1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "block-group.h"
20#include "space-info.h"
21#include "inode-item.h"
22#include "fs.h"
23#include "accessors.h"
24#include "extent-tree.h"
25#include "root-tree.h"
26#include "dir-item.h"
27#include "file-item.h"
28#include "file.h"
29#include "orphan.h"
30#include "tree-checker.h"
31
32#define MAX_CONFLICT_INODES 10
33
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43};
44
45/*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88/*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102};
103
104static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116static void wait_log_commit(struct btrfs_root *root, int transid);
117
118/*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
141/*
142 * start a sub transaction and setup the log tree
143 * this increments the log tree writer count to make the people
144 * syncing the tree wait for us to finish
145 */
146static int start_log_trans(struct btrfs_trans_handle *trans,
147 struct btrfs_root *root,
148 struct btrfs_log_ctx *ctx)
149{
150 struct btrfs_fs_info *fs_info = root->fs_info;
151 struct btrfs_root *tree_root = fs_info->tree_root;
152 const bool zoned = btrfs_is_zoned(fs_info);
153 int ret = 0;
154 bool created = false;
155
156 /*
157 * First check if the log root tree was already created. If not, create
158 * it before locking the root's log_mutex, just to keep lockdep happy.
159 */
160 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
161 mutex_lock(&tree_root->log_mutex);
162 if (!fs_info->log_root_tree) {
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 if (!ret) {
165 set_bit(nr: BTRFS_ROOT_HAS_LOG_TREE, addr: &tree_root->state);
166 created = true;
167 }
168 }
169 mutex_unlock(lock: &tree_root->log_mutex);
170 if (ret)
171 return ret;
172 }
173
174 mutex_lock(&root->log_mutex);
175
176again:
177 if (root->log_root) {
178 int index = (root->log_transid + 1) % 2;
179
180 if (btrfs_need_log_full_commit(trans)) {
181 ret = BTRFS_LOG_FORCE_COMMIT;
182 goto out;
183 }
184
185 if (zoned && atomic_read(v: &root->log_commit[index])) {
186 wait_log_commit(root, transid: root->log_transid - 1);
187 goto again;
188 }
189
190 if (!root->log_start_pid) {
191 clear_bit(nr: BTRFS_ROOT_MULTI_LOG_TASKS, addr: &root->state);
192 root->log_start_pid = current->pid;
193 } else if (root->log_start_pid != current->pid) {
194 set_bit(nr: BTRFS_ROOT_MULTI_LOG_TASKS, addr: &root->state);
195 }
196 } else {
197 /*
198 * This means fs_info->log_root_tree was already created
199 * for some other FS trees. Do the full commit not to mix
200 * nodes from multiple log transactions to do sequential
201 * writing.
202 */
203 if (zoned && !created) {
204 ret = BTRFS_LOG_FORCE_COMMIT;
205 goto out;
206 }
207
208 ret = btrfs_add_log_tree(trans, root);
209 if (ret)
210 goto out;
211
212 set_bit(nr: BTRFS_ROOT_HAS_LOG_TREE, addr: &root->state);
213 clear_bit(nr: BTRFS_ROOT_MULTI_LOG_TASKS, addr: &root->state);
214 root->log_start_pid = current->pid;
215 }
216
217 atomic_inc(v: &root->log_writers);
218 if (!ctx->logging_new_name) {
219 int index = root->log_transid % 2;
220 list_add_tail(new: &ctx->list, head: &root->log_ctxs[index]);
221 ctx->log_transid = root->log_transid;
222 }
223
224out:
225 mutex_unlock(lock: &root->log_mutex);
226 return ret;
227}
228
229/*
230 * returns 0 if there was a log transaction running and we were able
231 * to join, or returns -ENOENT if there were not transactions
232 * in progress
233 */
234static int join_running_log_trans(struct btrfs_root *root)
235{
236 const bool zoned = btrfs_is_zoned(fs_info: root->fs_info);
237 int ret = -ENOENT;
238
239 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
240 return ret;
241
242 mutex_lock(&root->log_mutex);
243again:
244 if (root->log_root) {
245 int index = (root->log_transid + 1) % 2;
246
247 ret = 0;
248 if (zoned && atomic_read(v: &root->log_commit[index])) {
249 wait_log_commit(root, transid: root->log_transid - 1);
250 goto again;
251 }
252 atomic_inc(v: &root->log_writers);
253 }
254 mutex_unlock(lock: &root->log_mutex);
255 return ret;
256}
257
258/*
259 * This either makes the current running log transaction wait
260 * until you call btrfs_end_log_trans() or it makes any future
261 * log transactions wait until you call btrfs_end_log_trans()
262 */
263void btrfs_pin_log_trans(struct btrfs_root *root)
264{
265 atomic_inc(v: &root->log_writers);
266}
267
268/*
269 * indicate we're done making changes to the log tree
270 * and wake up anyone waiting to do a sync
271 */
272void btrfs_end_log_trans(struct btrfs_root *root)
273{
274 if (atomic_dec_and_test(v: &root->log_writers)) {
275 /* atomic_dec_and_test implies a barrier */
276 cond_wake_up_nomb(wq: &root->log_writer_wait);
277 }
278}
279
280/*
281 * the walk control struct is used to pass state down the chain when
282 * processing the log tree. The stage field tells us which part
283 * of the log tree processing we are currently doing. The others
284 * are state fields used for that specific part
285 */
286struct walk_control {
287 /* should we free the extent on disk when done? This is used
288 * at transaction commit time while freeing a log tree
289 */
290 int free;
291
292 /* pin only walk, we record which extents on disk belong to the
293 * log trees
294 */
295 int pin;
296
297 /* what stage of the replay code we're currently in */
298 int stage;
299
300 /*
301 * Ignore any items from the inode currently being processed. Needs
302 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
303 * the LOG_WALK_REPLAY_INODES stage.
304 */
305 bool ignore_cur_inode;
306
307 /* the root we are currently replaying */
308 struct btrfs_root *replay_dest;
309
310 /* the trans handle for the current replay */
311 struct btrfs_trans_handle *trans;
312
313 /* the function that gets used to process blocks we find in the
314 * tree. Note the extent_buffer might not be up to date when it is
315 * passed in, and it must be checked or read if you need the data
316 * inside it
317 */
318 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
319 struct walk_control *wc, u64 gen, int level);
320};
321
322/*
323 * process_func used to pin down extents, write them or wait on them
324 */
325static int process_one_buffer(struct btrfs_root *log,
326 struct extent_buffer *eb,
327 struct walk_control *wc, u64 gen, int level)
328{
329 struct btrfs_fs_info *fs_info = log->fs_info;
330 int ret = 0;
331
332 /*
333 * If this fs is mixed then we need to be able to process the leaves to
334 * pin down any logged extents, so we have to read the block.
335 */
336 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
337 struct btrfs_tree_parent_check check = {
338 .level = level,
339 .transid = gen
340 };
341
342 ret = btrfs_read_extent_buffer(buf: eb, check: &check);
343 if (ret)
344 return ret;
345 }
346
347 if (wc->pin) {
348 ret = btrfs_pin_extent_for_log_replay(trans: wc->trans, eb);
349 if (ret)
350 return ret;
351
352 if (btrfs_buffer_uptodate(buf: eb, parent_transid: gen, atomic: 0) &&
353 btrfs_header_level(eb) == 0)
354 ret = btrfs_exclude_logged_extents(eb);
355 }
356 return ret;
357}
358
359/*
360 * Item overwrite used by replay and tree logging. eb, slot and key all refer
361 * to the src data we are copying out.
362 *
363 * root is the tree we are copying into, and path is a scratch
364 * path for use in this function (it should be released on entry and
365 * will be released on exit).
366 *
367 * If the key is already in the destination tree the existing item is
368 * overwritten. If the existing item isn't big enough, it is extended.
369 * If it is too large, it is truncated.
370 *
371 * If the key isn't in the destination yet, a new item is inserted.
372 */
373static int overwrite_item(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root,
375 struct btrfs_path *path,
376 struct extent_buffer *eb, int slot,
377 struct btrfs_key *key)
378{
379 int ret;
380 u32 item_size;
381 u64 saved_i_size = 0;
382 int save_old_i_size = 0;
383 unsigned long src_ptr;
384 unsigned long dst_ptr;
385 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386
387 /*
388 * This is only used during log replay, so the root is always from a
389 * fs/subvolume tree. In case we ever need to support a log root, then
390 * we'll have to clone the leaf in the path, release the path and use
391 * the leaf before writing into the log tree. See the comments at
392 * copy_items() for more details.
393 */
394 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
395
396 item_size = btrfs_item_size(eb, slot);
397 src_ptr = btrfs_item_ptr_offset(eb, slot);
398
399 /* Look for the key in the destination tree. */
400 ret = btrfs_search_slot(NULL, root, key, p: path, ins_len: 0, cow: 0);
401 if (ret < 0)
402 return ret;
403
404 if (ret == 0) {
405 char *src_copy;
406 char *dst_copy;
407 u32 dst_size = btrfs_item_size(eb: path->nodes[0],
408 slot: path->slots[0]);
409 if (dst_size != item_size)
410 goto insert;
411
412 if (item_size == 0) {
413 btrfs_release_path(p: path);
414 return 0;
415 }
416 dst_copy = kmalloc(size: item_size, GFP_NOFS);
417 src_copy = kmalloc(size: item_size, GFP_NOFS);
418 if (!dst_copy || !src_copy) {
419 btrfs_release_path(p: path);
420 kfree(objp: dst_copy);
421 kfree(objp: src_copy);
422 return -ENOMEM;
423 }
424
425 read_extent_buffer(eb, dst: src_copy, start: src_ptr, len: item_size);
426
427 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
428 read_extent_buffer(eb: path->nodes[0], dst: dst_copy, start: dst_ptr,
429 len: item_size);
430 ret = memcmp(p: dst_copy, q: src_copy, size: item_size);
431
432 kfree(objp: dst_copy);
433 kfree(objp: src_copy);
434 /*
435 * they have the same contents, just return, this saves
436 * us from cowing blocks in the destination tree and doing
437 * extra writes that may not have been done by a previous
438 * sync
439 */
440 if (ret == 0) {
441 btrfs_release_path(p: path);
442 return 0;
443 }
444
445 /*
446 * We need to load the old nbytes into the inode so when we
447 * replay the extents we've logged we get the right nbytes.
448 */
449 if (inode_item) {
450 struct btrfs_inode_item *item;
451 u64 nbytes;
452 u32 mode;
453
454 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
455 struct btrfs_inode_item);
456 nbytes = btrfs_inode_nbytes(eb: path->nodes[0], s: item);
457 item = btrfs_item_ptr(eb, slot,
458 struct btrfs_inode_item);
459 btrfs_set_inode_nbytes(eb, s: item, val: nbytes);
460
461 /*
462 * If this is a directory we need to reset the i_size to
463 * 0 so that we can set it up properly when replaying
464 * the rest of the items in this log.
465 */
466 mode = btrfs_inode_mode(eb, s: item);
467 if (S_ISDIR(mode))
468 btrfs_set_inode_size(eb, s: item, val: 0);
469 }
470 } else if (inode_item) {
471 struct btrfs_inode_item *item;
472 u32 mode;
473
474 /*
475 * New inode, set nbytes to 0 so that the nbytes comes out
476 * properly when we replay the extents.
477 */
478 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
479 btrfs_set_inode_nbytes(eb, s: item, val: 0);
480
481 /*
482 * If this is a directory we need to reset the i_size to 0 so
483 * that we can set it up properly when replaying the rest of
484 * the items in this log.
485 */
486 mode = btrfs_inode_mode(eb, s: item);
487 if (S_ISDIR(mode))
488 btrfs_set_inode_size(eb, s: item, val: 0);
489 }
490insert:
491 btrfs_release_path(p: path);
492 /* try to insert the key into the destination tree */
493 path->skip_release_on_error = 1;
494 ret = btrfs_insert_empty_item(trans, root, path,
495 key, data_size: item_size);
496 path->skip_release_on_error = 0;
497
498 /* make sure any existing item is the correct size */
499 if (ret == -EEXIST || ret == -EOVERFLOW) {
500 u32 found_size;
501 found_size = btrfs_item_size(eb: path->nodes[0],
502 slot: path->slots[0]);
503 if (found_size > item_size)
504 btrfs_truncate_item(trans, path, new_size: item_size, from_end: 1);
505 else if (found_size < item_size)
506 btrfs_extend_item(trans, path, data_size: item_size - found_size);
507 } else if (ret) {
508 return ret;
509 }
510 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
511 path->slots[0]);
512
513 /* don't overwrite an existing inode if the generation number
514 * was logged as zero. This is done when the tree logging code
515 * is just logging an inode to make sure it exists after recovery.
516 *
517 * Also, don't overwrite i_size on directories during replay.
518 * log replay inserts and removes directory items based on the
519 * state of the tree found in the subvolume, and i_size is modified
520 * as it goes
521 */
522 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
523 struct btrfs_inode_item *src_item;
524 struct btrfs_inode_item *dst_item;
525
526 src_item = (struct btrfs_inode_item *)src_ptr;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528
529 if (btrfs_inode_generation(eb, s: src_item) == 0) {
530 struct extent_buffer *dst_eb = path->nodes[0];
531 const u64 ino_size = btrfs_inode_size(eb, s: src_item);
532
533 /*
534 * For regular files an ino_size == 0 is used only when
535 * logging that an inode exists, as part of a directory
536 * fsync, and the inode wasn't fsynced before. In this
537 * case don't set the size of the inode in the fs/subvol
538 * tree, otherwise we would be throwing valid data away.
539 */
540 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
541 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
542 ino_size != 0)
543 btrfs_set_inode_size(eb: dst_eb, s: dst_item, val: ino_size);
544 goto no_copy;
545 }
546
547 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
548 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
549 save_old_i_size = 1;
550 saved_i_size = btrfs_inode_size(eb: path->nodes[0],
551 s: dst_item);
552 }
553 }
554
555 copy_extent_buffer(dst: path->nodes[0], src: eb, dst_offset: dst_ptr,
556 src_offset: src_ptr, len: item_size);
557
558 if (save_old_i_size) {
559 struct btrfs_inode_item *dst_item;
560 dst_item = (struct btrfs_inode_item *)dst_ptr;
561 btrfs_set_inode_size(eb: path->nodes[0], s: dst_item, val: saved_i_size);
562 }
563
564 /* make sure the generation is filled in */
565 if (key->type == BTRFS_INODE_ITEM_KEY) {
566 struct btrfs_inode_item *dst_item;
567 dst_item = (struct btrfs_inode_item *)dst_ptr;
568 if (btrfs_inode_generation(eb: path->nodes[0], s: dst_item) == 0) {
569 btrfs_set_inode_generation(eb: path->nodes[0], s: dst_item,
570 val: trans->transid);
571 }
572 }
573no_copy:
574 btrfs_mark_buffer_dirty(trans, buf: path->nodes[0]);
575 btrfs_release_path(p: path);
576 return 0;
577}
578
579static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
580 struct fscrypt_str *name)
581{
582 char *buf;
583
584 buf = kmalloc(size: len, GFP_NOFS);
585 if (!buf)
586 return -ENOMEM;
587
588 read_extent_buffer(eb, dst: buf, start: (unsigned long)start, len);
589 name->name = buf;
590 name->len = len;
591 return 0;
592}
593
594/*
595 * simple helper to read an inode off the disk from a given root
596 * This can only be called for subvolume roots and not for the log
597 */
598static noinline struct inode *read_one_inode(struct btrfs_root *root,
599 u64 objectid)
600{
601 struct inode *inode;
602
603 inode = btrfs_iget(s: root->fs_info->sb, ino: objectid, root);
604 if (IS_ERR(ptr: inode))
605 inode = NULL;
606 return inode;
607}
608
609/* replays a single extent in 'eb' at 'slot' with 'key' into the
610 * subvolume 'root'. path is released on entry and should be released
611 * on exit.
612 *
613 * extents in the log tree have not been allocated out of the extent
614 * tree yet. So, this completes the allocation, taking a reference
615 * as required if the extent already exists or creating a new extent
616 * if it isn't in the extent allocation tree yet.
617 *
618 * The extent is inserted into the file, dropping any existing extents
619 * from the file that overlap the new one.
620 */
621static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root,
623 struct btrfs_path *path,
624 struct extent_buffer *eb, int slot,
625 struct btrfs_key *key)
626{
627 struct btrfs_drop_extents_args drop_args = { 0 };
628 struct btrfs_fs_info *fs_info = root->fs_info;
629 int found_type;
630 u64 extent_end;
631 u64 start = key->offset;
632 u64 nbytes = 0;
633 struct btrfs_file_extent_item *item;
634 struct inode *inode = NULL;
635 unsigned long size;
636 int ret = 0;
637
638 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 found_type = btrfs_file_extent_type(eb, s: item);
640
641 if (found_type == BTRFS_FILE_EXTENT_REG ||
642 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 nbytes = btrfs_file_extent_num_bytes(eb, s: item);
644 extent_end = start + nbytes;
645
646 /*
647 * We don't add to the inodes nbytes if we are prealloc or a
648 * hole.
649 */
650 if (btrfs_file_extent_disk_bytenr(eb, s: item) == 0)
651 nbytes = 0;
652 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653 size = btrfs_file_extent_ram_bytes(eb, s: item);
654 nbytes = btrfs_file_extent_ram_bytes(eb, s: item);
655 extent_end = ALIGN(start + size,
656 fs_info->sectorsize);
657 } else {
658 ret = 0;
659 goto out;
660 }
661
662 inode = read_one_inode(root, objectid: key->objectid);
663 if (!inode) {
664 ret = -EIO;
665 goto out;
666 }
667
668 /*
669 * first check to see if we already have this extent in the
670 * file. This must be done before the btrfs_drop_extents run
671 * so we don't try to drop this extent.
672 */
673 ret = btrfs_lookup_file_extent(trans, root, path,
674 objectid: btrfs_ino(inode: BTRFS_I(inode)), bytenr: start, mod: 0);
675
676 if (ret == 0 &&
677 (found_type == BTRFS_FILE_EXTENT_REG ||
678 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
679 struct btrfs_file_extent_item cmp1;
680 struct btrfs_file_extent_item cmp2;
681 struct btrfs_file_extent_item *existing;
682 struct extent_buffer *leaf;
683
684 leaf = path->nodes[0];
685 existing = btrfs_item_ptr(leaf, path->slots[0],
686 struct btrfs_file_extent_item);
687
688 read_extent_buffer(eb, dst: &cmp1, start: (unsigned long)item,
689 len: sizeof(cmp1));
690 read_extent_buffer(eb: leaf, dst: &cmp2, start: (unsigned long)existing,
691 len: sizeof(cmp2));
692
693 /*
694 * we already have a pointer to this exact extent,
695 * we don't have to do anything
696 */
697 if (memcmp(p: &cmp1, q: &cmp2, size: sizeof(cmp1)) == 0) {
698 btrfs_release_path(p: path);
699 goto out;
700 }
701 }
702 btrfs_release_path(p: path);
703
704 /* drop any overlapping extents */
705 drop_args.start = start;
706 drop_args.end = extent_end;
707 drop_args.drop_cache = true;
708 ret = btrfs_drop_extents(trans, root, inode: BTRFS_I(inode), args: &drop_args);
709 if (ret)
710 goto out;
711
712 if (found_type == BTRFS_FILE_EXTENT_REG ||
713 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
714 u64 offset;
715 unsigned long dest_offset;
716 struct btrfs_key ins;
717
718 if (btrfs_file_extent_disk_bytenr(eb, s: item) == 0 &&
719 btrfs_fs_incompat(fs_info, NO_HOLES))
720 goto update_inode;
721
722 ret = btrfs_insert_empty_item(trans, root, path, key,
723 data_size: sizeof(*item));
724 if (ret)
725 goto out;
726 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
727 path->slots[0]);
728 copy_extent_buffer(dst: path->nodes[0], src: eb, dst_offset: dest_offset,
729 src_offset: (unsigned long)item, len: sizeof(*item));
730
731 ins.objectid = btrfs_file_extent_disk_bytenr(eb, s: item);
732 ins.offset = btrfs_file_extent_disk_num_bytes(eb, s: item);
733 ins.type = BTRFS_EXTENT_ITEM_KEY;
734 offset = key->offset - btrfs_file_extent_offset(eb, s: item);
735
736 /*
737 * Manually record dirty extent, as here we did a shallow
738 * file extent item copy and skip normal backref update,
739 * but modifying extent tree all by ourselves.
740 * So need to manually record dirty extent for qgroup,
741 * as the owner of the file extent changed from log tree
742 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
743 */
744 ret = btrfs_qgroup_trace_extent(trans,
745 bytenr: btrfs_file_extent_disk_bytenr(eb, s: item),
746 num_bytes: btrfs_file_extent_disk_num_bytes(eb, s: item));
747 if (ret < 0)
748 goto out;
749
750 if (ins.objectid > 0) {
751 struct btrfs_ref ref = { 0 };
752 u64 csum_start;
753 u64 csum_end;
754 LIST_HEAD(ordered_sums);
755
756 /*
757 * is this extent already allocated in the extent
758 * allocation tree? If so, just add a reference
759 */
760 ret = btrfs_lookup_data_extent(fs_info, start: ins.objectid,
761 len: ins.offset);
762 if (ret < 0) {
763 goto out;
764 } else if (ret == 0) {
765 btrfs_init_generic_ref(generic_ref: &ref,
766 action: BTRFS_ADD_DELAYED_REF,
767 bytenr: ins.objectid, len: ins.offset, parent: 0,
768 owning_root: root->root_key.objectid);
769 btrfs_init_data_ref(generic_ref: &ref,
770 ref_root: root->root_key.objectid,
771 ino: key->objectid, offset, mod_root: 0, skip_qgroup: false);
772 ret = btrfs_inc_extent_ref(trans, generic_ref: &ref);
773 if (ret)
774 goto out;
775 } else {
776 /*
777 * insert the extent pointer in the extent
778 * allocation tree
779 */
780 ret = btrfs_alloc_logged_file_extent(trans,
781 root_objectid: root->root_key.objectid,
782 owner: key->objectid, offset, ins: &ins);
783 if (ret)
784 goto out;
785 }
786 btrfs_release_path(p: path);
787
788 if (btrfs_file_extent_compression(eb, s: item)) {
789 csum_start = ins.objectid;
790 csum_end = csum_start + ins.offset;
791 } else {
792 csum_start = ins.objectid +
793 btrfs_file_extent_offset(eb, s: item);
794 csum_end = csum_start +
795 btrfs_file_extent_num_bytes(eb, s: item);
796 }
797
798 ret = btrfs_lookup_csums_list(root: root->log_root,
799 start: csum_start, end: csum_end - 1,
800 list: &ordered_sums, search_commit: 0, nowait: false);
801 if (ret)
802 goto out;
803 /*
804 * Now delete all existing cums in the csum root that
805 * cover our range. We do this because we can have an
806 * extent that is completely referenced by one file
807 * extent item and partially referenced by another
808 * file extent item (like after using the clone or
809 * extent_same ioctls). In this case if we end up doing
810 * the replay of the one that partially references the
811 * extent first, and we do not do the csum deletion
812 * below, we can get 2 csum items in the csum tree that
813 * overlap each other. For example, imagine our log has
814 * the two following file extent items:
815 *
816 * key (257 EXTENT_DATA 409600)
817 * extent data disk byte 12845056 nr 102400
818 * extent data offset 20480 nr 20480 ram 102400
819 *
820 * key (257 EXTENT_DATA 819200)
821 * extent data disk byte 12845056 nr 102400
822 * extent data offset 0 nr 102400 ram 102400
823 *
824 * Where the second one fully references the 100K extent
825 * that starts at disk byte 12845056, and the log tree
826 * has a single csum item that covers the entire range
827 * of the extent:
828 *
829 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
830 *
831 * After the first file extent item is replayed, the
832 * csum tree gets the following csum item:
833 *
834 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 *
836 * Which covers the 20K sub-range starting at offset 20K
837 * of our extent. Now when we replay the second file
838 * extent item, if we do not delete existing csum items
839 * that cover any of its blocks, we end up getting two
840 * csum items in our csum tree that overlap each other:
841 *
842 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
843 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
844 *
845 * Which is a problem, because after this anyone trying
846 * to lookup up for the checksum of any block of our
847 * extent starting at an offset of 40K or higher, will
848 * end up looking at the second csum item only, which
849 * does not contain the checksum for any block starting
850 * at offset 40K or higher of our extent.
