941 */
2942 if (!tb_switch_is_usb4(sw: tb->root_switch))
2943 tb_switch_reset(sw: tb->root_switch);
2944
2945 tb_switch_resume(sw: tb->root_switch, runtime: false);
2946 tb_free_invalid_tunnels(tb);
2947 tb_free_unplugged_children(sw: tb->root_switch);
2948 tb_restore_children(sw: tb->root_switch);
2949
2950 /*
2951 * If we get here from suspend to disk the boot firmware or the
2952 * restore kernel might have created tunnels of its own. Since
2953 * we cannot be sure they are usable for us we find and tear
2954 * them down.
2955 */
2956 tb_switch_discover_tunnels(sw: tb->root_switch, list: &tunnels, alloc_hopids: false);
2957 list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
2958 if (tb_tunnel_is_usb3(tunnel))
2959 usb3_delay = 500;
2960 tb_tunnel_deactivate(tunnel);
2961 tb_tunnel_free(tunnel);
2962 }
2963
2964 /* Re-create our tunnels now */
2965 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
2966 /* USB3 requires delay before it can be re-activated */
2967 if (tb_tunnel_is_usb3(tunnel)) {
2968 msleep(msecs: usb3_delay);
2969 /* Only need to do it once */
2970 usb3_delay = 0;
2971 }
2972 tb_tunnel_restart(tunnel);
2973 }
2974 if (!list_empty(head: &tcm->tunnel_list)) {
2975 /*
2976 * the pcie links need some time to get going.
2977 * 100ms works for me...
2978 */
2979 tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
2980 msleep(msecs: 100);
2981 }
2982 /* Allow tb_handle_hotplug to progress events */
2983 tcm->hotplug_active = true;
2984 tb_dbg(tb, "resume finished\n");
2985
2986 return 0;
2987}
2988
2989static int tb_free_unplugged_xdomains(struct tb_switch *sw)
2990{
2991 struct tb_port *port;
2992 int ret = 0;
2993
2994 tb_switch_for_each_port(sw, port) {
2995 if (tb_is_upstream_port(port))
2996 continue;
2997 if (port->xdomain && port->xdomain->is_unplugged) {
2998 tb_retimer_remove_all(port);
2999 tb_xdomain_remove(xd: port->xdomain);
3000 tb_port_unconfigure_xdomain(port);
3001 port->xdomain = NULL;
3002 ret++;
3003 } else if (port->remote) {
3004 ret += tb_free_unplugged_xdomains(sw: port->remote->sw);
3005 }
3006 }
3007
3008 return ret;
3009}
3010
3011static int tb_freeze_noirq(struct tb *tb)
3012{
3013 struct tb_cm *tcm = tb_priv(tb);
3014
3015 tcm->hotplug_active = false;
3016 return 0;
3017}
3018
3019static int tb_thaw_noirq(struct tb *tb)
3020{
3021 struct tb_cm *tcm = tb_priv(tb);
3022
3023 tcm->hotplug_active = true;
3024 return 0;
3025}
3026
3027static void tb_complete(struct tb *tb)
3028{
3029 /*
3030 * Release any unplugged XDomains and if there is a case where
3031 * another domain is swapped in place of unplugged XDomain we
3032 * need to run another rescan.
3033 */
3034 mutex_lock(&tb->lock);
3035 if (tb_free_unplugged_xdomains(sw: tb->root_switch))
3036 tb_scan_switch(sw: tb->root_switch);
3037 mutex_unlock(lock: &tb->lock);
3038}
3039
3040static int tb_runtime_suspend(struct tb *tb)
3041{
3042 struct tb_cm *tcm = tb_priv(tb);
3043
3044 mutex_lock(&tb->lock);
3045 tb_switch_suspend(sw: tb->root_switch, runtime: true);
3046 tcm->hotplug_active = false;
3047 mutex_unlock(lock: &tb->lock);
3048
3049 return 0;
3050}
3051
3052static void tb_remove_work(struct work_struct *work)
3053{
3054 struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
3055 struct tb *tb = tcm_to_tb(tcm);
3056
3057 mutex_lock(&tb->lock);
3058 if (tb->root_switch) {
3059 tb_free_unplugged_children(sw: tb->root_switch);
3060 tb_free_unplugged_xdomains(sw: tb->root_switch);
3061 }
3062 mutex_unlock(lock: &tb->lock);
3063}
3064
3065static int tb_runtime_resume(struct tb *tb)
3066{
3067 struct tb_cm *tcm = tb_priv(tb);
3068 struct tb_tunnel *tunnel, *n;
3069
3070 mutex_lock(&tb->lock);
3071 tb_switch_resume(sw: tb->root_switch, runtime: true);
3072 tb_free_invalid_tunnels(tb);
3073 tb_restore_children(sw: tb->root_switch);
3074 list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
3075 tb_tunnel_restart(tunnel);
3076 tcm->hotplug_active = true;
3077 mutex_unlock(lock: &tb->lock);
3078
3079 /*
3080 * Schedule cleanup of any unplugged devices. Run this in a
3081 * separate thread to avoid possible deadlock if the device
3082 * removal runtime resumes the unplugged device.
