1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Thunderbolt driver - bus logic (NHI independent) |
4 | * |
5 | * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com> |
6 | * Copyright (C) 2019, Intel Corporation |
7 | */ |
8 | |
9 | #include <linux/slab.h> |
10 | #include <linux/errno.h> |
11 | #include <linux/delay.h> |
12 | #include <linux/pm_runtime.h> |
13 | #include <linux/platform_data/x86/apple.h> |
14 | |
15 | #include "tb.h" |
16 | #include "tb_regs.h" |
17 | #include "tunnel.h" |
18 | |
19 | #define TB_TIMEOUT 100 /* ms */ |
20 | #define TB_RELEASE_BW_TIMEOUT 10000 /* ms */ |
21 | |
22 | /* |
23 | * Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver |
24 | * direction. This is 40G - 10% guard band bandwidth. |
25 | */ |
26 | #define TB_ASYM_MIN (40000 * 90 / 100) |
27 | |
28 | /* |
29 | * Threshold bandwidth (in Mb/s) that is used to switch the links to |
30 | * asymmetric and back. This is selected as 45G which means when the |
31 | * request is higher than this, we switch the link to asymmetric, and |
32 | * when it is less than this we switch it back. The 45G is selected so |
33 | * that we still have 27G (of the total 72G) for bulk PCIe traffic when |
34 | * switching back to symmetric. |
35 | */ |
36 | #define TB_ASYM_THRESHOLD 45000 |
37 | |
38 | #define MAX_GROUPS 7 /* max Group_ID is 7 */ |
39 | |
40 | static unsigned int asym_threshold = TB_ASYM_THRESHOLD; |
41 | module_param_named(asym_threshold, asym_threshold, uint, 0444); |
42 | MODULE_PARM_DESC(asym_threshold, |
43 | "threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: " |
44 | __MODULE_STRING(TB_ASYM_THRESHOLD) ")"); |
45 | |
46 | /** |
47 | * struct tb_cm - Simple Thunderbolt connection manager |
48 | * @tunnel_list: List of active tunnels |
49 | * @dp_resources: List of available DP resources for DP tunneling |
50 | * @hotplug_active: tb_handle_hotplug will stop progressing plug |
51 | * events and exit if this is not set (it needs to |
52 | * acquire the lock one more time). Used to drain wq |
53 | * after cfg has been paused. |
54 | * @remove_work: Work used to remove any unplugged routers after |
55 | * runtime resume |
56 | * @groups: Bandwidth groups used in this domain. |
57 | */ |
58 | struct tb_cm { |
59 | struct list_head tunnel_list; |
60 | struct list_head dp_resources; |
61 | bool hotplug_active; |
62 | struct delayed_work remove_work; |
63 | struct tb_bandwidth_group groups[MAX_GROUPS]; |
64 | }; |
65 | |
66 | static inline struct tb *tcm_to_tb(struct tb_cm *tcm) |
67 | { |
68 | return ((void *)tcm - sizeof(struct tb)); |
69 | } |
70 | |
71 | struct tb_hotplug_event { |
72 | struct work_struct work; |
73 | struct tb *tb; |
74 | u64 route; |
75 | u8 port; |
76 | bool unplug; |
77 | }; |
78 | |
79 | static void tb_handle_hotplug(struct work_struct *work); |
80 | |
81 | static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug) |
82 | { |
83 | struct tb_hotplug_event *ev; |
84 | |
85 | ev = kmalloc(size: sizeof(*ev), GFP_KERNEL); |
86 | if (!ev) |
87 | return; |
88 | |
89 | ev->tb = tb; |
90 | ev->route = route; |
91 | ev->port = port; |
92 | ev->unplug = unplug; |
93 | INIT_WORK(&ev->work, tb_handle_hotplug); |
94 | queue_work(wq: tb->wq, work: &ev->work); |
95 | } |
96 | |
97 | /* enumeration & hot plug handling */ |
98 | |
99 | static void tb_add_dp_resources(struct tb_switch *sw) |
100 | { |
101 | struct tb_cm *tcm = tb_priv(tb: sw->tb); |
102 | struct tb_port *port; |
103 | |
104 | tb_switch_for_each_port(sw, port) { |
105 | if (!tb_port_is_dpin(port)) |
106 | continue; |
107 | |
108 | if (!tb_switch_query_dp_resource(sw, in: port)) |
109 | continue; |
110 | |
111 | /* |
112 | * If DP IN on device router exist, position it at the |
113 | * beginning of the DP resources list, so that it is used |
114 | * before DP IN of the host router. This way external GPU(s) |
115 | * will be prioritized when pairing DP IN to a DP OUT. |
116 | */ |
117 | if (tb_route(sw)) |
118 | list_add(new: &port->list, head: &tcm->dp_resources); |
119 | else |
120 | list_add_tail(new: &port->list, head: &tcm->dp_resources); |
121 | |
122 | tb_port_dbg(port, "DP IN resource available\n"); |
123 | } |
124 | } |
125 | |
126 | static void tb_remove_dp_resources(struct tb_switch *sw) |
127 | { |
128 | struct tb_cm *tcm = tb_priv(tb: sw->tb); |
129 | struct tb_port *port, *tmp; |
130 | |
131 | /* Clear children resources first */ |
132 | tb_switch_for_each_port(sw, port) { |
133 | if (tb_port_has_remote(port)) |
134 | tb_remove_dp_resources(sw: port->remote->sw); |
135 | } |
136 | |
137 | list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) { |
138 | if (port->sw == sw) { |
139 | tb_port_dbg(port, "DP OUT resource unavailable\n"); |
140 | list_del_init(entry: &port->list); |
141 | } |
142 | } |
143 | } |
144 | |
145 | static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port) |
146 | { |
147 | struct tb_cm *tcm = tb_priv(tb); |
148 | struct tb_port *p; |
149 | |
150 | list_for_each_entry(p, &tcm->dp_resources, list) { |
151 | if (p == port) |
152 | return; |
153 | } |
154 | |
155 | tb_port_dbg(port, "DP %s resource available discovered\n", |
156 | tb_port_is_dpin(port) ? "IN": "OUT"); |
157 | list_add_tail(new: &port->list, head: &tcm->dp_resources); |
158 | } |
159 | |
160 | static void tb_discover_dp_resources(struct tb *tb) |
161 | { |
162 | struct tb_cm *tcm = tb_priv(tb); |
163 | struct tb_tunnel *tunnel; |
164 | |
165 | list_for_each_entry(tunnel, &tcm->tunnel_list, list) { |
166 | if (tb_tunnel_is_dp(tunnel)) |
167 | tb_discover_dp_resource(tb, port: tunnel->dst_port); |
168 | } |
169 | } |
170 | |
171 | /* Enables CL states up to host router */ |
172 | static int tb_enable_clx(struct tb_switch *sw) |
173 | { |
174 | struct tb_cm *tcm = tb_priv(tb: sw->tb); |
175 | unsigned int clx = TB_CL0S | TB_CL1; |
176 | const struct tb_tunnel *tunnel; |
177 | int ret; |
178 | |
179 | /* |
180 | * Currently only enable CLx for the first link. This is enough |
181 | * to allow the CPU to save energy at least on Intel hardware |
182 | * and makes it slightly simpler to implement. We may change |
183 | * this in the future to cover the whole topology if it turns |
184 | * out to be beneficial. |
185 | */ |
186 | while (sw && tb_switch_depth(sw) > 1) |
187 | sw = tb_switch_parent(sw); |
188 | |
189 | if (!sw) |
190 | return 0; |
191 | |
192 | if (tb_switch_depth(sw) != 1) |
193 | return 0; |
194 | |
195 | /* |
196 | * If we are re-enabling then check if there is an active DMA |
197 | * tunnel and in that case bail out. |
198 | */ |
199 | list_for_each_entry(tunnel, &tcm->tunnel_list, list) { |
200 | if (tb_tunnel_is_dma(tunnel)) { |
201 | if (tb_tunnel_port_on_path(tunnel, port: tb_upstream_port(sw))) |
202 | return 0; |
203 | } |
204 | } |
205 | |
206 | /* |
207 | * Initially try with CL2. If that's not supported by the |
208 | * topology try with CL0s and CL1 and then give up. |
209 | */ |
210 | ret = tb_switch_clx_enable(sw, clx: clx | TB_CL2); |
211 | if (ret == -EOPNOTSUPP) |
212 | ret = tb_switch_clx_enable(sw, clx); |
213 | return ret == -EOPNOTSUPP ? 0 : ret; |
214 | } |
215 | |
216 | /** |
217 | * tb_disable_clx() - Disable CL states up to host router |
218 | * @sw: Router to start |
219 | * |
220 | * Disables CL states from @sw up to the host router. Returns true if |
221 | * any CL state were disabled. This can be used to figure out whether |
222 | * the link was setup by us or the boot firmware so we don't |
223 | * accidentally enable them if they were not enabled during discovery. |
224 | */ |
225 | static bool tb_disable_clx(struct tb_switch *sw) |
226 | { |
227 | bool disabled = false; |
228 | |
229 | do { |
230 | int ret; |
231 | |
232 | ret = tb_switch_clx_disable(sw); |
233 | if (ret > 0) |
234 | disabled = true; |
235 | else if (ret < 0) |
236 | tb_sw_warn(sw, "failed to disable CL states\n"); |
237 | |
238 | sw = tb_switch_parent(sw); |
239 | } while (sw); |
240 | |
241 | return disabled; |
242 | } |
243 | |
244 | static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data) |
245 | { |
246 | struct tb_switch *sw; |
247 | |
248 | sw = tb_to_switch(dev); |
249 | if (!sw) |
250 | return 0; |
251 | |
252 | if (tb_switch_tmu_is_configured(sw, mode: TB_SWITCH_TMU_MODE_LOWRES)) { |
253 | enum tb_switch_tmu_mode mode; |
254 | int ret; |
255 | |
256 | if (tb_switch_clx_is_enabled(sw, TB_CL1)) |
257 | mode = TB_SWITCH_TMU_MODE_HIFI_UNI; |
258 | else |
259 | mode = TB_SWITCH_TMU_MODE_HIFI_BI; |
260 | |
261 | ret = tb_switch_tmu_configure(sw, mode); |
262 | if (ret) |
263 | return ret; |
264 | |
265 | return tb_switch_tmu_enable(sw); |
266 | } |
267 | |
268 | return 0; |
269 | } |
270 | |
271 | static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel) |
272 | { |
273 | struct tb_switch *sw; |
274 | |
275 | if (!tunnel) |
276 | return; |
277 | |
278 | /* |
279 | * Once first DP tunnel is established we change the TMU |
280 | * accuracy of first depth child routers (and the host router) |
281 | * to the highest. This is needed for the DP tunneling to work |
282 | * but also allows CL0s. |
283 | * |
284 | * If both routers are v2 then we don't need to do anything as |
285 | * they are using enhanced TMU mode that allows all CLx. |
286 | */ |
287 | sw = tunnel->tb->root_switch; |
288 | device_for_each_child(dev: &sw->dev, NULL, fn: tb_increase_switch_tmu_accuracy); |
289 | } |
290 | |
291 | static int tb_enable_tmu(struct tb_switch *sw) |
292 | { |
293 | int ret; |
294 | |
295 | /* |
296 | * If both routers at the end of the link are v2 we simply |
297 | * enable the enhanched uni-directional mode. That covers all |
298 | * the CL states. For v1 and before we need to use the normal |
299 | * rate to allow CL1 (when supported). Otherwise we keep the TMU |
300 | * running at the highest accuracy. |
301 | */ |
302 | ret = tb_switch_tmu_configure(sw, |
303 | mode: TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI); |
304 | if (ret == -EOPNOTSUPP) { |
305 | if (tb_switch_clx_is_enabled(sw, TB_CL1)) |
306 | ret = tb_switch_tmu_configure(sw, |
307 | mode: TB_SWITCH_TMU_MODE_LOWRES); |
308 | else |
309 | ret = tb_switch_tmu_configure(sw, |
310 | mode: TB_SWITCH_TMU_MODE_HIFI_BI); |
311 | } |
312 | if (ret) |
313 | return ret; |
314 | |
315 | /* If it is already enabled in correct mode, don't touch it */ |
316 | if (tb_switch_tmu_is_enabled(sw)) |
317 | return 0; |
318 | |
319 | ret = tb_switch_tmu_disable(sw); |
320 | if (ret) |
321 | return ret; |
322 | |
323 | ret = tb_switch_tmu_post_time(sw); |
324 | if (ret) |
325 | return ret; |
326 | |
327 | return tb_switch_tmu_enable(sw); |
328 | } |
329 | |
330 | static void tb_switch_discover_tunnels(struct tb_switch *sw, |
331 | struct list_head *list, |
332 | bool alloc_hopids) |
333 | { |
334 | struct tb *tb = sw->tb; |
335 | struct tb_port *port; |
336 | |
337 | tb_switch_for_each_port(sw, port) { |
338 | struct tb_tunnel *tunnel = NULL; |
339 | |
340 | switch (port->config.type) { |
341 | case TB_TYPE_DP_HDMI_IN: |
342 | tunnel = tb_tunnel_discover_dp(tb, in: port, alloc_hopid: alloc_hopids); |
343 | tb_increase_tmu_accuracy(tunnel); |
344 | break; |
345 | |
346 | case TB_TYPE_PCIE_DOWN: |
347 | tunnel = tb_tunnel_discover_pci(tb, down: port, alloc_hopid: alloc_hopids); |
348 | break; |
349 | |
350 | case TB_TYPE_USB3_DOWN: |
351 | tunnel = tb_tunnel_discover_usb3(tb, down: port, alloc_hopid: alloc_hopids); |
352 | break; |
353 | |
354 | default: |
355 | break; |
356 | } |
357 | |
358 | if (tunnel) |
359 | list_add_tail(new: &tunnel->list, head: list); |
360 | } |
361 | |
362 | tb_switch_for_each_port(sw, port) { |
363 | if (tb_port_has_remote(port)) { |
364 | tb_switch_discover_tunnels(sw: port->remote->sw, list, |
365 | alloc_hopids); |
366 | } |
367 | } |
368 | } |
369 | |
370 | static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd) |
371 | { |
372 | if (tb_switch_is_usb4(sw: port->sw)) |
373 | return usb4_port_configure_xdomain(port, xd); |
374 | return tb_lc_configure_xdomain(port); |
375 | } |
376 | |
377 | static void tb_port_unconfigure_xdomain(struct tb_port *port) |
378 | { |
379 | if (tb_switch_is_usb4(sw: port->sw)) |
380 | usb4_port_unconfigure_xdomain(port); |
381 | else |
382 | tb_lc_unconfigure_xdomain(port); |
383 | } |
384 | |
385 | static void tb_scan_xdomain(struct tb_port *port) |
386 | { |
387 | struct tb_switch *sw = port->sw; |
388 | struct tb *tb = sw->tb; |
389 | struct tb_xdomain *xd; |
390 | u64 route; |
391 | |
392 | if (!tb_is_xdomain_enabled()) |
393 | return; |
394 | |
395 | route = tb_downstream_route(port); |
396 | xd = tb_xdomain_find_by_route(tb, route); |
397 | if (xd) { |
398 | tb_xdomain_put(xd); |
399 | return; |
400 | } |
401 | |
402 | xd = tb_xdomain_alloc(tb, parent: &sw->dev, route, local_uuid: tb->root_switch->uuid, |
403 | NULL); |
404 | if (xd) { |
405 | tb_port_at(route, sw)->xdomain = xd; |
406 | tb_port_configure_xdomain(port, xd); |
407 | tb_xdomain_add(xd); |
408 | } |
409 | } |
410 | |
411 | /** |
412 | * tb_find_unused_port() - return the first inactive port on @sw |
413 | * @sw: Switch to find the port on |
414 | * @type: Port type to look for |
415 | */ |
416 | static struct tb_port *tb_find_unused_port(struct tb_switch *sw, |
417 | enum tb_port_type type) |
418 | { |
419 | struct tb_port *port; |
420 | |
421 | tb_switch_for_each_port(sw, port) { |
422 | if (tb_is_upstream_port(port)) |
423 | continue; |
424 | if (port->config.type != type) |
425 | continue; |
426 | if (!port->cap_adap) |
427 | continue; |
428 | if (tb_port_is_enabled(port)) |
429 | continue; |
430 | return port; |
431 | } |
432 | return NULL; |
433 | } |
434 | |
435 | static struct tb_port *tb_find_usb3_down(struct tb_switch *sw, |
436 | const struct tb_port *port) |
437 | { |
438 | struct tb_port *down; |
439 | |
440 | down = usb4_switch_map_usb3_down(sw, port); |
