1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) Qu Wenruo 2017. All rights reserved.
4 */
5
6/*
7 * The module is used to catch unexpected/corrupted tree block data.
8 * Such behavior can be caused either by a fuzzed image or bugs.
9 *
10 * The objective is to do leaf/node validation checks when tree block is read
11 * from disk, and check *every* possible member, so other code won't
12 * need to checking them again.
13 *
14 * Due to the potential and unwanted damage, every checker needs to be
15 * carefully reviewed otherwise so it does not prevent mount of valid images.
16 */
17
18#include <linux/types.h>
19#include <linux/stddef.h>
20#include <linux/error-injection.h>
21#include "messages.h"
22#include "ctree.h"
23#include "tree-checker.h"
24#include "compression.h"
25#include "volumes.h"
26#include "misc.h"
27#include "fs.h"
28#include "accessors.h"
29#include "file-item.h"
30#include "inode-item.h"
31#include "dir-item.h"
32#include "extent-tree.h"
33
34/*
35 * Error message should follow the following format:
36 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
37 *
38 * @type: leaf or node
39 * @identifier: the necessary info to locate the leaf/node.
40 * It's recommended to decode key.objecitd/offset if it's
41 * meaningful.
42 * @reason: describe the error
43 * @bad_value: optional, it's recommended to output bad value and its
44 * expected value (range).
45 *
46 * Since comma is used to separate the components, only space is allowed
47 * inside each component.
48 */
49
50/*
51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
52 * Allows callers to customize the output.
53 */
54__printf(3, 4)
55__cold
56static void generic_err(const struct extent_buffer *eb, int slot,
57 const char *fmt, ...)
58{
59 const struct btrfs_fs_info *fs_info = eb->fs_info;
60 struct va_format vaf;
61 va_list args;
62
63 va_start(args, fmt);
64
65 vaf.fmt = fmt;
66 vaf.va = &args;
67
68 dump_page(folio_page(eb->folios[0], 0), reason: "eb page dump");
69 btrfs_crit(fs_info,
70 "corrupt %s: root=%llu block=%llu slot=%d, %pV",
71 btrfs_header_level(eb) == 0 ? "leaf" : "node",
72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
73 va_end(args);
74}
75
76/*
77 * Customized reporter for extent data item, since its key objectid and
78 * offset has its own meaning.
79 */
80__printf(3, 4)
81__cold
82static void file_extent_err(const struct extent_buffer *eb, int slot,
83 const char *fmt, ...)
84{
85 const struct btrfs_fs_info *fs_info = eb->fs_info;
86 struct btrfs_key key;
87 struct va_format vaf;
88 va_list args;
89
90 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dump_page(folio_page(eb->folios[0], 0), reason: "eb page dump");
97 btrfs_crit(fs_info,
98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
99 btrfs_header_level(eb) == 0 ? "leaf" : "node",
100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
101 key.objectid, key.offset, &vaf);
102 va_end(args);
103}
104
105/*
106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
107 * Else return 1
108 */
109#define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
110({ \
111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
112 (alignment)))) \
113 file_extent_err((leaf), (slot), \
114 "invalid %s for file extent, have %llu, should be aligned to %u", \
115 (#name), btrfs_file_extent_##name((leaf), (fi)), \
116 (alignment)); \
117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
118})
119
120static u64 file_extent_end(struct extent_buffer *leaf,
121 struct btrfs_key *key,
122 struct btrfs_file_extent_item *extent)
123{
124 u64 end;
125 u64 len;
126
127 if (btrfs_file_extent_type(eb: leaf, s: extent) == BTRFS_FILE_EXTENT_INLINE) {
128 len = btrfs_file_extent_ram_bytes(eb: leaf, s: extent);
129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
130 } else {
131 len = btrfs_file_extent_num_bytes(eb: leaf, s: extent);
132 end = key->offset + len;
133 }
134 return end;
135}
136
137/*
138 * Customized report for dir_item, the only new important information is
139 * key->objectid, which represents inode number
140 */
141__printf(3, 4)
142__cold
143static void dir_item_err(const struct extent_buffer *eb, int slot,
144 const char *fmt, ...)
145{
146 const struct btrfs_fs_info *fs_info = eb->fs_info;
147 struct btrfs_key key;
148 struct va_format vaf;
149 va_list args;
150
151 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
152 va_start(args, fmt);
153
154 vaf.fmt = fmt;
155 vaf.va = &args;
156
157 dump_page(folio_page(eb->folios[0], 0), reason: "eb page dump");
158 btrfs_crit(fs_info,
159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
160 btrfs_header_level(eb) == 0 ? "leaf" : "node",
161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
162 key.objectid, &vaf);
163 va_end(args);
164}
165
166/*
167 * This functions checks prev_key->objectid, to ensure current key and prev_key
168 * share the same objectid as inode number.
169 *
170 * This is to detect missing INODE_ITEM in subvolume trees.
171 *
172 * Return true if everything is OK or we don't need to check.
173 * Return false if anything is wrong.
174 */
175static bool check_prev_ino(struct extent_buffer *leaf,
176 struct btrfs_key *key, int slot,
177 struct btrfs_key *prev_key)
178{
179 /* No prev key, skip check */
180 if (slot == 0)
181 return true;
182
183 /* Only these key->types needs to be checked */
184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
185 key->type == BTRFS_INODE_REF_KEY ||
186 key->type == BTRFS_DIR_INDEX_KEY ||
187 key->type == BTRFS_DIR_ITEM_KEY ||
188 key->type == BTRFS_EXTENT_DATA_KEY);
189
190 /*
191 * Only subvolume trees along with their reloc trees need this check.
192 * Things like log tree doesn't follow this ino requirement.
193 */
194 if (!is_fstree(rootid: btrfs_header_owner(eb: leaf)))
195 return true;
196
197 if (key->objectid == prev_key->objectid)
198 return true;
199
200 /* Error found */
201 dir_item_err(eb: leaf, slot,
202 fmt: "invalid previous key objectid, have %llu expect %llu",
203 prev_key->objectid, key->objectid);
204 return false;
205}
206static int check_extent_data_item(struct extent_buffer *leaf,
207 struct btrfs_key *key, int slot,
208 struct btrfs_key *prev_key)
209{
210 struct btrfs_fs_info *fs_info = leaf->fs_info;
211 struct btrfs_file_extent_item *fi;
212 u32 sectorsize = fs_info->sectorsize;
213 u32 item_size = btrfs_item_size(eb: leaf, slot);
214 u64 extent_end;
215
216 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
217 file_extent_err(eb: leaf, slot,
218fmt: "unaligned file_offset for file extent, have %llu should be aligned to %u",
219 key->offset, sectorsize);
220 return -EUCLEAN;
221 }
222
223 /*
224 * Previous key must have the same key->objectid (ino).
225 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
226 * But if objectids mismatch, it means we have a missing
227 * INODE_ITEM.
228 */
229 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
230 return -EUCLEAN;
231
232 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
233
234 /*
235 * Make sure the item contains at least inline header, so the file
236 * extent type is not some garbage.
237 */
238 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
239 file_extent_err(eb: leaf, slot,
240 fmt: "invalid item size, have %u expect [%zu, %u)",
241 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
242 SZ_4K);
243 return -EUCLEAN;
244 }
245 if (unlikely(btrfs_file_extent_type(leaf, fi) >=
246 BTRFS_NR_FILE_EXTENT_TYPES)) {
247 file_extent_err(eb: leaf, slot,
248 fmt: "invalid type for file extent, have %u expect range [0, %u]",
249 btrfs_file_extent_type(eb: leaf, s: fi),
250 BTRFS_NR_FILE_EXTENT_TYPES - 1);
251 return -EUCLEAN;
252 }
253
254 /*
255 * Support for new compression/encryption must introduce incompat flag,
256 * and must be caught in open_ctree().
257 */
258 if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
259 BTRFS_NR_COMPRESS_TYPES)) {
260 file_extent_err(eb: leaf, slot,
261 fmt: "invalid compression for file extent, have %u expect range [0, %u]",
262 btrfs_file_extent_compression(eb: leaf, s: fi),
263 BTRFS_NR_COMPRESS_TYPES - 1);
264 return -EUCLEAN;
265 }
266 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
267 file_extent_err(eb: leaf, slot,
268 fmt: "invalid encryption for file extent, have %u expect 0",
269 btrfs_file_extent_encryption(eb: leaf, s: fi));
270 return -EUCLEAN;
271 }
272 if (btrfs_file_extent_type(eb: leaf, s: fi) == BTRFS_FILE_EXTENT_INLINE) {
273 /* Inline extent must have 0 as key offset */
274 if (unlikely(key->offset)) {
275 file_extent_err(eb: leaf, slot,
276 fmt: "invalid file_offset for inline file extent, have %llu expect 0",
277 key->offset);
278 return -EUCLEAN;
279 }
280
281 /* Compressed inline extent has no on-disk size, skip it */
282 if (btrfs_file_extent_compression(eb: leaf, s: fi) !=
283 BTRFS_COMPRESS_NONE)
284 return 0;
285
286 /* Uncompressed inline extent size must match item size */
287 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
288 btrfs_file_extent_ram_bytes(leaf, fi))) {
289 file_extent_err(eb: leaf, slot,
290 fmt: "invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
291 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
292 btrfs_file_extent_ram_bytes(eb: leaf, s: fi));
293 return -EUCLEAN;
294 }
295 return 0;
296 }
297
298 /* Regular or preallocated extent has fixed item size */
299 if (unlikely(item_size != sizeof(*fi))) {
300 file_extent_err(eb: leaf, slot,
301 fmt: "invalid item size for reg/prealloc file extent, have %u expect %zu",
302 item_size, sizeof(*fi));
303 return -EUCLEAN;
304 }
305 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
306 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
308 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
309 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
310 return -EUCLEAN;
311
312 /* Catch extent end overflow */
313 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
314 key->offset, &extent_end))) {
315 file_extent_err(eb: leaf, slot,
316 fmt: "extent end overflow, have file offset %llu extent num bytes %llu",
317 key->offset,
318 btrfs_file_extent_num_bytes(eb: leaf, s: fi));
319 return -EUCLEAN;
320 }
321
322 /*
323 * Check that no two consecutive file extent items, in the same leaf,
324 * present ranges that overlap each other.