851 */
852 while (!list_empty(head: &ordered_sums)) {
853 struct btrfs_ordered_sum *sums;
854 struct btrfs_root *csum_root;
855
856 sums = list_entry(ordered_sums.next,
857 struct btrfs_ordered_sum,
858 list);
859 csum_root = btrfs_csum_root(fs_info,
860 bytenr: sums->logical);
861 if (!ret)
862 ret = btrfs_del_csums(trans, root: csum_root,
863 bytenr: sums->logical,
864 len: sums->len);
865 if (!ret)
866 ret = btrfs_csum_file_blocks(trans,
867 root: csum_root,
868 sums);
869 list_del(entry: &sums->list);
870 kfree(objp: sums);
871 }
872 if (ret)
873 goto out;
874 } else {
875 btrfs_release_path(p: path);
876 }
877 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
878 /* inline extents are easy, we just overwrite them */
879 ret = overwrite_item(trans, root, path, eb, slot, key);
880 if (ret)
881 goto out;
882 }
883
884 ret = btrfs_inode_set_file_extent_range(inode: BTRFS_I(inode), start,
885 len: extent_end - start);
886 if (ret)
887 goto out;
888
889update_inode:
890 btrfs_update_inode_bytes(inode: BTRFS_I(inode), add_bytes: nbytes, del_bytes: drop_args.bytes_found);
891 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
892out:
893 iput(inode);
894 return ret;
895}
896
897static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
898 struct btrfs_inode *dir,
899 struct btrfs_inode *inode,
900 const struct fscrypt_str *name)
901{
902 int ret;
903
904 ret = btrfs_unlink_inode(trans, dir, inode, name);
905 if (ret)
906 return ret;
907 /*
908 * Whenever we need to check if a name exists or not, we check the
909 * fs/subvolume tree. So after an unlink we must run delayed items, so
910 * that future checks for a name during log replay see that the name
911 * does not exists anymore.
912 */
913 return btrfs_run_delayed_items(trans);
914}
915
916/*
917 * when cleaning up conflicts between the directory names in the
918 * subvolume, directory names in the log and directory names in the
919 * inode back references, we may have to unlink inodes from directories.
920 *
921 * This is a helper function to do the unlink of a specific directory
922 * item
923 */
924static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
925 struct btrfs_path *path,
926 struct btrfs_inode *dir,
927 struct btrfs_dir_item *di)
928{
929 struct btrfs_root *root = dir->root;
930 struct inode *inode;
931 struct fscrypt_str name;
932 struct extent_buffer *leaf;
933 struct btrfs_key location;
934 int ret;
935
936 leaf = path->nodes[0];
937
938 btrfs_dir_item_key_to_cpu(eb: leaf, item: di, cpu_key: &location);
939 ret = read_alloc_one_name(eb: leaf, start: di + 1, len: btrfs_dir_name_len(eb: leaf, s: di), name: &name);
940 if (ret)
941 return -ENOMEM;
942
943 btrfs_release_path(p: path);
944
945 inode = read_one_inode(root, objectid: location.objectid);
946 if (!inode) {
947 ret = -EIO;
948 goto out;
949 }
950
951 ret = link_to_fixup_dir(trans, root, path, objectid: location.objectid);
952 if (ret)
953 goto out;
954
955 ret = unlink_inode_for_log_replay(trans, dir, inode: BTRFS_I(inode), name: &name);
956out:
957 kfree(objp: name.name);
958 iput(inode);
959 return ret;
960}
961
962/*
963 * See if a given name and sequence number found in an inode back reference are
964 * already in a directory and correctly point to this inode.
965 *
966 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
967 * exists.
968 */
969static noinline int inode_in_dir(struct btrfs_root *root,
970 struct btrfs_path *path,
971 u64 dirid, u64 objectid, u64 index,
972 struct fscrypt_str *name)
973{
974 struct btrfs_dir_item *di;
975 struct btrfs_key location;
976 int ret = 0;
977
978 di = btrfs_lookup_dir_index_item(NULL, root, path, dir: dirid,
979 index, name, mod: 0);
980 if (IS_ERR(ptr: di)) {
981 ret = PTR_ERR(ptr: di);
982 goto out;
983 } else if (di) {
984 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: &location);
985 if (location.objectid != objectid)
986 goto out;
987 } else {
988 goto out;
989 }
990
991 btrfs_release_path(p: path);
992 di = btrfs_lookup_dir_item(NULL, root, path, dir: dirid, name, mod: 0);
993 if (IS_ERR(ptr: di)) {
994 ret = PTR_ERR(ptr: di);
995 goto out;
996 } else if (di) {
997 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: &location);
998 if (location.objectid == objectid)
999 ret = 1;
1000 }
1001out:
1002 btrfs_release_path(p: path);
1003 return ret;
1004}
1005
1006/*
1007 * helper function to check a log tree for a named back reference in
1008 * an inode. This is used to decide if a back reference that is
1009 * found in the subvolume conflicts with what we find in the log.
1010 *
1011 * inode backreferences may have multiple refs in a single item,
1012 * during replay we process one reference at a time, and we don't
1013 * want to delete valid links to a file from the subvolume if that
1014 * link is also in the log.
1015 */
1016static noinline int backref_in_log(struct btrfs_root *log,
1017 struct btrfs_key *key,
1018 u64 ref_objectid,
1019 const struct fscrypt_str *name)
1020{
1021 struct btrfs_path *path;
1022 int ret;
1023
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027
1028 ret = btrfs_search_slot(NULL, root: log, key, p: path, ins_len: 0, cow: 0);
1029 if (ret < 0) {
1030 goto out;
1031 } else if (ret == 1) {
1032 ret = 0;
1033 goto out;
1034 }
1035
1036 if (key->type == BTRFS_INODE_EXTREF_KEY)
1037 ret = !!btrfs_find_name_in_ext_backref(leaf: path->nodes[0],
1038 slot: path->slots[0],
1039 ref_objectid, name);
1040 else
1041 ret = !!btrfs_find_name_in_backref(leaf: path->nodes[0],
1042 slot: path->slots[0], name);
1043out:
1044 btrfs_free_path(p: path);
1045 return ret;
1046}
1047
1048static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1049 struct btrfs_root *root,
1050 struct btrfs_path *path,
1051 struct btrfs_root *log_root,
1052 struct btrfs_inode *dir,
1053 struct btrfs_inode *inode,
1054 u64 inode_objectid, u64 parent_objectid,
1055 u64 ref_index, struct fscrypt_str *name)
1056{
1057 int ret;
1058 struct extent_buffer *leaf;
1059 struct btrfs_dir_item *di;
1060 struct btrfs_key search_key;
1061 struct btrfs_inode_extref *extref;
1062
1063again:
1064 /* Search old style refs */
1065 search_key.objectid = inode_objectid;
1066 search_key.type = BTRFS_INODE_REF_KEY;
1067 search_key.offset = parent_objectid;
1068 ret = btrfs_search_slot(NULL, root, key: &search_key, p: path, ins_len: 0, cow: 0);
1069 if (ret == 0) {
1070 struct btrfs_inode_ref *victim_ref;
1071 unsigned long ptr;
1072 unsigned long ptr_end;
1073
1074 leaf = path->nodes[0];
1075
1076 /* are we trying to overwrite a back ref for the root directory
1077 * if so, just jump out, we're done
1078 */
1079 if (search_key.objectid == search_key.offset)
1080 return 1;
1081
1082 /* check all the names in this back reference to see
1083 * if they are in the log. if so, we allow them to stay
1084 * otherwise they must be unlinked as a conflict
1085 */
1086 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087 ptr_end = ptr + btrfs_item_size(eb: leaf, slot: path->slots[0]);
1088 while (ptr < ptr_end) {
1089 struct fscrypt_str victim_name;
1090
1091 victim_ref = (struct btrfs_inode_ref *)ptr;
1092 ret = read_alloc_one_name(eb: leaf, start: (victim_ref + 1),
1093 len: btrfs_inode_ref_name_len(eb: leaf, s: victim_ref),
1094 name: &victim_name);
1095 if (ret)
1096 return ret;
1097
1098 ret = backref_in_log(log: log_root, key: &search_key,
1099 ref_objectid: parent_objectid, name: &victim_name);
1100 if (ret < 0) {
1101 kfree(objp: victim_name.name);
1102 return ret;
1103 } else if (!ret) {
1104 inc_nlink(inode: &inode->vfs_inode);
1105 btrfs_release_path(p: path);
1106
1107 ret = unlink_inode_for_log_replay(trans, dir, inode,
1108 name: &victim_name);
1109 kfree(objp: victim_name.name);
1110 if (ret)
1111 return ret;
1112 goto again;
1113 }
1114 kfree(objp: victim_name.name);
1115
1116 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1117 }
1118 }
1119 btrfs_release_path(p: path);
1120
1121 /* Same search but for extended refs */
1122 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1123 inode_objectid, ref_objectid: parent_objectid, ins_len: 0,
1124 cow: 0);
1125 if (IS_ERR(ptr: extref)) {
1126 return PTR_ERR(ptr: extref);
1127 } else if (extref) {
1128 u32 item_size;
1129 u32 cur_offset = 0;
1130 unsigned long base;
1131 struct inode *victim_parent;
1132
1133 leaf = path->nodes[0];
1134
1135 item_size = btrfs_item_size(eb: leaf, slot: path->slots[0]);
1136 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1137
1138 while (cur_offset < item_size) {
1139 struct fscrypt_str victim_name;
1140
1141 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1142
1143 if (btrfs_inode_extref_parent(eb: leaf, s: extref) != parent_objectid)
1144 goto next;
1145
1146 ret = read_alloc_one_name(eb: leaf, start: &extref->name,
1147 len: btrfs_inode_extref_name_len(eb: leaf, s: extref),
1148 name: &victim_name);
1149 if (ret)
1150 return ret;
1151
1152 search_key.objectid = inode_objectid;
1153 search_key.type = BTRFS_INODE_EXTREF_KEY;
1154 search_key.offset = btrfs_extref_hash(parent_objectid,
1155 name: victim_name.name,
1156 len: victim_name.len);
1157 ret = backref_in_log(log: log_root, key: &search_key,
1158 ref_objectid: parent_objectid, name: &victim_name);
1159 if (ret < 0) {
1160 kfree(objp: victim_name.name);
1161 return ret;
1162 } else if (!ret) {
1163 ret = -ENOENT;
1164 victim_parent = read_one_inode(root,
1165 objectid: parent_objectid);
1166 if (victim_parent) {
1167 inc_nlink(inode: &inode->vfs_inode);
1168 btrfs_release_path(p: path);
1169
1170 ret = unlink_inode_for_log_replay(trans,
1171 dir: BTRFS_I(inode: victim_parent),
1172 inode, name: &victim_name);
1173 }
1174 iput(victim_parent);
1175 kfree(objp: victim_name.name);
1176 if (ret)
1177 return ret;
1178 goto again;
1179 }
1180 kfree(objp: victim_name.name);
1181next:
1182 cur_offset += victim_name.len + sizeof(*extref);
1183 }
1184 }
1185 btrfs_release_path(p: path);
1186
1187 /* look for a conflicting sequence number */
1188 di = btrfs_lookup_dir_index_item(trans, root, path, dir: btrfs_ino(inode: dir),
1189 index: ref_index, name, mod: 0);
1190 if (IS_ERR(ptr: di)) {
1191 return PTR_ERR(ptr: di);
1192 } else if (di) {
1193 ret = drop_one_dir_item(trans, path, dir, di);
1194 if (ret)
1195 return ret;
1196 }
1197 btrfs_release_path(p: path);
1198
1199 /* look for a conflicting name */
1200 di = btrfs_lookup_dir_item(trans, root, path, dir: btrfs_ino(inode: dir), name, mod: 0);
1201 if (IS_ERR(ptr: di)) {
1202 return PTR_ERR(ptr: di);
1203 } else if (di) {
1204 ret = drop_one_dir_item(trans, path, dir, di);
1205 if (ret)
1206 return ret;
1207 }
1208 btrfs_release_path(p: path);
1209
1210 return 0;
1211}
1212
1213static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1214 struct fscrypt_str *name, u64 *index,
1215 u64 *parent_objectid)
1216{
1217 struct btrfs_inode_extref *extref;
1218 int ret;
1219
1220 extref = (struct btrfs_inode_extref *)ref_ptr;
1221
1222 ret = read_alloc_one_name(eb, start: &extref->name,
1223 len: btrfs_inode_extref_name_len(eb, s: extref), name);
1224 if (ret)
1225 return ret;
1226
1227 if (index)
1228 *index = btrfs_inode_extref_index(eb, s: extref);
1229 if (parent_objectid)
1230 *parent_objectid = btrfs_inode_extref_parent(eb, s: extref);
1231
1232 return 0;
1233}
1234
1235static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1236 struct fscrypt_str *name, u64 *index)
1237{
1238 struct btrfs_inode_ref *ref;
1239 int ret;
1240
1241 ref = (struct btrfs_inode_ref *)ref_ptr;
1242
1243 ret = read_alloc_one_name(eb, start: ref + 1, len: btrfs_inode_ref_name_len(eb, s: ref),
1244 name);
1245 if (ret)
1246 return ret;
1247
1248 if (index)
1249 *index = btrfs_inode_ref_index(eb, s: ref);
1250
1251 return 0;
1252}
1253
1254/*
1255 * Take an inode reference item from the log tree and iterate all names from the
1256 * inode reference item in the subvolume tree with the same key (if it exists).
1257 * For any name that is not in the inode reference item from the log tree, do a
1258 * proper unlink of that name (that is, remove its entry from the inode
1259 * reference item and both dir index keys).
1260 */
1261static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 struct btrfs_inode *inode,
1265 struct extent_buffer *log_eb,
1266 int log_slot,
1267 struct btrfs_key *key)
1268{
1269 int ret;
1270 unsigned long ref_ptr;
1271 unsigned long ref_end;
1272 struct extent_buffer *eb;
1273
1274again:
1275 btrfs_release_path(p: path);
1276 ret = btrfs_search_slot(NULL, root, key, p: path, ins_len: 0, cow: 0);
1277 if (ret > 0) {
1278 ret = 0;
1279 goto out;
1280 }
1281 if (ret < 0)
1282 goto out;
1283
1284 eb = path->nodes[0];
1285 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1286 ref_end = ref_ptr + btrfs_item_size(eb, slot: path->slots[0]);
1287 while (ref_ptr < ref_end) {
1288 struct fscrypt_str name;
1289 u64 parent_id;
1290
1291 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1292 ret = extref_get_fields(eb, ref_ptr, name: &name,
1293 NULL, parent_objectid: &parent_id);
1294 } else {
1295 parent_id = key->offset;
1296 ret = ref_get_fields(eb, ref_ptr, name: &name, NULL);
1297 }
1298 if (ret)
1299 goto out;
1300
1301 if (key->type == BTRFS_INODE_EXTREF_KEY)
1302 ret = !!btrfs_find_name_in_ext_backref(leaf: log_eb, slot: log_slot,
1303 ref_objectid: parent_id, name: &name);
1304 else
1305 ret = !!btrfs_find_name_in_backref(leaf: log_eb, slot: log_slot, name: &name);
1306
1307 if (!ret) {
1308 struct inode *dir;
1309
1310 btrfs_release_path(p: path);
1311 dir = read_one_inode(root, objectid: parent_id);
1312 if (!dir) {
1313 ret = -ENOENT;
1314 kfree(objp: name.name);
1315 goto out;
1316 }
1317 ret = unlink_inode_for_log_replay(trans, dir: BTRFS_I(inode: dir),
1318 inode, name: &name);
1319 kfree(objp: name.name);
1320 iput(dir);
1321 if (ret)
1322 goto out;
1323 goto again;
1324 }
1325
1326 kfree(objp: name.name);
1327 ref_ptr += name.len;
1328 if (key->type == BTRFS_INODE_EXTREF_KEY)
1329 ref_ptr += sizeof(struct btrfs_inode_extref);
1330 else
1331 ref_ptr += sizeof(struct btrfs_inode_ref);
1332 }
1333 ret = 0;
1334 out:
1335 btrfs_release_path(p: path);
1336 return ret;
1337}
1338
1339/*
1340 * replay one inode back reference item found in the log tree.
1341 * eb, slot and key refer to the buffer and key found in the log tree.
1342 * root is the destination we are replaying into, and path is for temp
1343 * use by this function. (it should be released on return).
1344 */
1345static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1346 struct btrfs_root *root,
1347 struct btrfs_root *log,
1348 struct btrfs_path *path,
1349 struct extent_buffer *eb, int slot,
1350 struct btrfs_key *key)
1351{
1352 struct inode *dir = NULL;
1353 struct inode *inode = NULL;
1354 unsigned long ref_ptr;
1355 unsigned long ref_end;
1356 struct fscrypt_str name;
1357 int ret;
1358 int log_ref_ver = 0;
1359 u64 parent_objectid;
1360 u64 inode_objectid;
1361 u64 ref_index = 0;
1362 int ref_struct_size;
1363
1364 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1365 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1366
1367 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1368 struct btrfs_inode_extref *r;
1369
1370 ref_struct_size = sizeof(struct btrfs_inode_extref);
1371 log_ref_ver = 1;
1372 r = (struct btrfs_inode_extref *)ref_ptr;
1373 parent_objectid = btrfs_inode_extref_parent(eb, s: r);
1374 } else {
1375 ref_struct_size = sizeof(struct btrfs_inode_ref);
1376 parent_objectid = key->offset;
1377 }
1378 inode_objectid = key->objectid;
1379
1380 /*
1381 * it is possible that we didn't log all the parent directories
1382 * for a given inode. If we don't find the dir, just don't
1383 * copy the back ref in. The link count fixup code will take
1384 * care of the rest
1385 */
1386 dir = read_one_inode(root, objectid: parent_objectid);
1387 if (!dir) {
1388 ret = -ENOENT;
1389 goto out;
1390 }
1391
1392 inode = read_one_inode(root, objectid: inode_objectid);
1393 if (!inode) {
1394 ret = -EIO;
1395 goto out;
1396 }
1397
1398 while (ref_ptr < ref_end) {
1399 if (log_ref_ver) {
1400 ret = extref_get_fields(eb, ref_ptr, name: &name,
1401 index: &ref_index, parent_objectid: &parent_objectid);
1402 /*
1403 * parent object can change from one array
1404 * item to another.
1405 */
1406 if (!dir)
1407 dir = read_one_inode(root, objectid: parent_objectid);
1408 if (!dir) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412 } else {
1413 ret = ref_get_fields(eb, ref_ptr, name: &name, index: &ref_index);
1414 }
1415 if (ret)
1416 goto out;
1417
1418 ret = inode_in_dir(root, path, dirid: btrfs_ino(inode: BTRFS_I(inode: dir)),
1419 objectid: btrfs_ino(inode: BTRFS_I(inode)), index: ref_index, name: &name);
1420 if (ret < 0) {
1421 goto out;
1422 } else if (ret == 0) {
1423 /*
1424 * look for a conflicting back reference in the
1425 * metadata. if we find one we have to unlink that name
1426 * of the file before we add our new link. Later on, we
1427 * overwrite any existing back reference, and we don't
1428 * want to create dangling pointers in the directory.
1429 */
1430 ret = __add_inode_ref(trans, root, path, log_root: log,
1431 dir: BTRFS_I(inode: dir), inode: BTRFS_I(inode),
1432 inode_objectid, parent_objectid,
1433 ref_index, name: &name);
1434 if (ret) {
1435 if (ret == 1)
1436 ret = 0;
1437 goto out;
1438 }
1439
1440 /* insert our name */
1441 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: dir), inode: BTRFS_I(inode),
1442 name: &name, add_backref: 0, index: ref_index);
1443 if (ret)
1444 goto out;
1445
1446 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
1447 if (ret)
1448 goto out;
1449 }
1450 /* Else, ret == 1, we already have a perfect match, we're done. */
1451
1452 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1453 kfree(objp: name.name);
1454 name.name = NULL;
1455 if (log_ref_ver) {
1456 iput(dir);
1457 dir = NULL;
1458 }
1459 }
1460
1461 /*
1462 * Before we overwrite the inode reference item in the subvolume tree
1463 * with the item from the log tree, we must unlink all names from the
1464 * parent directory that are in the subvolume's tree inode reference
1465 * item, otherwise we end up with an inconsistent subvolume tree where
1466 * dir index entries exist for a name but there is no inode reference
1467 * item with the same name.
1468 */
1469 ret = unlink_old_inode_refs(trans, root, path, inode: BTRFS_I(inode), log_eb: eb, log_slot: slot,
1470 key);
1471 if (ret)
1472 goto out;
1473
1474 /* finally write the back reference in the inode */
1475 ret = overwrite_item(trans, root, path, eb, slot, key);
1476out:
1477 btrfs_release_path(p: path);
1478 kfree(objp: name.name);
1479 iput(dir);
1480 iput(inode);
1481 return ret;
1482}
1483
1484static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1485{
1486 int ret = 0;
1487 int name_len;
1488 unsigned int nlink = 0;
1489 u32 item_size;
1490 u32 cur_offset = 0;
1491 u64 inode_objectid = btrfs_ino(inode);
1492 u64 offset = 0;
1493 unsigned long ptr;
1494 struct btrfs_inode_extref *extref;
1495 struct extent_buffer *leaf;
1496
1497 while (1) {
1498 ret = btrfs_find_one_extref(root: inode->root, inode_objectid, start_off: offset,
1499 path, ret_extref: &extref, found_off: &offset);
1500 if (ret)
1501 break;
1502
1503 leaf = path->nodes[0];
1504 item_size = btrfs_item_size(eb: leaf, slot: path->slots[0]);
1505 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1506 cur_offset = 0;
1507
1508 while (cur_offset < item_size) {
1509 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1510 name_len = btrfs_inode_extref_name_len(eb: leaf, s: extref);
1511
1512 nlink++;
1513
1514 cur_offset += name_len + sizeof(*extref);
1515 }
1516
1517 offset++;
1518 btrfs_release_path(p: path);
1519 }
1520 btrfs_release_path(p: path);
1521
1522 if (ret < 0 && ret != -ENOENT)
1523 return ret;
1524 return nlink;
1525}
1526
1527static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1528{
1529 int ret;
1530 struct btrfs_key key;
1531 unsigned int nlink = 0;
1532 unsigned long ptr;
1533 unsigned long ptr_end;
1534 int name_len;
1535 u64 ino = btrfs_ino(inode);
1536
1537 key.objectid = ino;
1538 key.type = BTRFS_INODE_REF_KEY;
1539 key.offset = (u64)-1;
1540
1541 while (1) {
1542 ret = btrfs_search_slot(NULL, root: inode->root, key: &key, p: path, ins_len: 0, cow: 0);
1543 if (ret < 0)
1544 break;
1545 if (ret > 0) {
1546 if (path->slots[0] == 0)
1547 break;
1548 path->slots[0]--;
1549 }
1550process_slot:
1551 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key,
1552 nr: path->slots[0]);
1553 if (key.objectid != ino ||
1554 key.type != BTRFS_INODE_REF_KEY)
1555 break;
1556 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1557 ptr_end = ptr + btrfs_item_size(eb: path->nodes[0],
1558 slot: path->slots[0]);
1559 while (ptr < ptr_end) {
1560 struct btrfs_inode_ref *ref;
1561
1562 ref = (struct btrfs_inode_ref *)ptr;
1563 name_len = btrfs_inode_ref_name_len(eb: path->nodes[0],
1564 s: ref);
1565 ptr = (unsigned long)(ref + 1) + name_len;
1566 nlink++;
1567 }
1568
1569 if (key.offset == 0)
1570 break;
1571 if (path->slots[0] > 0) {
1572 path->slots[0]--;
1573 goto process_slot;
1574 }
1575 key.offset--;
1576 btrfs_release_path(p: path);
1577 }
1578 btrfs_release_path(p: path);
1579
1580 return nlink;
1581}
1582
1583/*
1584 * There are a few corners where the link count of the file can't
1585 * be properly maintained during replay. So, instead of adding
1586 * lots of complexity to the log code, we just scan the backrefs
1587 * for any file that has been through replay.