441 | if (down && !tb_usb3_port_is_enabled(port: down)) |
442 | return down; |
443 | return NULL; |
444 | } |
445 | |
446 | static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type, |
447 | struct tb_port *src_port, |
448 | struct tb_port *dst_port) |
449 | { |
450 | struct tb_cm *tcm = tb_priv(tb); |
451 | struct tb_tunnel *tunnel; |
452 | |
453 | list_for_each_entry(tunnel, &tcm->tunnel_list, list) { |
454 | if (tunnel->type == type && |
455 | ((src_port && src_port == tunnel->src_port) || |
456 | (dst_port && dst_port == tunnel->dst_port))) { |
457 | return tunnel; |
458 | } |
459 | } |
460 | |
461 | return NULL; |
462 | } |
463 | |
464 | static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb, |
465 | struct tb_port *src_port, |
466 | struct tb_port *dst_port) |
467 | { |
468 | struct tb_port *port, *usb3_down; |
469 | struct tb_switch *sw; |
470 | |
471 | /* Pick the router that is deepest in the topology */ |
472 | if (tb_port_path_direction_downstream(src: src_port, dst: dst_port)) |
473 | sw = dst_port->sw; |
474 | else |
475 | sw = src_port->sw; |
476 | |
477 | /* Can't be the host router */ |
478 | if (sw == tb->root_switch) |
479 | return NULL; |
480 | |
481 | /* Find the downstream USB4 port that leads to this router */ |
482 | port = tb_port_at(route: tb_route(sw), sw: tb->root_switch); |
483 | /* Find the corresponding host router USB3 downstream port */ |
484 | usb3_down = usb4_switch_map_usb3_down(sw: tb->root_switch, port); |
485 | if (!usb3_down) |
486 | return NULL; |
487 | |
488 | return tb_find_tunnel(tb, type: TB_TUNNEL_USB3, src_port: usb3_down, NULL); |
489 | } |
490 | |
491 | /** |
492 | * tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link |
493 | * @tb: Domain structure |
494 | * @src_port: Source protocol adapter |
495 | * @dst_port: Destination protocol adapter |
496 | * @port: USB4 port the consumed bandwidth is calculated |
497 | * @consumed_up: Consumed upsream bandwidth (Mb/s) |
498 | * @consumed_down: Consumed downstream bandwidth (Mb/s) |
499 | * |
500 | * Calculates consumed USB3 and PCIe bandwidth at @port between path |
501 | * from @src_port to @dst_port. Does not take tunnel starting from |
502 | * @src_port and ending from @src_port into account. |
503 | */ |
504 | static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb, |
505 | struct tb_port *src_port, |
506 | struct tb_port *dst_port, |
507 | struct tb_port *port, |
508 | int *consumed_up, |
509 | int *consumed_down) |
510 | { |
511 | int pci_consumed_up, pci_consumed_down; |
512 | struct tb_tunnel *tunnel; |
513 | |
514 | *consumed_up = *consumed_down = 0; |
515 | |
516 | tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); |
517 | if (tunnel && tunnel->src_port != src_port && |
518 | tunnel->dst_port != dst_port) { |
519 | int ret; |
520 | |
521 | ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up, |
522 | consumed_down); |
523 | if (ret) |
524 | return ret; |
525 | } |
526 | |
527 | /* |
528 | * If there is anything reserved for PCIe bulk traffic take it |
529 | * into account here too. |
530 | */ |
531 | if (tb_tunnel_reserved_pci(port, reserved_up: &pci_consumed_up, reserved_down: &pci_consumed_down)) { |
532 | *consumed_up += pci_consumed_up; |
533 | *consumed_down += pci_consumed_down; |
534 | } |
535 | |
536 | return 0; |
537 | } |
538 | |
539 | /** |
540 | * tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link |
541 | * @tb: Domain structure |
542 | * @src_port: Source protocol adapter |
543 | * @dst_port: Destination protocol adapter |
544 | * @port: USB4 port the consumed bandwidth is calculated |
545 | * @consumed_up: Consumed upsream bandwidth (Mb/s) |
546 | * @consumed_down: Consumed downstream bandwidth (Mb/s) |
547 | * |
548 | * Calculates consumed DP bandwidth at @port between path from @src_port |
549 | * to @dst_port. Does not take tunnel starting from @src_port and ending |
550 | * from @src_port into account. |
551 | * |
552 | * If there is bandwidth reserved for any of the groups between |
553 | * @src_port and @dst_port (but not yet used) that is also taken into |
554 | * account in the returned consumed bandwidth. |
555 | */ |
556 | static int tb_consumed_dp_bandwidth(struct tb *tb, |
557 | struct tb_port *src_port, |
558 | struct tb_port *dst_port, |
559 | struct tb_port *port, |
560 | int *consumed_up, |
561 | int *consumed_down) |
562 | { |
563 | int group_reserved[MAX_GROUPS] = {}; |
564 | struct tb_cm *tcm = tb_priv(tb); |
565 | struct tb_tunnel *tunnel; |
566 | bool downstream; |
567 | int i, ret; |
568 | |
569 | *consumed_up = *consumed_down = 0; |
570 | |
571 | /* |
572 | * Find all DP tunnels that cross the port and reduce |
573 | * their consumed bandwidth from the available. |
574 | */ |
575 | list_for_each_entry(tunnel, &tcm->tunnel_list, list) { |
576 | const struct tb_bandwidth_group *group; |
577 | int dp_consumed_up, dp_consumed_down; |
578 | |
579 | if (tb_tunnel_is_invalid(tunnel)) |
580 | continue; |
581 | |
582 | if (!tb_tunnel_is_dp(tunnel)) |
583 | continue; |
584 | |
585 | if (!tb_tunnel_port_on_path(tunnel, port)) |
586 | continue; |
587 | |
588 | /* |
589 | * Calculate what is reserved for groups crossing the |
590 | * same ports only once (as that is reserved for all the |
591 | * tunnels in the group). |
592 | */ |
593 | group = tunnel->src_port->group; |
594 | if (group && group->reserved && !group_reserved[group->index]) |
595 | group_reserved[group->index] = group->reserved; |
596 | |
597 | /* |
598 | * Ignore the DP tunnel between src_port and dst_port |
599 | * because it is the same tunnel and we may be |
600 | * re-calculating estimated bandwidth. |
601 | */ |
602 | if (tunnel->src_port == src_port && |
603 | tunnel->dst_port == dst_port) |
604 | continue; |
605 | |
606 | ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up: &dp_consumed_up, |
607 | consumed_down: &dp_consumed_down); |
608 | if (ret) |
609 | return ret; |
610 | |
611 | *consumed_up += dp_consumed_up; |
612 | *consumed_down += dp_consumed_down; |
613 | } |
614 | |
615 | downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port); |
616 | for (i = 0; i < ARRAY_SIZE(group_reserved); i++) { |
617 | if (downstream) |
618 | *consumed_down += group_reserved[i]; |
619 | else |
620 | *consumed_up += group_reserved[i]; |
621 | } |
622 | |
623 | return 0; |
624 | } |
625 | |
626 | static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port, |
627 | struct tb_port *port) |
628 | { |
629 | bool downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port); |
630 | enum tb_link_width width; |
631 | |
632 | if (tb_is_upstream_port(port)) |
633 | width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX; |
634 | else |
635 | width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX; |
636 | |
637 | return tb_port_width_supported(port, width); |
638 | } |
639 | |
640 | /** |
641 | * tb_maximum_bandwidth() - Maximum bandwidth over a single link |
642 | * @tb: Domain structure |
643 | * @src_port: Source protocol adapter |
644 | * @dst_port: Destination protocol adapter |
645 | * @port: USB4 port the total bandwidth is calculated |
646 | * @max_up: Maximum upstream bandwidth (Mb/s) |
647 | * @max_down: Maximum downstream bandwidth (Mb/s) |
648 | * @include_asym: Include bandwidth if the link is switched from |
649 | * symmetric to asymmetric |
650 | * |
651 | * Returns maximum possible bandwidth in @max_up and @max_down over a |
652 | * single link at @port. If @include_asym is set then includes the |
653 | * additional banwdith if the links are transitioned into asymmetric to |
654 | * direction from @src_port to @dst_port. |
655 | */ |
656 | static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port, |
657 | struct tb_port *dst_port, struct tb_port *port, |
658 | int *max_up, int *max_down, bool include_asym) |
659 | { |
660 | bool downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port); |
661 | int link_speed, link_width, up_bw, down_bw; |
662 | |
663 | /* |
664 | * Can include asymmetric, only if it is actually supported by |
665 | * the lane adapter. |
666 | */ |
667 | if (!tb_asym_supported(src_port, dst_port, port)) |
668 | include_asym = false; |
669 | |
670 | if (tb_is_upstream_port(port)) { |
671 | link_speed = port->sw->link_speed; |
672 | /* |
673 | * sw->link_width is from upstream perspective so we use |
674 | * the opposite for downstream of the host router. |
675 | */ |
676 | if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) { |
677 | up_bw = link_speed * 3 * 1000; |
678 | down_bw = link_speed * 1 * 1000; |
679 | } else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) { |
680 | up_bw = link_speed * 1 * 1000; |
681 | down_bw = link_speed * 3 * 1000; |
682 | } else if (include_asym) { |
683 | /* |
684 | * The link is symmetric at the moment but we |
685 | * can switch it to asymmetric as needed. Report |
686 | * this bandwidth as available (even though it |
687 | * is not yet enabled). |
688 | */ |
689 | if (downstream) { |
690 | up_bw = link_speed * 1 * 1000; |
691 | down_bw = link_speed * 3 * 1000; |
692 | } else { |
693 | up_bw = link_speed * 3 * 1000; |
694 | down_bw = link_speed * 1 * 1000; |
695 | } |
696 | } else { |
697 | up_bw = link_speed * port->sw->link_width * 1000; |
698 | down_bw = up_bw; |
699 | } |
700 | } else { |
701 | link_speed = tb_port_get_link_speed(port); |
702 | if (link_speed < 0) |
703 | return link_speed; |
704 | |
705 | link_width = tb_port_get_link_width(port); |
706 | if (link_width < 0) |
707 | return link_width; |
708 | |
709 | if (link_width == TB_LINK_WIDTH_ASYM_TX) { |
710 | up_bw = link_speed * 1 * 1000; |
711 | down_bw = link_speed * 3 * 1000; |
712 | } else if (link_width == TB_LINK_WIDTH_ASYM_RX) { |
713 | up_bw = link_speed * 3 * 1000; |
714 | down_bw = link_speed * 1 * 1000; |
715 | } else if (include_asym) { |
716 | /* |
717 | * The link is symmetric at the moment but we |
718 | * can switch it to asymmetric as needed. Report |
719 | * this bandwidth as available (even though it |
720 | * is not yet enabled). |
721 | */ |
722 | if (downstream) { |
723 | up_bw = link_speed * 1 * 1000; |
724 | down_bw = link_speed * 3 * 1000; |
725 | } else { |
726 | up_bw = link_speed * 3 * 1000; |
727 | down_bw = link_speed * 1 * 1000; |
728 | } |
729 | } else { |
730 | up_bw = link_speed * link_width * 1000; |
731 | down_bw = up_bw; |
732 | } |
733 | } |
734 | |
735 | /* Leave 10% guard band */ |
736 | *max_up = up_bw - up_bw / 10; |
737 | *max_down = down_bw - down_bw / 10; |
738 | |
739 | tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down); |
740 | return 0; |
741 | } |
742 | |
743 | /** |
744 | * tb_available_bandwidth() - Available bandwidth for tunneling |
745 | * @tb: Domain structure |
746 | * @src_port: Source protocol adapter |
747 | * @dst_port: Destination protocol adapter |
748 | * @available_up: Available bandwidth upstream (Mb/s) |
749 | * @available_down: Available bandwidth downstream (Mb/s) |
750 | * @include_asym: Include bandwidth if the link is switched from |
751 | * symmetric to asymmetric |
752 | * |
753 | * Calculates maximum available bandwidth for protocol tunneling between |
754 | * @src_port and @dst_port at the moment. This is minimum of maximum |
755 | * link bandwidth across all links reduced by currently consumed |
756 | * bandwidth on that link. |
757 | * |
758 | * If @include_asym is true then includes also bandwidth that can be |
759 | * added when the links are transitioned into asymmetric (but does not |
760 | * transition the links). |
761 | */ |
762 | static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port, |
763 | struct tb_port *dst_port, int *available_up, |
764 | int *available_down, bool include_asym) |
765 | { |
766 | struct tb_port *port; |
767 | int ret; |
768 | |
769 | /* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */ |
770 | *available_up = *available_down = 120000; |
771 | |
772 | /* Find the minimum available bandwidth over all links */ |
773 | tb_for_each_port_on_path(src_port, dst_port, port) { |
774 | int max_up, max_down, consumed_up, consumed_down; |
775 | |
776 | if (!tb_port_is_null(port)) |
777 | continue; |
778 | |
779 | ret = tb_maximum_bandwidth(tb, src_port, dst_port, port, |
780 | max_up: &max_up, max_down: &max_down, include_asym); |
781 | if (ret) |
782 | return ret; |
783 | |
784 | ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port, |
785 | port, consumed_up: &consumed_up, |
786 | consumed_down: &consumed_down); |
787 | if (ret) |
788 | return ret; |
789 | max_up -= consumed_up; |
790 | max_down -= consumed_down; |
791 | |
792 | ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port, |
793 | consumed_up: &consumed_up, consumed_down: &consumed_down); |
794 | if (ret) |
795 | return ret; |
796 | max_up -= consumed_up; |
797 | max_down -= consumed_down; |
798 | |
799 | if (max_up < *available_up) |
800 | *available_up = max_up; |
801 | if (max_down < *available_down) |
802 | *available_down = max_down; |
803 | } |
804 | |
805 | if (*available_up < 0) |
806 | *available_up = 0; |
807 | if (*available_down < 0) |
808 | *available_down = 0; |
809 | |
810 | return 0; |
811 | } |
812 | |
813 | static int tb_release_unused_usb3_bandwidth(struct tb *tb, |
814 | struct tb_port *src_port, |
815 | struct tb_port *dst_port) |
816 | { |
817 | struct tb_tunnel *tunnel; |
818 | |
819 | tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); |
820 | return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0; |
821 | } |
822 | |
823 | static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port, |
824 | struct tb_port *dst_port) |
825 | { |
826 | int ret, available_up, available_down; |
827 | struct tb_tunnel *tunnel; |
828 | |
829 | tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port); |
830 | if (!tunnel) |
831 | return; |
832 | |
833 | tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n"); |