3083 */
3084 queue_delayed_work(wq: tb->wq, dwork: &tcm->remove_work, delay: msecs_to_jiffies(m: 50));
3085 return 0;
3086}
3087
3088static const struct tb_cm_ops tb_cm_ops = {
3089 .start = tb_start,
3090 .stop = tb_stop,
3091 .deinit = tb_deinit,
3092 .suspend_noirq = tb_suspend_noirq,
3093 .resume_noirq = tb_resume_noirq,
3094 .freeze_noirq = tb_freeze_noirq,
3095 .thaw_noirq = tb_thaw_noirq,
3096 .complete = tb_complete,
3097 .runtime_suspend = tb_runtime_suspend,
3098 .runtime_resume = tb_runtime_resume,
3099 .handle_event = tb_handle_event,
3100 .disapprove_switch = tb_disconnect_pci,
3101 .approve_switch = tb_tunnel_pci,
3102 .approve_xdomain_paths = tb_approve_xdomain_paths,
3103 .disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
3104};
3105
3106/*
3107 * During suspend the Thunderbolt controller is reset and all PCIe
3108 * tunnels are lost. The NHI driver will try to reestablish all tunnels
3109 * during resume. This adds device links between the tunneled PCIe
3110 * downstream ports and the NHI so that the device core will make sure
3111 * NHI is resumed first before the rest.
3112 */
3113static bool tb_apple_add_links(struct tb_nhi *nhi)
3114{
3115 struct pci_dev *upstream, *pdev;
3116 bool ret;
3117
3118 if (!x86_apple_machine)
3119 return false;
3120
3121 switch (nhi->pdev->device) {
3122 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
3123 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
3124 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
3125 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
3126 break;
3127 default:
3128 return false;
3129 }
3130
3131 upstream = pci_upstream_bridge(dev: nhi->pdev);
3132 while (upstream) {
3133 if (!pci_is_pcie(dev: upstream))
3134 return false;
3135 if (pci_pcie_type(dev: upstream) == PCI_EXP_TYPE_UPSTREAM)
3136 break;
3137 upstream = pci_upstream_bridge(dev: upstream);
3138 }
3139
3140 if (!upstream)
3141 return false;
3142
3143 /*
3144 * For each hotplug downstream port, create add device link
3145 * back to NHI so that PCIe tunnels can be re-established after
3146 * sleep.
3147 */
3148 ret = false;
3149 for_each_pci_bridge(pdev, upstream->subordinate) {
3150 const struct device_link *link;
3151
3152 if (!pci_is_pcie(dev: pdev))
3153 continue;
3154 if (pci_pcie_type(dev: pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
3155 !pdev->is_hotplug_bridge)
3156 continue;
3157
3158 link = device_link_add(consumer: &pdev->dev, supplier: &nhi->pdev->dev,
3159 DL_FLAG_AUTOREMOVE_SUPPLIER |
3160 DL_FLAG_PM_RUNTIME);
3161 if (link) {
3162 dev_dbg(&nhi->pdev->dev, "created link from %s\n",
3163 dev_name(&pdev->dev));
3164 ret = true;
3165 } else {
3166 dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
3167 dev_name(&pdev->dev));
3168 }
3169 }
3170
3171 return ret;
3172}
3173
3174struct tb *tb_probe(struct tb_nhi *nhi)
3175{
3176 struct tb_cm *tcm;
3177 struct tb *tb;
3178
3179 tb = tb_domain_alloc(nhi, TB_TIMEOUT, privsize: sizeof(*tcm));
3180 if (!tb)
3181 return NULL;
3182
3183 if (tb_acpi_may_tunnel_pcie())
3184 tb->security_level = TB_SECURITY_USER;
3185 else
3186 tb->security_level = TB_SECURITY_NOPCIE;
3187
3188 tb->cm_ops = &tb_cm_ops;
3189
3190 tcm = tb_priv(tb);
3191 INIT_LIST_HEAD(list: &tcm->tunnel_list);
3192 INIT_LIST_HEAD(list: &tcm->dp_resources);
3193 INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
3194 tb_init_bandwidth_groups(tcm);
3195
3196 tb_dbg(tb, "using software connection manager\n");
3197
3198 /*
3199 * Device links are needed to make sure we establish tunnels
3200 * before the PCIe/USB stack is resumed so complain here if we
3201 * found them missing.
3202 */
3203 if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
3204 tb_warn(tb, "device links to tunneled native ports are missing!\n");
3205
3206 return tb;
3207}
3208

source code of linux/drivers/thunderbolt/tb.c