1588 *
1589 * The scan will update the link count on the inode to reflect the
1590 * number of back refs found. If it goes down to zero, the iput
1591 * will free the inode.
1592 */
1593static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1594 struct inode *inode)
1595{
1596 struct btrfs_root *root = BTRFS_I(inode)->root;
1597 struct btrfs_path *path;
1598 int ret;
1599 u64 nlink = 0;
1600 u64 ino = btrfs_ino(inode: BTRFS_I(inode));
1601
1602 path = btrfs_alloc_path();
1603 if (!path)
1604 return -ENOMEM;
1605
1606 ret = count_inode_refs(inode: BTRFS_I(inode), path);
1607 if (ret < 0)
1608 goto out;
1609
1610 nlink = ret;
1611
1612 ret = count_inode_extrefs(inode: BTRFS_I(inode), path);
1613 if (ret < 0)
1614 goto out;
1615
1616 nlink += ret;
1617
1618 ret = 0;
1619
1620 if (nlink != inode->i_nlink) {
1621 set_nlink(inode, nlink);
1622 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
1623 if (ret)
1624 goto out;
1625 }
1626 BTRFS_I(inode)->index_cnt = (u64)-1;
1627
1628 if (inode->i_nlink == 0) {
1629 if (S_ISDIR(inode->i_mode)) {
1630 ret = replay_dir_deletes(trans, root, NULL, path,
1631 dirid: ino, del_all: 1);
1632 if (ret)
1633 goto out;
1634 }
1635 ret = btrfs_insert_orphan_item(trans, root, offset: ino);
1636 if (ret == -EEXIST)
1637 ret = 0;
1638 }
1639
1640out:
1641 btrfs_free_path(p: path);
1642 return ret;
1643}
1644
1645static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1646 struct btrfs_root *root,
1647 struct btrfs_path *path)
1648{
1649 int ret;
1650 struct btrfs_key key;
1651 struct inode *inode;
1652
1653 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1654 key.type = BTRFS_ORPHAN_ITEM_KEY;
1655 key.offset = (u64)-1;
1656 while (1) {
1657 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
1658 if (ret < 0)
1659 break;
1660
1661 if (ret == 1) {
1662 ret = 0;
1663 if (path->slots[0] == 0)
1664 break;
1665 path->slots[0]--;
1666 }
1667
1668 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
1669 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1670 key.type != BTRFS_ORPHAN_ITEM_KEY)
1671 break;
1672
1673 ret = btrfs_del_item(trans, root, path);
1674 if (ret)
1675 break;
1676
1677 btrfs_release_path(p: path);
1678 inode = read_one_inode(root, objectid: key.offset);
1679 if (!inode) {
1680 ret = -EIO;
1681 break;
1682 }
1683
1684 ret = fixup_inode_link_count(trans, inode);
1685 iput(inode);
1686 if (ret)
1687 break;
1688
1689 /*
1690 * fixup on a directory may create new entries,
1691 * make sure we always look for the highset possible
1692 * offset
1693 */
1694 key.offset = (u64)-1;
1695 }
1696 btrfs_release_path(p: path);
1697 return ret;
1698}
1699
1700
1701/*
1702 * record a given inode in the fixup dir so we can check its link
1703 * count when replay is done. The link count is incremented here
1704 * so the inode won't go away until we check it
1705 */
1706static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1707 struct btrfs_root *root,
1708 struct btrfs_path *path,
1709 u64 objectid)
1710{
1711 struct btrfs_key key;
1712 int ret = 0;
1713 struct inode *inode;
1714
1715 inode = read_one_inode(root, objectid);
1716 if (!inode)
1717 return -EIO;
1718
1719 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1720 key.type = BTRFS_ORPHAN_ITEM_KEY;
1721 key.offset = objectid;
1722
1723 ret = btrfs_insert_empty_item(trans, root, path, key: &key, data_size: 0);
1724
1725 btrfs_release_path(p: path);
1726 if (ret == 0) {
1727 if (!inode->i_nlink)
1728 set_nlink(inode, nlink: 1);
1729 else
1730 inc_nlink(inode);
1731 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
1732 } else if (ret == -EEXIST) {
1733 ret = 0;
1734 }
1735 iput(inode);
1736
1737 return ret;
1738}
1739
1740/*
1741 * when replaying the log for a directory, we only insert names
1742 * for inodes that actually exist. This means an fsync on a directory
1743 * does not implicitly fsync all the new files in it
1744 */
1745static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1746 struct btrfs_root *root,
1747 u64 dirid, u64 index,
1748 const struct fscrypt_str *name,
1749 struct btrfs_key *location)
1750{
1751 struct inode *inode;
1752 struct inode *dir;
1753 int ret;
1754
1755 inode = read_one_inode(root, objectid: location->objectid);
1756 if (!inode)
1757 return -ENOENT;
1758
1759 dir = read_one_inode(root, objectid: dirid);
1760 if (!dir) {
1761 iput(inode);
1762 return -EIO;
1763 }
1764
1765 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: dir), inode: BTRFS_I(inode), name,
1766 add_backref: 1, index);
1767
1768 /* FIXME, put inode into FIXUP list */
1769
1770 iput(inode);
1771 iput(dir);
1772 return ret;
1773}
1774
1775static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1776 struct btrfs_inode *dir,
1777 struct btrfs_path *path,
1778 struct btrfs_dir_item *dst_di,
1779 const struct btrfs_key *log_key,
1780 u8 log_flags,
1781 bool exists)
1782{
1783 struct btrfs_key found_key;
1784
1785 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: dst_di, cpu_key: &found_key);
1786 /* The existing dentry points to the same inode, don't delete it. */
1787 if (found_key.objectid == log_key->objectid &&
1788 found_key.type == log_key->type &&
1789 found_key.offset == log_key->offset &&
1790 btrfs_dir_flags(eb: path->nodes[0], s: dst_di) == log_flags)
1791 return 1;
1792
1793 /*
1794 * Don't drop the conflicting directory entry if the inode for the new
1795 * entry doesn't exist.
1796 */
1797 if (!exists)
1798 return 0;
1799
1800 return drop_one_dir_item(trans, path, dir, di: dst_di);
1801}
1802
1803/*
1804 * take a single entry in a log directory item and replay it into
1805 * the subvolume.
1806 *
1807 * if a conflicting item exists in the subdirectory already,
1808 * the inode it points to is unlinked and put into the link count
1809 * fix up tree.
1810 *
1811 * If a name from the log points to a file or directory that does
1812 * not exist in the FS, it is skipped. fsyncs on directories
1813 * do not force down inodes inside that directory, just changes to the
1814 * names or unlinks in a directory.
1815 *
1816 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1817 * non-existing inode) and 1 if the name was replayed.
1818 */
1819static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 struct extent_buffer *eb,
1823 struct btrfs_dir_item *di,
1824 struct btrfs_key *key)
1825{
1826 struct fscrypt_str name;
1827 struct btrfs_dir_item *dir_dst_di;
1828 struct btrfs_dir_item *index_dst_di;
1829 bool dir_dst_matches = false;
1830 bool index_dst_matches = false;
1831 struct btrfs_key log_key;
1832 struct btrfs_key search_key;
1833 struct inode *dir;
1834 u8 log_flags;
1835 bool exists;
1836 int ret;
1837 bool update_size = true;
1838 bool name_added = false;
1839
1840 dir = read_one_inode(root, objectid: key->objectid);
1841 if (!dir)
1842 return -EIO;
1843
1844 ret = read_alloc_one_name(eb, start: di + 1, len: btrfs_dir_name_len(eb, s: di), name: &name);
1845 if (ret)
1846 goto out;
1847
1848 log_flags = btrfs_dir_flags(eb, s: di);
1849 btrfs_dir_item_key_to_cpu(eb, item: di, cpu_key: &log_key);
1850 ret = btrfs_lookup_inode(trans, root, path, location: &log_key, mod: 0);
1851 btrfs_release_path(p: path);
1852 if (ret < 0)
1853 goto out;
1854 exists = (ret == 0);
1855 ret = 0;
1856
1857 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, dir: key->objectid,
1858 name: &name, mod: 1);
1859 if (IS_ERR(ptr: dir_dst_di)) {
1860 ret = PTR_ERR(ptr: dir_dst_di);
1861 goto out;
1862 } else if (dir_dst_di) {
1863 ret = delete_conflicting_dir_entry(trans, dir: BTRFS_I(inode: dir), path,
1864 dst_di: dir_dst_di, log_key: &log_key,
1865 log_flags, exists);
1866 if (ret < 0)
1867 goto out;
1868 dir_dst_matches = (ret == 1);
1869 }
1870
1871 btrfs_release_path(p: path);
1872
1873 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1874 dir: key->objectid, index: key->offset,
1875 name: &name, mod: 1);
1876 if (IS_ERR(ptr: index_dst_di)) {
1877 ret = PTR_ERR(ptr: index_dst_di);
1878 goto out;
1879 } else if (index_dst_di) {
1880 ret = delete_conflicting_dir_entry(trans, dir: BTRFS_I(inode: dir), path,
1881 dst_di: index_dst_di, log_key: &log_key,
1882 log_flags, exists);
1883 if (ret < 0)
1884 goto out;
1885 index_dst_matches = (ret == 1);
1886 }
1887
1888 btrfs_release_path(p: path);
1889
1890 if (dir_dst_matches && index_dst_matches) {
1891 ret = 0;
1892 update_size = false;
1893 goto out;
1894 }
1895
1896 /*
1897 * Check if the inode reference exists in the log for the given name,
1898 * inode and parent inode
1899 */
1900 search_key.objectid = log_key.objectid;
1901 search_key.type = BTRFS_INODE_REF_KEY;
1902 search_key.offset = key->objectid;
1903 ret = backref_in_log(log: root->log_root, key: &search_key, ref_objectid: 0, name: &name);
1904 if (ret < 0) {
1905 goto out;
1906 } else if (ret) {
1907 /* The dentry will be added later. */
1908 ret = 0;
1909 update_size = false;
1910 goto out;
1911 }
1912
1913 search_key.objectid = log_key.objectid;
1914 search_key.type = BTRFS_INODE_EXTREF_KEY;
1915 search_key.offset = key->objectid;
1916 ret = backref_in_log(log: root->log_root, key: &search_key, ref_objectid: key->objectid, name: &name);
1917 if (ret < 0) {
1918 goto out;
1919 } else if (ret) {
1920 /* The dentry will be added later. */
1921 ret = 0;
1922 update_size = false;
1923 goto out;
1924 }
1925 btrfs_release_path(p: path);
1926 ret = insert_one_name(trans, root, dirid: key->objectid, index: key->offset,
1927 name: &name, location: &log_key);
1928 if (ret && ret != -ENOENT && ret != -EEXIST)
1929 goto out;
1930 if (!ret)
1931 name_added = true;
1932 update_size = false;
1933 ret = 0;
1934
1935out:
1936 if (!ret && update_size) {
1937 btrfs_i_size_write(inode: BTRFS_I(inode: dir), size: dir->i_size + name.len * 2);
1938 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode: dir));
1939 }
1940 kfree(objp: name.name);
1941 iput(dir);
1942 if (!ret && name_added)
1943 ret = 1;
1944 return ret;
1945}
1946
1947/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1948static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1949 struct btrfs_root *root,
1950 struct btrfs_path *path,
1951 struct extent_buffer *eb, int slot,
1952 struct btrfs_key *key)
1953{
1954 int ret;
1955 struct btrfs_dir_item *di;
1956
1957 /* We only log dir index keys, which only contain a single dir item. */
1958 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1959
1960 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1961 ret = replay_one_name(trans, root, path, eb, di, key);
1962 if (ret < 0)
1963 return ret;
1964
1965 /*
1966 * If this entry refers to a non-directory (directories can not have a
1967 * link count > 1) and it was added in the transaction that was not
1968 * committed, make sure we fixup the link count of the inode the entry
1969 * points to. Otherwise something like the following would result in a
1970 * directory pointing to an inode with a wrong link that does not account
1971 * for this dir entry:
1972 *
1973 * mkdir testdir
1974 * touch testdir/foo
1975 * touch testdir/bar
1976 * sync
1977 *
1978 * ln testdir/bar testdir/bar_link
1979 * ln testdir/foo testdir/foo_link
1980 * xfs_io -c "fsync" testdir/bar
1981 *
1982 * <power failure>
1983 *
1984 * mount fs, log replay happens
1985 *
1986 * File foo would remain with a link count of 1 when it has two entries
1987 * pointing to it in the directory testdir. This would make it impossible
1988 * to ever delete the parent directory has it would result in stale
1989 * dentries that can never be deleted.
1990 */
1991 if (ret == 1 && btrfs_dir_ftype(eb, item: di) != BTRFS_FT_DIR) {
1992 struct btrfs_path *fixup_path;
1993 struct btrfs_key di_key;
1994
1995 fixup_path = btrfs_alloc_path();
1996 if (!fixup_path)
1997 return -ENOMEM;
1998
1999 btrfs_dir_item_key_to_cpu(eb, item: di, cpu_key: &di_key);
2000 ret = link_to_fixup_dir(trans, root, path: fixup_path, objectid: di_key.objectid);
2001 btrfs_free_path(p: fixup_path);
2002 }
2003
2004 return ret;
2005}
2006
2007/*
2008 * directory replay has two parts. There are the standard directory
2009 * items in the log copied from the subvolume, and range items
2010 * created in the log while the subvolume was logged.
2011 *
2012 * The range items tell us which parts of the key space the log
2013 * is authoritative for. During replay, if a key in the subvolume
2014 * directory is in a logged range item, but not actually in the log
2015 * that means it was deleted from the directory before the fsync
2016 * and should be removed.
2017 */
2018static noinline int find_dir_range(struct btrfs_root *root,
2019 struct btrfs_path *path,
2020 u64 dirid,
2021 u64 *start_ret, u64 *end_ret)
2022{
2023 struct btrfs_key key;
2024 u64 found_end;
2025 struct btrfs_dir_log_item *item;
2026 int ret;
2027 int nritems;
2028
2029 if (*start_ret == (u64)-1)
2030 return 1;
2031
2032 key.objectid = dirid;
2033 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2034 key.offset = *start_ret;
2035
2036 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
2037 if (ret < 0)
2038 goto out;
2039 if (ret > 0) {
2040 if (path->slots[0] == 0)
2041 goto out;
2042 path->slots[0]--;
2043 }
2044 if (ret != 0)
2045 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
2046
2047 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2048 ret = 1;
2049 goto next;
2050 }
2051 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2052 struct btrfs_dir_log_item);
2053 found_end = btrfs_dir_log_end(eb: path->nodes[0], s: item);
2054
2055 if (*start_ret >= key.offset && *start_ret <= found_end) {
2056 ret = 0;
2057 *start_ret = key.offset;
2058 *end_ret = found_end;
2059 goto out;
2060 }
2061 ret = 1;
2062next:
2063 /* check the next slot in the tree to see if it is a valid item */
2064 nritems = btrfs_header_nritems(eb: path->nodes[0]);
2065 path->slots[0]++;
2066 if (path->slots[0] >= nritems) {
2067 ret = btrfs_next_leaf(root, path);
2068 if (ret)
2069 goto out;
2070 }
2071
2072 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
2073
2074 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2075 ret = 1;
2076 goto out;
2077 }
2078 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2079 struct btrfs_dir_log_item);
2080 found_end = btrfs_dir_log_end(eb: path->nodes[0], s: item);
2081 *start_ret = key.offset;
2082 *end_ret = found_end;
2083 ret = 0;
2084out:
2085 btrfs_release_path(p: path);
2086 return ret;
2087}
2088
2089/*
2090 * this looks for a given directory item in the log. If the directory
2091 * item is not in the log, the item is removed and the inode it points
2092 * to is unlinked
2093 */
2094static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *log,
2096 struct btrfs_path *path,
2097 struct btrfs_path *log_path,
2098 struct inode *dir,
2099 struct btrfs_key *dir_key)
2100{
2101 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
2102 int ret;
2103 struct extent_buffer *eb;
2104 int slot;
2105 struct btrfs_dir_item *di;
2106 struct fscrypt_str name;
2107 struct inode *inode = NULL;
2108 struct btrfs_key location;
2109
2110 /*
2111 * Currently we only log dir index keys. Even if we replay a log created
2112 * by an older kernel that logged both dir index and dir item keys, all
2113 * we need to do is process the dir index keys, we (and our caller) can
2114 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2115 */
2116 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2117
2118 eb = path->nodes[0];
2119 slot = path->slots[0];
2120 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2121 ret = read_alloc_one_name(eb, start: di + 1, len: btrfs_dir_name_len(eb, s: di), name: &name);
2122 if (ret)
2123 goto out;
2124
2125 if (log) {
2126 struct btrfs_dir_item *log_di;
2127
2128 log_di = btrfs_lookup_dir_index_item(trans, root: log, path: log_path,
2129 dir: dir_key->objectid,
2130 index: dir_key->offset, name: &name, mod: 0);
2131 if (IS_ERR(ptr: log_di)) {
2132 ret = PTR_ERR(ptr: log_di);
2133 goto out;
2134 } else if (log_di) {
2135 /* The dentry exists in the log, we have nothing to do. */
2136 ret = 0;
2137 goto out;
2138 }
2139 }
2140
2141 btrfs_dir_item_key_to_cpu(eb, item: di, cpu_key: &location);
2142 btrfs_release_path(p: path);
2143 btrfs_release_path(p: log_path);
2144 inode = read_one_inode(root, objectid: location.objectid);
2145 if (!inode) {
2146 ret = -EIO;
2147 goto out;
2148 }
2149
2150 ret = link_to_fixup_dir(trans, root, path, objectid: location.objectid);
2151 if (ret)
2152 goto out;
2153
2154 inc_nlink(inode);
2155 ret = unlink_inode_for_log_replay(trans, dir: BTRFS_I(inode: dir), inode: BTRFS_I(inode),
2156 name: &name);
2157 /*
2158 * Unlike dir item keys, dir index keys can only have one name (entry) in
2159 * them, as there are no key collisions since each key has a unique offset
2160 * (an index number), so we're done.
2161 */
2162out:
2163 btrfs_release_path(p: path);
2164 btrfs_release_path(p: log_path);
2165 kfree(objp: name.name);
2166 iput(inode);
2167 return ret;
2168}
2169
2170static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root,
2172 struct btrfs_root *log,
2173 struct btrfs_path *path,
2174 const u64 ino)
2175{
2176 struct btrfs_key search_key;
2177 struct btrfs_path *log_path;
2178 int i;
2179 int nritems;
2180 int ret;
2181
2182 log_path = btrfs_alloc_path();
2183 if (!log_path)
2184 return -ENOMEM;
2185
2186 search_key.objectid = ino;
2187 search_key.type = BTRFS_XATTR_ITEM_KEY;
2188 search_key.offset = 0;
2189again:
2190 ret = btrfs_search_slot(NULL, root, key: &search_key, p: path, ins_len: 0, cow: 0);
2191 if (ret < 0)
2192 goto out;
2193process_leaf:
2194 nritems = btrfs_header_nritems(eb: path->nodes[0]);
2195 for (i = path->slots[0]; i < nritems; i++) {
2196 struct btrfs_key key;
2197 struct btrfs_dir_item *di;
2198 struct btrfs_dir_item *log_di;
2199 u32 total_size;
2200 u32 cur;
2201
2202 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: i);
2203 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2204 ret = 0;
2205 goto out;
2206 }
2207
2208 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2209 total_size = btrfs_item_size(eb: path->nodes[0], slot: i);
2210 cur = 0;
2211 while (cur < total_size) {
2212 u16 name_len = btrfs_dir_name_len(eb: path->nodes[0], s: di);
2213 u16 data_len = btrfs_dir_data_len(eb: path->nodes[0], s: di);
2214 u32 this_len = sizeof(*di) + name_len + data_len;
2215 char *name;
2216
2217 name = kmalloc(size: name_len, GFP_NOFS);
2218 if (!name) {
2219 ret = -ENOMEM;
2220 goto out;
2221 }
2222 read_extent_buffer(eb: path->nodes[0], dst: name,
2223 start: (unsigned long)(di + 1), len: name_len);
2224
2225 log_di = btrfs_lookup_xattr(NULL, root: log, path: log_path, dir: ino,
2226 name, name_len, mod: 0);
2227 btrfs_release_path(p: log_path);
2228 if (!log_di) {
2229 /* Doesn't exist in log tree, so delete it. */
2230 btrfs_release_path(p: path);
2231 di = btrfs_lookup_xattr(trans, root, path, dir: ino,
2232 name, name_len, mod: -1);
2233 kfree(objp: name);
2234 if (IS_ERR(ptr: di)) {
2235 ret = PTR_ERR(ptr: di);
2236 goto out;
2237 }
2238 ASSERT(di);
2239 ret = btrfs_delete_one_dir_name(trans, root,
2240 path, di);
2241 if (ret)
2242 goto out;
2243 btrfs_release_path(p: path);
2244 search_key = key;
2245 goto again;
2246 }
2247 kfree(objp: name);
2248 if (IS_ERR(ptr: log_di)) {
2249 ret = PTR_ERR(ptr: log_di);
2250 goto out;
2251 }
2252 cur += this_len;
2253 di = (struct btrfs_dir_item *)((char *)di + this_len);
2254 }
2255 }
2256 ret = btrfs_next_leaf(root, path);
2257 if (ret > 0)
2258 ret = 0;
2259 else if (ret == 0)
2260 goto process_leaf;
2261out:
2262 btrfs_free_path(p: log_path);
2263 btrfs_release_path(p: path);
2264 return ret;
2265}
2266
2267
2268/*
2269 * deletion replay happens before we copy any new directory items
2270 * out of the log or out of backreferences from inodes. It
2271 * scans the log to find ranges of keys that log is authoritative for,
2272 * and then scans the directory to find items in those ranges that are
2273 * not present in the log.
2274 *
2275 * Anything we don't find in the log is unlinked and removed from the
2276 * directory.