325 */
326 if (slot > 0 &&
327 prev_key->objectid == key->objectid &&
328 prev_key->type == BTRFS_EXTENT_DATA_KEY) {
329 struct btrfs_file_extent_item *prev_fi;
330 u64 prev_end;
331
332 prev_fi = btrfs_item_ptr(leaf, slot - 1,
333 struct btrfs_file_extent_item);
334 prev_end = file_extent_end(leaf, key: prev_key, extent: prev_fi);
335 if (unlikely(prev_end > key->offset)) {
336 file_extent_err(eb: leaf, slot: slot - 1,
337fmt: "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
338 prev_end, key->offset);
339 return -EUCLEAN;
340 }
341 }
342
343 return 0;
344}
345
346static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
347 int slot, struct btrfs_key *prev_key)
348{
349 struct btrfs_fs_info *fs_info = leaf->fs_info;
350 u32 sectorsize = fs_info->sectorsize;
351 const u32 csumsize = fs_info->csum_size;
352
353 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
354 generic_err(eb: leaf, slot,
355 fmt: "invalid key objectid for csum item, have %llu expect %llu",
356 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
357 return -EUCLEAN;
358 }
359 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
360 generic_err(eb: leaf, slot,
361 fmt: "unaligned key offset for csum item, have %llu should be aligned to %u",
362 key->offset, sectorsize);
363 return -EUCLEAN;
364 }
365 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
366 generic_err(eb: leaf, slot,
367 fmt: "unaligned item size for csum item, have %u should be aligned to %u",
368 btrfs_item_size(eb: leaf, slot), csumsize);
369 return -EUCLEAN;
370 }
371 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
372 u64 prev_csum_end;
373 u32 prev_item_size;
374
375 prev_item_size = btrfs_item_size(eb: leaf, slot: slot - 1);
376 prev_csum_end = (prev_item_size / csumsize) * sectorsize;
377 prev_csum_end += prev_key->offset;
378 if (unlikely(prev_csum_end > key->offset)) {
379 generic_err(eb: leaf, slot: slot - 1,
380fmt: "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
381 prev_csum_end, key->offset);
382 return -EUCLEAN;
383 }
384 }
385 return 0;
386}
387
388/* Inode item error output has the same format as dir_item_err() */
389#define inode_item_err(eb, slot, fmt, ...) \
390 dir_item_err(eb, slot, fmt, __VA_ARGS__)
391
392static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
393 int slot)
394{
395 struct btrfs_key item_key;
396 bool is_inode_item;
397
398 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &item_key, nr: slot);
399 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
400
401 /* For XATTR_ITEM, location key should be all 0 */
402 if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
403 if (unlikely(key->objectid != 0 || key->type != 0 ||
404 key->offset != 0))
405 return -EUCLEAN;
406 return 0;
407 }
408
409 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
410 key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
411 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
412 key->objectid != BTRFS_FREE_INO_OBJECTID)) {
413 if (is_inode_item) {
414 generic_err(eb: leaf, slot,
415 fmt: "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
416 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
417 BTRFS_FIRST_FREE_OBJECTID,
418 BTRFS_LAST_FREE_OBJECTID,
419 BTRFS_FREE_INO_OBJECTID);
420 } else {
421 dir_item_err(eb: leaf, slot,
422fmt: "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
423 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
424 BTRFS_FIRST_FREE_OBJECTID,
425 BTRFS_LAST_FREE_OBJECTID,
426 BTRFS_FREE_INO_OBJECTID);
427 }
428 return -EUCLEAN;
429 }
430 if (unlikely(key->offset != 0)) {
431 if (is_inode_item)
432 inode_item_err(leaf, slot,
433 "invalid key offset: has %llu expect 0",
434 key->offset);
435 else
436 dir_item_err(eb: leaf, slot,
437 fmt: "invalid location key offset:has %llu expect 0",
438 key->offset);
439 return -EUCLEAN;
440 }
441 return 0;
442}
443
444static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
445 int slot)
446{
447 struct btrfs_key item_key;
448 bool is_root_item;
449
450 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &item_key, nr: slot);
451 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
452
453 /*
454 * Bad rootid for reloc trees.
455 *
456 * Reloc trees are only for subvolume trees, other trees only need
457 * to be COWed to be relocated.
458 */
459 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
460 !is_fstree(key->offset))) {
461 generic_err(eb: leaf, slot,
462 fmt: "invalid reloc tree for root %lld, root id is not a subvolume tree",
463 key->offset);
464 return -EUCLEAN;
465 }
466
467 /* No such tree id */
468 if (unlikely(key->objectid == 0)) {
469 if (is_root_item)
470 generic_err(eb: leaf, slot, fmt: "invalid root id 0");
471 else
472 dir_item_err(eb: leaf, slot,
473 fmt: "invalid location key root id 0");
474 return -EUCLEAN;
475 }
476
477 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
478 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
479 dir_item_err(eb: leaf, slot,
480 fmt: "invalid location key objectid, have %llu expect [%llu, %llu]",
481 key->objectid, BTRFS_FIRST_FREE_OBJECTID,
482 BTRFS_LAST_FREE_OBJECTID);
483 return -EUCLEAN;
484 }
485
486 /*
487 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
488 * @offset transid.
489 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
490 *
491 * So here we only check offset for reloc tree whose key->offset must
492 * be a valid tree.
493 */
494 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
495 key->offset == 0)) {
496 generic_err(eb: leaf, slot, fmt: "invalid root id 0 for reloc tree");
497 return -EUCLEAN;
498 }
499 return 0;
500}
501
502static int check_dir_item(struct extent_buffer *leaf,
503 struct btrfs_key *key, struct btrfs_key *prev_key,
504 int slot)
505{
506 struct btrfs_fs_info *fs_info = leaf->fs_info;
507 struct btrfs_dir_item *di;
508 u32 item_size = btrfs_item_size(eb: leaf, slot);
509 u32 cur = 0;
510
511 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
512 return -EUCLEAN;
513
514 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
515 while (cur < item_size) {
516 struct btrfs_key location_key;
517 u32 name_len;
518 u32 data_len;
519 u32 max_name_len;
520 u32 total_size;
521 u32 name_hash;
522 u8 dir_type;
523 int ret;
524
525 /* header itself should not cross item boundary */
526 if (unlikely(cur + sizeof(*di) > item_size)) {
527 dir_item_err(eb: leaf, slot,
528 fmt: "dir item header crosses item boundary, have %zu boundary %u",
529 cur + sizeof(*di), item_size);
530 return -EUCLEAN;
531 }
532
533 /* Location key check */
534 btrfs_dir_item_key_to_cpu(eb: leaf, item: di, cpu_key: &location_key);
535 if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
536 ret = check_root_key(leaf, key: &location_key, slot);
537 if (unlikely(ret < 0))
538 return ret;
539 } else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
540 location_key.type == 0) {
541 ret = check_inode_key(leaf, key: &location_key, slot);
542 if (unlikely(ret < 0))
543 return ret;
544 } else {
545 dir_item_err(eb: leaf, slot,
546 fmt: "invalid location key type, have %u, expect %u or %u",
547 location_key.type, BTRFS_ROOT_ITEM_KEY,
548 BTRFS_INODE_ITEM_KEY);
549 return -EUCLEAN;
550 }
551
552 /* dir type check */
553 dir_type = btrfs_dir_ftype(eb: leaf, item: di);
554 if (unlikely(dir_type >= BTRFS_FT_MAX)) {
555 dir_item_err(eb: leaf, slot,
556 fmt: "invalid dir item type, have %u expect [0, %u)",
557 dir_type, BTRFS_FT_MAX);
558 return -EUCLEAN;
559 }
560
561 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
562 dir_type != BTRFS_FT_XATTR)) {
563 dir_item_err(eb: leaf, slot,
564 fmt: "invalid dir item type for XATTR key, have %u expect %u",
565 dir_type, BTRFS_FT_XATTR);
566 return -EUCLEAN;
567 }
568 if (unlikely(dir_type == BTRFS_FT_XATTR &&
569 key->type != BTRFS_XATTR_ITEM_KEY)) {
570 dir_item_err(eb: leaf, slot,
571 fmt: "xattr dir type found for non-XATTR key");
572 return -EUCLEAN;
573 }
574 if (dir_type == BTRFS_FT_XATTR)
575 max_name_len = XATTR_NAME_MAX;
576 else
577 max_name_len = BTRFS_NAME_LEN;
578
579 /* Name/data length check */
580 name_len = btrfs_dir_name_len(eb: leaf, s: di);
581 data_len = btrfs_dir_data_len(eb: leaf, s: di);
582 if (unlikely(name_len > max_name_len)) {
583 dir_item_err(eb: leaf, slot,
584 fmt: "dir item name len too long, have %u max %u",
585 name_len, max_name_len);
586 return -EUCLEAN;
587 }
588 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
589 dir_item_err(eb: leaf, slot,
590 fmt: "dir item name and data len too long, have %u max %u",
591 name_len + data_len,
592 BTRFS_MAX_XATTR_SIZE(info: fs_info));
593 return -EUCLEAN;
594 }
595
596 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
597 dir_item_err(eb: leaf, slot,
598 fmt: "dir item with invalid data len, have %u expect 0",
599 data_len);
600 return -EUCLEAN;
601 }
602
603 total_size = sizeof(*di) + name_len + data_len;
604
605 /* header and name/data should not cross item boundary */
606 if (unlikely(cur + total_size > item_size)) {
607 dir_item_err(eb: leaf, slot,
608 fmt: "dir item data crosses item boundary, have %u boundary %u",
609 cur + total_size, item_size);
610 return -EUCLEAN;
611 }
612
613 /*
614 * Special check for XATTR/DIR_ITEM, as key->offset is name
615 * hash, should match its name
616 */
617 if (key->type == BTRFS_DIR_ITEM_KEY ||
618 key->type == BTRFS_XATTR_ITEM_KEY) {
619 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
620
621 read_extent_buffer(eb: leaf, dst: namebuf,
622 start: (unsigned long)(di + 1), len: name_len);
623 name_hash = btrfs_name_hash(name: namebuf, len: name_len);
624 if (unlikely(key->offset != name_hash)) {
625 dir_item_err(eb: leaf, slot,
626 fmt: "name hash mismatch with key, have 0x%016x expect 0x%016llx",
627 name_hash, key->offset);
628 return -EUCLEAN;
629 }
630 }
631 cur += total_size;
632 di = (struct btrfs_dir_item *)((void *)di + total_size);
633 }
634 return 0;
635}
636
637__printf(3, 4)
638__cold
639static void block_group_err(const struct extent_buffer *eb, int slot,
640 const char *fmt, ...)