834 | |
835 | /* |
836 | * Calculate available bandwidth for the first hop USB3 tunnel. |
837 | * That determines the whole USB3 bandwidth for this branch. |
838 | */ |
839 | ret = tb_available_bandwidth(tb, src_port: tunnel->src_port, dst_port: tunnel->dst_port, |
840 | available_up: &available_up, available_down: &available_down, include_asym: false); |
841 | if (ret) { |
842 | tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n"); |
843 | return; |
844 | } |
845 | |
846 | tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up, |
847 | available_down); |
848 | |
849 | tb_tunnel_reclaim_available_bandwidth(tunnel, available_up: &available_up, available_down: &available_down); |
850 | } |
851 | |
852 | static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw) |
853 | { |
854 | struct tb_switch *parent = tb_switch_parent(sw); |
855 | int ret, available_up, available_down; |
856 | struct tb_port *up, *down, *port; |
857 | struct tb_cm *tcm = tb_priv(tb); |
858 | struct tb_tunnel *tunnel; |
859 | |
860 | if (!tb_acpi_may_tunnel_usb3()) { |
861 | tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n"); |
862 | return 0; |
863 | } |
864 | |
865 | up = tb_switch_find_port(sw, type: TB_TYPE_USB3_UP); |
866 | if (!up) |
867 | return 0; |
868 | |
869 | if (!sw->link_usb4) |
870 | return 0; |
871 | |
872 | /* |
873 | * Look up available down port. Since we are chaining it should |
874 | * be found right above this switch. |
875 | */ |
876 | port = tb_switch_downstream_port(sw); |
877 | down = tb_find_usb3_down(sw: parent, port); |
878 | if (!down) |
879 | return 0; |
880 | |
881 | if (tb_route(sw: parent)) { |
882 | struct tb_port *parent_up; |
883 | /* |
884 | * Check first that the parent switch has its upstream USB3 |
885 | * port enabled. Otherwise the chain is not complete and |
886 | * there is no point setting up a new tunnel. |
887 | */ |
888 | parent_up = tb_switch_find_port(sw: parent, type: TB_TYPE_USB3_UP); |
889 | if (!parent_up || !tb_port_is_enabled(port: parent_up)) |
890 | return 0; |
891 | |
892 | /* Make all unused bandwidth available for the new tunnel */ |
893 | ret = tb_release_unused_usb3_bandwidth(tb, src_port: down, dst_port: up); |
894 | if (ret) |
895 | return ret; |
896 | } |
897 | |
898 | ret = tb_available_bandwidth(tb, src_port: down, dst_port: up, available_up: &available_up, available_down: &available_down, |
899 | include_asym: false); |
900 | if (ret) |
901 | goto err_reclaim; |
902 | |
903 | tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n", |
904 | available_up, available_down); |
905 | |
906 | tunnel = tb_tunnel_alloc_usb3(tb, up, down, max_up: available_up, |
907 | max_down: available_down); |
908 | if (!tunnel) { |
909 | ret = -ENOMEM; |
910 | goto err_reclaim; |
911 | } |
912 | |
913 | if (tb_tunnel_activate(tunnel)) { |
914 | tb_port_info(up, |
915 | "USB3 tunnel activation failed, aborting\n"); |
916 | ret = -EIO; |
917 | goto err_free; |
918 | } |
919 | |
920 | list_add_tail(new: &tunnel->list, head: &tcm->tunnel_list); |
921 | if (tb_route(sw: parent)) |
922 | tb_reclaim_usb3_bandwidth(tb, src_port: down, dst_port: up); |
923 | |
924 | return 0; |
925 | |
926 | err_free: |
927 | tb_tunnel_free(tunnel); |
928 | err_reclaim: |
929 | if (tb_route(sw: parent)) |
930 | tb_reclaim_usb3_bandwidth(tb, src_port: down, dst_port: up); |
931 | |
932 | return ret; |
933 | } |
934 | |
935 | static int tb_create_usb3_tunnels(struct tb_switch *sw) |
936 | { |
937 | struct tb_port *port; |
938 | int ret; |
939 | |
940 | if (!tb_acpi_may_tunnel_usb3()) |
941 | return 0; |
942 | |
943 | if (tb_route(sw)) { |
944 | ret = tb_tunnel_usb3(tb: sw->tb, sw); |
945 | if (ret) |
946 | return ret; |
947 | } |
948 | |
949 | tb_switch_for_each_port(sw, port) { |
950 | if (!tb_port_has_remote(port)) |
951 | continue; |
952 | ret = tb_create_usb3_tunnels(sw: port->remote->sw); |
953 | if (ret) |
954 | return ret; |
955 | } |
956 | |
957 | return 0; |
958 | } |
959 | |
960 | /** |
961 | * tb_configure_asym() - Transition links to asymmetric if needed |
962 | * @tb: Domain structure |
963 | * @src_port: Source adapter to start the transition |
964 | * @dst_port: Destination adapter |
965 | * @requested_up: Additional bandwidth (Mb/s) required upstream |
966 | * @requested_down: Additional bandwidth (Mb/s) required downstream |
967 | * |
968 | * Transition links between @src_port and @dst_port into asymmetric, with |
969 | * three lanes in the direction from @src_port towards @dst_port and one lane |
970 | * in the opposite direction, if the bandwidth requirements |
971 | * (requested + currently consumed) on that link exceed @asym_threshold. |
972 | * |
973 | * Must be called with available >= requested over all links. |
974 | */ |
975 | static int tb_configure_asym(struct tb *tb, struct tb_port *src_port, |
976 | struct tb_port *dst_port, int requested_up, |
977 | int requested_down) |
978 | { |
979 | bool clx = false, clx_disabled = false, downstream; |
980 | struct tb_switch *sw; |
981 | struct tb_port *up; |
982 | int ret = 0; |
983 | |
984 | if (!asym_threshold) |
985 | return 0; |
986 | |
987 | downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port); |
988 | /* Pick up router deepest in the hierarchy */ |
989 | if (downstream) |
990 | sw = dst_port->sw; |
991 | else |
992 | sw = src_port->sw; |
993 | |
994 | tb_for_each_upstream_port_on_path(src_port, dst_port, up) { |
995 | struct tb_port *down = tb_switch_downstream_port(sw: up->sw); |
996 | enum tb_link_width width_up, width_down; |
997 | int consumed_up, consumed_down; |
998 | |
999 | ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port: up, |
1000 | consumed_up: &consumed_up, consumed_down: &consumed_down); |
1001 | if (ret) |
1002 | break; |
1003 | |
1004 | if (downstream) { |
1005 | /* |
1006 | * Downstream so make sure upstream is within the 36G |
1007 | * (40G - guard band 10%), and the requested is above |
1008 | * what the threshold is. |
1009 | */ |
1010 | if (consumed_up + requested_up >= TB_ASYM_MIN) { |
1011 | ret = -ENOBUFS; |
1012 | break; |
1013 | } |
1014 | /* Does consumed + requested exceed the threshold */ |
1015 | if (consumed_down + requested_down < asym_threshold) |
1016 | continue; |
1017 | |
1018 | width_up = TB_LINK_WIDTH_ASYM_RX; |
1019 | width_down = TB_LINK_WIDTH_ASYM_TX; |
1020 | } else { |
1021 | /* Upstream, the opposite of above */ |
1022 | if (consumed_down + requested_down >= TB_ASYM_MIN) { |
1023 | ret = -ENOBUFS; |
1024 | break; |
1025 | } |
1026 | if (consumed_up + requested_up < asym_threshold) |
1027 | continue; |
1028 | |
1029 | width_up = TB_LINK_WIDTH_ASYM_TX; |
1030 | width_down = TB_LINK_WIDTH_ASYM_RX; |
1031 | } |
1032 | |
1033 | if (up->sw->link_width == width_up) |
1034 | continue; |
1035 | |
1036 | if (!tb_port_width_supported(port: up, width: width_up) || |
1037 | !tb_port_width_supported(port: down, width: width_down)) |
1038 | continue; |
1039 | |
1040 | /* |
1041 | * Disable CL states before doing any transitions. We |
1042 | * delayed it until now that we know there is a real |
1043 | * transition taking place. |
1044 | */ |
1045 | if (!clx_disabled) { |
1046 | clx = tb_disable_clx(sw); |
1047 | clx_disabled = true; |
1048 | } |
1049 | |
1050 | tb_sw_dbg(up->sw, "configuring asymmetric link\n"); |
1051 | |
1052 | /* |
1053 | * Here requested + consumed > threshold so we need to |
1054 | * transtion the link into asymmetric now. |
1055 | */ |
1056 | ret = tb_switch_set_link_width(sw: up->sw, width: width_up); |
1057 | if (ret) { |
1058 | tb_sw_warn(up->sw, "failed to set link width\n"); |
1059 | break; |
1060 | } |
1061 | } |
1062 | |
1063 | /* Re-enable CL states if they were previosly enabled */ |
1064 | if (clx) |
1065 | tb_enable_clx(sw); |
1066 | |
1067 | return ret; |
1068 | } |
1069 | |
1070 | /** |
1071 | * tb_configure_sym() - Transition links to symmetric if possible |
1072 | * @tb: Domain structure |
1073 | * @src_port: Source adapter to start the transition |
1074 | * @dst_port: Destination adapter |
1075 | * @keep_asym: Keep asymmetric link if preferred |
1076 | * |
1077 | * Goes over each link from @src_port to @dst_port and tries to |
1078 | * transition the link to symmetric if the currently consumed bandwidth |
1079 | * allows and link asymmetric preference is ignored (if @keep_asym is %false). |
1080 | */ |
1081 | static int tb_configure_sym(struct tb *tb, struct tb_port *src_port, |
1082 | struct tb_port *dst_port, bool keep_asym) |
1083 | { |
1084 | bool clx = false, clx_disabled = false, downstream; |
1085 | struct tb_switch *sw; |
1086 | struct tb_port *up; |
1087 | int ret = 0; |
1088 | |
1089 | if (!asym_threshold) |
1090 | return 0; |
1091 | |
1092 | downstream = tb_port_path_direction_downstream(src: src_port, dst: dst_port); |
1093 | /* Pick up router deepest in the hierarchy */ |
1094 | if (downstream) |
1095 | sw = dst_port->sw; |
1096 | else |
1097 | sw = src_port->sw; |
1098 | |
1099 | tb_for_each_upstream_port_on_path(src_port, dst_port, up) { |
1100 | int consumed_up, consumed_down; |
1101 | |
1102 | /* Already symmetric */ |
1103 | if (up->sw->link_width <= TB_LINK_WIDTH_DUAL) |
1104 | continue; |
1105 | /* Unplugged, no need to switch */ |
1106 | if (up->sw->is_unplugged) |
1107 | continue; |
1108 | |
1109 | ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port: up, |
1110 | consumed_up: &consumed_up, consumed_down: &consumed_down); |
1111 | if (ret) |
1112 | break; |
1113 | |
1114 | if (downstream) { |
1115 | /* |
1116 | * Downstream so we want the consumed_down < threshold. |
1117 | * Upstream traffic should be less than 36G (40G |
1118 | * guard band 10%) as the link was configured asymmetric |
1119 | * already. |
1120 | */ |
1121 | if (consumed_down >= asym_threshold) |
1122 | continue; |
1123 | } else { |
1124 | if (consumed_up >= asym_threshold) |
1125 | continue; |
1126 | } |
1127 | |
1128 | if (up->sw->link_width == TB_LINK_WIDTH_DUAL) |
1129 | continue; |
1130 | |
1131 | /* |
1132 | * Here consumed < threshold so we can transition the |
1133 | * link to symmetric. |
1134 | * |
1135 | * However, if the router prefers asymmetric link we |
1136 | * honor that (unless @keep_asym is %false). |
1137 | */ |
1138 | if (keep_asym && |
1139 | up->sw->preferred_link_width > TB_LINK_WIDTH_DUAL) { |
1140 | tb_sw_dbg(up->sw, "keeping preferred asymmetric link\n"); |
1141 | continue; |
1142 | } |
1143 | |
1144 | /* Disable CL states before doing any transitions */ |
1145 | if (!clx_disabled) { |
1146 | clx = tb_disable_clx(sw); |
1147 | clx_disabled = true; |
1148 | } |
1149 | |
1150 | tb_sw_dbg(up->sw, "configuring symmetric link\n"); |
1151 | |
1152 | ret = tb_switch_set_link_width(sw: up->sw, width: TB_LINK_WIDTH_DUAL); |
1153 | if (ret) { |
1154 | tb_sw_warn(up->sw, "failed to set link width\n"); |
1155 | break; |
1156 | } |
1157 | } |
1158 | |
1159 | /* Re-enable CL states if they were previosly enabled */ |
1160 | if (clx) |
1161 | tb_enable_clx(sw); |
1162 | |
1163 | return ret; |
1164 | } |
1165 | |
1166 | static void tb_configure_link(struct tb_port *down, struct tb_port *up, |
1167 | struct tb_switch *sw) |
1168 | { |
1169 | struct tb *tb = sw->tb; |
1170 | |
1171 | /* Link the routers using both links if available */ |
1172 | down->remote = up; |
1173 | up->remote = down; |
1174 | if (down->dual_link_port && up->dual_link_port) { |
1175 | down->dual_link_port->remote = up->dual_link_port; |
1176 | up->dual_link_port->remote = down->dual_link_port; |
1177 | } |
1178 | |
1179 | /* |
1180 | * Enable lane bonding if the link is currently two single lane |
1181 | * links. |
1182 | */ |
1183 | if (sw->link_width < TB_LINK_WIDTH_DUAL) |
1184 | tb_switch_set_link_width(sw, width: TB_LINK_WIDTH_DUAL); |
1185 | |
1186 | /* |
1187 | * Device router that comes up as symmetric link is |
1188 | * connected deeper in the hierarchy, we transition the links |
1189 | * above into symmetric if bandwidth allows. |
1190 | */ |
1191 | if (tb_switch_depth(sw) > 1 && |
1192 | tb_port_get_link_generation(port: up) >= 4 && |
1193 | up->sw->link_width == TB_LINK_WIDTH_DUAL) { |
1194 | struct tb_port *host_port; |
1195 | |
1196 | host_port = tb_port_at(route: tb_route(sw), sw: tb->root_switch); |
1197 | tb_configure_sym(tb, src_port: host_port, dst_port: up, keep_asym: false); |
1198 | } |
1199 | |
1200 | /* Set the link configured */ |
1201 | tb_switch_configure_link(sw); |
1202 | } |
1203 | |
1204 | static void tb_scan_port(struct tb_port *port); |
1205 | |
1206 | /* |
1207 | * tb_scan_switch() - scan for and initialize downstream switches |
1208 | */ |
1209 | static void tb_scan_switch(struct tb_switch *sw) |
1210 | { |
1211 | struct tb_port *port; |
1212 | |
1213 | pm_runtime_get_sync(dev: &sw->dev); |
1214 | |
1215 | tb_switch_for_each_port(sw, port) |
1216 | tb_scan_port(port); |
1217 | |
1218 | pm_runtime_mark_last_busy(dev: &sw->dev); |
1219 | pm_runtime_put_autosuspend(dev: &sw->dev); |
1220 | } |
1221 | |
1222 | /* |
1223 | * tb_scan_port() - check for and initialize switches below port |
1224 | */ |
1225 | static void tb_scan_port(struct tb_port *port) |
1226 | { |
1227 | struct tb_cm *tcm = tb_priv(tb: port->sw->tb); |
1228 | struct tb_port *upstream_port; |
1229 | bool discovery = false; |
1230 | struct tb_switch *sw; |
1231 | |
1232 | if (tb_is_upstream_port(port)) |
1233 | return; |
1234 | |
1235 | if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 && |
1236 | !tb_dp_port_is_enabled(port)) { |
1237 | tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n"); |
1238 | tb_queue_hotplug(tb: port->sw->tb, route: tb_route(sw: port->sw), port: port->port, |
1239 | unplug: false); |
1240 | return; |
1241 | } |
1242 | |
1243 | if (port->config.type != TB_TYPE_PORT) |
1244 | return; |
1245 | if (port->dual_link_port && port->link_nr) |
1246 | return; /* |