2277 */
2278static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2279 struct btrfs_root *root,
2280 struct btrfs_root *log,
2281 struct btrfs_path *path,
2282 u64 dirid, int del_all)
2283{
2284 u64 range_start;
2285 u64 range_end;
2286 int ret = 0;
2287 struct btrfs_key dir_key;
2288 struct btrfs_key found_key;
2289 struct btrfs_path *log_path;
2290 struct inode *dir;
2291
2292 dir_key.objectid = dirid;
2293 dir_key.type = BTRFS_DIR_INDEX_KEY;
2294 log_path = btrfs_alloc_path();
2295 if (!log_path)
2296 return -ENOMEM;
2297
2298 dir = read_one_inode(root, objectid: dirid);
2299 /* it isn't an error if the inode isn't there, that can happen
2300 * because we replay the deletes before we copy in the inode item
2301 * from the log
2302 */
2303 if (!dir) {
2304 btrfs_free_path(p: log_path);
2305 return 0;
2306 }
2307
2308 range_start = 0;
2309 range_end = 0;
2310 while (1) {
2311 if (del_all)
2312 range_end = (u64)-1;
2313 else {
2314 ret = find_dir_range(root: log, path, dirid,
2315 start_ret: &range_start, end_ret: &range_end);
2316 if (ret < 0)
2317 goto out;
2318 else if (ret > 0)
2319 break;
2320 }
2321
2322 dir_key.offset = range_start;
2323 while (1) {
2324 int nritems;
2325 ret = btrfs_search_slot(NULL, root, key: &dir_key, p: path,
2326 ins_len: 0, cow: 0);
2327 if (ret < 0)
2328 goto out;
2329
2330 nritems = btrfs_header_nritems(eb: path->nodes[0]);
2331 if (path->slots[0] >= nritems) {
2332 ret = btrfs_next_leaf(root, path);
2333 if (ret == 1)
2334 break;
2335 else if (ret < 0)
2336 goto out;
2337 }
2338 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &found_key,
2339 nr: path->slots[0]);
2340 if (found_key.objectid != dirid ||
2341 found_key.type != dir_key.type) {
2342 ret = 0;
2343 goto out;
2344 }
2345
2346 if (found_key.offset > range_end)
2347 break;
2348
2349 ret = check_item_in_log(trans, log, path,
2350 log_path, dir,
2351 dir_key: &found_key);
2352 if (ret)
2353 goto out;
2354 if (found_key.offset == (u64)-1)
2355 break;
2356 dir_key.offset = found_key.offset + 1;
2357 }
2358 btrfs_release_path(p: path);
2359 if (range_end == (u64)-1)
2360 break;
2361 range_start = range_end + 1;
2362 }
2363 ret = 0;
2364out:
2365 btrfs_release_path(p: path);
2366 btrfs_free_path(p: log_path);
2367 iput(dir);
2368 return ret;
2369}
2370
2371/*
2372 * the process_func used to replay items from the log tree. This
2373 * gets called in two different stages. The first stage just looks
2374 * for inodes and makes sure they are all copied into the subvolume.
2375 *
2376 * The second stage copies all the other item types from the log into
2377 * the subvolume. The two stage approach is slower, but gets rid of
2378 * lots of complexity around inodes referencing other inodes that exist
2379 * only in the log (references come from either directory items or inode
2380 * back refs).
2381 */
2382static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2383 struct walk_control *wc, u64 gen, int level)
2384{
2385 int nritems;
2386 struct btrfs_tree_parent_check check = {
2387 .transid = gen,
2388 .level = level
2389 };
2390 struct btrfs_path *path;
2391 struct btrfs_root *root = wc->replay_dest;
2392 struct btrfs_key key;
2393 int i;
2394 int ret;
2395
2396 ret = btrfs_read_extent_buffer(buf: eb, check: &check);
2397 if (ret)
2398 return ret;
2399
2400 level = btrfs_header_level(eb);
2401
2402 if (level != 0)
2403 return 0;
2404
2405 path = btrfs_alloc_path();
2406 if (!path)
2407 return -ENOMEM;
2408
2409 nritems = btrfs_header_nritems(eb);
2410 for (i = 0; i < nritems; i++) {
2411 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: i);
2412
2413 /* inode keys are done during the first stage */
2414 if (key.type == BTRFS_INODE_ITEM_KEY &&
2415 wc->stage == LOG_WALK_REPLAY_INODES) {
2416 struct btrfs_inode_item *inode_item;
2417 u32 mode;
2418
2419 inode_item = btrfs_item_ptr(eb, i,
2420 struct btrfs_inode_item);
2421 /*
2422 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2423 * and never got linked before the fsync, skip it, as
2424 * replaying it is pointless since it would be deleted
2425 * later. We skip logging tmpfiles, but it's always
2426 * possible we are replaying a log created with a kernel
2427 * that used to log tmpfiles.
2428 */
2429 if (btrfs_inode_nlink(eb, s: inode_item) == 0) {
2430 wc->ignore_cur_inode = true;
2431 continue;
2432 } else {
2433 wc->ignore_cur_inode = false;
2434 }
2435 ret = replay_xattr_deletes(trans: wc->trans, root, log,
2436 path, ino: key.objectid);
2437 if (ret)
2438 break;
2439 mode = btrfs_inode_mode(eb, s: inode_item);
2440 if (S_ISDIR(mode)) {
2441 ret = replay_dir_deletes(trans: wc->trans,
2442 root, log, path, dirid: key.objectid, del_all: 0);
2443 if (ret)
2444 break;
2445 }
2446 ret = overwrite_item(trans: wc->trans, root, path,
2447 eb, slot: i, key: &key);
2448 if (ret)
2449 break;
2450
2451 /*
2452 * Before replaying extents, truncate the inode to its
2453 * size. We need to do it now and not after log replay
2454 * because before an fsync we can have prealloc extents
2455 * added beyond the inode's i_size. If we did it after,
2456 * through orphan cleanup for example, we would drop
2457 * those prealloc extents just after replaying them.
2458 */
2459 if (S_ISREG(mode)) {
2460 struct btrfs_drop_extents_args drop_args = { 0 };
2461 struct inode *inode;
2462 u64 from;
2463
2464 inode = read_one_inode(root, objectid: key.objectid);
2465 if (!inode) {
2466 ret = -EIO;
2467 break;
2468 }
2469 from = ALIGN(i_size_read(inode),
2470 root->fs_info->sectorsize);
2471 drop_args.start = from;
2472 drop_args.end = (u64)-1;
2473 drop_args.drop_cache = true;
2474 ret = btrfs_drop_extents(trans: wc->trans, root,
2475 inode: BTRFS_I(inode),
2476 args: &drop_args);
2477 if (!ret) {
2478 inode_sub_bytes(inode,
2479 bytes: drop_args.bytes_found);
2480 /* Update the inode's nbytes. */
2481 ret = btrfs_update_inode(trans: wc->trans,
2482 inode: BTRFS_I(inode));
2483 }
2484 iput(inode);
2485 if (ret)
2486 break;
2487 }
2488
2489 ret = link_to_fixup_dir(trans: wc->trans, root,
2490 path, objectid: key.objectid);
2491 if (ret)
2492 break;
2493 }
2494
2495 if (wc->ignore_cur_inode)
2496 continue;
2497
2498 if (key.type == BTRFS_DIR_INDEX_KEY &&
2499 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2500 ret = replay_one_dir_item(trans: wc->trans, root, path,
2501 eb, slot: i, key: &key);
2502 if (ret)
2503 break;
2504 }
2505
2506 if (wc->stage < LOG_WALK_REPLAY_ALL)
2507 continue;
2508
2509 /* these keys are simply copied */
2510 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2511 ret = overwrite_item(trans: wc->trans, root, path,
2512 eb, slot: i, key: &key);
2513 if (ret)
2514 break;
2515 } else if (key.type == BTRFS_INODE_REF_KEY ||
2516 key.type == BTRFS_INODE_EXTREF_KEY) {
2517 ret = add_inode_ref(trans: wc->trans, root, log, path,
2518 eb, slot: i, key: &key);
2519 if (ret && ret != -ENOENT)
2520 break;
2521 ret = 0;
2522 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2523 ret = replay_one_extent(trans: wc->trans, root, path,
2524 eb, slot: i, key: &key);
2525 if (ret)
2526 break;
2527 }
2528 /*
2529 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2530 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2531 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2532 * older kernel with such keys, ignore them.
2533 */
2534 }
2535 btrfs_free_path(p: path);
2536 return ret;
2537}
2538
2539/*
2540 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2541 */
2542static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2543{
2544 struct btrfs_block_group *cache;
2545
2546 cache = btrfs_lookup_block_group(info: fs_info, bytenr: start);
2547 if (!cache) {
2548 btrfs_err(fs_info, "unable to find block group for %llu", start);
2549 return;
2550 }
2551
2552 spin_lock(lock: &cache->space_info->lock);
2553 spin_lock(lock: &cache->lock);
2554 cache->reserved -= fs_info->nodesize;
2555 cache->space_info->bytes_reserved -= fs_info->nodesize;
2556 spin_unlock(lock: &cache->lock);
2557 spin_unlock(lock: &cache->space_info->lock);
2558
2559 btrfs_put_block_group(cache);
2560}
2561
2562static int clean_log_buffer(struct btrfs_trans_handle *trans,
2563 struct extent_buffer *eb)
2564{
2565 int ret;
2566
2567 btrfs_tree_lock(eb);
2568 btrfs_clear_buffer_dirty(trans, buf: eb);
2569 wait_on_extent_buffer_writeback(eb);
2570 btrfs_tree_unlock(eb);
2571
2572 if (trans) {
2573 ret = btrfs_pin_reserved_extent(trans, eb);
2574 if (ret)
2575 return ret;
2576 } else {
2577 unaccount_log_buffer(fs_info: eb->fs_info, start: eb->start);
2578 }
2579
2580 return 0;
2581}
2582
2583static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2584 struct btrfs_root *root,
2585 struct btrfs_path *path, int *level,
2586 struct walk_control *wc)
2587{
2588 struct btrfs_fs_info *fs_info = root->fs_info;
2589 u64 bytenr;
2590 u64 ptr_gen;
2591 struct extent_buffer *next;
2592 struct extent_buffer *cur;
2593 int ret = 0;
2594
2595 while (*level > 0) {
2596 struct btrfs_tree_parent_check check = { 0 };
2597
2598 cur = path->nodes[*level];
2599
2600 WARN_ON(btrfs_header_level(cur) != *level);
2601
2602 if (path->slots[*level] >=
2603 btrfs_header_nritems(eb: cur))
2604 break;
2605
2606 bytenr = btrfs_node_blockptr(eb: cur, nr: path->slots[*level]);
2607 ptr_gen = btrfs_node_ptr_generation(eb: cur, nr: path->slots[*level]);
2608 check.transid = ptr_gen;
2609 check.level = *level - 1;
2610 check.has_first_key = true;
2611 btrfs_node_key_to_cpu(eb: cur, cpu_key: &check.first_key, nr: path->slots[*level]);
2612
2613 next = btrfs_find_create_tree_block(fs_info, bytenr,
2614 owner_root: btrfs_header_owner(eb: cur),
2615 level: *level - 1);
2616 if (IS_ERR(ptr: next))
2617 return PTR_ERR(ptr: next);
2618
2619 if (*level == 1) {
2620 ret = wc->process_func(root, next, wc, ptr_gen,
2621 *level - 1);
2622 if (ret) {
2623 free_extent_buffer(eb: next);
2624 return ret;
2625 }
2626
2627 path->slots[*level]++;
2628 if (wc->free) {
2629 ret = btrfs_read_extent_buffer(buf: next, check: &check);
2630 if (ret) {
2631 free_extent_buffer(eb: next);
2632 return ret;
2633 }
2634
2635 ret = clean_log_buffer(trans, eb: next);
2636 if (ret) {
2637 free_extent_buffer(eb: next);
2638 return ret;
2639 }
2640 }
2641 free_extent_buffer(eb: next);
2642 continue;
2643 }
2644 ret = btrfs_read_extent_buffer(buf: next, check: &check);
2645 if (ret) {
2646 free_extent_buffer(eb: next);
2647 return ret;
2648 }
2649
2650 if (path->nodes[*level-1])
2651 free_extent_buffer(eb: path->nodes[*level-1]);
2652 path->nodes[*level-1] = next;
2653 *level = btrfs_header_level(eb: next);
2654 path->slots[*level] = 0;
2655 cond_resched();
2656 }
2657 path->slots[*level] = btrfs_header_nritems(eb: path->nodes[*level]);
2658
2659 cond_resched();
2660 return 0;
2661}
2662
2663static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2664 struct btrfs_root *root,
2665 struct btrfs_path *path, int *level,
2666 struct walk_control *wc)
2667{
2668 int i;
2669 int slot;
2670 int ret;
2671
2672 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2673 slot = path->slots[i];
2674 if (slot + 1 < btrfs_header_nritems(eb: path->nodes[i])) {
2675 path->slots[i]++;
2676 *level = i;
2677 WARN_ON(*level == 0);
2678 return 0;
2679 } else {
2680 ret = wc->process_func(root, path->nodes[*level], wc,
2681 btrfs_header_generation(eb: path->nodes[*level]),
2682 *level);
2683 if (ret)
2684 return ret;
2685
2686 if (wc->free) {
2687 ret = clean_log_buffer(trans, eb: path->nodes[*level]);
2688 if (ret)
2689 return ret;
2690 }
2691 free_extent_buffer(eb: path->nodes[*level]);
2692 path->nodes[*level] = NULL;
2693 *level = i + 1;
2694 }
2695 }
2696 return 1;
2697}
2698
2699/*
2700 * drop the reference count on the tree rooted at 'snap'. This traverses
2701 * the tree freeing any blocks that have a ref count of zero after being
2702 * decremented.
2703 */
2704static int walk_log_tree(struct btrfs_trans_handle *trans,
2705 struct btrfs_root *log, struct walk_control *wc)
2706{
2707 int ret = 0;
2708 int wret;
2709 int level;
2710 struct btrfs_path *path;
2711 int orig_level;
2712
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 return -ENOMEM;
2716
2717 level = btrfs_header_level(eb: log->node);
2718 orig_level = level;
2719 path->nodes[level] = log->node;
2720 atomic_inc(v: &log->node->refs);
2721 path->slots[level] = 0;
2722
2723 while (1) {
2724 wret = walk_down_log_tree(trans, root: log, path, level: &level, wc);
2725 if (wret > 0)
2726 break;
2727 if (wret < 0) {
2728 ret = wret;
2729 goto out;
2730 }
2731
2732 wret = walk_up_log_tree(trans, root: log, path, level: &level, wc);
2733 if (wret > 0)
2734 break;
2735 if (wret < 0) {
2736 ret = wret;
2737 goto out;
2738 }
2739 }
2740
2741 /* was the root node processed? if not, catch it here */
2742 if (path->nodes[orig_level]) {
2743 ret = wc->process_func(log, path->nodes[orig_level], wc,
2744 btrfs_header_generation(eb: path->nodes[orig_level]),
2745 orig_level);
2746 if (ret)
2747 goto out;
2748 if (wc->free)
2749 ret = clean_log_buffer(trans, eb: path->nodes[orig_level]);
2750 }
2751
2752out:
2753 btrfs_free_path(p: path);
2754 return ret;
2755}
2756
2757/*
2758 * helper function to update the item for a given subvolumes log root
2759 * in the tree of log roots
2760 */
2761static int update_log_root(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *log,
2763 struct btrfs_root_item *root_item)
2764{
2765 struct btrfs_fs_info *fs_info = log->fs_info;
2766 int ret;
2767
2768 if (log->log_transid == 1) {
2769 /* insert root item on the first sync */
2770 ret = btrfs_insert_root(trans, root: fs_info->log_root_tree,
2771 key: &log->root_key, item: root_item);
2772 } else {
2773 ret = btrfs_update_root(trans, root: fs_info->log_root_tree,
2774 key: &log->root_key, item: root_item);
2775 }
2776 return ret;
2777}
2778
2779static void wait_log_commit(struct btrfs_root *root, int transid)
2780{
2781 DEFINE_WAIT(wait);
2782 int index = transid % 2;
2783
2784 /*
2785 * we only allow two pending log transactions at a time,
2786 * so we know that if ours is more than 2 older than the
2787 * current transaction, we're done
2788 */
2789 for (;;) {
2790 prepare_to_wait(wq_head: &root->log_commit_wait[index],
2791 wq_entry: &wait, TASK_UNINTERRUPTIBLE);
2792
2793 if (!(root->log_transid_committed < transid &&
2794 atomic_read(v: &root->log_commit[index])))
2795 break;
2796
2797 mutex_unlock(lock: &root->log_mutex);
2798 schedule();
2799 mutex_lock(&root->log_mutex);
2800 }
2801 finish_wait(wq_head: &root->log_commit_wait[index], wq_entry: &wait);
2802}
2803
2804static void wait_for_writer(struct btrfs_root *root)
2805{
2806 DEFINE_WAIT(wait);
2807
2808 for (;;) {
2809 prepare_to_wait(wq_head: &root->log_writer_wait, wq_entry: &wait,
2810 TASK_UNINTERRUPTIBLE);
2811 if (!atomic_read(v: &root->log_writers))
2812 break;
2813
2814 mutex_unlock(lock: &root->log_mutex);
2815 schedule();
2816 mutex_lock(&root->log_mutex);
2817 }
2818 finish_wait(wq_head: &root->log_writer_wait, wq_entry: &wait);
2819}
2820
2821void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode)
2822{
2823 ctx->log_ret = 0;
2824 ctx->log_transid = 0;
2825 ctx->log_new_dentries = false;
2826 ctx->logging_new_name = false;
2827 ctx->logging_new_delayed_dentries = false;
2828 ctx->logged_before = false;
2829 ctx->inode = inode;
2830 INIT_LIST_HEAD(list: &ctx->list);
2831 INIT_LIST_HEAD(list: &ctx->ordered_extents);
2832 INIT_LIST_HEAD(list: &ctx->conflict_inodes);
2833 ctx->num_conflict_inodes = 0;
2834 ctx->logging_conflict_inodes = false;
2835 ctx->scratch_eb = NULL;
2836}
2837
2838void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2839{
2840 struct btrfs_inode *inode = BTRFS_I(inode: ctx->inode);
2841
2842 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2843 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2844 return;
2845
2846 /*
2847 * Don't care about allocation failure. This is just for optimization,
2848 * if we fail to allocate here, we will try again later if needed.
2849 */
2850 ctx->scratch_eb = alloc_dummy_extent_buffer(fs_info: inode->root->fs_info, start: 0);
2851}
2852
2853void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2854{
2855 struct btrfs_ordered_extent *ordered;
2856 struct btrfs_ordered_extent *tmp;
2857
2858 ASSERT(inode_is_locked(ctx->inode));
2859
2860 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2861 list_del_init(entry: &ordered->log_list);
2862 btrfs_put_ordered_extent(entry: ordered);
2863 }
2864}
2865
2866
2867static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2868 struct btrfs_log_ctx *ctx)
2869{
2870 mutex_lock(&root->log_mutex);
2871 list_del_init(entry: &ctx->list);
2872 mutex_unlock(lock: &root->log_mutex);
2873}
2874
2875/*
2876 * Invoked in log mutex context, or be sure there is no other task which
2877 * can access the list.
2878 */
2879static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2880 int index, int error)
2881{
2882 struct btrfs_log_ctx *ctx;
2883 struct btrfs_log_ctx *safe;
2884
2885 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2886 list_del_init(entry: &ctx->list);
2887 ctx->log_ret = error;
2888 }
2889}
2890
2891/*
2892 * Sends a given tree log down to the disk and updates the super blocks to
2893 * record it. When this call is done, you know that any inodes previously
2894 * logged are safely on disk only if it returns 0.
2895 *
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
2901 */
2902int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904{
2905 int index1;
2906 int index2;
2907 int mark;
2908 int ret;
2909 struct btrfs_fs_info *fs_info = root->fs_info;
2910 struct btrfs_root *log = root->log_root;
2911 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912 struct btrfs_root_item new_root_item;
2913 int log_transid = 0;
2914 struct btrfs_log_ctx root_log_ctx;
2915 struct blk_plug plug;
2916 u64 log_root_start;
2917 u64 log_root_level;
2918
2919 mutex_lock(&root->log_mutex);
2920 log_transid = ctx->log_transid;
2921 if (root->log_transid_committed >= log_transid) {
2922 mutex_unlock(lock: &root->log_mutex);
2923 return ctx->log_ret;
2924 }
2925
2926 index1 = log_transid % 2;
2927 if (atomic_read(v: &root->log_commit[index1])) {
2928 wait_log_commit(root, transid: log_transid);
2929 mutex_unlock(lock: &root->log_mutex);
2930 return ctx->log_ret;
2931 }
2932 ASSERT(log_transid == root->log_transid);
2933 atomic_set(v: &root->log_commit[index1], i: 1);
2934
2935 /* wait for previous tree log sync to complete */
2936 if (atomic_read(v: &root->log_commit[(index1 + 1) % 2]))
2937 wait_log_commit(root, transid: log_transid - 1);
2938
2939 while (1) {
2940 int batch = atomic_read(v: &root->log_batch);
2941 /* when we're on an ssd, just kick the log commit out */
2942 if (!btrfs_test_opt(fs_info, SSD) &&
2943 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944 mutex_unlock(lock: &root->log_mutex);
2945 schedule_timeout_uninterruptible(timeout: 1);
2946 mutex_lock(&root->log_mutex);
2947 }
2948 wait_for_writer(root);
2949 if (batch == atomic_read(v: &root->log_batch))
2950 break;
2951 }
2952
2953 /* bail out if we need to do a full commit */
2954 if (btrfs_need_log_full_commit(trans)) {
2955 ret = BTRFS_LOG_FORCE_COMMIT;
2956 mutex_unlock(lock: &root->log_mutex);
2957 goto out;
2958 }
2959
2960 if (log_transid % 2 == 0)
2961 mark = EXTENT_DIRTY;
2962 else
2963 mark = EXTENT_NEW;
2964
2965 /* we start IO on all the marked extents here, but we don't actually
2966 * wait for them until later.
2967 */
2968 blk_start_plug(&plug);
2969 ret = btrfs_write_marked_extents(fs_info, dirty_pages: &log->dirty_log_pages, mark);
2970 /*
2971 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 * commit, writes a dirty extent in this tree-log commit. This
2973 * concurrent write will create a hole writing out the extents,
2974 * and we cannot proceed on a zoned filesystem, requiring
2975 * sequential writing. While we can bail out to a full commit
2976 * here, but we can continue hoping the concurrent writing fills
2977 * the hole.
2978 */
2979 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 ret = 0;
2981 if (ret) {
2982 blk_finish_plug(&plug);
2983 btrfs_set_log_full_commit(trans);
2984 mutex_unlock(lock: &root->log_mutex);
2985 goto out;
2986 }
2987
2988 /*
2989 * We _must_ update under the root->log_mutex in order to make sure we
2990 * have a consistent view of the log root we are trying to commit at
2991 * this moment.
2992 *
2993 * We _must_ copy this into a local copy, because we are not holding the
2994 * log_root_tree->log_mutex yet. This is important because when we
2995 * commit the log_root_tree we must have a consistent view of the
2996 * log_root_tree when we update the super block to point at the
2997 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2998 * with the commit and possibly point at the new block which we may not
2999 * have written out.
3000 */
3001 btrfs_set_root_node(item: &log->root_item, node: log->node);
3002 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3003
3004 btrfs_set_root_log_transid(root, log_transid: root->log_transid + 1);
3005 log->log_transid = root->log_transid;
3006 root->log_start_pid = 0;
3007 /*
3008 * IO has been started, blocks of the log tree have WRITTEN flag set
3009 * in their headers. new modifications of the log will be written to
3010 * new positions. so it's safe to allow log writers to go in.
3011 */
3012 mutex_unlock(lock: &root->log_mutex);
3013
3014 if (btrfs_is_zoned(fs_info)) {
3015 mutex_lock(&fs_info->tree_root->log_mutex);
3016 if (!log_root_tree->node) {
3017 ret = btrfs_alloc_log_tree_node(trans, root: log_root_tree);
3018 if (ret) {
3019 mutex_unlock(lock: &fs_info->tree_root->log_mutex);
3020 blk_finish_plug(&plug);
3021 goto out;
3022 }
3023 }
3024 mutex_unlock(lock: &fs_info->tree_root->log_mutex);
3025 }
3026
3027 btrfs_init_log_ctx(ctx: &root_log_ctx, NULL);
3028
3029 mutex_lock(&log_root_tree->log_mutex);
3030
3031 index2 = log_root_tree->log_transid % 2;
3032 list_add_tail(new: &root_log_ctx.list, head: &log_root_tree->log_ctxs[index2]);
3033 root_log_ctx.log_transid = log_root_tree->log_transid;
3034
3035 /*
3036 * Now we are safe to update the log_root_tree because we're under the
3037 * log_mutex, and we're a current writer so we're holding the commit
3038 * open until we drop the log_mutex.