641{
642 const struct btrfs_fs_info *fs_info = eb->fs_info;
643 struct btrfs_key key;
644 struct va_format vaf;
645 va_list args;
646
647 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
648 va_start(args, fmt);
649
650 vaf.fmt = fmt;
651 vaf.va = &args;
652
653 dump_page(folio_page(eb->folios[0], 0), reason: "eb page dump");
654 btrfs_crit(fs_info,
655 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
656 btrfs_header_level(eb) == 0 ? "leaf" : "node",
657 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
658 key.objectid, key.offset, &vaf);
659 va_end(args);
660}
661
662static int check_block_group_item(struct extent_buffer *leaf,
663 struct btrfs_key *key, int slot)
664{
665 struct btrfs_fs_info *fs_info = leaf->fs_info;
666 struct btrfs_block_group_item bgi;
667 u32 item_size = btrfs_item_size(eb: leaf, slot);
668 u64 chunk_objectid;
669 u64 flags;
670 u64 type;
671
672 /*
673 * Here we don't really care about alignment since extent allocator can
674 * handle it. We care more about the size.
675 */
676 if (unlikely(key->offset == 0)) {
677 block_group_err(eb: leaf, slot,
678 fmt: "invalid block group size 0");
679 return -EUCLEAN;
680 }
681
682 if (unlikely(item_size != sizeof(bgi))) {
683 block_group_err(eb: leaf, slot,
684 fmt: "invalid item size, have %u expect %zu",
685 item_size, sizeof(bgi));
686 return -EUCLEAN;
687 }
688
689 read_extent_buffer(eb: leaf, dst: &bgi, btrfs_item_ptr_offset(leaf, slot),
690 len: sizeof(bgi));
691 chunk_objectid = btrfs_stack_block_group_chunk_objectid(s: &bgi);
692 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
693 /*
694 * We don't init the nr_global_roots until we load the global
695 * roots, so this could be 0 at mount time. If it's 0 we'll
696 * just assume we're fine, and later we'll check against our
697 * actual value.
698 */
699 if (unlikely(fs_info->nr_global_roots &&
700 chunk_objectid >= fs_info->nr_global_roots)) {
701 block_group_err(eb: leaf, slot,
702 fmt: "invalid block group global root id, have %llu, needs to be <= %llu",
703 chunk_objectid,
704 fs_info->nr_global_roots);
705 return -EUCLEAN;
706 }
707 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
708 block_group_err(eb: leaf, slot,
709 fmt: "invalid block group chunk objectid, have %llu expect %llu",
710 btrfs_stack_block_group_chunk_objectid(s: &bgi),
711 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
712 return -EUCLEAN;
713 }
714
715 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
716 block_group_err(eb: leaf, slot,
717 fmt: "invalid block group used, have %llu expect [0, %llu)",
718 btrfs_stack_block_group_used(s: &bgi), key->offset);
719 return -EUCLEAN;
720 }
721
722 flags = btrfs_stack_block_group_flags(s: &bgi);
723 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
724 block_group_err(eb: leaf, slot,
725fmt: "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
726 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
727 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
728 return -EUCLEAN;
729 }
730
731 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
732 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
733 type != BTRFS_BLOCK_GROUP_METADATA &&
734 type != BTRFS_BLOCK_GROUP_SYSTEM &&
735 type != (BTRFS_BLOCK_GROUP_METADATA |
736 BTRFS_BLOCK_GROUP_DATA))) {
737 block_group_err(eb: leaf, slot,
738fmt: "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
739 type, hweight64(type),
740 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
741 BTRFS_BLOCK_GROUP_SYSTEM,
742 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
743 return -EUCLEAN;
744 }
745 return 0;
746}
747
748__printf(4, 5)
749__cold
750static void chunk_err(const struct extent_buffer *leaf,
751 const struct btrfs_chunk *chunk, u64 logical,
752 const char *fmt, ...)
753{
754 const struct btrfs_fs_info *fs_info = leaf->fs_info;
755 bool is_sb;
756 struct va_format vaf;
757 va_list args;
758 int i;
759 int slot = -1;
760
761 /* Only superblock eb is able to have such small offset */
762 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
763
764 if (!is_sb) {
765 /*
766 * Get the slot number by iterating through all slots, this
767 * would provide better readability.
768 */
769 for (i = 0; i < btrfs_header_nritems(eb: leaf); i++) {
770 if (btrfs_item_ptr_offset(leaf, i) ==
771 (unsigned long)chunk) {
772 slot = i;
773 break;
774 }
775 }
776 }
777 va_start(args, fmt);
778 vaf.fmt = fmt;
779 vaf.va = &args;
780
781 if (is_sb)
782 btrfs_crit(fs_info,
783 "corrupt superblock syschunk array: chunk_start=%llu, %pV",
784 logical, &vaf);
785 else
786 btrfs_crit(fs_info,
787 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
788 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
789 logical, &vaf);
790 va_end(args);
791}
792
793/*
794 * The common chunk check which could also work on super block sys chunk array.
795 *
796 * Return -EUCLEAN if anything is corrupted.
797 * Return 0 if everything is OK.
798 */
799int btrfs_check_chunk_valid(struct extent_buffer *leaf,
800 struct btrfs_chunk *chunk, u64 logical)
801{
802 struct btrfs_fs_info *fs_info = leaf->fs_info;
803 u64 length;
804 u64 chunk_end;
805 u64 stripe_len;
806 u16 num_stripes;
807 u16 sub_stripes;
808 u64 type;
809 u64 features;
810 bool mixed = false;
811 int raid_index;
812 int nparity;
813 int ncopies;
814
815 length = btrfs_chunk_length(eb: leaf, s: chunk);
816 stripe_len = btrfs_chunk_stripe_len(eb: leaf, s: chunk);
817 num_stripes = btrfs_chunk_num_stripes(eb: leaf, s: chunk);
818 sub_stripes = btrfs_chunk_sub_stripes(eb: leaf, s: chunk);
819 type = btrfs_chunk_type(eb: leaf, s: chunk);
820 raid_index = btrfs_bg_flags_to_raid_index(flags: type);
821 ncopies = btrfs_raid_array[raid_index].ncopies;
822 nparity = btrfs_raid_array[raid_index].nparity;
823
824 if (unlikely(!num_stripes)) {
825 chunk_err(leaf, chunk, logical,
826 fmt: "invalid chunk num_stripes, have %u", num_stripes);
827 return -EUCLEAN;
828 }
829 if (unlikely(num_stripes < ncopies)) {
830 chunk_err(leaf, chunk, logical,
831 fmt: "invalid chunk num_stripes < ncopies, have %u < %d",
832 num_stripes, ncopies);
833 return -EUCLEAN;
834 }
835 if (unlikely(nparity && num_stripes == nparity)) {
836 chunk_err(leaf, chunk, logical,
837 fmt: "invalid chunk num_stripes == nparity, have %u == %d",
838 num_stripes, nparity);
839 return -EUCLEAN;
840 }
841 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
842 chunk_err(leaf, chunk, logical,
843 fmt: "invalid chunk logical, have %llu should aligned to %u",
844 logical, fs_info->sectorsize);
845 return -EUCLEAN;
846 }
847 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
848 chunk_err(leaf, chunk, logical,
849 fmt: "invalid chunk sectorsize, have %u expect %u",
850 btrfs_chunk_sector_size(eb: leaf, s: chunk),
851 fs_info->sectorsize);
852 return -EUCLEAN;
853 }
854 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
855 chunk_err(leaf, chunk, logical,
856 fmt: "invalid chunk length, have %llu", length);
857 return -EUCLEAN;
858 }
859 if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
860 chunk_err(leaf, chunk, logical,
861fmt: "invalid chunk logical start and length, have logical start %llu length %llu",
862 logical, length);
863 return -EUCLEAN;
864 }
865 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
866 chunk_err(leaf, chunk, logical,
867 fmt: "invalid chunk stripe length: %llu",
868 stripe_len);
869 return -EUCLEAN;
870 }
871 /*
872 * We artificially limit the chunk size, so that the number of stripes
873 * inside a chunk can be fit into a U32. The current limit (256G) is
874 * way too large for real world usage anyway, and it's also much larger
875 * than our existing limit (10G).