1247 | * Downstream switch is reachable through two ports. |
1248 | * Only scan on the primary port (link_nr == 0). |
1249 | */ |
1250 | |
1251 | if (port->usb4) |
1252 | pm_runtime_get_sync(dev: &port->usb4->dev); |
1253 | |
1254 | if (tb_wait_for_port(port, wait_if_unplugged: false) <= 0) |
1255 | goto out_rpm_put; |
1256 | if (port->remote) { |
1257 | tb_port_dbg(port, "port already has a remote\n"); |
1258 | goto out_rpm_put; |
1259 | } |
1260 | |
1261 | tb_retimer_scan(port, add: true); |
1262 | |
1263 | sw = tb_switch_alloc(tb: port->sw->tb, parent: &port->sw->dev, |
1264 | route: tb_downstream_route(port)); |
1265 | if (IS_ERR(ptr: sw)) { |
1266 | /* |
1267 | * If there is an error accessing the connected switch |
1268 | * it may be connected to another domain. Also we allow |
1269 | * the other domain to be connected to a max depth switch. |
1270 | */ |
1271 | if (PTR_ERR(ptr: sw) == -EIO || PTR_ERR(ptr: sw) == -EADDRNOTAVAIL) |
1272 | tb_scan_xdomain(port); |
1273 | goto out_rpm_put; |
1274 | } |
1275 | |
1276 | if (tb_switch_configure(sw)) { |
1277 | tb_switch_put(sw); |
1278 | goto out_rpm_put; |
1279 | } |
1280 | |
1281 | /* |
1282 | * If there was previously another domain connected remove it |
1283 | * first. |
1284 | */ |
1285 | if (port->xdomain) { |
1286 | tb_xdomain_remove(xd: port->xdomain); |
1287 | tb_port_unconfigure_xdomain(port); |
1288 | port->xdomain = NULL; |
1289 | } |
1290 | |
1291 | /* |
1292 | * Do not send uevents until we have discovered all existing |
1293 | * tunnels and know which switches were authorized already by |
1294 | * the boot firmware. |
1295 | */ |
1296 | if (!tcm->hotplug_active) { |
1297 | dev_set_uevent_suppress(dev: &sw->dev, val: true); |
1298 | discovery = true; |
1299 | } |
1300 | |
1301 | /* |
1302 | * At the moment Thunderbolt 2 and beyond (devices with LC) we |
1303 | * can support runtime PM. |
1304 | */ |
1305 | sw->rpm = sw->generation > 1; |
1306 | |
1307 | if (tb_switch_add(sw)) { |
1308 | tb_switch_put(sw); |
1309 | goto out_rpm_put; |
1310 | } |
1311 | |
1312 | upstream_port = tb_upstream_port(sw); |
1313 | tb_configure_link(down: port, up: upstream_port, sw); |
1314 | |
1315 | /* |
1316 | * CL0s and CL1 are enabled and supported together. |
1317 | * Silently ignore CLx enabling in case CLx is not supported. |
1318 | */ |
1319 | if (discovery) |
1320 | tb_sw_dbg(sw, "discovery, not touching CL states\n"); |
1321 | else if (tb_enable_clx(sw)) |
1322 | tb_sw_warn(sw, "failed to enable CL states\n"); |
1323 | |
1324 | if (tb_enable_tmu(sw)) |
1325 | tb_sw_warn(sw, "failed to enable TMU\n"); |
1326 | |
1327 | /* |
1328 | * Configuration valid needs to be set after the TMU has been |
1329 | * enabled for the upstream port of the router so we do it here. |
1330 | */ |
1331 | tb_switch_configuration_valid(sw); |
1332 | |
1333 | /* Scan upstream retimers */ |
1334 | tb_retimer_scan(port: upstream_port, add: true); |
1335 | |
1336 | /* |
1337 | * Create USB 3.x tunnels only when the switch is plugged to the |
1338 | * domain. This is because we scan the domain also during discovery |
1339 | * and want to discover existing USB 3.x tunnels before we create |
1340 | * any new. |
1341 | */ |
1342 | if (tcm->hotplug_active && tb_tunnel_usb3(tb: sw->tb, sw)) |
1343 | tb_sw_warn(sw, "USB3 tunnel creation failed\n"); |
1344 | |
1345 | tb_add_dp_resources(sw); |
1346 | tb_scan_switch(sw); |
1347 | |
1348 | out_rpm_put: |
1349 | if (port->usb4) { |
1350 | pm_runtime_mark_last_busy(dev: &port->usb4->dev); |
1351 | pm_runtime_put_autosuspend(dev: &port->usb4->dev); |
1352 | } |
1353 | } |
1354 | |
1355 | static void |
1356 | tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group) |
1357 | { |
1358 | struct tb_tunnel *first_tunnel; |
1359 | struct tb *tb = group->tb; |
1360 | struct tb_port *in; |
1361 | int ret; |
1362 | |
1363 | tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n", |
1364 | group->index); |
1365 | |
1366 | first_tunnel = NULL; |
1367 | list_for_each_entry(in, &group->ports, group_list) { |
1368 | int estimated_bw, estimated_up, estimated_down; |
1369 | struct tb_tunnel *tunnel; |
1370 | struct tb_port *out; |
1371 | |
1372 | if (!usb4_dp_port_bandwidth_mode_enabled(port: in)) |
1373 | continue; |
1374 | |
1375 | tunnel = tb_find_tunnel(tb, type: TB_TUNNEL_DP, src_port: in, NULL); |
1376 | if (WARN_ON(!tunnel)) |
1377 | break; |
1378 | |
1379 | if (!first_tunnel) { |
1380 | /* |
1381 | * Since USB3 bandwidth is shared by all DP |
1382 | * tunnels under the host router USB4 port, even |
1383 | * if they do not begin from the host router, we |
1384 | * can release USB3 bandwidth just once and not |
1385 | * for each tunnel separately. |
1386 | */ |
1387 | first_tunnel = tunnel; |
1388 | ret = tb_release_unused_usb3_bandwidth(tb, |
1389 | src_port: first_tunnel->src_port, dst_port: first_tunnel->dst_port); |
1390 | if (ret) { |
1391 | tb_tunnel_warn(tunnel, |
1392 | "failed to release unused bandwidth\n"); |
1393 | break; |
1394 | } |
1395 | } |
1396 | |
1397 | out = tunnel->dst_port; |
1398 | ret = tb_available_bandwidth(tb, src_port: in, dst_port: out, available_up: &estimated_up, |
1399 | available_down: &estimated_down, include_asym: true); |
1400 | if (ret) { |
1401 | tb_tunnel_warn(tunnel, |
1402 | "failed to re-calculate estimated bandwidth\n"); |
1403 | break; |
1404 | } |
1405 | |
1406 | /* |
1407 | * Estimated bandwidth includes: |
1408 | * - already allocated bandwidth for the DP tunnel |
1409 | * - available bandwidth along the path |
1410 | * - bandwidth allocated for USB 3.x but not used. |
1411 | */ |
1412 | if (tb_tunnel_direction_downstream(tunnel)) |
1413 | estimated_bw = estimated_down; |
1414 | else |
1415 | estimated_bw = estimated_up; |
1416 | |
1417 | /* |
1418 | * If there is reserved bandwidth for the group that is |
1419 | * not yet released we report that too. |
1420 | */ |
1421 | tb_tunnel_dbg(tunnel, |
1422 | "re-calculated estimated bandwidth %u (+ %u reserved) = %u Mb/s\n", |
1423 | estimated_bw, group->reserved, |
1424 | estimated_bw + group->reserved); |
1425 | |
1426 | if (usb4_dp_port_set_estimated_bandwidth(port: in, |
1427 | bw: estimated_bw + group->reserved)) |
1428 | tb_tunnel_warn(tunnel, |
1429 | "failed to update estimated bandwidth\n"); |
1430 | } |
1431 | |
1432 | if (first_tunnel) |
1433 | tb_reclaim_usb3_bandwidth(tb, src_port: first_tunnel->src_port, |
1434 | dst_port: first_tunnel->dst_port); |
1435 | |
1436 | tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index); |
1437 | } |
1438 | |
1439 | static void tb_recalc_estimated_bandwidth(struct tb *tb) |
1440 | { |
1441 | struct tb_cm *tcm = tb_priv(tb); |
1442 | int i; |
1443 | |
1444 | tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n"); |
1445 | |
1446 | for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { |
1447 | struct tb_bandwidth_group *group = &tcm->groups[i]; |
1448 | |
1449 | if (!list_empty(head: &group->ports)) |
1450 | tb_recalc_estimated_bandwidth_for_group(group); |
1451 | } |
1452 | |
1453 | tb_dbg(tb, "bandwidth re-calculation done\n"); |
1454 | } |
1455 | |
1456 | static bool __release_group_bandwidth(struct tb_bandwidth_group *group) |
1457 | { |
1458 | if (group->reserved) { |
1459 | tb_dbg(group->tb, "group %d released total %d Mb/s\n", group->index, |
1460 | group->reserved); |
1461 | group->reserved = 0; |
1462 | return true; |
1463 | } |
1464 | return false; |
1465 | } |
1466 | |
1467 | static void __configure_group_sym(struct tb_bandwidth_group *group) |
1468 | { |
1469 | struct tb_tunnel *tunnel; |
1470 | struct tb_port *in; |
1471 | |
1472 | if (list_empty(head: &group->ports)) |
1473 | return; |
1474 | |
1475 | /* |
1476 | * All the tunnels in the group go through the same USB4 links |
1477 | * so we find the first one here and pass the IN and OUT |
1478 | * adapters to tb_configure_sym() which now transitions the |
1479 | * links back to symmetric if bandwidth requirement < asym_threshold. |
1480 | * |
1481 | * We do this here to avoid unnecessary transitions (for example |
1482 | * if the graphics released bandwidth for other tunnel in the |
1483 | * same group). |
1484 | */ |
1485 | in = list_first_entry(&group->ports, struct tb_port, group_list); |
1486 | tunnel = tb_find_tunnel(tb: group->tb, type: TB_TUNNEL_DP, src_port: in, NULL); |
1487 | if (tunnel) |
1488 | tb_configure_sym(tb: group->tb, src_port: in, dst_port: tunnel->dst_port, keep_asym: true); |
1489 | } |
1490 | |
1491 | static void tb_bandwidth_group_release_work(struct work_struct *work) |
1492 | { |
1493 | struct tb_bandwidth_group *group = |
1494 | container_of(work, typeof(*group), release_work.work); |
1495 | struct tb *tb = group->tb; |
1496 | |
1497 | mutex_lock(&tb->lock); |
1498 | if (__release_group_bandwidth(group)) |
1499 | tb_recalc_estimated_bandwidth(tb); |
1500 | __configure_group_sym(group); |
1501 | mutex_unlock(lock: &tb->lock); |
1502 | } |
1503 | |
1504 | static void tb_init_bandwidth_groups(struct tb_cm *tcm) |
1505 | { |
1506 | int i; |
1507 | |
1508 | for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { |
1509 | struct tb_bandwidth_group *group = &tcm->groups[i]; |
1510 | |
1511 | group->tb = tcm_to_tb(tcm); |
1512 | group->index = i + 1; |
1513 | INIT_LIST_HEAD(list: &group->ports); |
1514 | INIT_DELAYED_WORK(&group->release_work, |
1515 | tb_bandwidth_group_release_work); |
1516 | } |
1517 | } |
1518 | |
1519 | static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group, |
1520 | struct tb_port *in) |
1521 | { |
1522 | if (!group || WARN_ON(in->group)) |
1523 | return; |
1524 | |
1525 | in->group = group; |
1526 | list_add_tail(new: &in->group_list, head: &group->ports); |
1527 | |
1528 | tb_port_dbg(in, "attached to bandwidth group %d\n", group->index); |
1529 | } |
1530 | |
1531 | static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm) |
1532 | { |
1533 | int i; |
1534 | |
1535 | for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { |
1536 | struct tb_bandwidth_group *group = &tcm->groups[i]; |
1537 | |
1538 | if (list_empty(head: &group->ports)) |
1539 | return group; |
1540 | } |
1541 | |
1542 | return NULL; |
1543 | } |
1544 | |
1545 | static struct tb_bandwidth_group * |
1546 | tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, |
1547 | struct tb_port *out) |
1548 | { |
1549 | struct tb_bandwidth_group *group; |
1550 | struct tb_tunnel *tunnel; |
1551 | |
1552 | /* |
1553 | * Find all DP tunnels that go through all the same USB4 links |
1554 | * as this one. Because we always setup tunnels the same way we |
1555 | * can just check for the routers at both ends of the tunnels |
1556 | * and if they are the same we have a match. |
1557 | */ |
1558 | list_for_each_entry(tunnel, &tcm->tunnel_list, list) { |
1559 | if (!tb_tunnel_is_dp(tunnel)) |
1560 | continue; |
1561 | |
1562 | if (tunnel->src_port->sw == in->sw && |
1563 | tunnel->dst_port->sw == out->sw) { |
1564 | group = tunnel->src_port->group; |
1565 | if (group) { |
1566 | tb_bandwidth_group_attach_port(group, in); |
1567 | return group; |
1568 | } |
1569 | } |
1570 | } |
1571 | |
1572 | /* Pick up next available group then */ |
1573 | group = tb_find_free_bandwidth_group(tcm); |
1574 | if (group) |
1575 | tb_bandwidth_group_attach_port(group, in); |
1576 | else |
1577 | tb_port_warn(in, "no available bandwidth groups\n"); |
1578 | |
1579 | return group; |
1580 | } |
1581 | |
1582 | static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in, |
1583 | struct tb_port *out) |
1584 | { |
1585 | if (usb4_dp_port_bandwidth_mode_enabled(port: in)) { |
1586 | int index, i; |
1587 | |
1588 | index = usb4_dp_port_group_id(port: in); |
1589 | for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) { |
1590 | if (tcm->groups[i].index == index) { |
1591 | tb_bandwidth_group_attach_port(group: &tcm->groups[i], in); |
1592 | return; |
1593 | } |
1594 | } |
1595 | } |
1596 | |
1597 | tb_attach_bandwidth_group(tcm, in, out); |
1598 | } |
1599 | |
1600 | static void tb_detach_bandwidth_group(struct tb_port *in) |
1601 | { |
1602 | struct tb_bandwidth_group *group = in->group; |
1603 | |
1604 | if (group) { |
1605 | in->group = NULL; |
1606 | list_del_init(entry: &in->group_list); |
1607 | |
1608 | tb_port_dbg(in, "detached from bandwidth group %d\n", group->index); |
1609 | |
1610 | /* No more tunnels so release the reserved bandwidth if any */ |
1611 | if (list_empty(head: &group->ports)) { |
1612 | cancel_delayed_work(dwork: &group->release_work); |
1613 | __release_group_bandwidth(group); |
1614 | } |
1615 | } |
1616 | } |
1617 | |
1618 | static void tb_discover_tunnels(struct tb *tb) |
1619 | { |
1620 | struct tb_cm *tcm = tb_priv(tb); |
1621 | struct tb_tunnel *tunnel; |
1622 | |
1623 | tb_switch_discover_tunnels(sw: tb->root_switch, list: &tcm->tunnel_list, alloc_hopids: true); |
1624 | |
1625 | list_for_each_entry(tunnel, &tcm->tunnel_list, list) { |
1626 | if (tb_tunnel_is_pci(tunnel)) { |
1627 | struct tb_switch *parent = tunnel->dst_port->sw; |
1628 | |
1629 | while (parent != tunnel->src_port->sw) { |
1630 | parent->boot = true; |
1631 | parent = tb_switch_parent(sw: parent); |
1632 | } |
1633 | } else if (tb_tunnel_is_dp(tunnel)) { |
1634 | struct tb_port *in = tunnel->src_port; |
1635 | struct tb_port *out = tunnel->dst_port; |
1636 | |
1637 | /* Keep the domain from powering down */ |
1638 | pm_runtime_get_sync(dev: &in->sw->dev); |
1639 | pm_runtime_get_sync(dev: &out->sw->dev); |
1640 | |
1641 | tb_discover_bandwidth_group(tcm, in, out); |
1642 | } |
1643 | } |
1644 | } |
1645 | |
1646 | static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel) |
1647 | { |
1648 | struct tb_port *src_port, *dst_port; |
1649 | struct tb *tb; |
1650 | |
1651 | if (!tunnel) |
1652 | return; |
1653 | |
1654 | tb_tunnel_deactivate(tunnel); |
1655 | list_del(entry: &tunnel->list); |
1656 | |
1657 | tb = tunnel->tb; |