3039 */
3040 ret = update_log_root(trans, log, root_item: &new_root_item);
3041 if (ret) {
3042 list_del_init(entry: &root_log_ctx.list);
3043 blk_finish_plug(&plug);
3044 btrfs_set_log_full_commit(trans);
3045 if (ret != -ENOSPC)
3046 btrfs_err(fs_info,
3047 "failed to update log for root %llu ret %d",
3048 root->root_key.objectid, ret);
3049 btrfs_wait_tree_log_extents(root: log, mark);
3050 mutex_unlock(lock: &log_root_tree->log_mutex);
3051 goto out;
3052 }
3053
3054 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3055 blk_finish_plug(&plug);
3056 list_del_init(entry: &root_log_ctx.list);
3057 mutex_unlock(lock: &log_root_tree->log_mutex);
3058 ret = root_log_ctx.log_ret;
3059 goto out;
3060 }
3061
3062 if (atomic_read(v: &log_root_tree->log_commit[index2])) {
3063 blk_finish_plug(&plug);
3064 ret = btrfs_wait_tree_log_extents(root: log, mark);
3065 wait_log_commit(root: log_root_tree,
3066 transid: root_log_ctx.log_transid);
3067 mutex_unlock(lock: &log_root_tree->log_mutex);
3068 if (!ret)
3069 ret = root_log_ctx.log_ret;
3070 goto out;
3071 }
3072 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3073 atomic_set(v: &log_root_tree->log_commit[index2], i: 1);
3074
3075 if (atomic_read(v: &log_root_tree->log_commit[(index2 + 1) % 2])) {
3076 wait_log_commit(root: log_root_tree,
3077 transid: root_log_ctx.log_transid - 1);
3078 }
3079
3080 /*
3081 * now that we've moved on to the tree of log tree roots,
3082 * check the full commit flag again
3083 */
3084 if (btrfs_need_log_full_commit(trans)) {
3085 blk_finish_plug(&plug);
3086 btrfs_wait_tree_log_extents(root: log, mark);
3087 mutex_unlock(lock: &log_root_tree->log_mutex);
3088 ret = BTRFS_LOG_FORCE_COMMIT;
3089 goto out_wake_log_root;
3090 }
3091
3092 ret = btrfs_write_marked_extents(fs_info,
3093 dirty_pages: &log_root_tree->dirty_log_pages,
3094 mark: EXTENT_DIRTY | EXTENT_NEW);
3095 blk_finish_plug(&plug);
3096 /*
3097 * As described above, -EAGAIN indicates a hole in the extents. We
3098 * cannot wait for these write outs since the waiting cause a
3099 * deadlock. Bail out to the full commit instead.
3100 */
3101 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3102 btrfs_set_log_full_commit(trans);
3103 btrfs_wait_tree_log_extents(root: log, mark);
3104 mutex_unlock(lock: &log_root_tree->log_mutex);
3105 goto out_wake_log_root;
3106 } else if (ret) {
3107 btrfs_set_log_full_commit(trans);
3108 mutex_unlock(lock: &log_root_tree->log_mutex);
3109 goto out_wake_log_root;
3110 }
3111 ret = btrfs_wait_tree_log_extents(root: log, mark);
3112 if (!ret)
3113 ret = btrfs_wait_tree_log_extents(root: log_root_tree,
3114 mark: EXTENT_NEW | EXTENT_DIRTY);
3115 if (ret) {
3116 btrfs_set_log_full_commit(trans);
3117 mutex_unlock(lock: &log_root_tree->log_mutex);
3118 goto out_wake_log_root;
3119 }
3120
3121 log_root_start = log_root_tree->node->start;
3122 log_root_level = btrfs_header_level(eb: log_root_tree->node);
3123 log_root_tree->log_transid++;
3124 mutex_unlock(lock: &log_root_tree->log_mutex);
3125
3126 /*
3127 * Here we are guaranteed that nobody is going to write the superblock
3128 * for the current transaction before us and that neither we do write
3129 * our superblock before the previous transaction finishes its commit
3130 * and writes its superblock, because:
3131 *
3132 * 1) We are holding a handle on the current transaction, so no body
3133 * can commit it until we release the handle;
3134 *
3135 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3136 * if the previous transaction is still committing, and hasn't yet
3137 * written its superblock, we wait for it to do it, because a
3138 * transaction commit acquires the tree_log_mutex when the commit
3139 * begins and releases it only after writing its superblock.
3140 */
3141 mutex_lock(&fs_info->tree_log_mutex);
3142
3143 /*
3144 * The previous transaction writeout phase could have failed, and thus
3145 * marked the fs in an error state. We must not commit here, as we
3146 * could have updated our generation in the super_for_commit and
3147 * writing the super here would result in transid mismatches. If there
3148 * is an error here just bail.
3149 */
3150 if (BTRFS_FS_ERROR(fs_info)) {
3151 ret = -EIO;
3152 btrfs_set_log_full_commit(trans);
3153 btrfs_abort_transaction(trans, ret);
3154 mutex_unlock(lock: &fs_info->tree_log_mutex);
3155 goto out_wake_log_root;
3156 }
3157
3158 btrfs_set_super_log_root(s: fs_info->super_for_commit, val: log_root_start);
3159 btrfs_set_super_log_root_level(s: fs_info->super_for_commit, val: log_root_level);
3160 ret = write_all_supers(fs_info, max_mirrors: 1);
3161 mutex_unlock(lock: &fs_info->tree_log_mutex);
3162 if (ret) {
3163 btrfs_set_log_full_commit(trans);
3164 btrfs_abort_transaction(trans, ret);
3165 goto out_wake_log_root;
3166 }
3167
3168 /*
3169 * We know there can only be one task here, since we have not yet set
3170 * root->log_commit[index1] to 0 and any task attempting to sync the
3171 * log must wait for the previous log transaction to commit if it's
3172 * still in progress or wait for the current log transaction commit if
3173 * someone else already started it. We use <= and not < because the
3174 * first log transaction has an ID of 0.
3175 */
3176 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3177 btrfs_set_root_last_log_commit(root, commit_id: log_transid);
3178
3179out_wake_log_root:
3180 mutex_lock(&log_root_tree->log_mutex);
3181 btrfs_remove_all_log_ctxs(root: log_root_tree, index: index2, error: ret);
3182
3183 log_root_tree->log_transid_committed++;
3184 atomic_set(v: &log_root_tree->log_commit[index2], i: 0);
3185 mutex_unlock(lock: &log_root_tree->log_mutex);
3186
3187 /*
3188 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3189 * all the updates above are seen by the woken threads. It might not be
3190 * necessary, but proving that seems to be hard.
3191 */
3192 cond_wake_up(wq: &log_root_tree->log_commit_wait[index2]);
3193out:
3194 mutex_lock(&root->log_mutex);
3195 btrfs_remove_all_log_ctxs(root, index: index1, error: ret);
3196 root->log_transid_committed++;
3197 atomic_set(v: &root->log_commit[index1], i: 0);
3198 mutex_unlock(lock: &root->log_mutex);
3199
3200 /*
3201 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3202 * all the updates above are seen by the woken threads. It might not be
3203 * necessary, but proving that seems to be hard.
3204 */
3205 cond_wake_up(wq: &root->log_commit_wait[index1]);
3206 return ret;
3207}
3208
3209static void free_log_tree(struct btrfs_trans_handle *trans,
3210 struct btrfs_root *log)
3211{
3212 int ret;
3213 struct walk_control wc = {
3214 .free = 1,
3215 .process_func = process_one_buffer
3216 };
3217
3218 if (log->node) {
3219 ret = walk_log_tree(trans, log, wc: &wc);
3220 if (ret) {
3221 /*
3222 * We weren't able to traverse the entire log tree, the
3223 * typical scenario is getting an -EIO when reading an
3224 * extent buffer of the tree, due to a previous writeback
3225 * failure of it.
3226 */
3227 set_bit(nr: BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3228 addr: &log->fs_info->fs_state);
3229
3230 /*
3231 * Some extent buffers of the log tree may still be dirty
3232 * and not yet written back to storage, because we may
3233 * have updates to a log tree without syncing a log tree,
3234 * such as during rename and link operations. So flush
3235 * them out and wait for their writeback to complete, so
3236 * that we properly cleanup their state and pages.
3237 */
3238 btrfs_write_marked_extents(fs_info: log->fs_info,
3239 dirty_pages: &log->dirty_log_pages,
3240 mark: EXTENT_DIRTY | EXTENT_NEW);
3241 btrfs_wait_tree_log_extents(root: log,
3242 mark: EXTENT_DIRTY | EXTENT_NEW);
3243
3244 if (trans)
3245 btrfs_abort_transaction(trans, ret);
3246 else
3247 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3248 }
3249 }
3250
3251 extent_io_tree_release(tree: &log->dirty_log_pages);
3252 extent_io_tree_release(tree: &log->log_csum_range);
3253
3254 btrfs_put_root(root: log);
3255}
3256
3257/*
3258 * free all the extents used by the tree log. This should be called
3259 * at commit time of the full transaction
3260 */
3261int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3262{
3263 if (root->log_root) {
3264 free_log_tree(trans, log: root->log_root);
3265 root->log_root = NULL;
3266 clear_bit(nr: BTRFS_ROOT_HAS_LOG_TREE, addr: &root->state);
3267 }
3268 return 0;
3269}
3270
3271int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3272 struct btrfs_fs_info *fs_info)
3273{
3274 if (fs_info->log_root_tree) {
3275 free_log_tree(trans, log: fs_info->log_root_tree);
3276 fs_info->log_root_tree = NULL;
3277 clear_bit(nr: BTRFS_ROOT_HAS_LOG_TREE, addr: &fs_info->tree_root->state);
3278 }
3279 return 0;
3280}
3281
3282/*
3283 * Check if an inode was logged in the current transaction. This correctly deals
3284 * with the case where the inode was logged but has a logged_trans of 0, which
3285 * happens if the inode is evicted and loaded again, as logged_trans is an in
3286 * memory only field (not persisted).
3287 *
3288 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3289 * and < 0 on error.
3290 */
3291static int inode_logged(const struct btrfs_trans_handle *trans,
3292 struct btrfs_inode *inode,
3293 struct btrfs_path *path_in)
3294{
3295 struct btrfs_path *path = path_in;
3296 struct btrfs_key key;
3297 int ret;
3298
3299 if (inode->logged_trans == trans->transid)
3300 return 1;
3301
3302 /*
3303 * If logged_trans is not 0, then we know the inode logged was not logged
3304 * in this transaction, so we can return false right away.
3305 */
3306 if (inode->logged_trans > 0)
3307 return 0;
3308
3309 /*
3310 * If no log tree was created for this root in this transaction, then
3311 * the inode can not have been logged in this transaction. In that case
3312 * set logged_trans to anything greater than 0 and less than the current
3313 * transaction's ID, to avoid the search below in a future call in case
3314 * a log tree gets created after this.
3315 */
3316 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3317 inode->logged_trans = trans->transid - 1;
3318 return 0;
3319 }
3320
3321 /*
3322 * We have a log tree and the inode's logged_trans is 0. We can't tell
3323 * for sure if the inode was logged before in this transaction by looking
3324 * only at logged_trans. We could be pessimistic and assume it was, but
3325 * that can lead to unnecessarily logging an inode during rename and link
3326 * operations, and then further updating the log in followup rename and
3327 * link operations, specially if it's a directory, which adds latency
3328 * visible to applications doing a series of rename or link operations.
3329 *
3330 * A logged_trans of 0 here can mean several things:
3331 *
3332 * 1) The inode was never logged since the filesystem was mounted, and may
3333 * or may have not been evicted and loaded again;
3334 *
3335 * 2) The inode was logged in a previous transaction, then evicted and
3336 * then loaded again;
3337 *
3338 * 3) The inode was logged in the current transaction, then evicted and
3339 * then loaded again.
3340 *
3341 * For cases 1) and 2) we don't want to return true, but we need to detect
3342 * case 3) and return true. So we do a search in the log root for the inode
3343 * item.
3344 */
3345 key.objectid = btrfs_ino(inode);
3346 key.type = BTRFS_INODE_ITEM_KEY;
3347 key.offset = 0;
3348
3349 if (!path) {
3350 path = btrfs_alloc_path();
3351 if (!path)
3352 return -ENOMEM;
3353 }
3354
3355 ret = btrfs_search_slot(NULL, root: inode->root->log_root, key: &key, p: path, ins_len: 0, cow: 0);
3356
3357 if (path_in)
3358 btrfs_release_path(p: path);
3359 else
3360 btrfs_free_path(p: path);
3361
3362 /*
3363 * Logging an inode always results in logging its inode item. So if we
3364 * did not find the item we know the inode was not logged for sure.
3365 */
3366 if (ret < 0) {
3367 return ret;
3368 } else if (ret > 0) {
3369 /*
3370 * Set logged_trans to a value greater than 0 and less then the
3371 * current transaction to avoid doing the search in future calls.
3372 */
3373 inode->logged_trans = trans->transid - 1;
3374 return 0;
3375 }
3376
3377 /*
3378 * The inode was previously logged and then evicted, set logged_trans to
3379 * the current transacion's ID, to avoid future tree searches as long as
3380 * the inode is not evicted again.
3381 */
3382 inode->logged_trans = trans->transid;
3383
3384 /*
3385 * If it's a directory, then we must set last_dir_index_offset to the
3386 * maximum possible value, so that the next attempt to log the inode does
3387 * not skip checking if dir index keys found in modified subvolume tree
3388 * leaves have been logged before, otherwise it would result in attempts
3389 * to insert duplicate dir index keys in the log tree. This must be done
3390 * because last_dir_index_offset is an in-memory only field, not persisted
3391 * in the inode item or any other on-disk structure, so its value is lost
3392 * once the inode is evicted.
3393 */
3394 if (S_ISDIR(inode->vfs_inode.i_mode))
3395 inode->last_dir_index_offset = (u64)-1;
3396
3397 return 1;
3398}
3399
3400/*
3401 * Delete a directory entry from the log if it exists.
3402 *
3403 * Returns < 0 on error
3404 * 1 if the entry does not exists
3405 * 0 if the entry existed and was successfully deleted
3406 */
3407static int del_logged_dentry(struct btrfs_trans_handle *trans,
3408 struct btrfs_root *log,
3409 struct btrfs_path *path,
3410 u64 dir_ino,
3411 const struct fscrypt_str *name,
3412 u64 index)
3413{
3414 struct btrfs_dir_item *di;
3415
3416 /*
3417 * We only log dir index items of a directory, so we don't need to look
3418 * for dir item keys.
3419 */
3420 di = btrfs_lookup_dir_index_item(trans, root: log, path, dir: dir_ino,
3421 index, name, mod: -1);
3422 if (IS_ERR(ptr: di))
3423 return PTR_ERR(ptr: di);
3424 else if (!di)
3425 return 1;
3426
3427 /*
3428 * We do not need to update the size field of the directory's
3429 * inode item because on log replay we update the field to reflect
3430 * all existing entries in the directory (see overwrite_item()).
3431 */
3432 return btrfs_delete_one_dir_name(trans, root: log, path, di);
3433}
3434
3435/*
3436 * If both a file and directory are logged, and unlinks or renames are
3437 * mixed in, we have a few interesting corners:
3438 *
3439 * create file X in dir Y
3440 * link file X to X.link in dir Y
3441 * fsync file X
3442 * unlink file X but leave X.link
3443 * fsync dir Y
3444 *
3445 * After a crash we would expect only X.link to exist. But file X
3446 * didn't get fsync'd again so the log has back refs for X and X.link.
3447 *
3448 * We solve this by removing directory entries and inode backrefs from the
3449 * log when a file that was logged in the current transaction is
3450 * unlinked. Any later fsync will include the updated log entries, and
3451 * we'll be able to reconstruct the proper directory items from backrefs.
3452 *
3453 * This optimizations allows us to avoid relogging the entire inode
3454 * or the entire directory.
3455 */
3456void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3457 struct btrfs_root *root,
3458 const struct fscrypt_str *name,
3459 struct btrfs_inode *dir, u64 index)
3460{
3461 struct btrfs_path *path;
3462 int ret;
3463
3464 ret = inode_logged(trans, inode: dir, NULL);
3465 if (ret == 0)
3466 return;
3467 else if (ret < 0) {
3468 btrfs_set_log_full_commit(trans);
3469 return;
3470 }
3471
3472 ret = join_running_log_trans(root);
3473 if (ret)
3474 return;
3475
3476 mutex_lock(&dir->log_mutex);
3477
3478 path = btrfs_alloc_path();
3479 if (!path) {
3480 ret = -ENOMEM;
3481 goto out_unlock;
3482 }
3483
3484 ret = del_logged_dentry(trans, log: root->log_root, path, dir_ino: btrfs_ino(inode: dir),
3485 name, index);
3486 btrfs_free_path(p: path);
3487out_unlock:
3488 mutex_unlock(lock: &dir->log_mutex);
3489 if (ret < 0)
3490 btrfs_set_log_full_commit(trans);
3491 btrfs_end_log_trans(root);
3492}
3493
3494/* see comments for btrfs_del_dir_entries_in_log */
3495void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3496 struct btrfs_root *root,
3497 const struct fscrypt_str *name,
3498 struct btrfs_inode *inode, u64 dirid)
3499{
3500 struct btrfs_root *log;
3501 u64 index;
3502 int ret;
3503
3504 ret = inode_logged(trans, inode, NULL);
3505 if (ret == 0)
3506 return;
3507 else if (ret < 0) {
3508 btrfs_set_log_full_commit(trans);
3509 return;
3510 }
3511
3512 ret = join_running_log_trans(root);
3513 if (ret)
3514 return;
3515 log = root->log_root;
3516 mutex_lock(&inode->log_mutex);
3517
3518 ret = btrfs_del_inode_ref(trans, root: log, name, inode_objectid: btrfs_ino(inode),
3519 ref_objectid: dirid, index: &index);
3520 mutex_unlock(lock: &inode->log_mutex);
3521 if (ret < 0 && ret != -ENOENT)
3522 btrfs_set_log_full_commit(trans);
3523 btrfs_end_log_trans(root);
3524}
3525
3526/*
3527 * creates a range item in the log for 'dirid'. first_offset and
3528 * last_offset tell us which parts of the key space the log should
3529 * be considered authoritative for.
3530 */
3531static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *log,
3533 struct btrfs_path *path,
3534 u64 dirid,
3535 u64 first_offset, u64 last_offset)
3536{
3537 int ret;
3538 struct btrfs_key key;
3539 struct btrfs_dir_log_item *item;
3540
3541 key.objectid = dirid;
3542 key.offset = first_offset;
3543 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3544 ret = btrfs_insert_empty_item(trans, root: log, path, key: &key, data_size: sizeof(*item));
3545 /*
3546 * -EEXIST is fine and can happen sporadically when we are logging a
3547 * directory and have concurrent insertions in the subvolume's tree for
3548 * items from other inodes and that result in pushing off some dir items
3549 * from one leaf to another in order to accommodate for the new items.
3550 * This results in logging the same dir index range key.
3551 */
3552 if (ret && ret != -EEXIST)
3553 return ret;
3554
3555 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3556 struct btrfs_dir_log_item);
3557 if (ret == -EEXIST) {
3558 const u64 curr_end = btrfs_dir_log_end(eb: path->nodes[0], s: item);
3559
3560 /*
3561 * btrfs_del_dir_entries_in_log() might have been called during
3562 * an unlink between the initial insertion of this key and the
3563 * current update, or we might be logging a single entry deletion
3564 * during a rename, so set the new last_offset to the max value.
3565 */
3566 last_offset = max(last_offset, curr_end);
3567 }
3568 btrfs_set_dir_log_end(eb: path->nodes[0], s: item, val: last_offset);
3569 btrfs_mark_buffer_dirty(trans, buf: path->nodes[0]);
3570 btrfs_release_path(p: path);
3571 return 0;
3572}
3573
3574static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3575 struct btrfs_inode *inode,
3576 struct extent_buffer *src,
3577 struct btrfs_path *dst_path,
3578 int start_slot,
3579 int count)
3580{
3581 struct btrfs_root *log = inode->root->log_root;
3582 char *ins_data = NULL;
3583 struct btrfs_item_batch batch;
3584 struct extent_buffer *dst;
3585 unsigned long src_offset;
3586 unsigned long dst_offset;
3587 u64 last_index;
3588 struct btrfs_key key;
3589 u32 item_size;
3590 int ret;
3591 int i;
3592
3593 ASSERT(count > 0);
3594 batch.nr = count;
3595
3596 if (count == 1) {
3597 btrfs_item_key_to_cpu(eb: src, cpu_key: &key, nr: start_slot);
3598 item_size = btrfs_item_size(eb: src, slot: start_slot);
3599 batch.keys = &key;
3600 batch.data_sizes = &item_size;
3601 batch.total_data_size = item_size;
3602 } else {
3603 struct btrfs_key *ins_keys;
3604 u32 *ins_sizes;
3605
3606 ins_data = kmalloc(size: count * sizeof(u32) +
3607 count * sizeof(struct btrfs_key), GFP_NOFS);
3608 if (!ins_data)
3609 return -ENOMEM;
3610
3611 ins_sizes = (u32 *)ins_data;
3612 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3613 batch.keys = ins_keys;
3614 batch.data_sizes = ins_sizes;
3615 batch.total_data_size = 0;
3616
3617 for (i = 0; i < count; i++) {
3618 const int slot = start_slot + i;
3619
3620 btrfs_item_key_to_cpu(eb: src, cpu_key: &ins_keys[i], nr: slot);
3621 ins_sizes[i] = btrfs_item_size(eb: src, slot);
3622 batch.total_data_size += ins_sizes[i];
3623 }
3624 }
3625
3626 ret = btrfs_insert_empty_items(trans, root: log, path: dst_path, batch: &batch);
3627 if (ret)
3628 goto out;
3629
3630 dst = dst_path->nodes[0];
3631 /*
3632 * Copy all the items in bulk, in a single copy operation. Item data is
3633 * organized such that it's placed at the end of a leaf and from right
3634 * to left. For example, the data for the second item ends at an offset
3635 * that matches the offset where the data for the first item starts, the
3636 * data for the third item ends at an offset that matches the offset
3637 * where the data of the second items starts, and so on.
3638 * Therefore our source and destination start offsets for copy match the
3639 * offsets of the last items (highest slots).
3640 */
3641 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3642 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3643 copy_extent_buffer(dst, src, dst_offset, src_offset, len: batch.total_data_size);
3644 btrfs_release_path(p: dst_path);
3645
3646 last_index = batch.keys[count - 1].offset;
3647 ASSERT(last_index > inode->last_dir_index_offset);
3648
3649 /*
3650 * If for some unexpected reason the last item's index is not greater
3651 * than the last index we logged, warn and force a transaction commit.
3652 */
3653 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3654 ret = BTRFS_LOG_FORCE_COMMIT;
3655 else
3656 inode->last_dir_index_offset = last_index;
3657
3658 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3659 btrfs_set_first_dir_index_to_log(inode, index: batch.keys[0].offset);
3660out:
3661 kfree(objp: ins_data);
3662
3663 return ret;
3664}
3665
3666static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3667{
3668 const int slot = path->slots[0];
3669
3670 if (ctx->scratch_eb) {
3671 copy_extent_buffer_full(dst: ctx->scratch_eb, src: path->nodes[0]);
3672 } else {
3673 ctx->scratch_eb = btrfs_clone_extent_buffer(src: path->nodes[0]);
3674 if (!ctx->scratch_eb)
3675 return -ENOMEM;
3676 }
3677
3678 btrfs_release_path(p: path);
3679 path->nodes[0] = ctx->scratch_eb;
3680 path->slots[0] = slot;
3681 /*
3682 * Add extra ref to scratch eb so that it is not freed when callers
3683 * release the path, so we can reuse it later if needed.