876 *
877 * Thus it should be a good way to catch obvious bitflips.
878 */
879 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
880 chunk_err(leaf, chunk, logical,
881 fmt: "chunk length too large: have %llu limit %llu",
882 length, btrfs_stripe_nr_to_offset(U32_MAX));
883 return -EUCLEAN;
884 }
885 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
886 BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
887 chunk_err(leaf, chunk, logical,
888 fmt: "unrecognized chunk type: 0x%llx",
889 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
890 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
891 btrfs_chunk_type(eb: leaf, s: chunk));
892 return -EUCLEAN;
893 }
894
895 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
896 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
897 chunk_err(leaf, chunk, logical,
898 fmt: "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
899 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
900 return -EUCLEAN;
901 }
902 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
903 chunk_err(leaf, chunk, logical,
904 fmt: "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
905 type, BTRFS_BLOCK_GROUP_TYPE_MASK);
906 return -EUCLEAN;
907 }
908
909 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
910 (type & (BTRFS_BLOCK_GROUP_METADATA |
911 BTRFS_BLOCK_GROUP_DATA)))) {
912 chunk_err(leaf, chunk, logical,
913 fmt: "system chunk with data or metadata type: 0x%llx",
914 type);
915 return -EUCLEAN;
916 }
917
918 features = btrfs_super_incompat_flags(s: fs_info->super_copy);
919 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
920 mixed = true;
921
922 if (!mixed) {
923 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
924 (type & BTRFS_BLOCK_GROUP_DATA))) {
925 chunk_err(leaf, chunk, logical,
926 fmt: "mixed chunk type in non-mixed mode: 0x%llx", type);
927 return -EUCLEAN;
928 }
929 }
930
931 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
932 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
933 (type & BTRFS_BLOCK_GROUP_RAID1 &&
934 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
935 (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
936 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
937 (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
938 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
939 (type & BTRFS_BLOCK_GROUP_RAID5 &&
940 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
941 (type & BTRFS_BLOCK_GROUP_RAID6 &&
942 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
943 (type & BTRFS_BLOCK_GROUP_DUP &&
944 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
945 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
946 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
947 chunk_err(leaf, chunk, logical,
948 fmt: "invalid num_stripes:sub_stripes %u:%u for profile %llu",
949 num_stripes, sub_stripes,
950 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
951 return -EUCLEAN;
952 }
953
954 return 0;
955}
956
957/*
958 * Enhanced version of chunk item checker.
959 *
960 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
961 * to work on super block sys_chunk_array which doesn't have full item ptr.
962 */
963static int check_leaf_chunk_item(struct extent_buffer *leaf,
964 struct btrfs_chunk *chunk,
965 struct btrfs_key *key, int slot)
966{
967 int num_stripes;
968
969 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
970 chunk_err(leaf, chunk, logical: key->offset,
971 fmt: "invalid chunk item size: have %u expect [%zu, %u)",
972 btrfs_item_size(eb: leaf, slot),
973 sizeof(struct btrfs_chunk),
974 BTRFS_LEAF_DATA_SIZE(info: leaf->fs_info));
975 return -EUCLEAN;
976 }
977
978 num_stripes = btrfs_chunk_num_stripes(eb: leaf, s: chunk);
979 /* Let btrfs_check_chunk_valid() handle this error type */
980 if (num_stripes == 0)
981 goto out;
982
983 if (unlikely(btrfs_chunk_item_size(num_stripes) !=
984 btrfs_item_size(leaf, slot))) {
985 chunk_err(leaf, chunk, logical: key->offset,
986 fmt: "invalid chunk item size: have %u expect %lu",
987 btrfs_item_size(eb: leaf, slot),
988 btrfs_chunk_item_size(num_stripes));
989 return -EUCLEAN;
990 }
991out:
992 return btrfs_check_chunk_valid(leaf, chunk, logical: key->offset);
993}
994
995__printf(3, 4)
996__cold
997static void dev_item_err(const struct extent_buffer *eb, int slot,
998 const char *fmt, ...)
999{
1000 struct btrfs_key key;
1001 struct va_format vaf;
1002 va_list args;
1003
1004 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
1005 va_start(args, fmt);
1006
1007 vaf.fmt = fmt;
1008 vaf.va = &args;
1009
1010 dump_page(folio_page(eb->folios[0], 0), reason: "eb page dump");
1011 btrfs_crit(eb->fs_info,
1012 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1013 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1014 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1015 key.objectid, &vaf);
1016 va_end(args);
1017}
1018
1019static int check_dev_item(struct extent_buffer *leaf,
1020 struct btrfs_key *key, int slot)
1021{
1022 struct btrfs_dev_item *ditem;
1023 const u32 item_size = btrfs_item_size(eb: leaf, slot);
1024
1025 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1026 dev_item_err(eb: leaf, slot,
1027 fmt: "invalid objectid: has=%llu expect=%llu",
1028 key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1029 return -EUCLEAN;
1030 }
1031
1032 if (unlikely(item_size != sizeof(*ditem))) {
1033 dev_item_err(eb: leaf, slot, fmt: "invalid item size: has %u expect %zu",
1034 item_size, sizeof(*ditem));
1035 return -EUCLEAN;
1036 }
1037
1038 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1039 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1040 dev_item_err(eb: leaf, slot,
1041 fmt: "devid mismatch: key has=%llu item has=%llu",
1042 key->offset, btrfs_device_id(eb: leaf, s: ditem));
1043 return -EUCLEAN;
1044 }
1045
1046 /*
1047 * For device total_bytes, we don't have reliable way to check it, as
1048 * it can be 0 for device removal. Device size check can only be done
1049 * by dev extents check.
1050 */
1051 if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1052 btrfs_device_total_bytes(leaf, ditem))) {
1053 dev_item_err(eb: leaf, slot,
1054 fmt: "invalid bytes used: have %llu expect [0, %llu]",
1055 btrfs_device_bytes_used(eb: leaf, s: ditem),
1056 btrfs_device_total_bytes(eb: leaf, s: ditem));
1057 return -EUCLEAN;
1058 }
1059 /*
1060 * Remaining members like io_align/type/gen/dev_group aren't really
1061 * utilized. Skip them to make later usage of them easier.
1062 */
1063 return 0;
1064}
1065
1066static int check_inode_item(struct extent_buffer *leaf,
1067 struct btrfs_key *key, int slot)
1068{
1069 struct btrfs_fs_info *fs_info = leaf->fs_info;
1070 struct btrfs_inode_item *iitem;
1071 u64 super_gen = btrfs_super_generation(s: fs_info->super_copy);
1072 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1073 const u32 item_size = btrfs_item_size(eb: leaf, slot);
1074 u32 mode;
1075 int ret;
1076 u32 flags;
1077 u32 ro_flags;
1078
1079 ret = check_inode_key(leaf, key, slot);
1080 if (unlikely(ret < 0))
1081 return ret;
1082
1083 if (unlikely(item_size != sizeof(*iitem))) {
1084 generic_err(eb: leaf, slot, fmt: "invalid item size: has %u expect %zu",
1085 item_size, sizeof(*iitem));
1086 return -EUCLEAN;
1087 }
1088
1089 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1090
1091 /* Here we use super block generation + 1 to handle log tree */
1092 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1093 inode_item_err(leaf, slot,
1094 "invalid inode generation: has %llu expect (0, %llu]",
1095 btrfs_inode_generation(leaf, iitem),
1096 super_gen + 1);
1097 return -EUCLEAN;
1098 }
1099 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1100 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1101 inode_item_err(leaf, slot,
1102 "invalid inode transid: has %llu expect [0, %llu]",
1103 btrfs_inode_transid(leaf, iitem), super_gen + 1);
1104 return -EUCLEAN;
1105 }
1106
1107 /*
1108 * For size and nbytes it's better not to be too strict, as for dir
1109 * item its size/nbytes can easily get wrong, but doesn't affect
1110 * anything in the fs. So here we skip the check.