1658 | src_port = tunnel->src_port; |
1659 | dst_port = tunnel->dst_port; |
1660 | |
1661 | switch (tunnel->type) { |
1662 | case TB_TUNNEL_DP: |
1663 | tb_detach_bandwidth_group(in: src_port); |
1664 | /* |
1665 | * In case of DP tunnel make sure the DP IN resource is |
1666 | * deallocated properly. |
1667 | */ |
1668 | tb_switch_dealloc_dp_resource(sw: src_port->sw, in: src_port); |
1669 | /* |
1670 | * If bandwidth on a link is < asym_threshold |
1671 | * transition the link to symmetric. |
1672 | */ |
1673 | tb_configure_sym(tb, src_port, dst_port, keep_asym: true); |
1674 | /* Now we can allow the domain to runtime suspend again */ |
1675 | pm_runtime_mark_last_busy(dev: &dst_port->sw->dev); |
1676 | pm_runtime_put_autosuspend(dev: &dst_port->sw->dev); |
1677 | pm_runtime_mark_last_busy(dev: &src_port->sw->dev); |
1678 | pm_runtime_put_autosuspend(dev: &src_port->sw->dev); |
1679 | fallthrough; |
1680 | |
1681 | case TB_TUNNEL_USB3: |
1682 | tb_reclaim_usb3_bandwidth(tb, src_port, dst_port); |
1683 | break; |
1684 | |
1685 | default: |
1686 | /* |
1687 | * PCIe and DMA tunnels do not consume guaranteed |
1688 | * bandwidth. |
1689 | */ |
1690 | break; |
1691 | } |
1692 | |
1693 | tb_tunnel_free(tunnel); |
1694 | } |
1695 | |
1696 | /* |
1697 | * tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away |
1698 | */ |
1699 | static void tb_free_invalid_tunnels(struct tb *tb) |
1700 | { |
1701 | struct tb_cm *tcm = tb_priv(tb); |
1702 | struct tb_tunnel *tunnel; |
1703 | struct tb_tunnel *n; |
1704 | |
1705 | list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { |
1706 | if (tb_tunnel_is_invalid(tunnel)) |
1707 | tb_deactivate_and_free_tunnel(tunnel); |
1708 | } |
1709 | } |
1710 | |
1711 | /* |
1712 | * tb_free_unplugged_children() - traverse hierarchy and free unplugged switches |
1713 | */ |
1714 | static void tb_free_unplugged_children(struct tb_switch *sw) |
1715 | { |
1716 | struct tb_port *port; |
1717 | |
1718 | tb_switch_for_each_port(sw, port) { |
1719 | if (!tb_port_has_remote(port)) |
1720 | continue; |
1721 | |
1722 | if (port->remote->sw->is_unplugged) { |
1723 | tb_retimer_remove_all(port); |
1724 | tb_remove_dp_resources(sw: port->remote->sw); |
1725 | tb_switch_unconfigure_link(sw: port->remote->sw); |
1726 | tb_switch_set_link_width(sw: port->remote->sw, |
1727 | width: TB_LINK_WIDTH_SINGLE); |
1728 | tb_switch_remove(sw: port->remote->sw); |
1729 | port->remote = NULL; |
1730 | if (port->dual_link_port) |
1731 | port->dual_link_port->remote = NULL; |
1732 | } else { |
1733 | tb_free_unplugged_children(sw: port->remote->sw); |
1734 | } |
1735 | } |
1736 | } |
1737 | |
1738 | static struct tb_port *tb_find_pcie_down(struct tb_switch *sw, |
1739 | const struct tb_port *port) |
1740 | { |
1741 | struct tb_port *down = NULL; |
1742 | |
1743 | /* |
1744 | * To keep plugging devices consistently in the same PCIe |
1745 | * hierarchy, do mapping here for switch downstream PCIe ports. |
1746 | */ |
1747 | if (tb_switch_is_usb4(sw)) { |
1748 | down = usb4_switch_map_pcie_down(sw, port); |
1749 | } else if (!tb_route(sw)) { |
1750 | int phy_port = tb_phy_port_from_link(link: port->port); |
1751 | int index; |
1752 | |
1753 | /* |
1754 | * Hard-coded Thunderbolt port to PCIe down port mapping |
1755 | * per controller. |
1756 | */ |
1757 | if (tb_switch_is_cactus_ridge(sw) || |
1758 | tb_switch_is_alpine_ridge(sw)) |
1759 | index = !phy_port ? 6 : 7; |
1760 | else if (tb_switch_is_falcon_ridge(sw)) |
1761 | index = !phy_port ? 6 : 8; |
1762 | else if (tb_switch_is_titan_ridge(sw)) |
1763 | index = !phy_port ? 8 : 9; |
1764 | else |
1765 | goto out; |
1766 | |
1767 | /* Validate the hard-coding */ |
1768 | if (WARN_ON(index > sw->config.max_port_number)) |
1769 | goto out; |
1770 | |
1771 | down = &sw->ports[index]; |
1772 | } |
1773 | |
1774 | if (down) { |
1775 | if (WARN_ON(!tb_port_is_pcie_down(down))) |
1776 | goto out; |
1777 | if (tb_pci_port_is_enabled(port: down)) |
1778 | goto out; |
1779 | |
1780 | return down; |
1781 | } |
1782 | |
1783 | out: |
1784 | return tb_find_unused_port(sw, type: TB_TYPE_PCIE_DOWN); |
1785 | } |
1786 | |
1787 | static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in) |
1788 | { |
1789 | struct tb_port *host_port, *port; |
1790 | struct tb_cm *tcm = tb_priv(tb); |
1791 | |
1792 | host_port = tb_route(sw: in->sw) ? |
1793 | tb_port_at(route: tb_route(sw: in->sw), sw: tb->root_switch) : NULL; |
1794 | |
1795 | list_for_each_entry(port, &tcm->dp_resources, list) { |
1796 | if (!tb_port_is_dpout(port)) |
1797 | continue; |
1798 | |
1799 | if (tb_port_is_enabled(port)) { |
1800 | tb_port_dbg(port, "DP OUT in use\n"); |
1801 | continue; |
1802 | } |
1803 | |
1804 | /* Needs to be on different routers */ |
1805 | if (in->sw == port->sw) { |
1806 | tb_port_dbg(port, "skipping DP OUT on same router\n"); |
1807 | continue; |
1808 | } |
1809 | |
1810 | tb_port_dbg(port, "DP OUT available\n"); |
1811 | |
1812 | /* |
1813 | * Keep the DP tunnel under the topology starting from |
1814 | * the same host router downstream port. |
1815 | */ |
1816 | if (host_port && tb_route(sw: port->sw)) { |
1817 | struct tb_port *p; |
1818 | |
1819 | p = tb_port_at(route: tb_route(sw: port->sw), sw: tb->root_switch); |
1820 | if (p != host_port) |
1821 | continue; |
1822 | } |
1823 | |
1824 | return port; |
1825 | } |
1826 | |
1827 | return NULL; |
1828 | } |
1829 | |
1830 | static bool tb_tunnel_one_dp(struct tb *tb, struct tb_port *in, |
1831 | struct tb_port *out) |
1832 | { |
1833 | int available_up, available_down, ret, link_nr; |
1834 | struct tb_cm *tcm = tb_priv(tb); |
1835 | int consumed_up, consumed_down; |
1836 | struct tb_tunnel *tunnel; |
1837 | |
1838 | /* |
1839 | * This is only applicable to links that are not bonded (so |
1840 | * when Thunderbolt 1 hardware is involved somewhere in the |
1841 | * topology). For these try to share the DP bandwidth between |
1842 | * the two lanes. |
1843 | */ |
1844 | link_nr = 1; |
1845 | list_for_each_entry(tunnel, &tcm->tunnel_list, list) { |
1846 | if (tb_tunnel_is_dp(tunnel)) { |
1847 | link_nr = 0; |
1848 | break; |
1849 | } |
1850 | } |
1851 | |
1852 | /* |
1853 | * DP stream needs the domain to be active so runtime resume |
1854 | * both ends of the tunnel. |
1855 | * |
1856 | * This should bring the routers in the middle active as well |
1857 | * and keeps the domain from runtime suspending while the DP |
1858 | * tunnel is active. |
1859 | */ |
1860 | pm_runtime_get_sync(dev: &in->sw->dev); |
1861 | pm_runtime_get_sync(dev: &out->sw->dev); |
1862 | |
1863 | if (tb_switch_alloc_dp_resource(sw: in->sw, in)) { |
1864 | tb_port_dbg(in, "no resource available for DP IN, not tunneling\n"); |
1865 | goto err_rpm_put; |
1866 | } |
1867 | |
1868 | if (!tb_attach_bandwidth_group(tcm, in, out)) |
1869 | goto err_dealloc_dp; |
1870 | |
1871 | /* Make all unused USB3 bandwidth available for the new DP tunnel */ |
1872 | ret = tb_release_unused_usb3_bandwidth(tb, src_port: in, dst_port: out); |
1873 | if (ret) { |
1874 | tb_warn(tb, "failed to release unused bandwidth\n"); |
1875 | goto err_detach_group; |
1876 | } |
1877 | |
1878 | ret = tb_available_bandwidth(tb, src_port: in, dst_port: out, available_up: &available_up, available_down: &available_down, |
1879 | include_asym: true); |
1880 | if (ret) |
1881 | goto err_reclaim_usb; |
1882 | |
1883 | tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n", |
1884 | available_up, available_down); |
1885 | |
1886 | tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, max_up: available_up, |
1887 | max_down: available_down); |
1888 | if (!tunnel) { |
1889 | tb_port_dbg(out, "could not allocate DP tunnel\n"); |
1890 | goto err_reclaim_usb; |
1891 | } |
1892 | |
1893 | if (tb_tunnel_activate(tunnel)) { |
1894 | tb_port_info(out, "DP tunnel activation failed, aborting\n"); |
1895 | goto err_free; |
1896 | } |
1897 | |
1898 | /* If fail reading tunnel's consumed bandwidth, tear it down */ |
1899 | ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up: &consumed_up, consumed_down: &consumed_down); |
1900 | if (ret) |
1901 | goto err_deactivate; |
1902 | |
1903 | list_add_tail(new: &tunnel->list, head: &tcm->tunnel_list); |
1904 | |
1905 | tb_reclaim_usb3_bandwidth(tb, src_port: in, dst_port: out); |
1906 | /* |
1907 | * Transition the links to asymmetric if the consumption exceeds |
1908 | * the threshold. |
1909 | */ |
1910 | tb_configure_asym(tb, src_port: in, dst_port: out, requested_up: consumed_up, requested_down: consumed_down); |
1911 | |
1912 | /* Update the domain with the new bandwidth estimation */ |
1913 | tb_recalc_estimated_bandwidth(tb); |
1914 | |
1915 | /* |
1916 | * In case of DP tunnel exists, change host router's 1st children |
1917 | * TMU mode to HiFi for CL0s to work. |
1918 | */ |
1919 | tb_increase_tmu_accuracy(tunnel); |
1920 | return true; |
1921 | |
1922 | err_deactivate: |
1923 | tb_tunnel_deactivate(tunnel); |
1924 | err_free: |
1925 | tb_tunnel_free(tunnel); |
1926 | err_reclaim_usb: |
1927 | tb_reclaim_usb3_bandwidth(tb, src_port: in, dst_port: out); |
1928 | err_detach_group: |
1929 | tb_detach_bandwidth_group(in); |
1930 | err_dealloc_dp: |
1931 | tb_switch_dealloc_dp_resource(sw: in->sw, in); |
1932 | err_rpm_put: |
1933 | pm_runtime_mark_last_busy(dev: &out->sw->dev); |
1934 | pm_runtime_put_autosuspend(dev: &out->sw->dev); |
1935 | pm_runtime_mark_last_busy(dev: &in->sw->dev); |
1936 | pm_runtime_put_autosuspend(dev: &in->sw->dev); |
1937 | |
1938 | return false; |
1939 | } |
1940 | |
1941 | static void tb_tunnel_dp(struct tb *tb) |
1942 | { |
1943 | struct tb_cm *tcm = tb_priv(tb); |
1944 | struct tb_port *port, *in, *out; |
1945 | |
1946 | if (!tb_acpi_may_tunnel_dp()) { |
1947 | tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n"); |
1948 | return; |
1949 | } |
1950 | |
1951 | /* |
1952 | * Find pair of inactive DP IN and DP OUT adapters and then |
1953 | * establish a DP tunnel between them. |
1954 | */ |
1955 | tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n"); |
1956 | |
1957 | in = NULL; |
1958 | out = NULL; |
1959 | list_for_each_entry(port, &tcm->dp_resources, list) { |
1960 | if (!tb_port_is_dpin(port)) |
1961 | continue; |
1962 | |
1963 | if (tb_port_is_enabled(port)) { |
1964 | tb_port_dbg(port, "DP IN in use\n"); |
1965 | continue; |
1966 | } |
1967 | |
1968 | in = port; |
1969 | tb_port_dbg(in, "DP IN available\n"); |
1970 | |
1971 | out = tb_find_dp_out(tb, in: port); |
1972 | if (out) |
1973 | tb_tunnel_one_dp(tb, in, out); |
1974 | else |
1975 | tb_port_dbg(in, "no suitable DP OUT adapter available, not tunneling\n"); |
1976 | } |
1977 | |
1978 | if (!in) |
1979 | tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n"); |
1980 | } |
1981 | |
1982 | static void tb_enter_redrive(struct tb_port *port) |
1983 | { |
1984 | struct tb_switch *sw = port->sw; |
1985 | |
1986 | if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) |
1987 | return; |
1988 | |
1989 | /* |
1990 | * If we get hot-unplug for the DP IN port of the host router |
1991 | * and the DP resource is not available anymore it means there |
1992 | * is a monitor connected directly to the Type-C port and we are |
1993 | * in "redrive" mode. For this to work we cannot enter RTD3 so |
1994 | * we bump up the runtime PM reference count here. |
1995 | */ |
1996 | if (!tb_port_is_dpin(port)) |
1997 | return; |
1998 | if (tb_route(sw)) |
1999 | return; |
2000 | if (!tb_switch_query_dp_resource(sw, in: port)) { |
2001 | port->redrive = true; |
2002 | pm_runtime_get(dev: &sw->dev); |
2003 | tb_port_dbg(port, "enter redrive mode, keeping powered\n"); |
2004 | } |
2005 | } |
2006 | |
2007 | static void tb_exit_redrive(struct tb_port *port) |
2008 | { |
2009 | struct tb_switch *sw = port->sw; |
2010 | |
2011 | if (!(sw->quirks & QUIRK_KEEP_POWER_IN_DP_REDRIVE)) |
2012 | return; |
2013 | |
2014 | if (!tb_port_is_dpin(port)) |
2015 | return; |
2016 | if (tb_route(sw)) |
2017 | return; |
2018 | if (port->redrive && tb_switch_query_dp_resource(sw, in: port)) { |
2019 | port->redrive = false; |
2020 | pm_runtime_put(dev: &sw->dev); |
2021 | tb_port_dbg(port, "exit redrive mode\n"); |
2022 | } |
2023 | } |
2024 | |
2025 | static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port) |
2026 | { |
2027 | struct tb_port *in, *out; |
2028 | struct tb_tunnel *tunnel; |
2029 | |
2030 | if (tb_port_is_dpin(port)) { |
2031 | tb_port_dbg(port, "DP IN resource unavailable\n"); |
2032 | in = port; |
2033 | out = NULL; |
2034 | } else { |
2035 | tb_port_dbg(port, "DP OUT resource unavailable\n"); |
2036 | in = NULL; |
2037 | out = port; |
2038 | } |
2039 | |
2040 | tunnel = tb_find_tunnel(tb, type: TB_TUNNEL_DP, src_port: in, dst_port: out); |
2041 | if (tunnel) |
2042 | tb_deactivate_and_free_tunnel(tunnel); |
2043 | else |
2044 | tb_enter_redrive(port); |
2045 | list_del_init(entry: &port->list); |
2046 | |
2047 | /* |
2048 | * See if there is another DP OUT port that can be used for |
2049 | * to create another tunnel. |
2050 | */ |
2051 | tb_recalc_estimated_bandwidth(tb); |
2052 | tb_tunnel_dp(tb); |
2053 | } |
2054 | |
2055 | static void tb_dp_resource_available(struct tb *tb, struct tb_port *port) |
2056 | { |
2057 | struct tb_cm *tcm = tb_priv(tb); |
2058 | struct tb_port *p; |
2059 | |
2060 | if (tb_port_is_enabled(port)) |
2061 | return; |
2062 | |
2063 | list_for_each_entry(p, &tcm->dp_resources, list) { |
2064 | if (p == port) |
2065 | return; |
2066 | } |
2067 | |
2068 | tb_port_dbg(port, "DP %s resource available after hotplug\n", |
2069 | tb_port_is_dpin(port) ? "IN": "OUT"); |
2070 | list_add_tail(new: &port->list, head: &tcm->dp_resources); |
2071 | tb_exit_redrive(port); |
2072 | |
2073 | /* Look for suitable DP IN <-> DP OUT pairs now */ |
2074 | tb_tunnel_dp(tb); |
2075 | } |
2076 | |
2077 | static void tb_disconnect_and_release_dp(struct tb *tb) |