3684 */
3685 atomic_inc(v: &ctx->scratch_eb->refs);
3686
3687 return 0;
3688}
3689
3690static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3691 struct btrfs_inode *inode,
3692 struct btrfs_path *path,
3693 struct btrfs_path *dst_path,
3694 struct btrfs_log_ctx *ctx,
3695 u64 *last_old_dentry_offset)
3696{
3697 struct btrfs_root *log = inode->root->log_root;
3698 struct extent_buffer *src;
3699 const int nritems = btrfs_header_nritems(eb: path->nodes[0]);
3700 const u64 ino = btrfs_ino(inode);
3701 bool last_found = false;
3702 int batch_start = 0;
3703 int batch_size = 0;
3704 int ret;
3705
3706 /*
3707 * We need to clone the leaf, release the read lock on it, and use the
3708 * clone before modifying the log tree. See the comment at copy_items()
3709 * about why we need to do this.
3710 */
3711 ret = clone_leaf(path, ctx);
3712 if (ret < 0)
3713 return ret;
3714
3715 src = path->nodes[0];
3716
3717 for (int i = path->slots[0]; i < nritems; i++) {
3718 struct btrfs_dir_item *di;
3719 struct btrfs_key key;
3720 int ret;
3721
3722 btrfs_item_key_to_cpu(eb: src, cpu_key: &key, nr: i);
3723
3724 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3725 last_found = true;
3726 break;
3727 }
3728
3729 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3730
3731 /*
3732 * Skip ranges of items that consist only of dir item keys created
3733 * in past transactions. However if we find a gap, we must log a
3734 * dir index range item for that gap, so that index keys in that
3735 * gap are deleted during log replay.
3736 */
3737 if (btrfs_dir_transid(eb: src, s: di) < trans->transid) {
3738 if (key.offset > *last_old_dentry_offset + 1) {
3739 ret = insert_dir_log_key(trans, log, path: dst_path,
3740 dirid: ino, first_offset: *last_old_dentry_offset + 1,
3741 last_offset: key.offset - 1);
3742 if (ret < 0)
3743 return ret;
3744 }
3745
3746 *last_old_dentry_offset = key.offset;
3747 continue;
3748 }
3749
3750 /* If we logged this dir index item before, we can skip it. */
3751 if (key.offset <= inode->last_dir_index_offset)
3752 continue;
3753
3754 /*
3755 * We must make sure that when we log a directory entry, the
3756 * corresponding inode, after log replay, has a matching link
3757 * count. For example:
3758 *
3759 * touch foo
3760 * mkdir mydir
3761 * sync
3762 * ln foo mydir/bar
3763 * xfs_io -c "fsync" mydir
3764 * <crash>
3765 * <mount fs and log replay>
3766 *
3767 * Would result in a fsync log that when replayed, our file inode
3768 * would have a link count of 1, but we get two directory entries
3769 * pointing to the same inode. After removing one of the names,
3770 * it would not be possible to remove the other name, which
3771 * resulted always in stale file handle errors, and would not be
3772 * possible to rmdir the parent directory, since its i_size could
3773 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3774 * resulting in -ENOTEMPTY errors.
3775 */
3776 if (!ctx->log_new_dentries) {
3777 struct btrfs_key di_key;
3778
3779 btrfs_dir_item_key_to_cpu(eb: src, item: di, cpu_key: &di_key);
3780 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3781 ctx->log_new_dentries = true;
3782 }
3783
3784 if (batch_size == 0)
3785 batch_start = i;
3786 batch_size++;
3787 }
3788
3789 if (batch_size > 0) {
3790 int ret;
3791
3792 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3793 start_slot: batch_start, count: batch_size);
3794 if (ret < 0)
3795 return ret;
3796 }
3797
3798 return last_found ? 1 : 0;
3799}
3800
3801/*
3802 * log all the items included in the current transaction for a given
3803 * directory. This also creates the range items in the log tree required
3804 * to replay anything deleted before the fsync
3805 */
3806static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3807 struct btrfs_inode *inode,
3808 struct btrfs_path *path,
3809 struct btrfs_path *dst_path,
3810 struct btrfs_log_ctx *ctx,
3811 u64 min_offset, u64 *last_offset_ret)
3812{
3813 struct btrfs_key min_key;
3814 struct btrfs_root *root = inode->root;
3815 struct btrfs_root *log = root->log_root;
3816 int ret;
3817 u64 last_old_dentry_offset = min_offset - 1;
3818 u64 last_offset = (u64)-1;
3819 u64 ino = btrfs_ino(inode);
3820
3821 min_key.objectid = ino;
3822 min_key.type = BTRFS_DIR_INDEX_KEY;
3823 min_key.offset = min_offset;
3824
3825 ret = btrfs_search_forward(root, min_key: &min_key, path, min_trans: trans->transid);
3826
3827 /*
3828 * we didn't find anything from this transaction, see if there
3829 * is anything at all
3830 */
3831 if (ret != 0 || min_key.objectid != ino ||
3832 min_key.type != BTRFS_DIR_INDEX_KEY) {
3833 min_key.objectid = ino;
3834 min_key.type = BTRFS_DIR_INDEX_KEY;
3835 min_key.offset = (u64)-1;
3836 btrfs_release_path(p: path);
3837 ret = btrfs_search_slot(NULL, root, key: &min_key, p: path, ins_len: 0, cow: 0);
3838 if (ret < 0) {
3839 btrfs_release_path(p: path);
3840 return ret;
3841 }
3842 ret = btrfs_previous_item(root, path, min_objectid: ino, BTRFS_DIR_INDEX_KEY);
3843
3844 /* if ret == 0 there are items for this type,
3845 * create a range to tell us the last key of this type.
3846 * otherwise, there are no items in this directory after
3847 * *min_offset, and we create a range to indicate that.
3848 */
3849 if (ret == 0) {
3850 struct btrfs_key tmp;
3851
3852 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &tmp,
3853 nr: path->slots[0]);
3854 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3855 last_old_dentry_offset = tmp.offset;
3856 } else if (ret > 0) {
3857 ret = 0;
3858 }
3859
3860 goto done;
3861 }
3862
3863 /* go backward to find any previous key */
3864 ret = btrfs_previous_item(root, path, min_objectid: ino, BTRFS_DIR_INDEX_KEY);
3865 if (ret == 0) {
3866 struct btrfs_key tmp;
3867
3868 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &tmp, nr: path->slots[0]);
3869 /*
3870 * The dir index key before the first one we found that needs to
3871 * be logged might be in a previous leaf, and there might be a
3872 * gap between these keys, meaning that we had deletions that
3873 * happened. So the key range item we log (key type
3874 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3875 * previous key's offset plus 1, so that those deletes are replayed.
3876 */
3877 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3878 last_old_dentry_offset = tmp.offset;
3879 } else if (ret < 0) {
3880 goto done;
3881 }
3882
3883 btrfs_release_path(p: path);
3884
3885 /*
3886 * Find the first key from this transaction again or the one we were at
3887 * in the loop below in case we had to reschedule. We may be logging the
3888 * directory without holding its VFS lock, which happen when logging new
3889 * dentries (through log_new_dir_dentries()) or in some cases when we
3890 * need to log the parent directory of an inode. This means a dir index
3891 * key might be deleted from the inode's root, and therefore we may not
3892 * find it anymore. If we can't find it, just move to the next key. We
3893 * can not bail out and ignore, because if we do that we will simply
3894 * not log dir index keys that come after the one that was just deleted
3895 * and we can end up logging a dir index range that ends at (u64)-1
3896 * (@last_offset is initialized to that), resulting in removing dir
3897 * entries we should not remove at log replay time.
3898 */
3899search:
3900 ret = btrfs_search_slot(NULL, root, key: &min_key, p: path, ins_len: 0, cow: 0);
3901 if (ret > 0) {
3902 ret = btrfs_next_item(root, p: path);
3903 if (ret > 0) {
3904 /* There are no more keys in the inode's root. */
3905 ret = 0;
3906 goto done;
3907 }
3908 }
3909 if (ret < 0)
3910 goto done;
3911
3912 /*
3913 * we have a block from this transaction, log every item in it
3914 * from our directory
3915 */
3916 while (1) {
3917 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3918 last_old_dentry_offset: &last_old_dentry_offset);
3919 if (ret != 0) {
3920 if (ret > 0)
3921 ret = 0;
3922 goto done;
3923 }
3924 path->slots[0] = btrfs_header_nritems(eb: path->nodes[0]);
3925
3926 /*
3927 * look ahead to the next item and see if it is also
3928 * from this directory and from this transaction
3929 */
3930 ret = btrfs_next_leaf(root, path);
3931 if (ret) {
3932 if (ret == 1) {
3933 last_offset = (u64)-1;
3934 ret = 0;
3935 }
3936 goto done;
3937 }
3938 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &min_key, nr: path->slots[0]);
3939 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3940 last_offset = (u64)-1;
3941 goto done;
3942 }
3943 if (btrfs_header_generation(eb: path->nodes[0]) != trans->transid) {
3944 /*
3945 * The next leaf was not changed in the current transaction
3946 * and has at least one dir index key.
3947 * We check for the next key because there might have been
3948 * one or more deletions between the last key we logged and
3949 * that next key. So the key range item we log (key type
3950 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3951 * offset minus 1, so that those deletes are replayed.
3952 */
3953 last_offset = min_key.offset - 1;
3954 goto done;
3955 }
3956 if (need_resched()) {
3957 btrfs_release_path(p: path);
3958 cond_resched();
3959 goto search;
3960 }
3961 }
3962done:
3963 btrfs_release_path(p: path);
3964 btrfs_release_path(p: dst_path);
3965
3966 if (ret == 0) {
3967 *last_offset_ret = last_offset;
3968 /*
3969 * In case the leaf was changed in the current transaction but
3970 * all its dir items are from a past transaction, the last item
3971 * in the leaf is a dir item and there's no gap between that last
3972 * dir item and the first one on the next leaf (which did not
3973 * change in the current transaction), then we don't need to log
3974 * a range, last_old_dentry_offset is == to last_offset.
3975 */
3976 ASSERT(last_old_dentry_offset <= last_offset);
3977 if (last_old_dentry_offset < last_offset)
3978 ret = insert_dir_log_key(trans, log, path, dirid: ino,
3979 first_offset: last_old_dentry_offset + 1,
3980 last_offset);
3981 }
3982
3983 return ret;
3984}
3985
3986/*
3987 * If the inode was logged before and it was evicted, then its
3988 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3989 * key offset. If that's the case, search for it and update the inode. This
3990 * is to avoid lookups in the log tree every time we try to insert a dir index
3991 * key from a leaf changed in the current transaction, and to allow us to always
3992 * do batch insertions of dir index keys.
3993 */
3994static int update_last_dir_index_offset(struct btrfs_inode *inode,
3995 struct btrfs_path *path,
3996 const struct btrfs_log_ctx *ctx)
3997{
3998 const u64 ino = btrfs_ino(inode);
3999 struct btrfs_key key;
4000 int ret;
4001
4002 lockdep_assert_held(&inode->log_mutex);
4003
4004 if (inode->last_dir_index_offset != (u64)-1)
4005 return 0;
4006
4007 if (!ctx->logged_before) {
4008 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4009 return 0;
4010 }
4011
4012 key.objectid = ino;
4013 key.type = BTRFS_DIR_INDEX_KEY;
4014 key.offset = (u64)-1;
4015
4016 ret = btrfs_search_slot(NULL, root: inode->root->log_root, key: &key, p: path, ins_len: 0, cow: 0);
4017 /*
4018 * An error happened or we actually have an index key with an offset
4019 * value of (u64)-1. Bail out, we're done.
4020 */
4021 if (ret <= 0)
4022 goto out;
4023
4024 ret = 0;
4025 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4026
4027 /*
4028 * No dir index items, bail out and leave last_dir_index_offset with
4029 * the value right before the first valid index value.
4030 */
4031 if (path->slots[0] == 0)
4032 goto out;
4033
4034 /*
4035 * btrfs_search_slot() left us at one slot beyond the slot with the last
4036 * index key, or beyond the last key of the directory that is not an
4037 * index key. If we have an index key before, set last_dir_index_offset
4038 * to its offset value, otherwise leave it with a value right before the
4039 * first valid index value, as it means we have an empty directory.
4040 */
4041 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0] - 1);
4042 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4043 inode->last_dir_index_offset = key.offset;
4044
4045out:
4046 btrfs_release_path(p: path);
4047
4048 return ret;
4049}
4050
4051/*
4052 * logging directories is very similar to logging inodes, We find all the items
4053 * from the current transaction and write them to the log.
4054 *
4055 * The recovery code scans the directory in the subvolume, and if it finds a
4056 * key in the range logged that is not present in the log tree, then it means
4057 * that dir entry was unlinked during the transaction.
4058 *
4059 * In order for that scan to work, we must include one key smaller than
4060 * the smallest logged by this transaction and one key larger than the largest
4061 * key logged by this transaction.
4062 */
4063static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4064 struct btrfs_inode *inode,
4065 struct btrfs_path *path,
4066 struct btrfs_path *dst_path,
4067 struct btrfs_log_ctx *ctx)
4068{
4069 u64 min_key;
4070 u64 max_key;
4071 int ret;
4072
4073 ret = update_last_dir_index_offset(inode, path, ctx);
4074 if (ret)
4075 return ret;
4076
4077 min_key = BTRFS_DIR_START_INDEX;
4078 max_key = 0;
4079
4080 while (1) {
4081 ret = log_dir_items(trans, inode, path, dst_path,
4082 ctx, min_offset: min_key, last_offset_ret: &max_key);
4083 if (ret)
4084 return ret;
4085 if (max_key == (u64)-1)
4086 break;
4087 min_key = max_key + 1;
4088 }
4089
4090 return 0;
4091}
4092
4093/*
4094 * a helper function to drop items from the log before we relog an
4095 * inode. max_key_type indicates the highest item type to remove.
4096 * This cannot be run for file data extents because it does not
4097 * free the extents they point to.
4098 */
4099static int drop_inode_items(struct btrfs_trans_handle *trans,
4100 struct btrfs_root *log,
4101 struct btrfs_path *path,
4102 struct btrfs_inode *inode,
4103 int max_key_type)
4104{
4105 int ret;
4106 struct btrfs_key key;
4107 struct btrfs_key found_key;
4108 int start_slot;
4109
4110 key.objectid = btrfs_ino(inode);
4111 key.type = max_key_type;
4112 key.offset = (u64)-1;
4113
4114 while (1) {
4115 ret = btrfs_search_slot(trans, root: log, key: &key, p: path, ins_len: -1, cow: 1);
4116 if (ret < 0) {
4117 break;
4118 } else if (ret > 0) {
4119 if (path->slots[0] == 0)
4120 break;
4121 path->slots[0]--;
4122 }
4123
4124 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &found_key,
4125 nr: path->slots[0]);
4126
4127 if (found_key.objectid != key.objectid)
4128 break;
4129
4130 found_key.offset = 0;
4131 found_key.type = 0;
4132 ret = btrfs_bin_search(eb: path->nodes[0], first_slot: 0, key: &found_key, slot: &start_slot);
4133 if (ret < 0)
4134 break;
4135
4136 ret = btrfs_del_items(trans, root: log, path, slot: start_slot,
4137 nr: path->slots[0] - start_slot + 1);
4138 /*
4139 * If start slot isn't 0 then we don't need to re-search, we've
4140 * found the last guy with the objectid in this tree.
4141 */
4142 if (ret || start_slot != 0)
4143 break;
4144 btrfs_release_path(p: path);
4145 }
4146 btrfs_release_path(p: path);
4147 if (ret > 0)
4148 ret = 0;
4149 return ret;
4150}
4151
4152static int truncate_inode_items(struct btrfs_trans_handle *trans,
4153 struct btrfs_root *log_root,
4154 struct btrfs_inode *inode,
4155 u64 new_size, u32 min_type)
4156{
4157 struct btrfs_truncate_control control = {
4158 .new_size = new_size,
4159 .ino = btrfs_ino(inode),
4160 .min_type = min_type,
4161 .skip_ref_updates = true,
4162 };
4163
4164 return btrfs_truncate_inode_items(trans, root: log_root, control: &control);
4165}
4166
4167static void fill_inode_item(struct btrfs_trans_handle *trans,
4168 struct extent_buffer *leaf,
4169 struct btrfs_inode_item *item,
4170 struct inode *inode, int log_inode_only,
4171 u64 logged_isize)
4172{
4173 struct btrfs_map_token token;
4174 u64 flags;
4175
4176 btrfs_init_map_token(token: &token, eb: leaf);
4177
4178 if (log_inode_only) {
4179 /* set the generation to zero so the recover code
4180 * can tell the difference between an logging
4181 * just to say 'this inode exists' and a logging
4182 * to say 'update this inode with these values'
4183 */
4184 btrfs_set_token_inode_generation(token: &token, s: item, val: 0);
4185 btrfs_set_token_inode_size(token: &token, s: item, val: logged_isize);
4186 } else {
4187 btrfs_set_token_inode_generation(token: &token, s: item,
4188 val: BTRFS_I(inode)->generation);
4189 btrfs_set_token_inode_size(token: &token, s: item, val: inode->i_size);
4190 }
4191
4192 btrfs_set_token_inode_uid(token: &token, s: item, val: i_uid_read(inode));
4193 btrfs_set_token_inode_gid(token: &token, s: item, val: i_gid_read(inode));
4194 btrfs_set_token_inode_mode(token: &token, s: item, val: inode->i_mode);
4195 btrfs_set_token_inode_nlink(token: &token, s: item, val: inode->i_nlink);
4196
4197 btrfs_set_token_timespec_sec(token: &token, s: &item->atime,
4198 val: inode_get_atime_sec(inode));
4199 btrfs_set_token_timespec_nsec(token: &token, s: &item->atime,
4200 val: inode_get_atime_nsec(inode));
4201
4202 btrfs_set_token_timespec_sec(token: &token, s: &item->mtime,
4203 val: inode_get_mtime_sec(inode));
4204 btrfs_set_token_timespec_nsec(token: &token, s: &item->mtime,
4205 val: inode_get_mtime_nsec(inode));
4206
4207 btrfs_set_token_timespec_sec(token: &token, s: &item->ctime,
4208 val: inode_get_ctime_sec(inode));
4209 btrfs_set_token_timespec_nsec(token: &token, s: &item->ctime,
4210 val: inode_get_ctime_nsec(inode));
4211
4212 /*
4213 * We do not need to set the nbytes field, in fact during a fast fsync
4214 * its value may not even be correct, since a fast fsync does not wait
4215 * for ordered extent completion, which is where we update nbytes, it
4216 * only waits for writeback to complete. During log replay as we find
4217 * file extent items and replay them, we adjust the nbytes field of the
4218 * inode item in subvolume tree as needed (see overwrite_item()).
4219 */
4220
4221 btrfs_set_token_inode_sequence(token: &token, s: item, val: inode_peek_iversion(inode));
4222 btrfs_set_token_inode_transid(token: &token, s: item, val: trans->transid);
4223 btrfs_set_token_inode_rdev(token: &token, s: item, val: inode->i_rdev);
4224 flags = btrfs_inode_combine_flags(flags: BTRFS_I(inode)->flags,
4225 ro_flags: BTRFS_I(inode)->ro_flags);
4226 btrfs_set_token_inode_flags(token: &token, s: item, val: flags);
4227 btrfs_set_token_inode_block_group(token: &token, s: item, val: 0);
4228}
4229
4230static int log_inode_item(struct btrfs_trans_handle *trans,
4231 struct btrfs_root *log, struct btrfs_path *path,
4232 struct btrfs_inode *inode, bool inode_item_dropped)
4233{
4234 struct btrfs_inode_item *inode_item;
4235 int ret;
4236
4237 /*
4238 * If we are doing a fast fsync and the inode was logged before in the
4239 * current transaction, then we know the inode was previously logged and
4240 * it exists in the log tree. For performance reasons, in this case use
4241 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4242 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4243 * contention in case there are concurrent fsyncs for other inodes of the
4244 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4245 * already exists can also result in unnecessarily splitting a leaf.
4246 */
4247 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4248 ret = btrfs_search_slot(trans, root: log, key: &inode->location, p: path, ins_len: 0, cow: 1);
4249 ASSERT(ret <= 0);
4250 if (ret > 0)
4251 ret = -ENOENT;
4252 } else {
4253 /*
4254 * This means it is the first fsync in the current transaction,
4255 * so the inode item is not in the log and we need to insert it.
4256 * We can never get -EEXIST because we are only called for a fast
4257 * fsync and in case an inode eviction happens after the inode was
4258 * logged before in the current transaction, when we load again
4259 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4260 * flags and set ->logged_trans to 0.
4261 */
4262 ret = btrfs_insert_empty_item(trans, root: log, path, key: &inode->location,
4263 data_size: sizeof(*inode_item));
4264 ASSERT(ret != -EEXIST);
4265 }
4266 if (ret)
4267 return ret;
4268 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4269 struct btrfs_inode_item);
4270 fill_inode_item(trans, leaf: path->nodes[0], item: inode_item, inode: &inode->vfs_inode,
4271 log_inode_only: 0, logged_isize: 0);
4272 btrfs_release_path(p: path);
4273 return 0;
4274}
4275
4276static int log_csums(struct btrfs_trans_handle *trans,
4277 struct btrfs_inode *inode,
4278 struct btrfs_root *log_root,
4279 struct btrfs_ordered_sum *sums)
4280{
4281 const u64 lock_end = sums->logical + sums->len - 1;
4282 struct extent_state *cached_state = NULL;
4283 int ret;
4284
4285 /*
4286 * If this inode was not used for reflink operations in the current
4287 * transaction with new extents, then do the fast path, no need to
4288 * worry about logging checksum items with overlapping ranges.
4289 */
4290 if (inode->last_reflink_trans < trans->transid)
4291 return btrfs_csum_file_blocks(trans, root: log_root, sums);
4292
4293 /*
4294 * Serialize logging for checksums. This is to avoid racing with the
4295 * same checksum being logged by another task that is logging another
4296 * file which happens to refer to the same extent as well. Such races
4297 * can leave checksum items in the log with overlapping ranges.
4298 */
4299 ret = lock_extent(tree: &log_root->log_csum_range, start: sums->logical, end: lock_end,
4300 cached: &cached_state);
4301 if (ret)
4302 return ret;
4303 /*
4304 * Due to extent cloning, we might have logged a csum item that covers a
4305 * subrange of a cloned extent, and later we can end up logging a csum
4306 * item for a larger subrange of the same extent or the entire range.
4307 * This would leave csum items in the log tree that cover the same range
4308 * and break the searches for checksums in the log tree, resulting in
4309 * some checksums missing in the fs/subvolume tree. So just delete (or
4310 * trim and adjust) any existing csum items in the log for this range.
4311 */
4312 ret = btrfs_del_csums(trans, root: log_root, bytenr: sums->logical, len: sums->len);
4313 if (!ret)
4314 ret = btrfs_csum_file_blocks(trans, root: log_root, sums);
4315
4316 unlock_extent(tree: &log_root->log_csum_range, start: sums->logical, end: lock_end,
4317 cached: &cached_state);
4318
4319 return ret;
4320}
4321
4322static noinline int copy_items(struct btrfs_trans_handle *trans,
4323 struct btrfs_inode *inode,
4324 struct btrfs_path *dst_path,
4325 struct btrfs_path *src_path,
4326 int start_slot, int nr, int inode_only,
4327 u64 logged_isize, struct btrfs_log_ctx *ctx)
4328{
4329 struct btrfs_root *log = inode->root->log_root;
4330 struct btrfs_file_extent_item *extent;
4331 struct extent_buffer *src;
4332 int ret;
4333 struct btrfs_key *ins_keys;
4334 u32 *ins_sizes;
4335 struct btrfs_item_batch batch;
4336 char *ins_data;
4337 int dst_index;
4338 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4339 const u64 i_size = i_size_read(inode: &inode->vfs_inode);
4340
4341 /*
4342 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4343 * use the clone. This is because otherwise we would be changing the log
4344 * tree, to insert items from the subvolume tree or insert csum items,
4345 * while holding a read lock on a leaf from the subvolume tree, which
4346 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4347 *
4348 * 1) Modifying the log tree triggers an extent buffer allocation while
4349 * holding a write lock on a parent extent buffer from the log tree.