1111 */
1112 mode = btrfs_inode_mode(eb: leaf, s: iitem);
1113 if (unlikely(mode & ~valid_mask)) {
1114 inode_item_err(leaf, slot,
1115 "unknown mode bit detected: 0x%x",
1116 mode & ~valid_mask);
1117 return -EUCLEAN;
1118 }
1119
1120 /*
1121 * S_IFMT is not bit mapped so we can't completely rely on
1122 * is_power_of_2/has_single_bit_set, but it can save us from checking
1123 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
1124 */
1125 if (!has_single_bit_set(n: mode & S_IFMT)) {
1126 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1127 inode_item_err(leaf, slot,
1128 "invalid mode: has 0%o expect valid S_IF* bit(s)",
1129 mode & S_IFMT);
1130 return -EUCLEAN;
1131 }
1132 }
1133 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1134 inode_item_err(leaf, slot,
1135 "invalid nlink: has %u expect no more than 1 for dir",
1136 btrfs_inode_nlink(leaf, iitem));
1137 return -EUCLEAN;
1138 }
1139 btrfs_inode_split_flags(inode_item_flags: btrfs_inode_flags(eb: leaf, s: iitem), flags: &flags, ro_flags: &ro_flags);
1140 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1141 inode_item_err(leaf, slot,
1142 "unknown incompat flags detected: 0x%x", flags);
1143 return -EUCLEAN;
1144 }
1145 if (unlikely(!sb_rdonly(fs_info->sb) &&
1146 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1147 inode_item_err(leaf, slot,
1148 "unknown ro-compat flags detected on writeable mount: 0x%x",
1149 ro_flags);
1150 return -EUCLEAN;
1151 }
1152 return 0;
1153}
1154
1155static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1156 int slot)
1157{
1158 struct btrfs_fs_info *fs_info = leaf->fs_info;
1159 struct btrfs_root_item ri = { 0 };
1160 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1161 BTRFS_ROOT_SUBVOL_DEAD;
1162 int ret;
1163
1164 ret = check_root_key(leaf, key, slot);
1165 if (unlikely(ret < 0))
1166 return ret;
1167
1168 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1169 btrfs_item_size(leaf, slot) !=
1170 btrfs_legacy_root_item_size())) {
1171 generic_err(eb: leaf, slot,
1172 fmt: "invalid root item size, have %u expect %zu or %u",
1173 btrfs_item_size(eb: leaf, slot), sizeof(ri),
1174 btrfs_legacy_root_item_size());
1175 return -EUCLEAN;
1176 }
1177
1178 /*
1179 * For legacy root item, the members starting at generation_v2 will be
1180 * all filled with 0.
1181 * And since we allow geneartion_v2 as 0, it will still pass the check.
1182 */
1183 read_extent_buffer(eb: leaf, dst: &ri, btrfs_item_ptr_offset(leaf, slot),
1184 len: btrfs_item_size(eb: leaf, slot));
1185
1186 /* Generation related */
1187 if (unlikely(btrfs_root_generation(&ri) >
1188 btrfs_super_generation(fs_info->super_copy) + 1)) {
1189 generic_err(eb: leaf, slot,
1190 fmt: "invalid root generation, have %llu expect (0, %llu]",
1191 btrfs_root_generation(s: &ri),
1192 btrfs_super_generation(s: fs_info->super_copy) + 1);
1193 return -EUCLEAN;
1194 }
1195 if (unlikely(btrfs_root_generation_v2(&ri) >
1196 btrfs_super_generation(fs_info->super_copy) + 1)) {
1197 generic_err(eb: leaf, slot,
1198 fmt: "invalid root v2 generation, have %llu expect (0, %llu]",
1199 btrfs_root_generation_v2(s: &ri),
1200 btrfs_super_generation(s: fs_info->super_copy) + 1);
1201 return -EUCLEAN;
1202 }
1203 if (unlikely(btrfs_root_last_snapshot(&ri) >
1204 btrfs_super_generation(fs_info->super_copy) + 1)) {
1205 generic_err(eb: leaf, slot,
1206 fmt: "invalid root last_snapshot, have %llu expect (0, %llu]",
1207 btrfs_root_last_snapshot(s: &ri),
1208 btrfs_super_generation(s: fs_info->super_copy) + 1);
1209 return -EUCLEAN;
1210 }
1211
1212 /* Alignment and level check */
1213 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1214 generic_err(eb: leaf, slot,
1215 fmt: "invalid root bytenr, have %llu expect to be aligned to %u",
1216 btrfs_root_bytenr(s: &ri), fs_info->sectorsize);
1217 return -EUCLEAN;
1218 }
1219 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1220 generic_err(eb: leaf, slot,
1221 fmt: "invalid root level, have %u expect [0, %u]",
1222 btrfs_root_level(s: &ri), BTRFS_MAX_LEVEL - 1);
1223 return -EUCLEAN;
1224 }
1225 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1226 generic_err(eb: leaf, slot,
1227 fmt: "invalid root level, have %u expect [0, %u]",
1228 btrfs_root_drop_level(s: &ri), BTRFS_MAX_LEVEL - 1);
1229 return -EUCLEAN;
1230 }
1231
1232 /* Flags check */
1233 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1234 generic_err(eb: leaf, slot,
1235 fmt: "invalid root flags, have 0x%llx expect mask 0x%llx",
1236 btrfs_root_flags(s: &ri), valid_root_flags);
1237 return -EUCLEAN;
1238 }
1239 return 0;
1240}
1241
1242__printf(3,4)
1243__cold
1244static void extent_err(const struct extent_buffer *eb, int slot,
1245 const char *fmt, ...)
1246{
1247 struct btrfs_key key;
1248 struct va_format vaf;
1249 va_list args;
1250 u64 bytenr;
1251 u64 len;
1252
1253 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
1254 bytenr = key.objectid;
1255 if (key.type == BTRFS_METADATA_ITEM_KEY ||
1256 key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1257 key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1258 len = eb->fs_info->nodesize;
1259 else
1260 len = key.offset;
1261 va_start(args, fmt);
1262
1263 vaf.fmt = fmt;
1264 vaf.va = &args;
1265
1266 dump_page(folio_page(eb->folios[0], 0), reason: "eb page dump");
1267 btrfs_crit(eb->fs_info,
1268 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1269 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1270 eb->start, slot, bytenr, len, &vaf);
1271 va_end(args);
1272}
1273
1274static int check_extent_item(struct extent_buffer *leaf,
1275 struct btrfs_key *key, int slot,
1276 struct btrfs_key *prev_key)
1277{
1278 struct btrfs_fs_info *fs_info = leaf->fs_info;
1279 struct btrfs_extent_item *ei;
1280 bool is_tree_block = false;
1281 unsigned long ptr; /* Current pointer inside inline refs */
1282 unsigned long end; /* Extent item end */
1283 const u32 item_size = btrfs_item_size(eb: leaf, slot);
1284 u8 last_type = 0;
1285 u64 last_seq = U64_MAX;
1286 u64 flags;
1287 u64 generation;
1288 u64 total_refs; /* Total refs in btrfs_extent_item */
1289 u64 inline_refs = 0; /* found total inline refs */
1290
1291 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1292 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1293 generic_err(eb: leaf, slot,
1294fmt: "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1295 return -EUCLEAN;
1296 }
1297 /* key->objectid is the bytenr for both key types */
1298 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1299 generic_err(eb: leaf, slot,
1300 fmt: "invalid key objectid, have %llu expect to be aligned to %u",
1301 key->objectid, fs_info->sectorsize);
1302 return -EUCLEAN;
1303 }
1304
1305 /* key->offset is tree level for METADATA_ITEM_KEY */
1306 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1307 key->offset >= BTRFS_MAX_LEVEL)) {
1308 extent_err(eb: leaf, slot,
1309 fmt: "invalid tree level, have %llu expect [0, %u]",
1310 key->offset, BTRFS_MAX_LEVEL - 1);
1311 return -EUCLEAN;
1312 }
1313
1314 /*
1315 * EXTENT/METADATA_ITEM consists of:
1316 * 1) One btrfs_extent_item
1317 * Records the total refs, type and generation of the extent.
1318 *
1319 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1320 * Records the first key and level of the tree block.
1321 *
1322 * 2) Zero or more btrfs_extent_inline_ref(s)
1323 * Each inline ref has one btrfs_extent_inline_ref shows:
1324 * 2.1) The ref type, one of the 4
1325 * TREE_BLOCK_REF Tree block only
1326 * SHARED_BLOCK_REF Tree block only
1327 * EXTENT_DATA_REF Data only
1328 * SHARED_DATA_REF Data only
1329 * 2.2) Ref type specific data
1330 * Either using btrfs_extent_inline_ref::offset, or specific
1331 * data structure.