2078 | { |
2079 | struct tb_cm *tcm = tb_priv(tb); |
2080 | struct tb_tunnel *tunnel, *n; |
2081 | |
2082 | /* |
2083 | * Tear down all DP tunnels and release their resources. They |
2084 | * will be re-established after resume based on plug events. |
2085 | */ |
2086 | list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) { |
2087 | if (tb_tunnel_is_dp(tunnel)) |
2088 | tb_deactivate_and_free_tunnel(tunnel); |
2089 | } |
2090 | |
2091 | while (!list_empty(head: &tcm->dp_resources)) { |
2092 | struct tb_port *port; |
2093 | |
2094 | port = list_first_entry(&tcm->dp_resources, |
2095 | struct tb_port, list); |
2096 | list_del_init(entry: &port->list); |
2097 | } |
2098 | } |
2099 | |
2100 | static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw) |
2101 | { |
2102 | struct tb_tunnel *tunnel; |
2103 | struct tb_port *up; |
2104 | |
2105 | up = tb_switch_find_port(sw, type: TB_TYPE_PCIE_UP); |
2106 | if (WARN_ON(!up)) |
2107 | return -ENODEV; |
2108 | |
2109 | tunnel = tb_find_tunnel(tb, type: TB_TUNNEL_PCI, NULL, dst_port: up); |
2110 | if (WARN_ON(!tunnel)) |
2111 | return -ENODEV; |
2112 | |
2113 | tb_switch_xhci_disconnect(sw); |
2114 | |
2115 | tb_tunnel_deactivate(tunnel); |
2116 | list_del(entry: &tunnel->list); |
2117 | tb_tunnel_free(tunnel); |
2118 | return 0; |
2119 | } |
2120 | |
2121 | static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw) |
2122 | { |
2123 | struct tb_port *up, *down, *port; |
2124 | struct tb_cm *tcm = tb_priv(tb); |
2125 | struct tb_tunnel *tunnel; |
2126 | |
2127 | up = tb_switch_find_port(sw, type: TB_TYPE_PCIE_UP); |
2128 | if (!up) |
2129 | return 0; |
2130 | |
2131 | /* |
2132 | * Look up available down port. Since we are chaining it should |
2133 | * be found right above this switch. |
2134 | */ |
2135 | port = tb_switch_downstream_port(sw); |
2136 | down = tb_find_pcie_down(sw: tb_switch_parent(sw), port); |
2137 | if (!down) |
2138 | return 0; |
2139 | |
2140 | tunnel = tb_tunnel_alloc_pci(tb, up, down); |
2141 | if (!tunnel) |
2142 | return -ENOMEM; |
2143 | |
2144 | if (tb_tunnel_activate(tunnel)) { |
2145 | tb_port_info(up, |
2146 | "PCIe tunnel activation failed, aborting\n"); |
2147 | tb_tunnel_free(tunnel); |
2148 | return -EIO; |
2149 | } |
2150 | |
2151 | /* |
2152 | * PCIe L1 is needed to enable CL0s for Titan Ridge so enable it |
2153 | * here. |
2154 | */ |
2155 | if (tb_switch_pcie_l1_enable(sw)) |
2156 | tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n"); |
2157 | |
2158 | if (tb_switch_xhci_connect(sw)) |
2159 | tb_sw_warn(sw, "failed to connect xHCI\n"); |
2160 | |
2161 | list_add_tail(new: &tunnel->list, head: &tcm->tunnel_list); |
2162 | return 0; |
2163 | } |
2164 | |
2165 | static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, |
2166 | int transmit_path, int transmit_ring, |
2167 | int receive_path, int receive_ring) |
2168 | { |
2169 | struct tb_cm *tcm = tb_priv(tb); |
2170 | struct tb_port *nhi_port, *dst_port; |
2171 | struct tb_tunnel *tunnel; |
2172 | struct tb_switch *sw; |
2173 | int ret; |
2174 | |
2175 | sw = tb_to_switch(dev: xd->dev.parent); |
2176 | dst_port = tb_port_at(route: xd->route, sw); |
2177 | nhi_port = tb_switch_find_port(sw: tb->root_switch, type: TB_TYPE_NHI); |
2178 | |
2179 | mutex_lock(&tb->lock); |
2180 | |
2181 | /* |
2182 | * When tunneling DMA paths the link should not enter CL states |
2183 | * so disable them now. |
2184 | */ |
2185 | tb_disable_clx(sw); |
2186 | |
2187 | tunnel = tb_tunnel_alloc_dma(tb, nhi: nhi_port, dst: dst_port, transmit_path, |
2188 | transmit_ring, receive_path, receive_ring); |
2189 | if (!tunnel) { |
2190 | ret = -ENOMEM; |
2191 | goto err_clx; |
2192 | } |
2193 | |
2194 | if (tb_tunnel_activate(tunnel)) { |
2195 | tb_port_info(nhi_port, |
2196 | "DMA tunnel activation failed, aborting\n"); |
2197 | ret = -EIO; |
2198 | goto err_free; |
2199 | } |
2200 | |
2201 | list_add_tail(new: &tunnel->list, head: &tcm->tunnel_list); |
2202 | mutex_unlock(lock: &tb->lock); |
2203 | return 0; |
2204 | |
2205 | err_free: |
2206 | tb_tunnel_free(tunnel); |
2207 | err_clx: |
2208 | tb_enable_clx(sw); |
2209 | mutex_unlock(lock: &tb->lock); |
2210 | |
2211 | return ret; |
2212 | } |
2213 | |
2214 | static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, |
2215 | int transmit_path, int transmit_ring, |
2216 | int receive_path, int receive_ring) |
2217 | { |
2218 | struct tb_cm *tcm = tb_priv(tb); |
2219 | struct tb_port *nhi_port, *dst_port; |
2220 | struct tb_tunnel *tunnel, *n; |
2221 | struct tb_switch *sw; |
2222 | |
2223 | sw = tb_to_switch(dev: xd->dev.parent); |
2224 | dst_port = tb_port_at(route: xd->route, sw); |
2225 | nhi_port = tb_switch_find_port(sw: tb->root_switch, type: TB_TYPE_NHI); |
2226 | |
2227 | list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { |
2228 | if (!tb_tunnel_is_dma(tunnel)) |
2229 | continue; |
2230 | if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port) |
2231 | continue; |
2232 | |
2233 | if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring, |
2234 | receive_path, receive_ring)) |
2235 | tb_deactivate_and_free_tunnel(tunnel); |
2236 | } |
2237 | |
2238 | /* |
2239 | * Try to re-enable CL states now, it is OK if this fails |
2240 | * because we may still have another DMA tunnel active through |
2241 | * the same host router USB4 downstream port. |
2242 | */ |
2243 | tb_enable_clx(sw); |
2244 | } |
2245 | |
2246 | static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd, |
2247 | int transmit_path, int transmit_ring, |
2248 | int receive_path, int receive_ring) |
2249 | { |
2250 | if (!xd->is_unplugged) { |
2251 | mutex_lock(&tb->lock); |
2252 | __tb_disconnect_xdomain_paths(tb, xd, transmit_path, |
2253 | transmit_ring, receive_path, |
2254 | receive_ring); |
2255 | mutex_unlock(lock: &tb->lock); |
2256 | } |
2257 | return 0; |
2258 | } |
2259 | |
2260 | /* hotplug handling */ |
2261 | |
2262 | /* |
2263 | * tb_handle_hotplug() - handle hotplug event |
2264 | * |
2265 | * Executes on tb->wq. |
2266 | */ |
2267 | static void tb_handle_hotplug(struct work_struct *work) |
2268 | { |
2269 | struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work); |
2270 | struct tb *tb = ev->tb; |
2271 | struct tb_cm *tcm = tb_priv(tb); |
2272 | struct tb_switch *sw; |
2273 | struct tb_port *port; |
2274 | |
2275 | /* Bring the domain back from sleep if it was suspended */ |
2276 | pm_runtime_get_sync(dev: &tb->dev); |
2277 | |
2278 | mutex_lock(&tb->lock); |
2279 | if (!tcm->hotplug_active) |
2280 | goto out; /* during init, suspend or shutdown */ |
2281 | |
2282 | sw = tb_switch_find_by_route(tb, route: ev->route); |
2283 | if (!sw) { |
2284 | tb_warn(tb, |
2285 | "hotplug event from non existent switch %llx:%x (unplug: %d)\n", |
2286 | ev->route, ev->port, ev->unplug); |
2287 | goto out; |
2288 | } |
2289 | if (ev->port > sw->config.max_port_number) { |
2290 | tb_warn(tb, |
2291 | "hotplug event from non existent port %llx:%x (unplug: %d)\n", |
2292 | ev->route, ev->port, ev->unplug); |
2293 | goto put_sw; |
2294 | } |
2295 | port = &sw->ports[ev->port]; |
2296 | if (tb_is_upstream_port(port)) { |
2297 | tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n", |
2298 | ev->route, ev->port, ev->unplug); |
2299 | goto put_sw; |
2300 | } |
2301 | |
2302 | pm_runtime_get_sync(dev: &sw->dev); |
2303 | |
2304 | if (ev->unplug) { |
2305 | tb_retimer_remove_all(port); |
2306 | |
2307 | if (tb_port_has_remote(port)) { |
2308 | tb_port_dbg(port, "switch unplugged\n"); |
2309 | tb_sw_set_unplugged(sw: port->remote->sw); |
2310 | tb_free_invalid_tunnels(tb); |
2311 | tb_remove_dp_resources(sw: port->remote->sw); |
2312 | tb_switch_tmu_disable(sw: port->remote->sw); |
2313 | tb_switch_unconfigure_link(sw: port->remote->sw); |
2314 | tb_switch_set_link_width(sw: port->remote->sw, |
2315 | width: TB_LINK_WIDTH_SINGLE); |
2316 | tb_switch_remove(sw: port->remote->sw); |
2317 | port->remote = NULL; |
2318 | if (port->dual_link_port) |
2319 | port->dual_link_port->remote = NULL; |
2320 | /* Maybe we can create another DP tunnel */ |
2321 | tb_recalc_estimated_bandwidth(tb); |
2322 | tb_tunnel_dp(tb); |
2323 | } else if (port->xdomain) { |
2324 | struct tb_xdomain *xd = tb_xdomain_get(xd: port->xdomain); |
2325 | |
2326 | tb_port_dbg(port, "xdomain unplugged\n"); |
2327 | /* |
2328 | * Service drivers are unbound during |
2329 | * tb_xdomain_remove() so setting XDomain as |
2330 | * unplugged here prevents deadlock if they call |
2331 | * tb_xdomain_disable_paths(). We will tear down |
2332 | * all the tunnels below. |
2333 | */ |
2334 | xd->is_unplugged = true; |
2335 | tb_xdomain_remove(xd); |
2336 | port->xdomain = NULL; |
2337 | __tb_disconnect_xdomain_paths(tb, xd, transmit_path: -1, transmit_ring: -1, receive_path: -1, receive_ring: -1); |
2338 | tb_xdomain_put(xd); |
2339 | tb_port_unconfigure_xdomain(port); |
2340 | } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { |
2341 | tb_dp_resource_unavailable(tb, port); |
2342 | } else if (!port->port) { |
2343 | tb_sw_dbg(sw, "xHCI disconnect request\n"); |
2344 | tb_switch_xhci_disconnect(sw); |
2345 | } else { |
2346 | tb_port_dbg(port, |
2347 | "got unplug event for disconnected port, ignoring\n"); |
2348 | } |
2349 | } else if (port->remote) { |
2350 | tb_port_dbg(port, "got plug event for connected port, ignoring\n"); |
2351 | } else if (!port->port && sw->authorized) { |
2352 | tb_sw_dbg(sw, "xHCI connect request\n"); |
2353 | tb_switch_xhci_connect(sw); |
2354 | } else { |
2355 | if (tb_port_is_null(port)) { |
2356 | tb_port_dbg(port, "hotplug: scanning\n"); |
2357 | tb_scan_port(port); |
2358 | if (!port->remote) |
2359 | tb_port_dbg(port, "hotplug: no switch found\n"); |
2360 | } else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) { |
2361 | tb_dp_resource_available(tb, port); |
2362 | } |
2363 | } |
2364 | |
2365 | pm_runtime_mark_last_busy(dev: &sw->dev); |
2366 | pm_runtime_put_autosuspend(dev: &sw->dev); |
2367 | |
2368 | put_sw: |
2369 | tb_switch_put(sw); |
2370 | out: |
2371 | mutex_unlock(lock: &tb->lock); |
2372 | |
2373 | pm_runtime_mark_last_busy(dev: &tb->dev); |
2374 | pm_runtime_put_autosuspend(dev: &tb->dev); |
2375 | |
2376 | kfree(objp: ev); |
2377 | } |
2378 | |
2379 | static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up, |
2380 | int *requested_down) |
2381 | { |
2382 | int allocated_up, allocated_down, available_up, available_down, ret; |
2383 | int requested_up_corrected, requested_down_corrected, granularity; |
2384 | int max_up, max_down, max_up_rounded, max_down_rounded; |
2385 | struct tb_bandwidth_group *group; |
2386 | struct tb *tb = tunnel->tb; |
2387 | struct tb_port *in, *out; |
2388 | bool downstream; |
2389 | |
2390 | ret = tb_tunnel_allocated_bandwidth(tunnel, allocated_up: &allocated_up, allocated_down: &allocated_down); |
2391 | if (ret) |
2392 | return ret; |
2393 | |
2394 | in = tunnel->src_port; |
2395 | out = tunnel->dst_port; |
2396 | |
2397 | tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n", |
2398 | allocated_up, allocated_down); |
2399 | |
2400 | /* |
2401 | * If we get rounded up request from graphics side, say HBR2 x 4 |
2402 | * that is 17500 instead of 17280 (this is because of the |
2403 | * granularity), we allow it too. Here the graphics has already |
2404 | * negotiated with the DPRX the maximum possible rates (which is |
2405 | * 17280 in this case). |
2406 | * |
2407 | * Since the link cannot go higher than 17280 we use that in our |
2408 | * calculations but the DP IN adapter Allocated BW write must be |
2409 | * the same value (17500) otherwise the adapter will mark it as |
2410 | * failed for graphics. |
2411 | */ |
2412 | ret = tb_tunnel_maximum_bandwidth(tunnel, max_up: &max_up, max_down: &max_down); |
2413 | if (ret) |
2414 | goto fail; |
2415 | |
2416 | ret = usb4_dp_port_granularity(port: in); |
2417 | if (ret < 0) |
2418 | goto fail; |
2419 | granularity = ret; |
2420 | |
2421 | max_up_rounded = roundup(max_up, granularity); |
2422 | max_down_rounded = roundup(max_down, granularity); |
2423 | |
2424 | /* |
2425 | * This will "fix" the request down to the maximum supported |
2426 | * rate * lanes if it is at the maximum rounded up level. |
2427 | */ |
2428 | requested_up_corrected = *requested_up; |
2429 | if (requested_up_corrected == max_up_rounded) |
2430 | requested_up_corrected = max_up; |
2431 | else if (requested_up_corrected < 0) |
2432 | requested_up_corrected = 0; |
2433 | requested_down_corrected = *requested_down; |
2434 | if (requested_down_corrected == max_down_rounded) |
2435 | requested_down_corrected = max_down; |
2436 | else if (requested_down_corrected < 0) |
2437 | requested_down_corrected = 0; |
2438 | |
2439 | tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n", |
2440 | requested_up_corrected, requested_down_corrected); |
2441 | |
2442 | if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) || |
2443 | (*requested_down >= 0 && requested_down_corrected > max_down_rounded)) { |
2444 | tb_tunnel_dbg(tunnel, |
2445 | "bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n", |
2446 | requested_up_corrected, requested_down_corrected, |
2447 | max_up_rounded, max_down_rounded); |
2448 | ret = -ENOBUFS; |
2449 | goto fail; |
2450 | } |
2451 | |
2452 | downstream = tb_tunnel_direction_downstream(tunnel); |
2453 | group = in->group; |
2454 | |
2455 | if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) || |
2456 | (*requested_down >= 0 && requested_down_corrected <= allocated_down)) { |
2457 | if (tunnel->bw_mode) { |
2458 | int reserved; |
2459 | /* |
2460 | * If requested bandwidth is less or equal than |
2461 | * what is currently allocated to that tunnel we |
2462 | * simply change the reservation of the tunnel |
2463 | * and add the released bandwidth for the group |
2464 | * for the next 10s. Then we release it for |