4350 * Allocating the pages for an extent buffer, or the extent buffer
4351 * struct, can trigger inode eviction and finally the inode eviction
4352 * will trigger a release/remove of a delayed node, which requires
4353 * taking the delayed node's mutex;
4354 *
4355 * 2) Allocating a metadata extent for a log tree can trigger the async
4356 * reclaim thread and make us wait for it to release enough space and
4357 * unblock our reservation ticket. The reclaim thread can start
4358 * flushing delayed items, and that in turn results in the need to
4359 * lock delayed node mutexes and in the need to write lock extent
4360 * buffers of a subvolume tree - all this while holding a write lock
4361 * on the parent extent buffer in the log tree.
4362 *
4363 * So one task in scenario 1) running in parallel with another task in
4364 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4365 * node mutex while having a read lock on a leaf from the subvolume,
4366 * while the other is holding the delayed node's mutex and wants to
4367 * write lock the same subvolume leaf for flushing delayed items.
4368 */
4369 ret = clone_leaf(path: src_path, ctx);
4370 if (ret < 0)
4371 return ret;
4372
4373 src = src_path->nodes[0];
4374
4375 ins_data = kmalloc(size: nr * sizeof(struct btrfs_key) +
4376 nr * sizeof(u32), GFP_NOFS);
4377 if (!ins_data)
4378 return -ENOMEM;
4379
4380 ins_sizes = (u32 *)ins_data;
4381 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4382 batch.keys = ins_keys;
4383 batch.data_sizes = ins_sizes;
4384 batch.total_data_size = 0;
4385 batch.nr = 0;
4386
4387 dst_index = 0;
4388 for (int i = 0; i < nr; i++) {
4389 const int src_slot = start_slot + i;
4390 struct btrfs_root *csum_root;
4391 struct btrfs_ordered_sum *sums;
4392 struct btrfs_ordered_sum *sums_next;
4393 LIST_HEAD(ordered_sums);
4394 u64 disk_bytenr;
4395 u64 disk_num_bytes;
4396 u64 extent_offset;
4397 u64 extent_num_bytes;
4398 bool is_old_extent;
4399
4400 btrfs_item_key_to_cpu(eb: src, cpu_key: &ins_keys[dst_index], nr: src_slot);
4401
4402 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4403 goto add_to_batch;
4404
4405 extent = btrfs_item_ptr(src, src_slot,
4406 struct btrfs_file_extent_item);
4407
4408 is_old_extent = (btrfs_file_extent_generation(eb: src, s: extent) <
4409 trans->transid);
4410
4411 /*
4412 * Don't copy extents from past generations. That would make us
4413 * log a lot more metadata for common cases like doing only a
4414 * few random writes into a file and then fsync it for the first
4415 * time or after the full sync flag is set on the inode. We can
4416 * get leaves full of extent items, most of which are from past
4417 * generations, so we can skip them - as long as the inode has
4418 * not been the target of a reflink operation in this transaction,
4419 * as in that case it might have had file extent items with old
4420 * generations copied into it. We also must always log prealloc
4421 * extents that start at or beyond eof, otherwise we would lose
4422 * them on log replay.
4423 */
4424 if (is_old_extent &&
4425 ins_keys[dst_index].offset < i_size &&
4426 inode->last_reflink_trans < trans->transid)
4427 continue;
4428
4429 if (skip_csum)
4430 goto add_to_batch;
4431
4432 /* Only regular extents have checksums. */
4433 if (btrfs_file_extent_type(eb: src, s: extent) != BTRFS_FILE_EXTENT_REG)
4434 goto add_to_batch;
4435
4436 /*
4437 * If it's an extent created in a past transaction, then its
4438 * checksums are already accessible from the committed csum tree,
4439 * no need to log them.
4440 */
4441 if (is_old_extent)
4442 goto add_to_batch;
4443
4444 disk_bytenr = btrfs_file_extent_disk_bytenr(eb: src, s: extent);
4445 /* If it's an explicit hole, there are no checksums. */
4446 if (disk_bytenr == 0)
4447 goto add_to_batch;
4448
4449 disk_num_bytes = btrfs_file_extent_disk_num_bytes(eb: src, s: extent);
4450
4451 if (btrfs_file_extent_compression(eb: src, s: extent)) {
4452 extent_offset = 0;
4453 extent_num_bytes = disk_num_bytes;
4454 } else {
4455 extent_offset = btrfs_file_extent_offset(eb: src, s: extent);
4456 extent_num_bytes = btrfs_file_extent_num_bytes(eb: src, s: extent);
4457 }
4458
4459 csum_root = btrfs_csum_root(fs_info: trans->fs_info, bytenr: disk_bytenr);
4460 disk_bytenr += extent_offset;
4461 ret = btrfs_lookup_csums_list(root: csum_root, start: disk_bytenr,
4462 end: disk_bytenr + extent_num_bytes - 1,
4463 list: &ordered_sums, search_commit: 0, nowait: false);
4464 if (ret)
4465 goto out;
4466
4467 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4468 if (!ret)
4469 ret = log_csums(trans, inode, log_root: log, sums);
4470 list_del(entry: &sums->list);
4471 kfree(objp: sums);
4472 }
4473 if (ret)
4474 goto out;
4475
4476add_to_batch:
4477 ins_sizes[dst_index] = btrfs_item_size(eb: src, slot: src_slot);
4478 batch.total_data_size += ins_sizes[dst_index];
4479 batch.nr++;
4480 dst_index++;
4481 }
4482
4483 /*
4484 * We have a leaf full of old extent items that don't need to be logged,
4485 * so we don't need to do anything.
4486 */
4487 if (batch.nr == 0)
4488 goto out;
4489
4490 ret = btrfs_insert_empty_items(trans, root: log, path: dst_path, batch: &batch);
4491 if (ret)
4492 goto out;
4493
4494 dst_index = 0;
4495 for (int i = 0; i < nr; i++) {
4496 const int src_slot = start_slot + i;
4497 const int dst_slot = dst_path->slots[0] + dst_index;
4498 struct btrfs_key key;
4499 unsigned long src_offset;
4500 unsigned long dst_offset;
4501
4502 /*
4503 * We're done, all the remaining items in the source leaf
4504 * correspond to old file extent items.
4505 */
4506 if (dst_index >= batch.nr)
4507 break;
4508
4509 btrfs_item_key_to_cpu(eb: src, cpu_key: &key, nr: src_slot);
4510
4511 if (key.type != BTRFS_EXTENT_DATA_KEY)
4512 goto copy_item;
4513
4514 extent = btrfs_item_ptr(src, src_slot,
4515 struct btrfs_file_extent_item);
4516
4517 /* See the comment in the previous loop, same logic. */
4518 if (btrfs_file_extent_generation(eb: src, s: extent) < trans->transid &&
4519 key.offset < i_size &&
4520 inode->last_reflink_trans < trans->transid)
4521 continue;
4522
4523copy_item:
4524 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4525 src_offset = btrfs_item_ptr_offset(src, src_slot);
4526
4527 if (key.type == BTRFS_INODE_ITEM_KEY) {
4528 struct btrfs_inode_item *inode_item;
4529
4530 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4531 struct btrfs_inode_item);
4532 fill_inode_item(trans, leaf: dst_path->nodes[0], item: inode_item,
4533 inode: &inode->vfs_inode,
4534 log_inode_only: inode_only == LOG_INODE_EXISTS,
4535 logged_isize);
4536 } else {
4537 copy_extent_buffer(dst: dst_path->nodes[0], src, dst_offset,
4538 src_offset, len: ins_sizes[dst_index]);
4539 }
4540
4541 dst_index++;
4542 }
4543
4544 btrfs_mark_buffer_dirty(trans, buf: dst_path->nodes[0]);
4545 btrfs_release_path(p: dst_path);
4546out:
4547 kfree(objp: ins_data);
4548
4549 return ret;
4550}
4551
4552static int extent_cmp(void *priv, const struct list_head *a,
4553 const struct list_head *b)
4554{
4555 const struct extent_map *em1, *em2;
4556
4557 em1 = list_entry(a, struct extent_map, list);
4558 em2 = list_entry(b, struct extent_map, list);
4559
4560 if (em1->start < em2->start)
4561 return -1;
4562 else if (em1->start > em2->start)
4563 return 1;
4564 return 0;
4565}
4566
4567static int log_extent_csums(struct btrfs_trans_handle *trans,
4568 struct btrfs_inode *inode,
4569 struct btrfs_root *log_root,
4570 const struct extent_map *em,
4571 struct btrfs_log_ctx *ctx)
4572{
4573 struct btrfs_ordered_extent *ordered;
4574 struct btrfs_root *csum_root;
4575 u64 csum_offset;
4576 u64 csum_len;
4577 u64 mod_start = em->mod_start;
4578 u64 mod_len = em->mod_len;
4579 LIST_HEAD(ordered_sums);
4580 int ret = 0;
4581
4582 if (inode->flags & BTRFS_INODE_NODATASUM ||
4583 (em->flags & EXTENT_FLAG_PREALLOC) ||
4584 em->block_start == EXTENT_MAP_HOLE)
4585 return 0;
4586
4587 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4588 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4589 const u64 mod_end = mod_start + mod_len;
4590 struct btrfs_ordered_sum *sums;
4591
4592 if (mod_len == 0)
4593 break;
4594
4595 if (ordered_end <= mod_start)
4596 continue;
4597 if (mod_end <= ordered->file_offset)
4598 break;
4599
4600 /*
4601 * We are going to copy all the csums on this ordered extent, so
4602 * go ahead and adjust mod_start and mod_len in case this ordered
4603 * extent has already been logged.
4604 */
4605 if (ordered->file_offset > mod_start) {
4606 if (ordered_end >= mod_end)
4607 mod_len = ordered->file_offset - mod_start;
4608 /*
4609 * If we have this case
4610 *
4611 * |--------- logged extent ---------|
4612 * |----- ordered extent ----|
4613 *
4614 * Just don't mess with mod_start and mod_len, we'll
4615 * just end up logging more csums than we need and it
4616 * will be ok.
4617 */
4618 } else {
4619 if (ordered_end < mod_end) {
4620 mod_len = mod_end - ordered_end;
4621 mod_start = ordered_end;
4622 } else {
4623 mod_len = 0;
4624 }
4625 }
4626
4627 /*
4628 * To keep us from looping for the above case of an ordered
4629 * extent that falls inside of the logged extent.
4630 */
4631 if (test_and_set_bit(nr: BTRFS_ORDERED_LOGGED_CSUM, addr: &ordered->flags))
4632 continue;
4633
4634 list_for_each_entry(sums, &ordered->list, list) {
4635 ret = log_csums(trans, inode, log_root, sums);
4636 if (ret)
4637 return ret;
4638 }
4639 }
4640
4641 /* We're done, found all csums in the ordered extents. */
4642 if (mod_len == 0)
4643 return 0;
4644
4645 /* If we're compressed we have to save the entire range of csums. */
4646 if (extent_map_is_compressed(em)) {
4647 csum_offset = 0;
4648 csum_len = max(em->block_len, em->orig_block_len);
4649 } else {
4650 csum_offset = mod_start - em->start;
4651 csum_len = mod_len;
4652 }
4653
4654 /* block start is already adjusted for the file extent offset. */
4655 csum_root = btrfs_csum_root(fs_info: trans->fs_info, bytenr: em->block_start);
4656 ret = btrfs_lookup_csums_list(root: csum_root, start: em->block_start + csum_offset,
4657 end: em->block_start + csum_offset +
4658 csum_len - 1, list: &ordered_sums, search_commit: 0, nowait: false);
4659 if (ret)
4660 return ret;
4661
4662 while (!list_empty(head: &ordered_sums)) {
4663 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4664 struct btrfs_ordered_sum,
4665 list);
4666 if (!ret)
4667 ret = log_csums(trans, inode, log_root, sums);
4668 list_del(entry: &sums->list);
4669 kfree(objp: sums);
4670 }
4671
4672 return ret;
4673}
4674
4675static int log_one_extent(struct btrfs_trans_handle *trans,
4676 struct btrfs_inode *inode,
4677 const struct extent_map *em,
4678 struct btrfs_path *path,
4679 struct btrfs_log_ctx *ctx)
4680{
4681 struct btrfs_drop_extents_args drop_args = { 0 };
4682 struct btrfs_root *log = inode->root->log_root;
4683 struct btrfs_file_extent_item fi = { 0 };
4684 struct extent_buffer *leaf;
4685 struct btrfs_key key;
4686 enum btrfs_compression_type compress_type;
4687 u64 extent_offset = em->start - em->orig_start;
4688 u64 block_len;
4689 int ret;
4690
4691 btrfs_set_stack_file_extent_generation(s: &fi, val: trans->transid);
4692 if (em->flags & EXTENT_FLAG_PREALLOC)
4693 btrfs_set_stack_file_extent_type(s: &fi, val: BTRFS_FILE_EXTENT_PREALLOC);
4694 else
4695 btrfs_set_stack_file_extent_type(s: &fi, val: BTRFS_FILE_EXTENT_REG);
4696
4697 block_len = max(em->block_len, em->orig_block_len);
4698 compress_type = extent_map_compression(em);
4699 if (compress_type != BTRFS_COMPRESS_NONE) {
4700 btrfs_set_stack_file_extent_disk_bytenr(s: &fi, val: em->block_start);
4701 btrfs_set_stack_file_extent_disk_num_bytes(s: &fi, val: block_len);
4702 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4703 btrfs_set_stack_file_extent_disk_bytenr(s: &fi, val: em->block_start -
4704 extent_offset);
4705 btrfs_set_stack_file_extent_disk_num_bytes(s: &fi, val: block_len);
4706 }
4707
4708 btrfs_set_stack_file_extent_offset(s: &fi, val: extent_offset);
4709 btrfs_set_stack_file_extent_num_bytes(s: &fi, val: em->len);
4710 btrfs_set_stack_file_extent_ram_bytes(s: &fi, val: em->ram_bytes);
4711 btrfs_set_stack_file_extent_compression(s: &fi, val: compress_type);
4712
4713 ret = log_extent_csums(trans, inode, log_root: log, em, ctx);
4714 if (ret)
4715 return ret;
4716
4717 /*
4718 * If this is the first time we are logging the inode in the current
4719 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4720 * because it does a deletion search, which always acquires write locks
4721 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4722 * but also adds significant contention in a log tree, since log trees
4723 * are small, with a root at level 2 or 3 at most, due to their short
4724 * life span.
4725 */
4726 if (ctx->logged_before) {
4727 drop_args.path = path;
4728 drop_args.start = em->start;
4729 drop_args.end = em->start + em->len;
4730 drop_args.replace_extent = true;
4731 drop_args.extent_item_size = sizeof(fi);
4732 ret = btrfs_drop_extents(trans, root: log, inode, args: &drop_args);
4733 if (ret)
4734 return ret;
4735 }
4736
4737 if (!drop_args.extent_inserted) {
4738 key.objectid = btrfs_ino(inode);
4739 key.type = BTRFS_EXTENT_DATA_KEY;
4740 key.offset = em->start;
4741
4742 ret = btrfs_insert_empty_item(trans, root: log, path, key: &key,
4743 data_size: sizeof(fi));
4744 if (ret)
4745 return ret;
4746 }
4747 leaf = path->nodes[0];
4748 write_extent_buffer(eb: leaf, src: &fi,
4749 btrfs_item_ptr_offset(leaf, path->slots[0]),
4750 len: sizeof(fi));
4751 btrfs_mark_buffer_dirty(trans, buf: leaf);
4752
4753 btrfs_release_path(p: path);
4754
4755 return ret;
4756}
4757
4758/*
4759 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4760 * lose them after doing a full/fast fsync and replaying the log. We scan the
4761 * subvolume's root instead of iterating the inode's extent map tree because
4762 * otherwise we can log incorrect extent items based on extent map conversion.
4763 * That can happen due to the fact that extent maps are merged when they
4764 * are not in the extent map tree's list of modified extents.
4765 */
4766static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4767 struct btrfs_inode *inode,
4768 struct btrfs_path *path,
4769 struct btrfs_log_ctx *ctx)
4770{
4771 struct btrfs_root *root = inode->root;
4772 struct btrfs_key key;
4773 const u64 i_size = i_size_read(inode: &inode->vfs_inode);
4774 const u64 ino = btrfs_ino(inode);
4775 struct btrfs_path *dst_path = NULL;
4776 bool dropped_extents = false;
4777 u64 truncate_offset = i_size;
4778 struct extent_buffer *leaf;
4779 int slot;
4780 int ins_nr = 0;
4781 int start_slot = 0;
4782 int ret;
4783
4784 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4785 return 0;
4786
4787 key.objectid = ino;
4788 key.type = BTRFS_EXTENT_DATA_KEY;
4789 key.offset = i_size;
4790 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
4791 if (ret < 0)
4792 goto out;
4793
4794 /*
4795 * We must check if there is a prealloc extent that starts before the
4796 * i_size and crosses the i_size boundary. This is to ensure later we
4797 * truncate down to the end of that extent and not to the i_size, as
4798 * otherwise we end up losing part of the prealloc extent after a log
4799 * replay and with an implicit hole if there is another prealloc extent
4800 * that starts at an offset beyond i_size.
4801 */
4802 ret = btrfs_previous_item(root, path, min_objectid: ino, BTRFS_EXTENT_DATA_KEY);
4803 if (ret < 0)
4804 goto out;
4805
4806 if (ret == 0) {
4807 struct btrfs_file_extent_item *ei;
4808
4809 leaf = path->nodes[0];
4810 slot = path->slots[0];
4811 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4812
4813 if (btrfs_file_extent_type(eb: leaf, s: ei) ==
4814 BTRFS_FILE_EXTENT_PREALLOC) {
4815 u64 extent_end;
4816
4817 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
4818 extent_end = key.offset +
4819 btrfs_file_extent_num_bytes(eb: leaf, s: ei);
4820
4821 if (extent_end > i_size)
4822 truncate_offset = extent_end;
4823 }
4824 } else {
4825 ret = 0;
4826 }
4827
4828 while (true) {
4829 leaf = path->nodes[0];
4830 slot = path->slots[0];
4831
4832 if (slot >= btrfs_header_nritems(eb: leaf)) {
4833 if (ins_nr > 0) {
4834 ret = copy_items(trans, inode, dst_path, src_path: path,
4835 start_slot, nr: ins_nr, inode_only: 1, logged_isize: 0, ctx);
4836 if (ret < 0)
4837 goto out;
4838 ins_nr = 0;
4839 }
4840 ret = btrfs_next_leaf(root, path);
4841 if (ret < 0)
4842 goto out;
4843 if (ret > 0) {
4844 ret = 0;
4845 break;
4846 }
4847 continue;
4848 }
4849
4850 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
4851 if (key.objectid > ino)
4852 break;
4853 if (WARN_ON_ONCE(key.objectid < ino) ||
4854 key.type < BTRFS_EXTENT_DATA_KEY ||
4855 key.offset < i_size) {
4856 path->slots[0]++;
4857 continue;
4858 }
4859 if (!dropped_extents) {
4860 /*
4861 * Avoid logging extent items logged in past fsync calls
4862 * and leading to duplicate keys in the log tree.
4863 */
4864 ret = truncate_inode_items(trans, log_root: root->log_root, inode,
4865 new_size: truncate_offset,
4866 BTRFS_EXTENT_DATA_KEY);
4867 if (ret)
4868 goto out;
4869 dropped_extents = true;
4870 }
4871 if (ins_nr == 0)
4872 start_slot = slot;
4873 ins_nr++;
4874 path->slots[0]++;
4875 if (!dst_path) {
4876 dst_path = btrfs_alloc_path();
4877 if (!dst_path) {
4878 ret = -ENOMEM;
4879 goto out;
4880 }
4881 }
4882 }
4883 if (ins_nr > 0)
4884 ret = copy_items(trans, inode, dst_path, src_path: path,
4885 start_slot, nr: ins_nr, inode_only: 1, logged_isize: 0, ctx);
4886out:
4887 btrfs_release_path(p: path);
4888 btrfs_free_path(p: dst_path);
4889 return ret;
4890}
4891
4892static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4893 struct btrfs_inode *inode,
4894 struct btrfs_path *path,
4895 struct btrfs_log_ctx *ctx)
4896{
4897 struct btrfs_ordered_extent *ordered;
4898 struct btrfs_ordered_extent *tmp;
4899 struct extent_map *em, *n;
4900 LIST_HEAD(extents);
4901 struct extent_map_tree *tree = &inode->extent_tree;
4902 int ret = 0;
4903 int num = 0;
4904
4905 write_lock(&tree->lock);
4906
4907 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4908 list_del_init(entry: &em->list);
4909 /*
4910 * Just an arbitrary number, this can be really CPU intensive
4911 * once we start getting a lot of extents, and really once we
4912 * have a bunch of extents we just want to commit since it will
4913 * be faster.
4914 */
4915 if (++num > 32768) {
4916 list_del_init(entry: &tree->modified_extents);
4917 ret = -EFBIG;
4918 goto process;
4919 }
4920
4921 if (em->generation < trans->transid)
4922 continue;
4923
4924 /* We log prealloc extents beyond eof later. */
4925 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4926 em->start >= i_size_read(inode: &inode->vfs_inode))
4927 continue;
4928
4929 /* Need a ref to keep it from getting evicted from cache */
4930 refcount_inc(r: &em->refs);
4931 em->flags |= EXTENT_FLAG_LOGGING;
4932 list_add_tail(new: &em->list, head: &extents);
4933 num++;
4934 }
4935
4936 list_sort(NULL, head: &extents, cmp: extent_cmp);
4937process:
4938 while (!list_empty(head: &extents)) {
4939 em = list_entry(extents.next, struct extent_map, list);
4940
4941 list_del_init(entry: &em->list);
4942
4943 /*
4944 * If we had an error we just need to delete everybody from our
4945 * private list.
4946 */
4947 if (ret) {
4948 clear_em_logging(tree, em);
4949 free_extent_map(em);
4950 continue;
4951 }
4952
4953 write_unlock(&tree->lock);
4954
4955 ret = log_one_extent(trans, inode, em, path, ctx);
4956 write_lock(&tree->lock);
4957 clear_em_logging(tree, em);
4958 free_extent_map(em);
4959 }
4960 WARN_ON(!list_empty(&extents));
4961 write_unlock(&tree->lock);
4962
4963 if (!ret)
4964 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4965 if (ret)
4966 return ret;
4967
4968 /*
4969 * We have logged all extents successfully, now make sure the commit of
4970 * the current transaction waits for the ordered extents to complete
4971 * before it commits and wipes out the log trees, otherwise we would
4972 * lose data if an ordered extents completes after the transaction
4973 * commits and a power failure happens after the transaction commit.