1332 *
1333 * All above inline items should follow the order:
1334 *
1335 * - All btrfs_extent_inline_ref::type should be in an ascending
1336 * order
1337 *
1338 * - Within the same type, the items should follow a descending
1339 * order by their sequence number. The sequence number is
1340 * determined by:
1341 * * btrfs_extent_inline_ref::offset for all types other than
1342 * EXTENT_DATA_REF
1343 * * hash_extent_data_ref() for EXTENT_DATA_REF
1344 */
1345 if (unlikely(item_size < sizeof(*ei))) {
1346 extent_err(eb: leaf, slot,
1347 fmt: "invalid item size, have %u expect [%zu, %u)",
1348 item_size, sizeof(*ei),
1349 BTRFS_LEAF_DATA_SIZE(info: fs_info));
1350 return -EUCLEAN;
1351 }
1352 end = item_size + btrfs_item_ptr_offset(leaf, slot);
1353
1354 /* Checks against extent_item */
1355 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1356 flags = btrfs_extent_flags(eb: leaf, s: ei);
1357 total_refs = btrfs_extent_refs(eb: leaf, s: ei);
1358 generation = btrfs_extent_generation(eb: leaf, s: ei);
1359 if (unlikely(generation >
1360 btrfs_super_generation(fs_info->super_copy) + 1)) {
1361 extent_err(eb: leaf, slot,
1362 fmt: "invalid generation, have %llu expect (0, %llu]",
1363 generation,
1364 btrfs_super_generation(s: fs_info->super_copy) + 1);
1365 return -EUCLEAN;
1366 }
1367 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1368 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1369 extent_err(eb: leaf, slot,
1370 fmt: "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1371 flags, BTRFS_EXTENT_FLAG_DATA |
1372 BTRFS_EXTENT_FLAG_TREE_BLOCK);
1373 return -EUCLEAN;
1374 }
1375 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1376 if (is_tree_block) {
1377 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1378 key->offset != fs_info->nodesize)) {
1379 extent_err(eb: leaf, slot,
1380 fmt: "invalid extent length, have %llu expect %u",
1381 key->offset, fs_info->nodesize);
1382 return -EUCLEAN;
1383 }
1384 } else {
1385 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1386 extent_err(eb: leaf, slot,
1387 fmt: "invalid key type, have %u expect %u for data backref",
1388 key->type, BTRFS_EXTENT_ITEM_KEY);
1389 return -EUCLEAN;
1390 }
1391 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1392 extent_err(eb: leaf, slot,
1393 fmt: "invalid extent length, have %llu expect aligned to %u",
1394 key->offset, fs_info->sectorsize);
1395 return -EUCLEAN;
1396 }
1397 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1398 extent_err(eb: leaf, slot,
1399 fmt: "invalid extent flag, data has full backref set");
1400 return -EUCLEAN;
1401 }
1402 }
1403 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1404
1405 /* Check the special case of btrfs_tree_block_info */
1406 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1407 struct btrfs_tree_block_info *info;
1408
1409 info = (struct btrfs_tree_block_info *)ptr;
1410 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1411 extent_err(eb: leaf, slot,
1412 fmt: "invalid tree block info level, have %u expect [0, %u]",
1413 btrfs_tree_block_level(eb: leaf, s: info),
1414 BTRFS_MAX_LEVEL - 1);
1415 return -EUCLEAN;
1416 }
1417 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1418 }
1419
1420 /* Check inline refs */
1421 while (ptr < end) {
1422 struct btrfs_extent_inline_ref *iref;
1423 struct btrfs_extent_data_ref *dref;
1424 struct btrfs_shared_data_ref *sref;
1425 u64 seq;
1426 u64 dref_offset;
1427 u64 inline_offset;
1428 u8 inline_type;
1429
1430 if (unlikely(ptr + sizeof(*iref) > end)) {
1431 extent_err(eb: leaf, slot,
1432fmt: "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1433 ptr, sizeof(*iref), end);
1434 return -EUCLEAN;
1435 }
1436 iref = (struct btrfs_extent_inline_ref *)ptr;
1437 inline_type = btrfs_extent_inline_ref_type(eb: leaf, s: iref);
1438 inline_offset = btrfs_extent_inline_ref_offset(eb: leaf, s: iref);
1439 seq = inline_offset;
1440 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1441 extent_err(eb: leaf, slot,
1442fmt: "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1443 ptr, btrfs_extent_inline_ref_size(type: inline_type), end);
1444 return -EUCLEAN;
1445 }
1446
1447 switch (inline_type) {
1448 /* inline_offset is subvolid of the owner, no need to check */
1449 case BTRFS_TREE_BLOCK_REF_KEY:
1450 inline_refs++;
1451 break;
1452 /* Contains parent bytenr */
1453 case BTRFS_SHARED_BLOCK_REF_KEY:
1454 if (unlikely(!IS_ALIGNED(inline_offset,
1455 fs_info->sectorsize))) {
1456 extent_err(eb: leaf, slot,
1457 fmt: "invalid tree parent bytenr, have %llu expect aligned to %u",
1458 inline_offset, fs_info->sectorsize);
1459 return -EUCLEAN;
1460 }
1461 inline_refs++;
1462 break;
1463 /*
1464 * Contains owner subvolid, owner key objectid, adjusted offset.
1465 * The only obvious corruption can happen in that offset.
1466 */
1467 case BTRFS_EXTENT_DATA_REF_KEY:
1468 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1469 dref_offset = btrfs_extent_data_ref_offset(eb: leaf, s: dref);
1470 seq = hash_extent_data_ref(
1471 root_objectid: btrfs_extent_data_ref_root(eb: leaf, s: dref),
1472 owner: btrfs_extent_data_ref_objectid(eb: leaf, s: dref),
1473 offset: btrfs_extent_data_ref_offset(eb: leaf, s: dref));
1474 if (unlikely(!IS_ALIGNED(dref_offset,
1475 fs_info->sectorsize))) {
1476 extent_err(eb: leaf, slot,
1477 fmt: "invalid data ref offset, have %llu expect aligned to %u",
1478 dref_offset, fs_info->sectorsize);
1479 return -EUCLEAN;
1480 }
1481 inline_refs += btrfs_extent_data_ref_count(eb: leaf, s: dref);
1482 break;
1483 /* Contains parent bytenr and ref count */
1484 case BTRFS_SHARED_DATA_REF_KEY:
1485 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1486 if (unlikely(!IS_ALIGNED(inline_offset,
1487 fs_info->sectorsize))) {
1488 extent_err(eb: leaf, slot,
1489 fmt: "invalid data parent bytenr, have %llu expect aligned to %u",
1490 inline_offset, fs_info->sectorsize);
1491 return -EUCLEAN;
1492 }
1493 inline_refs += btrfs_shared_data_ref_count(eb: leaf, s: sref);
1494 break;
1495 case BTRFS_EXTENT_OWNER_REF_KEY:
1496 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1497 break;
1498 default:
1499 extent_err(eb: leaf, slot, fmt: "unknown inline ref type: %u",
1500 inline_type);
1501 return -EUCLEAN;
1502 }
1503 if (inline_type < last_type) {
1504 extent_err(eb: leaf, slot,
1505 fmt: "inline ref out-of-order: has type %u, prev type %u",
1506 inline_type, last_type);
1507 return -EUCLEAN;
1508 }
1509 /* Type changed, allow the sequence starts from U64_MAX again. */
1510 if (inline_type > last_type)
1511 last_seq = U64_MAX;
1512 if (seq > last_seq) {
1513 extent_err(eb: leaf, slot,
1514fmt: "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
1515 inline_type, inline_offset, seq,
1516 last_type, last_seq);
1517 return -EUCLEAN;
1518 }
1519 last_type = inline_type;
1520 last_seq = seq;
1521 ptr += btrfs_extent_inline_ref_size(type: inline_type);
1522 }
1523 /* No padding is allowed */
1524 if (unlikely(ptr != end)) {
1525 extent_err(eb: leaf, slot,
1526 fmt: "invalid extent item size, padding bytes found");
1527 return -EUCLEAN;
1528 }
1529
1530 /* Finally, check the inline refs against total refs */
1531 if (unlikely(inline_refs > total_refs)) {
1532 extent_err(eb: leaf, slot,
1533 fmt: "invalid extent refs, have %llu expect >= inline %llu",
1534 total_refs, inline_refs);
1535 return -EUCLEAN;
1536 }
1537
1538 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1539 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1540 u64 prev_end = prev_key->objectid;
1541
1542 if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1543 prev_end += fs_info->nodesize;
1544 else
1545 prev_end += prev_key->offset;
1546
1547 if (unlikely(prev_end > key->objectid)) {
1548 extent_err(eb: leaf, slot,
1549 fmt: "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1550 prev_key->objectid, prev_key->type,
1551 prev_key->offset, key->objectid, key->type,
1552 key->offset);
1553 return -EUCLEAN;
1554 }
1555 }
1556
1557 return 0;
1558}
1559
1560static int check_simple_keyed_refs(struct extent_buffer *leaf,
1561 struct btrfs_key *key, int slot)
1562{
1563 u32 expect_item_size = 0;
1564
1565 if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1566 expect_item_size = sizeof(struct btrfs_shared_data_ref);
1567
1568 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1569 generic_err(eb: leaf, slot,
1570 fmt: "invalid item size, have %u expect %u for key type %u",
1571 btrfs_item_size(eb: leaf, slot),
1572 expect_item_size, key->type);
1573 return -EUCLEAN;
1574 }
1575 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1576 generic_err(eb: leaf, slot,
1577fmt: "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1578 key->objectid, leaf->fs_info->sectorsize);
1579 return -EUCLEAN;
1580 }
1581 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1582 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1583 extent_err(eb: leaf, slot,
1584 fmt: "invalid tree parent bytenr, have %llu expect aligned to %u",
1585 key->offset, leaf->fs_info->sectorsize);
1586 return -EUCLEAN;
1587 }
1588 return 0;
1589}
1590
1591static int check_extent_data_ref(struct extent_buffer *leaf,
1592 struct btrfs_key *key, int slot)
1593{
1594 struct btrfs_extent_data_ref *dref;
1595 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1596 const unsigned long end = ptr + btrfs_item_size(eb: leaf, slot);
1597
1598 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1599 generic_err(eb: leaf, slot,
1600 fmt: "invalid item size, have %u expect aligned to %zu for key type %u",
1601 btrfs_item_size(eb: leaf, slot),
1602 sizeof(*dref), key->type);
1603 return -EUCLEAN;
1604 }
1605 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1606 generic_err(eb: leaf, slot,
1607fmt: "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1608 key->objectid, leaf->fs_info->sectorsize);
1609 return -EUCLEAN;
1610 }
1611 for (; ptr < end; ptr += sizeof(*dref)) {
1612 u64 offset;
1613
1614 /*
1615 * We cannot check the extent_data_ref hash due to possible
1616 * overflow from the leaf due to hash collisions.