2465 | * others to use. |
2466 | */ |
2467 | if (downstream) |
2468 | reserved = allocated_down - *requested_down; |
2469 | else |
2470 | reserved = allocated_up - *requested_up; |
2471 | |
2472 | if (reserved > 0) { |
2473 | group->reserved += reserved; |
2474 | tb_dbg(tb, "group %d reserved %d total %d Mb/s\n", |
2475 | group->index, reserved, group->reserved); |
2476 | |
2477 | /* |
2478 | * If it was not already pending, |
2479 | * schedule release now. If it is then |
2480 | * postpone it for the next 10s (unless |
2481 | * it is already running in which case |
2482 | * the 10s already expired and we should |
2483 | * give the reserved back to others). |
2484 | */ |
2485 | mod_delayed_work(wq: system_wq, dwork: &group->release_work, |
2486 | delay: msecs_to_jiffies(TB_RELEASE_BW_TIMEOUT)); |
2487 | } |
2488 | } |
2489 | |
2490 | return tb_tunnel_alloc_bandwidth(tunnel, alloc_up: requested_up, |
2491 | alloc_down: requested_down); |
2492 | } |
2493 | |
2494 | /* |
2495 | * More bandwidth is requested. Release all the potential |
2496 | * bandwidth from USB3 first. |
2497 | */ |
2498 | ret = tb_release_unused_usb3_bandwidth(tb, src_port: in, dst_port: out); |
2499 | if (ret) |
2500 | goto fail; |
2501 | |
2502 | /* |
2503 | * Then go over all tunnels that cross the same USB4 ports (they |
2504 | * are also in the same group but we use the same function here |
2505 | * that we use with the normal bandwidth allocation). |
2506 | */ |
2507 | ret = tb_available_bandwidth(tb, src_port: in, dst_port: out, available_up: &available_up, available_down: &available_down, |
2508 | include_asym: true); |
2509 | if (ret) |
2510 | goto reclaim; |
2511 | |
2512 | tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d (+ %u reserved) Mb/s\n", |
2513 | available_up, available_down, group->reserved); |
2514 | |
2515 | if ((*requested_up >= 0 && |
2516 | available_up + group->reserved >= requested_up_corrected) || |
2517 | (*requested_down >= 0 && |
2518 | available_down + group->reserved >= requested_down_corrected)) { |
2519 | int released = 0; |
2520 | |
2521 | /* |
2522 | * If bandwidth on a link is >= asym_threshold |
2523 | * transition the link to asymmetric. |
2524 | */ |
2525 | ret = tb_configure_asym(tb, src_port: in, dst_port: out, requested_up: *requested_up, |
2526 | requested_down: *requested_down); |
2527 | if (ret) { |
2528 | tb_configure_sym(tb, src_port: in, dst_port: out, keep_asym: true); |
2529 | goto fail; |
2530 | } |
2531 | |
2532 | ret = tb_tunnel_alloc_bandwidth(tunnel, alloc_up: requested_up, |
2533 | alloc_down: requested_down); |
2534 | if (ret) { |
2535 | tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n"); |
2536 | tb_configure_sym(tb, src_port: in, dst_port: out, keep_asym: true); |
2537 | } |
2538 | |
2539 | if (downstream) { |
2540 | if (*requested_down > available_down) |
2541 | released = *requested_down - available_down; |
2542 | } else { |
2543 | if (*requested_up > available_up) |
2544 | released = *requested_up - available_up; |
2545 | } |
2546 | if (released) { |
2547 | group->reserved -= released; |
2548 | tb_dbg(tb, "group %d released %d total %d Mb/s\n", |
2549 | group->index, released, group->reserved); |
2550 | } |
2551 | } else { |
2552 | ret = -ENOBUFS; |
2553 | } |
2554 | |
2555 | reclaim: |
2556 | tb_reclaim_usb3_bandwidth(tb, src_port: in, dst_port: out); |
2557 | fail: |
2558 | if (ret && ret != -ENODEV) { |
2559 | /* |
2560 | * Write back the same allocated (so no change), this |
2561 | * makes the DPTX request fail on graphics side. |
2562 | */ |
2563 | tb_tunnel_dbg(tunnel, |
2564 | "failing the request by rewriting allocated %d/%d Mb/s\n", |
2565 | allocated_up, allocated_down); |
2566 | tb_tunnel_alloc_bandwidth(tunnel, alloc_up: &allocated_up, alloc_down: &allocated_down); |
2567 | } |
2568 | |
2569 | return ret; |
2570 | } |
2571 | |
2572 | static void tb_handle_dp_bandwidth_request(struct work_struct *work) |
2573 | { |
2574 | struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work); |
2575 | int requested_bw, requested_up, requested_down, ret; |
2576 | struct tb_tunnel *tunnel; |
2577 | struct tb *tb = ev->tb; |
2578 | struct tb_cm *tcm = tb_priv(tb); |
2579 | struct tb_switch *sw; |
2580 | struct tb_port *in; |
2581 | |
2582 | pm_runtime_get_sync(dev: &tb->dev); |
2583 | |
2584 | mutex_lock(&tb->lock); |
2585 | if (!tcm->hotplug_active) |
2586 | goto unlock; |
2587 | |
2588 | sw = tb_switch_find_by_route(tb, route: ev->route); |
2589 | if (!sw) { |
2590 | tb_warn(tb, "bandwidth request from non-existent router %llx\n", |
2591 | ev->route); |
2592 | goto unlock; |
2593 | } |
2594 | |
2595 | in = &sw->ports[ev->port]; |
2596 | if (!tb_port_is_dpin(port: in)) { |
2597 | tb_port_warn(in, "bandwidth request to non-DP IN adapter\n"); |
2598 | goto put_sw; |
2599 | } |
2600 | |
2601 | tb_port_dbg(in, "handling bandwidth allocation request\n"); |
2602 | |
2603 | tunnel = tb_find_tunnel(tb, type: TB_TUNNEL_DP, src_port: in, NULL); |
2604 | if (!tunnel) { |
2605 | tb_port_warn(in, "failed to find tunnel\n"); |
2606 | goto put_sw; |
2607 | } |
2608 | |
2609 | if (!usb4_dp_port_bandwidth_mode_enabled(port: in)) { |
2610 | if (tunnel->bw_mode) { |
2611 | /* |
2612 | * Reset the tunnel back to use the legacy |
2613 | * allocation. |
2614 | */ |
2615 | tunnel->bw_mode = false; |
2616 | tb_port_dbg(in, "DPTX disabled bandwidth allocation mode\n"); |
2617 | } else { |
2618 | tb_port_warn(in, "bandwidth allocation mode not enabled\n"); |
2619 | } |
2620 | goto put_sw; |
2621 | } |
2622 | |
2623 | ret = usb4_dp_port_requested_bandwidth(port: in); |
2624 | if (ret < 0) { |
2625 | if (ret == -ENODATA) { |
2626 | /* |
2627 | * There is no request active so this means the |
2628 | * BW allocation mode was enabled from graphics |
2629 | * side. At this point we know that the graphics |
2630 | * driver has read the DRPX capabilities so we |
2631 | * can offer an better bandwidth estimatation. |
2632 | */ |
2633 | tb_port_dbg(in, "DPTX enabled bandwidth allocation mode, updating estimated bandwidth\n"); |
2634 | tb_recalc_estimated_bandwidth(tb); |
2635 | } else { |
2636 | tb_port_warn(in, "failed to read requested bandwidth\n"); |
2637 | } |
2638 | goto put_sw; |
2639 | } |
2640 | requested_bw = ret; |
2641 | |
2642 | tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw); |
2643 | |
2644 | if (tb_tunnel_direction_downstream(tunnel)) { |
2645 | requested_up = -1; |
2646 | requested_down = requested_bw; |
2647 | } else { |
2648 | requested_up = requested_bw; |
2649 | requested_down = -1; |
2650 | } |
2651 | |
2652 | ret = tb_alloc_dp_bandwidth(tunnel, requested_up: &requested_up, requested_down: &requested_down); |
2653 | if (ret) { |
2654 | if (ret == -ENOBUFS) |
2655 | tb_tunnel_warn(tunnel, |
2656 | "not enough bandwidth available\n"); |
2657 | else |
2658 | tb_tunnel_warn(tunnel, |
2659 | "failed to change bandwidth allocation\n"); |
2660 | } else { |
2661 | tb_tunnel_dbg(tunnel, |
2662 | "bandwidth allocation changed to %d/%d Mb/s\n", |
2663 | requested_up, requested_down); |
2664 | |
2665 | /* Update other clients about the allocation change */ |
2666 | tb_recalc_estimated_bandwidth(tb); |
2667 | } |
2668 | |
2669 | put_sw: |
2670 | tb_switch_put(sw); |
2671 | unlock: |
2672 | mutex_unlock(lock: &tb->lock); |
2673 | |
2674 | pm_runtime_mark_last_busy(dev: &tb->dev); |
2675 | pm_runtime_put_autosuspend(dev: &tb->dev); |
2676 | |
2677 | kfree(objp: ev); |
2678 | } |
2679 | |
2680 | static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port) |
2681 | { |
2682 | struct tb_hotplug_event *ev; |
2683 | |
2684 | ev = kmalloc(size: sizeof(*ev), GFP_KERNEL); |
2685 | if (!ev) |
2686 | return; |
2687 | |
2688 | ev->tb = tb; |
2689 | ev->route = route; |
2690 | ev->port = port; |
2691 | INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request); |
2692 | queue_work(wq: tb->wq, work: &ev->work); |
2693 | } |
2694 | |
2695 | static void tb_handle_notification(struct tb *tb, u64 route, |
2696 | const struct cfg_error_pkg *error) |
2697 | { |
2698 | |
2699 | switch (error->error) { |
2700 | case TB_CFG_ERROR_PCIE_WAKE: |
2701 | case TB_CFG_ERROR_DP_CON_CHANGE: |
2702 | case TB_CFG_ERROR_DPTX_DISCOVERY: |
2703 | if (tb_cfg_ack_notification(ctl: tb->ctl, route, error)) |
2704 | tb_warn(tb, "could not ack notification on %llx\n", |
2705 | route); |
2706 | break; |
2707 | |
2708 | case TB_CFG_ERROR_DP_BW: |
2709 | if (tb_cfg_ack_notification(ctl: tb->ctl, route, error)) |
2710 | tb_warn(tb, "could not ack notification on %llx\n", |
2711 | route); |
2712 | tb_queue_dp_bandwidth_request(tb, route, port: error->port); |
2713 | break; |
2714 | |
2715 | default: |
2716 | /* Ignore for now */ |
2717 | break; |
2718 | } |
2719 | } |
2720 | |
2721 | /* |
2722 | * tb_schedule_hotplug_handler() - callback function for the control channel |
2723 | * |
2724 | * Delegates to tb_handle_hotplug. |
2725 | */ |
2726 | static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type, |
2727 | const void *buf, size_t size) |
2728 | { |
2729 | const struct cfg_event_pkg *pkg = buf; |
2730 | u64 route = tb_cfg_get_route(header: &pkg->header); |
2731 | |
2732 | switch (type) { |
2733 | case TB_CFG_PKG_ERROR: |
2734 | tb_handle_notification(tb, route, error: (const struct cfg_error_pkg *)buf); |
2735 | return; |
2736 | case TB_CFG_PKG_EVENT: |
2737 | break; |
2738 | default: |
2739 | tb_warn(tb, "unexpected event %#x, ignoring\n", type); |
2740 | return; |
2741 | } |
2742 | |
2743 | if (tb_cfg_ack_plug(ctl: tb->ctl, route, port: pkg->port, unplug: pkg->unplug)) { |
2744 | tb_warn(tb, "could not ack plug event on %llx:%x\n", route, |
2745 | pkg->port); |
2746 | } |
2747 | |
2748 | tb_queue_hotplug(tb, route, port: pkg->port, unplug: pkg->unplug); |
2749 | } |
2750 | |
2751 | static void tb_stop(struct tb *tb) |
2752 | { |
2753 | struct tb_cm *tcm = tb_priv(tb); |
2754 | struct tb_tunnel *tunnel; |
2755 | struct tb_tunnel *n; |
2756 | |
2757 | cancel_delayed_work(dwork: &tcm->remove_work); |
2758 | /* tunnels are only present after everything has been initialized */ |
2759 | list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { |
2760 | /* |
2761 | * DMA tunnels require the driver to be functional so we |
2762 | * tear them down. Other protocol tunnels can be left |
2763 | * intact. |
2764 | */ |
2765 | if (tb_tunnel_is_dma(tunnel)) |
2766 | tb_tunnel_deactivate(tunnel); |
2767 | tb_tunnel_free(tunnel); |
2768 | } |
2769 | tb_switch_remove(sw: tb->root_switch); |
2770 | tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ |
2771 | } |
2772 | |
2773 | static void tb_deinit(struct tb *tb) |
2774 | { |
2775 | struct tb_cm *tcm = tb_priv(tb); |
2776 | int i; |
2777 | |
2778 | /* Cancel all the release bandwidth workers */ |
2779 | for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) |
2780 | cancel_delayed_work_sync(dwork: &tcm->groups[i].release_work); |
2781 | } |
2782 | |
2783 | static int tb_scan_finalize_switch(struct device *dev, void *data) |
2784 | { |
2785 | if (tb_is_switch(dev)) { |
2786 | struct tb_switch *sw = tb_to_switch(dev); |
2787 | |
2788 | /* |
2789 | * If we found that the switch was already setup by the |
2790 | * boot firmware, mark it as authorized now before we |
2791 | * send uevent to userspace. |
2792 | */ |
2793 | if (sw->boot) |
2794 | sw->authorized = 1; |
2795 | |
2796 | dev_set_uevent_suppress(dev, val: false); |
2797 | kobject_uevent(kobj: &dev->kobj, action: KOBJ_ADD); |
2798 | device_for_each_child(dev, NULL, fn: tb_scan_finalize_switch); |
2799 | } |
2800 | |
2801 | return 0; |
2802 | } |
2803 | |
2804 | static int tb_start(struct tb *tb, bool reset) |
2805 | { |
2806 | struct tb_cm *tcm = tb_priv(tb); |
2807 | bool discover = true; |
2808 | int ret; |
2809 | |
2810 | tb->root_switch = tb_switch_alloc(tb, parent: &tb->dev, route: 0); |
2811 | if (IS_ERR(ptr: tb->root_switch)) |
2812 | return PTR_ERR(ptr: tb->root_switch); |
2813 | |
2814 | /* |
2815 | * ICM firmware upgrade needs running firmware and in native |
2816 | * mode that is not available so disable firmware upgrade of the |
2817 | * root switch. |
2818 | * |
2819 | * However, USB4 routers support NVM firmware upgrade if they |
2820 | * implement the necessary router operations. |
2821 | */ |
2822 | tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(sw: tb->root_switch); |
2823 | /* All USB4 routers support runtime PM */ |
2824 | tb->root_switch->rpm = tb_switch_is_usb4(sw: tb->root_switch); |
2825 | |
2826 | ret = tb_switch_configure(sw: tb->root_switch); |
2827 | if (ret) { |
2828 | tb_switch_put(sw: tb->root_switch); |
2829 | return ret; |
2830 | } |
2831 | |
2832 | /* Announce the switch to the world */ |
2833 | ret = tb_switch_add(sw: tb->root_switch); |
2834 | if (ret) { |
2835 | tb_switch_put(sw: tb->root_switch); |
2836 | return ret; |
2837 | } |
2838 | |
2839 | /* |
2840 | * To support highest CLx state, we set host router's TMU to |
2841 | * Normal mode. |
2842 | */ |
2843 | tb_switch_tmu_configure(sw: tb->root_switch, mode: TB_SWITCH_TMU_MODE_LOWRES); |
2844 | /* Enable TMU if it is off */ |
2845 | tb_switch_tmu_enable(sw: tb->root_switch); |
2846 | |
2847 | /* |
2848 | * Boot firmware might have created tunnels of its own. Since we |
2849 | * cannot be sure they are usable for us, tear them down and |
2850 | * reset the ports to handle it as new hotplug for USB4 v1 |
2851 | * routers (for USB4 v2 and beyond we already do host reset). |
2852 | */ |
2853 | if (reset && tb_switch_is_usb4(sw: tb->root_switch)) { |
2854 | discover = false; |
2855 | if (usb4_switch_version(sw: tb->root_switch) == 1) |
2856 | tb_switch_reset(sw: tb->root_switch); |
2857 | } |
2858 | |
2859 | if (discover) { |
2860 | /* Full scan to discover devices added before the driver was loaded. */ |
2861 | tb_scan_switch(sw: tb->root_switch); |