1617 */
1618 dref = (struct btrfs_extent_data_ref *)ptr;
1619 offset = btrfs_extent_data_ref_offset(eb: leaf, s: dref);
1620 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1621 extent_err(eb: leaf, slot,
1622 fmt: "invalid extent data backref offset, have %llu expect aligned to %u",
1623 offset, leaf->fs_info->sectorsize);
1624 return -EUCLEAN;
1625 }
1626 }
1627 return 0;
1628}
1629
1630#define inode_ref_err(eb, slot, fmt, args...) \
1631 inode_item_err(eb, slot, fmt, ##args)
1632static int check_inode_ref(struct extent_buffer *leaf,
1633 struct btrfs_key *key, struct btrfs_key *prev_key,
1634 int slot)
1635{
1636 struct btrfs_inode_ref *iref;
1637 unsigned long ptr;
1638 unsigned long end;
1639
1640 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1641 return -EUCLEAN;
1642 /* namelen can't be 0, so item_size == sizeof() is also invalid */
1643 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1644 inode_ref_err(leaf, slot,
1645 "invalid item size, have %u expect (%zu, %u)",
1646 btrfs_item_size(leaf, slot),
1647 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1648 return -EUCLEAN;
1649 }
1650
1651 ptr = btrfs_item_ptr_offset(leaf, slot);
1652 end = ptr + btrfs_item_size(eb: leaf, slot);
1653 while (ptr < end) {
1654 u16 namelen;
1655
1656 if (unlikely(ptr + sizeof(iref) > end)) {
1657 inode_ref_err(leaf, slot,
1658 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1659 ptr, end, sizeof(iref));
1660 return -EUCLEAN;
1661 }
1662
1663 iref = (struct btrfs_inode_ref *)ptr;
1664 namelen = btrfs_inode_ref_name_len(eb: leaf, s: iref);
1665 if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1666 inode_ref_err(leaf, slot,
1667 "inode ref overflow, ptr %lu end %lu namelen %u",
1668 ptr, end, namelen);
1669 return -EUCLEAN;
1670 }
1671
1672 /*
1673 * NOTE: In theory we should record all found index numbers
1674 * to find any duplicated indexes, but that will be too time
1675 * consuming for inodes with too many hard links.
1676 */
1677 ptr += sizeof(*iref) + namelen;
1678 }
1679 return 0;
1680}
1681
1682static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1683 const struct btrfs_key *key, int slot)
1684{
1685 struct btrfs_stripe_extent *stripe_extent =
1686 btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent);
1687
1688 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1689 generic_err(eb: leaf, slot,
1690fmt: "invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1691 key->objectid, leaf->fs_info->sectorsize);
1692 return -EUCLEAN;
1693 }
1694
1695 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1696 generic_err(eb: leaf, slot,
1697 fmt: "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1698 return -EUCLEAN;
1699 }
1700
1701 switch (btrfs_stripe_extent_encoding(eb: leaf, s: stripe_extent)) {
1702 case BTRFS_STRIPE_RAID0:
1703 case BTRFS_STRIPE_RAID1:
1704 case BTRFS_STRIPE_DUP:
1705 case BTRFS_STRIPE_RAID10:
1706 case BTRFS_STRIPE_RAID5:
1707 case BTRFS_STRIPE_RAID6:
1708 case BTRFS_STRIPE_RAID1C3:
1709 case BTRFS_STRIPE_RAID1C4:
1710 break;
1711 default:
1712 generic_err(eb: leaf, slot, fmt: "invalid raid stripe encoding %u",
1713 btrfs_stripe_extent_encoding(eb: leaf, s: stripe_extent));
1714 return -EUCLEAN;
1715 }
1716
1717 return 0;
1718}
1719
1720/*
1721 * Common point to switch the item-specific validation.
1722 */
1723static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1724 struct btrfs_key *key,
1725 int slot,
1726 struct btrfs_key *prev_key)
1727{
1728 int ret = 0;
1729 struct btrfs_chunk *chunk;
1730
1731 switch (key->type) {
1732 case BTRFS_EXTENT_DATA_KEY:
1733 ret = check_extent_data_item(leaf, key, slot, prev_key);
1734 break;
1735 case BTRFS_EXTENT_CSUM_KEY:
1736 ret = check_csum_item(leaf, key, slot, prev_key);
1737 break;
1738 case BTRFS_DIR_ITEM_KEY:
1739 case BTRFS_DIR_INDEX_KEY:
1740 case BTRFS_XATTR_ITEM_KEY:
1741 ret = check_dir_item(leaf, key, prev_key, slot);
1742 break;
1743 case BTRFS_INODE_REF_KEY:
1744 ret = check_inode_ref(leaf, key, prev_key, slot);
1745 break;
1746 case BTRFS_BLOCK_GROUP_ITEM_KEY:
1747 ret = check_block_group_item(leaf, key, slot);
1748 break;
1749 case BTRFS_CHUNK_ITEM_KEY:
1750 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1751 ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1752 break;
1753 case BTRFS_DEV_ITEM_KEY:
1754 ret = check_dev_item(leaf, key, slot);
1755 break;
1756 case BTRFS_INODE_ITEM_KEY:
1757 ret = check_inode_item(leaf, key, slot);
1758 break;
1759 case BTRFS_ROOT_ITEM_KEY:
1760 ret = check_root_item(leaf, key, slot);
1761 break;
1762 case BTRFS_EXTENT_ITEM_KEY:
1763 case BTRFS_METADATA_ITEM_KEY:
1764 ret = check_extent_item(leaf, key, slot, prev_key);
1765 break;
1766 case BTRFS_TREE_BLOCK_REF_KEY:
1767 case BTRFS_SHARED_DATA_REF_KEY:
1768 case BTRFS_SHARED_BLOCK_REF_KEY:
1769 ret = check_simple_keyed_refs(leaf, key, slot);
1770 break;
1771 case BTRFS_EXTENT_DATA_REF_KEY:
1772 ret = check_extent_data_ref(leaf, key, slot);
1773 break;
1774 case BTRFS_RAID_STRIPE_KEY:
1775 ret = check_raid_stripe_extent(leaf, key, slot);
1776 break;
1777 }
1778
1779 if (ret)
1780 return BTRFS_TREE_BLOCK_INVALID_ITEM;
1781 return BTRFS_TREE_BLOCK_CLEAN;
1782}
1783
1784enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1785{
1786 struct btrfs_fs_info *fs_info = leaf->fs_info;
1787 /* No valid key type is 0, so all key should be larger than this key */
1788 struct btrfs_key prev_key = {0, 0, 0};
1789 struct btrfs_key key;
1790 u32 nritems = btrfs_header_nritems(eb: leaf);
1791 int slot;
1792
1793 if (unlikely(btrfs_header_level(leaf) != 0)) {
1794 generic_err(eb: leaf, slot: 0,
1795 fmt: "invalid level for leaf, have %d expect 0",
1796 btrfs_header_level(eb: leaf));
1797 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1798 }
1799
1800 /*
1801 * Extent buffers from a relocation tree have a owner field that
1802 * corresponds to the subvolume tree they are based on. So just from an
1803 * extent buffer alone we can not find out what is the id of the
1804 * corresponding subvolume tree, so we can not figure out if the extent
1805 * buffer corresponds to the root of the relocation tree or not. So
1806 * skip this check for relocation trees.
1807 */
1808 if (nritems == 0 && !btrfs_header_flag(eb: leaf, BTRFS_HEADER_FLAG_RELOC)) {
1809 u64 owner = btrfs_header_owner(eb: leaf);
1810
1811 /* These trees must never be empty */
1812 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1813 owner == BTRFS_CHUNK_TREE_OBJECTID ||
1814 owner == BTRFS_DEV_TREE_OBJECTID ||
1815 owner == BTRFS_FS_TREE_OBJECTID ||
1816 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1817 generic_err(eb: leaf, slot: 0,
1818 fmt: "invalid root, root %llu must never be empty",
1819 owner);
1820 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1821 }
1822
1823 /* Unknown tree */
1824 if (unlikely(owner == 0)) {
1825 generic_err(eb: leaf, slot: 0,
1826 fmt: "invalid owner, root 0 is not defined");
1827 return BTRFS_TREE_BLOCK_INVALID_OWNER;
1828 }
1829
1830 /* EXTENT_TREE_V2 can have empty extent trees. */
1831 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1832 return BTRFS_TREE_BLOCK_CLEAN;
1833
1834 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1835 generic_err(eb: leaf, slot: 0,
1836 fmt: "invalid root, root %llu must never be empty",
1837 owner);
1838 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1839 }
1840
1841 return BTRFS_TREE_BLOCK_CLEAN;
1842 }
1843
1844 if (unlikely(nritems == 0))
1845 return BTRFS_TREE_BLOCK_CLEAN;
1846
1847 /*
1848 * Check the following things to make sure this is a good leaf, and
1849 * leaf users won't need to bother with similar sanity checks:
1850 *
1851 * 1) key ordering
1852 * 2) item offset and size
1853 * No overlap, no hole, all inside the leaf.
1854 * 3) item content
1855 * If possible, do comprehensive sanity check.
1856 * NOTE: All checks must only rely on the item data itself.
1857 */
1858 for (slot = 0; slot < nritems; slot++) {
1859 u32 item_end_expected;
1860 u64 item_data_end;
1861
1862 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
1863
1864 /* Make sure the keys are in the right order */
1865 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1866 generic_err(eb: leaf, slot,
1867 fmt: "bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1868 prev_key.objectid, prev_key.type,
1869 prev_key.offset, key.objectid, key.type,
1870 key.offset);
1871 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1872 }
1873
1874 item_data_end = (u64)btrfs_item_offset(eb: leaf, slot) +
1875 btrfs_item_size(eb: leaf, slot);
1876 /*
1877 * Make sure the offset and ends are right, remember that the
1878 * item data starts at the end of the leaf and grows towards the
1879 * front.
1880 */
1881 if (slot == 0)
1882 item_end_expected = BTRFS_LEAF_DATA_SIZE(info: fs_info);
1883 else
1884 item_end_expected = btrfs_item_offset(eb: leaf,
1885 slot: slot - 1);
1886 if (unlikely(item_data_end != item_end_expected)) {
1887 generic_err(eb: leaf, slot,
1888 fmt: "unexpected item end, have %llu expect %u",
1889 item_data_end, item_end_expected);
1890 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1891 }
1892
1893 /*
1894 * Check to make sure that we don't point outside of the leaf,
1895 * just in case all the items are consistent to each other, but
1896 * all point outside of the leaf.
1897 */
1898 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
1899 generic_err(eb: leaf, slot,
1900 fmt: "slot end outside of leaf, have %llu expect range [0, %u]",
1901 item_data_end, BTRFS_LEAF_DATA_SIZE(info: fs_info));
1902 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1903 }
1904
1905 /* Also check if the item pointer overlaps with btrfs item. */
1906 if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
1907 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
1908 generic_err(eb: leaf, slot,
1909 fmt: "slot overlaps with its data, item end %lu data start %lu",
1910 btrfs_item_nr_offset(eb: leaf, nr: slot) +
1911 sizeof(struct btrfs_item),
1912 btrfs_item_ptr_offset(leaf, slot));
1913 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1914 }
1915
1916 /*
1917 * We only want to do this if WRITTEN is set, otherwise the leaf
1918 * may be in some intermediate state and won't appear valid.
1919 */
1920 if (btrfs_header_flag(eb: leaf, BTRFS_HEADER_FLAG_WRITTEN)) {
1921 enum btrfs_tree_block_status ret;
1922
1923 /*
1924 * Check if the item size and content meet other
1925 * criteria
1926 */
1927 ret = check_leaf_item(leaf, key: &key, slot, prev_key: &prev_key);
1928 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1929 return ret;
1930 }
1931
1932 prev_key.objectid = key.objectid;
1933 prev_key.type = key.type;
1934 prev_key.offset = key.offset;
1935 }
1936
1937 return BTRFS_TREE_BLOCK_CLEAN;
1938}
1939
1940int btrfs_check_leaf(struct extent_buffer *leaf)
1941{
1942 enum btrfs_tree_block_status ret;
1943
1944 ret = __btrfs_check_leaf(leaf);
1945 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1946 return -EUCLEAN;
1947 return 0;
1948}
1949ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
1950
1951enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
1952{
1953 struct btrfs_fs_info *fs_info = node->fs_info;
1954 unsigned long nr = btrfs_header_nritems(eb: node);
1955 struct btrfs_key key, next_key;
1956 int slot;
1957 int level = btrfs_header_level(eb: node);
1958 u64 bytenr;
1959
1960 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
1961 generic_err(eb: node, slot: 0,
1962 fmt: "invalid level for node, have %d expect [1, %d]",
1963 level, BTRFS_MAX_LEVEL - 1);
1964 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1965 }
1966 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
1967 btrfs_crit(fs_info,
1968"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
1969 btrfs_header_owner(node), node->start,
1970 nr == 0 ? "small" : "large", nr,
1971 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1972 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1973 }
1974
1975 for (slot = 0; slot < nr - 1; slot++) {
1976 bytenr = btrfs_node_blockptr(eb: node, nr: slot);
1977 btrfs_node_key_to_cpu(eb: node, cpu_key: &key, nr: slot);
1978 btrfs_node_key_to_cpu(eb: node, cpu_key: &next_key, nr: slot + 1);
1979
1980 if (unlikely(!bytenr)) {
1981 generic_err(eb: node, slot,
1982 fmt: "invalid NULL node pointer");
1983 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1984 }
1985 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
1986 generic_err(eb: node, slot,
1987 fmt: "unaligned pointer, have %llu should be aligned to %u",
1988 bytenr, fs_info->sectorsize);
1989 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1990 }
1991
1992 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
1993 generic_err(eb: node, slot,
1994 fmt: "bad key order, current (%llu %u %llu) next (%llu %u %llu)",
1995 key.objectid, key.type, key.offset,
1996 next_key.objectid, next_key.type,
1997 next_key.offset);
1998 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1999 }
2000 }
2001 return BTRFS_TREE_BLOCK_CLEAN;
2002}
2003
2004int btrfs_check_node(struct extent_buffer *node)
2005{
2006 enum btrfs_tree_block_status ret;
2007
2008 ret = __btrfs_check_node(node);
2009 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
2010 return -EUCLEAN;
2011 return 0;
2012}
2013ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
2014
2015int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
2016{
2017 const bool is_subvol = is_fstree(rootid: root_owner);
2018 const u64 eb_owner = btrfs_header_owner(eb);
2019
2020 /*
2021 * Skip dummy fs, as selftests don't create unique ebs for each dummy
2022 * root.
2023 */
2024 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
2025 return 0;
2026 /*
2027 * There are several call sites (backref walking, qgroup, and data
2028 * reloc) passing 0 as @root_owner, as they are not holding the
2029 * tree root. In that case, we can not do a reliable ownership check,
2030 * so just exit.
2031 */
2032 if (root_owner == 0)
2033 return 0;
2034 /*
2035 * These trees use key.offset as their owner, our callers don't have
2036 * the extra capacity to pass key.offset here. So we just skip them.
2037 */
2038 if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
2039 root_owner == BTRFS_TREE_RELOC_OBJECTID)
2040 return 0;
2041
2042 if (!is_subvol) {
2043 /* For non-subvolume trees, the eb owner should match root owner */
2044 if (unlikely(root_owner != eb_owner)) {
2045 btrfs_crit(eb->fs_info,
2046"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2047 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2048 root_owner, btrfs_header_bytenr(eb), eb_owner,
2049 root_owner);
2050 return -EUCLEAN;
2051 }
2052 return 0;
2053 }
2054
2055 /*
2056 * For subvolume trees, owners can mismatch, but they should all belong
2057 * to subvolume trees.
2058 */
2059 if (unlikely(is_subvol != is_fstree(eb_owner))) {
2060 btrfs_crit(eb->fs_info,
2061"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2062 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2063 root_owner, btrfs_header_bytenr(eb), eb_owner,
2064 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2065 return -EUCLEAN;
2066 }
2067 return 0;
2068}
2069
2070int btrfs_verify_level_key(struct extent_buffer *eb, int level,
2071 struct btrfs_key *first_key, u64 parent_transid)
2072{
2073 struct btrfs_fs_info *fs_info = eb->fs_info;
2074 int found_level;
2075 struct btrfs_key found_key;
2076 int ret;
2077
2078 found_level = btrfs_header_level(eb);
2079 if (found_level != level) {
2080 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2081 KERN_ERR "BTRFS: tree level check failed\n");
2082 btrfs_err(fs_info,
2083"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2084 eb->start, level, found_level);
2085 return -EIO;
2086 }
2087
2088 if (!first_key)
2089 return 0;
2090
2091 /*
2092 * For live tree block (new tree blocks in current transaction),
2093 * we need proper lock context to avoid race, which is impossible here.
2094 * So we only checks tree blocks which is read from disk, whose
2095 * generation <= fs_info->last_trans_committed.
2096 */
2097 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2098 return 0;
2099
2100 /* We have @first_key, so this @eb must have at least one item */
2101 if (btrfs_header_nritems(eb) == 0) {
2102 btrfs_err(fs_info,
2103 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2104 eb->start);
2105 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2106 return -EUCLEAN;
2107 }
2108
2109 if (found_level)
2110 btrfs_node_key_to_cpu(eb, cpu_key: &found_key, nr: 0);
2111 else
2112 btrfs_item_key_to_cpu(eb, cpu_key: &found_key, nr: 0);
2113 ret = btrfs_comp_cpu_keys(k1: first_key, k2: &found_key);
2114
2115 if (ret) {
2116 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2117 KERN_ERR "BTRFS: tree first key check failed\n");
2118 btrfs_err(fs_info,
2119"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2120 eb->start, parent_transid, first_key->objectid,
2121 first_key->type, first_key->offset,
2122 found_key.objectid, found_key.type,
2123 found_key.offset);
2124 }
2125 return ret;
2126}
2127

source code of linux/fs/btrfs/tree-checker.c