2862 | /* Find out tunnels created by the boot firmware */ |
2863 | tb_discover_tunnels(tb); |
2864 | /* Add DP resources from the DP tunnels created by the boot firmware */ |
2865 | tb_discover_dp_resources(tb); |
2866 | } |
2867 | |
2868 | /* |
2869 | * If the boot firmware did not create USB 3.x tunnels create them |
2870 | * now for the whole topology. |
2871 | */ |
2872 | tb_create_usb3_tunnels(sw: tb->root_switch); |
2873 | /* Add DP IN resources for the root switch */ |
2874 | tb_add_dp_resources(sw: tb->root_switch); |
2875 | /* Make the discovered switches available to the userspace */ |
2876 | device_for_each_child(dev: &tb->root_switch->dev, NULL, |
2877 | fn: tb_scan_finalize_switch); |
2878 | |
2879 | /* Allow tb_handle_hotplug to progress events */ |
2880 | tcm->hotplug_active = true; |
2881 | return 0; |
2882 | } |
2883 | |
2884 | static int tb_suspend_noirq(struct tb *tb) |
2885 | { |
2886 | struct tb_cm *tcm = tb_priv(tb); |
2887 | |
2888 | tb_dbg(tb, "suspending...\n"); |
2889 | tb_disconnect_and_release_dp(tb); |
2890 | tb_switch_suspend(sw: tb->root_switch, runtime: false); |
2891 | tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */ |
2892 | tb_dbg(tb, "suspend finished\n"); |
2893 | |
2894 | return 0; |
2895 | } |
2896 | |
2897 | static void tb_restore_children(struct tb_switch *sw) |
2898 | { |
2899 | struct tb_port *port; |
2900 | |
2901 | /* No need to restore if the router is already unplugged */ |
2902 | if (sw->is_unplugged) |
2903 | return; |
2904 | |
2905 | if (tb_enable_clx(sw)) |
2906 | tb_sw_warn(sw, "failed to re-enable CL states\n"); |
2907 | |
2908 | if (tb_enable_tmu(sw)) |
2909 | tb_sw_warn(sw, "failed to restore TMU configuration\n"); |
2910 | |
2911 | tb_switch_configuration_valid(sw); |
2912 | |
2913 | tb_switch_for_each_port(sw, port) { |
2914 | if (!tb_port_has_remote(port) && !port->xdomain) |
2915 | continue; |
2916 | |
2917 | if (port->remote) { |
2918 | tb_switch_set_link_width(sw: port->remote->sw, |
2919 | width: port->remote->sw->link_width); |
2920 | tb_switch_configure_link(sw: port->remote->sw); |
2921 | |
2922 | tb_restore_children(sw: port->remote->sw); |
2923 | } else if (port->xdomain) { |
2924 | tb_port_configure_xdomain(port, xd: port->xdomain); |
2925 | } |
2926 | } |
2927 | } |
2928 | |
2929 | static int tb_resume_noirq(struct tb *tb) |
2930 | { |
2931 | struct tb_cm *tcm = tb_priv(tb); |
2932 | struct tb_tunnel *tunnel, *n; |
2933 | unsigned int usb3_delay = 0; |
2934 | LIST_HEAD(tunnels); |
2935 | |
2936 | tb_dbg(tb, "resuming...\n"); |
2937 | |
2938 | /* |
2939 | * For non-USB4 hosts (Apple systems) remove any PCIe devices |
2940 | * the firmware might have setup. |
2941 | */ |
2942 | if (!tb_switch_is_usb4(sw: tb->root_switch)) |
2943 | tb_switch_reset(sw: tb->root_switch); |
2944 | |
2945 | tb_switch_resume(sw: tb->root_switch, runtime: false); |
2946 | tb_free_invalid_tunnels(tb); |
2947 | tb_free_unplugged_children(sw: tb->root_switch); |
2948 | tb_restore_children(sw: tb->root_switch); |
2949 | |
2950 | /* |
2951 | * If we get here from suspend to disk the boot firmware or the |
2952 | * restore kernel might have created tunnels of its own. Since |
2953 | * we cannot be sure they are usable for us we find and tear |
2954 | * them down. |
2955 | */ |
2956 | tb_switch_discover_tunnels(sw: tb->root_switch, list: &tunnels, alloc_hopids: false); |
2957 | list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) { |
2958 | if (tb_tunnel_is_usb3(tunnel)) |
2959 | usb3_delay = 500; |
2960 | tb_tunnel_deactivate(tunnel); |
2961 | tb_tunnel_free(tunnel); |
2962 | } |
2963 | |
2964 | /* Re-create our tunnels now */ |
2965 | list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) { |
2966 | /* USB3 requires delay before it can be re-activated */ |
2967 | if (tb_tunnel_is_usb3(tunnel)) { |
2968 | msleep(msecs: usb3_delay); |
2969 | /* Only need to do it once */ |
2970 | usb3_delay = 0; |
2971 | } |
2972 | tb_tunnel_restart(tunnel); |
2973 | } |
2974 | if (!list_empty(head: &tcm->tunnel_list)) { |
2975 | /* |
2976 | * the pcie links need some time to get going. |
2977 | * 100ms works for me... |
2978 | */ |
2979 | tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n"); |
2980 | msleep(msecs: 100); |
2981 | } |
2982 | /* Allow tb_handle_hotplug to progress events */ |
2983 | tcm->hotplug_active = true; |
2984 | tb_dbg(tb, "resume finished\n"); |
2985 | |
2986 | return 0; |
2987 | } |
2988 | |
2989 | static int tb_free_unplugged_xdomains(struct tb_switch *sw) |
2990 | { |
2991 | struct tb_port *port; |
2992 | int ret = 0; |
2993 | |
2994 | tb_switch_for_each_port(sw, port) { |
2995 | if (tb_is_upstream_port(port)) |
2996 | continue; |
2997 | if (port->xdomain && port->xdomain->is_unplugged) { |
2998 | tb_retimer_remove_all(port); |
2999 | tb_xdomain_remove(xd: port->xdomain); |
3000 | tb_port_unconfigure_xdomain(port); |
3001 | port->xdomain = NULL; |
3002 | ret++; |
3003 | } else if (port->remote) { |
3004 | ret += tb_free_unplugged_xdomains(sw: port->remote->sw); |
3005 | } |
3006 | } |
3007 | |
3008 | return ret; |
3009 | } |
3010 | |
3011 | static int tb_freeze_noirq(struct tb *tb) |
3012 | { |
3013 | struct tb_cm *tcm = tb_priv(tb); |
3014 | |
3015 | tcm->hotplug_active = false; |
3016 | return 0; |
3017 | } |
3018 | |
3019 | static int tb_thaw_noirq(struct tb *tb) |
3020 | { |
3021 | struct tb_cm *tcm = tb_priv(tb); |
3022 | |
3023 | tcm->hotplug_active = true; |
3024 | return 0; |
3025 | } |
3026 | |
3027 | static void tb_complete(struct tb *tb) |
3028 | { |
3029 | /* |
3030 | * Release any unplugged XDomains and if there is a case where |
3031 | * another domain is swapped in place of unplugged XDomain we |
3032 | * need to run another rescan. |
3033 | */ |
3034 | mutex_lock(&tb->lock); |
3035 | if (tb_free_unplugged_xdomains(sw: tb->root_switch)) |
3036 | tb_scan_switch(sw: tb->root_switch); |
3037 | mutex_unlock(lock: &tb->lock); |
3038 | } |
3039 | |
3040 | static int tb_runtime_suspend(struct tb *tb) |
3041 | { |
3042 | struct tb_cm *tcm = tb_priv(tb); |
3043 | |
3044 | mutex_lock(&tb->lock); |
3045 | tb_switch_suspend(sw: tb->root_switch, runtime: true); |
3046 | tcm->hotplug_active = false; |
3047 | mutex_unlock(lock: &tb->lock); |
3048 | |
3049 | return 0; |
3050 | } |
3051 | |
3052 | static void tb_remove_work(struct work_struct *work) |
3053 | { |
3054 | struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work); |
3055 | struct tb *tb = tcm_to_tb(tcm); |
3056 | |
3057 | mutex_lock(&tb->lock); |
3058 | if (tb->root_switch) { |
3059 | tb_free_unplugged_children(sw: tb->root_switch); |
3060 | tb_free_unplugged_xdomains(sw: tb->root_switch); |
3061 | } |
3062 | mutex_unlock(lock: &tb->lock); |
3063 | } |
3064 | |
3065 | static int tb_runtime_resume(struct tb *tb) |
3066 | { |
3067 | struct tb_cm *tcm = tb_priv(tb); |
3068 | struct tb_tunnel *tunnel, *n; |
3069 | |
3070 | mutex_lock(&tb->lock); |
3071 | tb_switch_resume(sw: tb->root_switch, runtime: true); |
3072 | tb_free_invalid_tunnels(tb); |
3073 | tb_restore_children(sw: tb->root_switch); |
3074 | list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) |
3075 | tb_tunnel_restart(tunnel); |
3076 | tcm->hotplug_active = true; |
3077 | mutex_unlock(lock: &tb->lock); |
3078 | |
3079 | /* |
3080 | * Schedule cleanup of any unplugged devices. Run this in a |
3081 | * separate thread to avoid possible deadlock if the device |
3082 | * removal runtime resumes the unplugged device. |
3083 | */ |
3084 | queue_delayed_work(wq: tb->wq, dwork: &tcm->remove_work, delay: msecs_to_jiffies(m: 50)); |
3085 | return 0; |
3086 | } |
3087 | |
3088 | static const struct tb_cm_ops tb_cm_ops = { |
3089 | .start = tb_start, |
3090 | .stop = tb_stop, |
3091 | .deinit = tb_deinit, |
3092 | .suspend_noirq = tb_suspend_noirq, |
3093 | .resume_noirq = tb_resume_noirq, |
3094 | .freeze_noirq = tb_freeze_noirq, |
3095 | .thaw_noirq = tb_thaw_noirq, |
3096 | .complete = tb_complete, |
3097 | .runtime_suspend = tb_runtime_suspend, |
3098 | .runtime_resume = tb_runtime_resume, |
3099 | .handle_event = tb_handle_event, |
3100 | .disapprove_switch = tb_disconnect_pci, |
3101 | .approve_switch = tb_tunnel_pci, |
3102 | .approve_xdomain_paths = tb_approve_xdomain_paths, |
3103 | .disconnect_xdomain_paths = tb_disconnect_xdomain_paths, |
3104 | }; |
3105 | |
3106 | /* |
3107 | * During suspend the Thunderbolt controller is reset and all PCIe |
3108 | * tunnels are lost. The NHI driver will try to reestablish all tunnels |
3109 | * during resume. This adds device links between the tunneled PCIe |
3110 | * downstream ports and the NHI so that the device core will make sure |
3111 | * NHI is resumed first before the rest. |
3112 | */ |
3113 | static bool tb_apple_add_links(struct tb_nhi *nhi) |
3114 | { |
3115 | struct pci_dev *upstream, *pdev; |
3116 | bool ret; |
3117 | |
3118 | if (!x86_apple_machine) |
3119 | return false; |
3120 | |
3121 | switch (nhi->pdev->device) { |
3122 | case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE: |
3123 | case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C: |
3124 | case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI: |
3125 | case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI: |
3126 | break; |
3127 | default: |
3128 | return false; |
3129 | } |
3130 | |
3131 | upstream = pci_upstream_bridge(dev: nhi->pdev); |
3132 | while (upstream) { |
3133 | if (!pci_is_pcie(dev: upstream)) |
3134 | return false; |
3135 | if (pci_pcie_type(dev: upstream) == PCI_EXP_TYPE_UPSTREAM) |
3136 | break; |
3137 | upstream = pci_upstream_bridge(dev: upstream); |
3138 | } |
3139 | |
3140 | if (!upstream) |
3141 | return false; |
3142 | |
3143 | /* |
3144 | * For each hotplug downstream port, create add device link |
3145 | * back to NHI so that PCIe tunnels can be re-established after |
3146 | * sleep. |
3147 | */ |
3148 | ret = false; |
3149 | for_each_pci_bridge(pdev, upstream->subordinate) { |
3150 | const struct device_link *link; |
3151 | |
3152 | if (!pci_is_pcie(dev: pdev)) |
3153 | continue; |
3154 | if (pci_pcie_type(dev: pdev) != PCI_EXP_TYPE_DOWNSTREAM || |
3155 | !pdev->is_hotplug_bridge) |
3156 | continue; |
3157 | |
3158 | link = device_link_add(consumer: &pdev->dev, supplier: &nhi->pdev->dev, |
3159 | DL_FLAG_AUTOREMOVE_SUPPLIER | |
3160 | DL_FLAG_PM_RUNTIME); |
3161 | if (link) { |
3162 | dev_dbg(&nhi->pdev->dev, "created link from %s\n", |
3163 | dev_name(&pdev->dev)); |
3164 | ret = true; |
3165 | } else { |
3166 | dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n", |
3167 | dev_name(&pdev->dev)); |
3168 | } |
3169 | } |
3170 | |
3171 | return ret; |
3172 | } |
3173 | |
3174 | struct tb *tb_probe(struct tb_nhi *nhi) |
3175 | { |
3176 | struct tb_cm *tcm; |
3177 | struct tb *tb; |
3178 | |
3179 | tb = tb_domain_alloc(nhi, TB_TIMEOUT, privsize: sizeof(*tcm)); |
3180 | if (!tb) |
3181 | return NULL; |
3182 | |
3183 | if (tb_acpi_may_tunnel_pcie()) |
3184 | tb->security_level = TB_SECURITY_USER; |
3185 | else |
3186 | tb->security_level = TB_SECURITY_NOPCIE; |
3187 | |
3188 | tb->cm_ops = &tb_cm_ops; |
3189 | |
3190 | tcm = tb_priv(tb); |
3191 | INIT_LIST_HEAD(list: &tcm->tunnel_list); |
3192 | INIT_LIST_HEAD(list: &tcm->dp_resources); |
3193 | INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work); |
3194 | tb_init_bandwidth_groups(tcm); |
3195 | |
3196 | tb_dbg(tb, "using software connection manager\n"); |
3197 | |
3198 | /* |
3199 | * Device links are needed to make sure we establish tunnels |
3200 | * before the PCIe/USB stack is resumed so complain here if we |
3201 | * found them missing. |
3202 | */ |
3203 | if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi)) |
3204 | tb_warn(tb, "device links to tunneled native ports are missing!\n"); |
3205 | |
3206 | return tb; |
3207 | } |
3208 |
Definitions
- asym_threshold
- tb_cm
- tcm_to_tb
- tb_hotplug_event
- tb_queue_hotplug
- tb_add_dp_resources
- tb_remove_dp_resources
- tb_discover_dp_resource
- tb_discover_dp_resources
- tb_enable_clx
- tb_disable_clx
- tb_increase_switch_tmu_accuracy
- tb_increase_tmu_accuracy
- tb_enable_tmu
- tb_switch_discover_tunnels
- tb_port_configure_xdomain
- tb_port_unconfigure_xdomain
- tb_scan_xdomain
- tb_find_unused_port
- tb_find_usb3_down
- tb_find_tunnel
- tb_find_first_usb3_tunnel
- tb_consumed_usb3_pcie_bandwidth
- tb_consumed_dp_bandwidth
- tb_asym_supported
- tb_maximum_bandwidth
- tb_available_bandwidth
- tb_release_unused_usb3_bandwidth
- tb_reclaim_usb3_bandwidth
- tb_tunnel_usb3
- tb_create_usb3_tunnels
- tb_configure_asym
- tb_configure_sym
- tb_configure_link
- tb_scan_switch
- tb_scan_port
- tb_recalc_estimated_bandwidth_for_group
- tb_recalc_estimated_bandwidth
- __release_group_bandwidth
- __configure_group_sym
- tb_bandwidth_group_release_work
- tb_init_bandwidth_groups
- tb_bandwidth_group_attach_port
- tb_find_free_bandwidth_group
- tb_attach_bandwidth_group
- tb_discover_bandwidth_group
- tb_detach_bandwidth_group
- tb_discover_tunnels
- tb_deactivate_and_free_tunnel
- tb_free_invalid_tunnels
- tb_free_unplugged_children
- tb_find_pcie_down
- tb_find_dp_out
- tb_tunnel_one_dp
- tb_tunnel_dp
- tb_enter_redrive
- tb_exit_redrive
- tb_dp_resource_unavailable
- tb_dp_resource_available
- tb_disconnect_and_release_dp
- tb_disconnect_pci
- tb_tunnel_pci
- tb_approve_xdomain_paths
- __tb_disconnect_xdomain_paths
- tb_disconnect_xdomain_paths
- tb_handle_hotplug
- tb_alloc_dp_bandwidth
- tb_handle_dp_bandwidth_request
- tb_queue_dp_bandwidth_request
- tb_handle_notification
- tb_handle_event
- tb_stop
- tb_deinit
- tb_scan_finalize_switch
- tb_start
- tb_suspend_noirq
- tb_restore_children
- tb_resume_noirq
- tb_free_unplugged_xdomains
- tb_freeze_noirq
- tb_thaw_noirq
- tb_complete
- tb_runtime_suspend
- tb_remove_work
- tb_runtime_resume
- tb_cm_ops
- tb_apple_add_links
Improve your Profiling and Debugging skills
Find out more