4974 */
4975 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4976 list_del_init(entry: &ordered->log_list);
4977 set_bit(nr: BTRFS_ORDERED_LOGGED, addr: &ordered->flags);
4978
4979 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4980 spin_lock_irq(lock: &inode->ordered_tree_lock);
4981 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4982 set_bit(nr: BTRFS_ORDERED_PENDING, addr: &ordered->flags);
4983 atomic_inc(v: &trans->transaction->pending_ordered);
4984 }
4985 spin_unlock_irq(lock: &inode->ordered_tree_lock);
4986 }
4987 btrfs_put_ordered_extent(entry: ordered);
4988 }
4989
4990 return 0;
4991}
4992
4993static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4994 struct btrfs_path *path, u64 *size_ret)
4995{
4996 struct btrfs_key key;
4997 int ret;
4998
4999 key.objectid = btrfs_ino(inode);
5000 key.type = BTRFS_INODE_ITEM_KEY;
5001 key.offset = 0;
5002
5003 ret = btrfs_search_slot(NULL, root: log, key: &key, p: path, ins_len: 0, cow: 0);
5004 if (ret < 0) {
5005 return ret;
5006 } else if (ret > 0) {
5007 *size_ret = 0;
5008 } else {
5009 struct btrfs_inode_item *item;
5010
5011 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5012 struct btrfs_inode_item);
5013 *size_ret = btrfs_inode_size(eb: path->nodes[0], s: item);
5014 /*
5015 * If the in-memory inode's i_size is smaller then the inode
5016 * size stored in the btree, return the inode's i_size, so
5017 * that we get a correct inode size after replaying the log
5018 * when before a power failure we had a shrinking truncate
5019 * followed by addition of a new name (rename / new hard link).
5020 * Otherwise return the inode size from the btree, to avoid
5021 * data loss when replaying a log due to previously doing a
5022 * write that expands the inode's size and logging a new name
5023 * immediately after.
5024 */
5025 if (*size_ret > inode->vfs_inode.i_size)
5026 *size_ret = inode->vfs_inode.i_size;
5027 }
5028
5029 btrfs_release_path(p: path);
5030 return 0;
5031}
5032
5033/*
5034 * At the moment we always log all xattrs. This is to figure out at log replay
5035 * time which xattrs must have their deletion replayed. If a xattr is missing
5036 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5037 * because if a xattr is deleted, the inode is fsynced and a power failure
5038 * happens, causing the log to be replayed the next time the fs is mounted,
5039 * we want the xattr to not exist anymore (same behaviour as other filesystems
5040 * with a journal, ext3/4, xfs, f2fs, etc).
5041 */
5042static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5043 struct btrfs_inode *inode,
5044 struct btrfs_path *path,
5045 struct btrfs_path *dst_path,
5046 struct btrfs_log_ctx *ctx)
5047{
5048 struct btrfs_root *root = inode->root;
5049 int ret;
5050 struct btrfs_key key;
5051 const u64 ino = btrfs_ino(inode);
5052 int ins_nr = 0;
5053 int start_slot = 0;
5054 bool found_xattrs = false;
5055
5056 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5057 return 0;
5058
5059 key.objectid = ino;
5060 key.type = BTRFS_XATTR_ITEM_KEY;
5061 key.offset = 0;
5062
5063 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
5064 if (ret < 0)
5065 return ret;
5066
5067 while (true) {
5068 int slot = path->slots[0];
5069 struct extent_buffer *leaf = path->nodes[0];
5070 int nritems = btrfs_header_nritems(eb: leaf);
5071
5072 if (slot >= nritems) {
5073 if (ins_nr > 0) {
5074 ret = copy_items(trans, inode, dst_path, src_path: path,
5075 start_slot, nr: ins_nr, inode_only: 1, logged_isize: 0, ctx);
5076 if (ret < 0)
5077 return ret;
5078 ins_nr = 0;
5079 }
5080 ret = btrfs_next_leaf(root, path);
5081 if (ret < 0)
5082 return ret;
5083 else if (ret > 0)
5084 break;
5085 continue;
5086 }
5087
5088 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
5089 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5090 break;
5091
5092 if (ins_nr == 0)
5093 start_slot = slot;
5094 ins_nr++;
5095 path->slots[0]++;
5096 found_xattrs = true;
5097 cond_resched();
5098 }
5099 if (ins_nr > 0) {
5100 ret = copy_items(trans, inode, dst_path, src_path: path,
5101 start_slot, nr: ins_nr, inode_only: 1, logged_isize: 0, ctx);
5102 if (ret < 0)
5103 return ret;
5104 }
5105
5106 if (!found_xattrs)
5107 set_bit(nr: BTRFS_INODE_NO_XATTRS, addr: &inode->runtime_flags);
5108
5109 return 0;
5110}
5111
5112/*
5113 * When using the NO_HOLES feature if we punched a hole that causes the
5114 * deletion of entire leafs or all the extent items of the first leaf (the one
5115 * that contains the inode item and references) we may end up not processing
5116 * any extents, because there are no leafs with a generation matching the
5117 * current transaction that have extent items for our inode. So we need to find
5118 * if any holes exist and then log them. We also need to log holes after any
5119 * truncate operation that changes the inode's size.
5120 */
5121static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5122 struct btrfs_inode *inode,
5123 struct btrfs_path *path)
5124{
5125 struct btrfs_root *root = inode->root;
5126 struct btrfs_fs_info *fs_info = root->fs_info;
5127 struct btrfs_key key;
5128 const u64 ino = btrfs_ino(inode);
5129 const u64 i_size = i_size_read(inode: &inode->vfs_inode);
5130 u64 prev_extent_end = 0;
5131 int ret;
5132
5133 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5134 return 0;
5135
5136 key.objectid = ino;
5137 key.type = BTRFS_EXTENT_DATA_KEY;
5138 key.offset = 0;
5139
5140 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
5141 if (ret < 0)
5142 return ret;
5143
5144 while (true) {
5145 struct extent_buffer *leaf = path->nodes[0];
5146
5147 if (path->slots[0] >= btrfs_header_nritems(eb: path->nodes[0])) {
5148 ret = btrfs_next_leaf(root, path);
5149 if (ret < 0)
5150 return ret;
5151 if (ret > 0) {
5152 ret = 0;
5153 break;
5154 }
5155 leaf = path->nodes[0];
5156 }
5157
5158 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
5159 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5160 break;
5161
5162 /* We have a hole, log it. */
5163 if (prev_extent_end < key.offset) {
5164 const u64 hole_len = key.offset - prev_extent_end;
5165
5166 /*
5167 * Release the path to avoid deadlocks with other code
5168 * paths that search the root while holding locks on
5169 * leafs from the log root.
5170 */
5171 btrfs_release_path(p: path);
5172 ret = btrfs_insert_hole_extent(trans, root: root->log_root,
5173 objectid: ino, pos: prev_extent_end,
5174 num_bytes: hole_len);
5175 if (ret < 0)
5176 return ret;
5177
5178 /*
5179 * Search for the same key again in the root. Since it's
5180 * an extent item and we are holding the inode lock, the
5181 * key must still exist. If it doesn't just emit warning
5182 * and return an error to fall back to a transaction
5183 * commit.
5184 */
5185 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
5186 if (ret < 0)
5187 return ret;
5188 if (WARN_ON(ret > 0))
5189 return -ENOENT;
5190 leaf = path->nodes[0];
5191 }
5192
5193 prev_extent_end = btrfs_file_extent_end(path);
5194 path->slots[0]++;
5195 cond_resched();
5196 }
5197
5198 if (prev_extent_end < i_size) {
5199 u64 hole_len;
5200
5201 btrfs_release_path(p: path);
5202 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5203 ret = btrfs_insert_hole_extent(trans, root: root->log_root, objectid: ino,
5204 pos: prev_extent_end, num_bytes: hole_len);
5205 if (ret < 0)
5206 return ret;
5207 }
5208
5209 return 0;
5210}
5211
5212/*
5213 * When we are logging a new inode X, check if it doesn't have a reference that
5214 * matches the reference from some other inode Y created in a past transaction
5215 * and that was renamed in the current transaction. If we don't do this, then at
5216 * log replay time we can lose inode Y (and all its files if it's a directory):
5217 *
5218 * mkdir /mnt/x
5219 * echo "hello world" > /mnt/x/foobar
5220 * sync
5221 * mv /mnt/x /mnt/y
5222 * mkdir /mnt/x # or touch /mnt/x
5223 * xfs_io -c fsync /mnt/x
5224 * <power fail>
5225 * mount fs, trigger log replay
5226 *
5227 * After the log replay procedure, we would lose the first directory and all its
5228 * files (file foobar).
5229 * For the case where inode Y is not a directory we simply end up losing it:
5230 *
5231 * echo "123" > /mnt/foo
5232 * sync
5233 * mv /mnt/foo /mnt/bar
5234 * echo "abc" > /mnt/foo
5235 * xfs_io -c fsync /mnt/foo
5236 * <power fail>
5237 *
5238 * We also need this for cases where a snapshot entry is replaced by some other
5239 * entry (file or directory) otherwise we end up with an unreplayable log due to
5240 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5241 * if it were a regular entry:
5242 *
5243 * mkdir /mnt/x
5244 * btrfs subvolume snapshot /mnt /mnt/x/snap
5245 * btrfs subvolume delete /mnt/x/snap
5246 * rmdir /mnt/x
5247 * mkdir /mnt/x
5248 * fsync /mnt/x or fsync some new file inside it
5249 * <power fail>
5250 *
5251 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5252 * the same transaction.
5253 */
5254static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5255 const int slot,
5256 const struct btrfs_key *key,
5257 struct btrfs_inode *inode,
5258 u64 *other_ino, u64 *other_parent)
5259{
5260 int ret;
5261 struct btrfs_path *search_path;
5262 char *name = NULL;
5263 u32 name_len = 0;
5264 u32 item_size = btrfs_item_size(eb, slot);
5265 u32 cur_offset = 0;
5266 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5267
5268 search_path = btrfs_alloc_path();
5269 if (!search_path)
5270 return -ENOMEM;
5271 search_path->search_commit_root = 1;
5272 search_path->skip_locking = 1;
5273
5274 while (cur_offset < item_size) {
5275 u64 parent;
5276 u32 this_name_len;
5277 u32 this_len;
5278 unsigned long name_ptr;
5279 struct btrfs_dir_item *di;
5280 struct fscrypt_str name_str;
5281
5282 if (key->type == BTRFS_INODE_REF_KEY) {
5283 struct btrfs_inode_ref *iref;
5284
5285 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5286 parent = key->offset;
5287 this_name_len = btrfs_inode_ref_name_len(eb, s: iref);
5288 name_ptr = (unsigned long)(iref + 1);
5289 this_len = sizeof(*iref) + this_name_len;
5290 } else {
5291 struct btrfs_inode_extref *extref;
5292
5293 extref = (struct btrfs_inode_extref *)(ptr +
5294 cur_offset);
5295 parent = btrfs_inode_extref_parent(eb, s: extref);
5296 this_name_len = btrfs_inode_extref_name_len(eb, s: extref);
5297 name_ptr = (unsigned long)&extref->name;
5298 this_len = sizeof(*extref) + this_name_len;
5299 }
5300
5301 if (this_name_len > name_len) {
5302 char *new_name;
5303
5304 new_name = krealloc(objp: name, new_size: this_name_len, GFP_NOFS);
5305 if (!new_name) {
5306 ret = -ENOMEM;
5307 goto out;
5308 }
5309 name_len = this_name_len;
5310 name = new_name;
5311 }
5312
5313 read_extent_buffer(eb, dst: name, start: name_ptr, len: this_name_len);
5314
5315 name_str.name = name;
5316 name_str.len = this_name_len;
5317 di = btrfs_lookup_dir_item(NULL, root: inode->root, path: search_path,
5318 dir: parent, name: &name_str, mod: 0);
5319 if (di && !IS_ERR(ptr: di)) {
5320 struct btrfs_key di_key;
5321
5322 btrfs_dir_item_key_to_cpu(eb: search_path->nodes[0],
5323 item: di, cpu_key: &di_key);
5324 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5325 if (di_key.objectid != key->objectid) {
5326 ret = 1;
5327 *other_ino = di_key.objectid;
5328 *other_parent = parent;
5329 } else {
5330 ret = 0;
5331 }
5332 } else {
5333 ret = -EAGAIN;
5334 }
5335 goto out;
5336 } else if (IS_ERR(ptr: di)) {
5337 ret = PTR_ERR(ptr: di);
5338 goto out;
5339 }
5340 btrfs_release_path(p: search_path);
5341
5342 cur_offset += this_len;
5343 }
5344 ret = 0;
5345out:
5346 btrfs_free_path(p: search_path);
5347 kfree(objp: name);
5348 return ret;
5349}
5350
5351/*
5352 * Check if we need to log an inode. This is used in contexts where while
5353 * logging an inode we need to log another inode (either that it exists or in
5354 * full mode). This is used instead of btrfs_inode_in_log() because the later
5355 * requires the inode to be in the log and have the log transaction committed,
5356 * while here we do not care if the log transaction was already committed - our
5357 * caller will commit the log later - and we want to avoid logging an inode
5358 * multiple times when multiple tasks have joined the same log transaction.
5359 */
5360static bool need_log_inode(const struct btrfs_trans_handle *trans,
5361 struct btrfs_inode *inode)
5362{
5363 /*
5364 * If a directory was not modified, no dentries added or removed, we can
5365 * and should avoid logging it.
5366 */
5367 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5368 return false;
5369
5370 /*
5371 * If this inode does not have new/updated/deleted xattrs since the last
5372 * time it was logged and is flagged as logged in the current transaction,
5373 * we can skip logging it. As for new/deleted names, those are updated in
5374 * the log by link/unlink/rename operations.
5375 * In case the inode was logged and then evicted and reloaded, its
5376 * logged_trans will be 0, in which case we have to fully log it since
5377 * logged_trans is a transient field, not persisted.
5378 */
5379 if (inode_logged(trans, inode, NULL) == 1 &&
5380 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5381 return false;
5382
5383 return true;
5384}
5385
5386struct btrfs_dir_list {
5387 u64 ino;
5388 struct list_head list;
5389};
5390
5391/*
5392 * Log the inodes of the new dentries of a directory.
5393 * See process_dir_items_leaf() for details about why it is needed.
5394 * This is a recursive operation - if an existing dentry corresponds to a
5395 * directory, that directory's new entries are logged too (same behaviour as
5396 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5397 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5398 * complains about the following circular lock dependency / possible deadlock:
5399 *
5400 * CPU0 CPU1
5401 * ---- ----
5402 * lock(&type->i_mutex_dir_key#3/2);
5403 * lock(sb_internal#2);
5404 * lock(&type->i_mutex_dir_key#3/2);
5405 * lock(&sb->s_type->i_mutex_key#14);
5406 *
5407 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5408 * sb_start_intwrite() in btrfs_start_transaction().
5409 * Not acquiring the VFS lock of the inodes is still safe because:
5410 *
5411 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5412 * that while logging the inode new references (names) are added or removed
5413 * from the inode, leaving the logged inode item with a link count that does
5414 * not match the number of logged inode reference items. This is fine because
5415 * at log replay time we compute the real number of links and correct the
5416 * link count in the inode item (see replay_one_buffer() and
5417 * link_to_fixup_dir());
5418 *
5419 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5420 * while logging the inode's items new index items (key type
5421 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5422 * has a size that doesn't match the sum of the lengths of all the logged
5423 * names - this is ok, not a problem, because at log replay time we set the
5424 * directory's i_size to the correct value (see replay_one_name() and
5425 * overwrite_item()).
5426 */
5427static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5428 struct btrfs_inode *start_inode,
5429 struct btrfs_log_ctx *ctx)
5430{
5431 struct btrfs_root *root = start_inode->root;
5432 struct btrfs_fs_info *fs_info = root->fs_info;
5433 struct btrfs_path *path;
5434 LIST_HEAD(dir_list);
5435 struct btrfs_dir_list *dir_elem;
5436 u64 ino = btrfs_ino(inode: start_inode);
5437 struct btrfs_inode *curr_inode = start_inode;
5438 int ret = 0;
5439
5440 /*
5441 * If we are logging a new name, as part of a link or rename operation,
5442 * don't bother logging new dentries, as we just want to log the names
5443 * of an inode and that any new parents exist.
5444 */
5445 if (ctx->logging_new_name)
5446 return 0;
5447
5448 path = btrfs_alloc_path();
5449 if (!path)
5450 return -ENOMEM;
5451
5452 /* Pairs with btrfs_add_delayed_iput below. */
5453 ihold(inode: &curr_inode->vfs_inode);
5454
5455 while (true) {
5456 struct inode *vfs_inode;
5457 struct btrfs_key key;
5458 struct btrfs_key found_key;
5459 u64 next_index;
5460 bool continue_curr_inode = true;
5461 int iter_ret;
5462
5463 key.objectid = ino;
5464 key.type = BTRFS_DIR_INDEX_KEY;
5465 key.offset = btrfs_get_first_dir_index_to_log(inode: curr_inode);
5466 next_index = key.offset;
5467again:
5468 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5469 struct extent_buffer *leaf = path->nodes[0];
5470 struct btrfs_dir_item *di;
5471 struct btrfs_key di_key;
5472 struct inode *di_inode;
5473 int log_mode = LOG_INODE_EXISTS;
5474 int type;
5475
5476 if (found_key.objectid != ino ||
5477 found_key.type != BTRFS_DIR_INDEX_KEY) {
5478 continue_curr_inode = false;
5479 break;
5480 }
5481
5482 next_index = found_key.offset + 1;
5483
5484 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5485 type = btrfs_dir_ftype(eb: leaf, item: di);
5486 if (btrfs_dir_transid(eb: leaf, s: di) < trans->transid)
5487 continue;
5488 btrfs_dir_item_key_to_cpu(eb: leaf, item: di, cpu_key: &di_key);
5489 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5490 continue;
5491
5492 btrfs_release_path(p: path);
5493 di_inode = btrfs_iget(s: fs_info->sb, ino: di_key.objectid, root);
5494 if (IS_ERR(ptr: di_inode)) {
5495 ret = PTR_ERR(ptr: di_inode);
5496 goto out;
5497 }
5498
5499 if (!need_log_inode(trans, inode: BTRFS_I(inode: di_inode))) {
5500 btrfs_add_delayed_iput(inode: BTRFS_I(inode: di_inode));
5501 break;
5502 }
5503
5504 ctx->log_new_dentries = false;
5505 if (type == BTRFS_FT_DIR)
5506 log_mode = LOG_INODE_ALL;
5507 ret = btrfs_log_inode(trans, inode: BTRFS_I(inode: di_inode),
5508 inode_only: log_mode, ctx);
5509 btrfs_add_delayed_iput(inode: BTRFS_I(inode: di_inode));
5510 if (ret)
5511 goto out;
5512 if (ctx->log_new_dentries) {
5513 dir_elem = kmalloc(size: sizeof(*dir_elem), GFP_NOFS);
5514 if (!dir_elem) {
5515 ret = -ENOMEM;
5516 goto out;
5517 }
5518 dir_elem->ino = di_key.objectid;
5519 list_add_tail(new: &dir_elem->list, head: &dir_list);
5520 }
5521 break;
5522 }
5523
5524 btrfs_release_path(p: path);
5525
5526 if (iter_ret < 0) {
5527 ret = iter_ret;
5528 goto out;
5529 } else if (iter_ret > 0) {
5530 continue_curr_inode = false;
5531 } else {
5532 key = found_key;
5533 }
5534
5535 if (continue_curr_inode && key.offset < (u64)-1) {
5536 key.offset++;
5537 goto again;
5538 }
5539
5540 btrfs_set_first_dir_index_to_log(inode: curr_inode, index: next_index);
5541
5542 if (list_empty(head: &dir_list))
5543 break;
5544
5545 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5546 ino = dir_elem->ino;
5547 list_del(entry: &dir_elem->list);
5548 kfree(objp: dir_elem);
5549
5550 btrfs_add_delayed_iput(inode: curr_inode);
5551 curr_inode = NULL;
5552
5553 vfs_inode = btrfs_iget(s: fs_info->sb, ino, root);
5554 if (IS_ERR(ptr: vfs_inode)) {
5555 ret = PTR_ERR(ptr: vfs_inode);
5556 break;
5557 }
5558 curr_inode = BTRFS_I(inode: vfs_inode);
5559 }
5560out:
5561 btrfs_free_path(p: path);
5562 if (curr_inode)
5563 btrfs_add_delayed_iput(inode: curr_inode);
5564
5565 if (ret) {
5566 struct btrfs_dir_list *next;
5567
5568 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5569 kfree(objp: dir_elem);
5570 }
5571
5572 return ret;
5573}
5574
5575struct btrfs_ino_list {
5576 u64 ino;
5577 u64 parent;
5578 struct list_head list;
5579};
5580
5581static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5582{
5583 struct btrfs_ino_list *curr;
5584 struct btrfs_ino_list *next;
5585
5586 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5587 list_del(entry: &curr->list);
5588 kfree(objp: curr);
5589 }
5590}
5591
5592static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5593 struct btrfs_path *path)
5594{
5595 struct btrfs_key key;
5596 int ret;
5597
5598 key.objectid = ino;
5599 key.type = BTRFS_INODE_ITEM_KEY;
5600 key.offset = 0;
5601
5602 path->search_commit_root = 1;
5603 path->skip_locking = 1;
5604
5605 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
5606 if (WARN_ON_ONCE(ret > 0)) {
5607 /*
5608 * We have previously found the inode through the commit root
5609 * so this should not happen. If it does, just error out and
5610 * fallback to a transaction commit.
5611 */
5612 ret = -ENOENT;
5613 } else if (ret == 0) {
5614 struct btrfs_inode_item *item;
5615
5616 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5617 struct btrfs_inode_item);
5618 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5619 ret = 1;
5620 }
5621
5622 btrfs_release_path(p: path);
5623 path->search_commit_root = 0;
5624 path->skip_locking = 0;
5625
5626 return ret;
5627}
5628
5629static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5630 struct btrfs_root *root,
5631 struct btrfs_path *path,
5632 u64 ino, u64 parent,
5633 struct btrfs_log_ctx *ctx)
5634{
5635 struct btrfs_ino_list *ino_elem;
5636 struct inode *inode;
5637
5638 /*
5639 * It's rare to have a lot of conflicting inodes, in practice it is not
5640 * common to have more than 1 or 2. We don't want to collect too many,
5641 * as we could end up logging too many inodes (even if only in
5642 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5643 * commits.
5644 */
5645 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5646 return BTRFS_LOG_FORCE_COMMIT;
5647
5648 inode = btrfs_iget(s: root->fs_info->sb, ino, root);
5649 /*
5650 * If the other inode that had a conflicting dir entry was deleted in
5651 * the current transaction then we either:
5652 *
5653 * 1) Log the parent directory (later after adding it to the list) if
5654 * the inode is a directory. This is because it may be a deleted
5655 * subvolume/snapshot or it may be a regular directory that had
5656 * deleted subvolumes/snapshots (or subdirectories that had them),
5657 * and at the moment we can't deal with dropping subvolumes/snapshots
5658 * during log replay. So we just log the parent, which will result in
5659 * a fallback to a transaction commit if we are dealing with those
5660 * cases (last_unlink_trans will match the current transaction);
5661 *
5662 * 2) Do nothing if it's not a directory. During log replay we simply
5663 * unlink the conflicting dentry from the parent directory and then
5664 * add the dentry for our inode. Like this we can avoid logging the
5665 * parent directory (and maybe fallback to a transaction commit in
5666 * case it has a last_unlink_trans == trans->transid, due to moving
5667 * some inode from it to some other directory).
5668 */
5669 if (IS_ERR(ptr: inode)) {
5670 int ret = PTR_ERR(ptr: inode);
5671
5672 if (ret != -ENOENT)
5673 return ret;
5674
5675 ret = conflicting_inode_is_dir(root, ino, path);
5676 /* Not a directory or we got an error. */
5677 if (ret <= 0)
5678 return ret;
5679
5680 /* Conflicting inode is a directory, so we'll log its parent. */
5681 ino_elem = kmalloc(size: sizeof(*ino_elem), GFP_NOFS);
5682 if (!ino_elem)
5683 return -ENOMEM;
5684 ino_elem->ino = ino;
5685 ino_elem->parent = parent;
5686 list_add_tail(new: &ino_elem->list, head: &ctx->conflict_inodes);
5687 ctx->num_conflict_inodes++;
5688
5689 return 0;
5690 }
5691
5692 /*
5693 * If the inode was already logged skip it - otherwise we can hit an
5694 * infinite loop. Example:
5695 *
5696 * From the commit root (previous transaction) we have the following
5697 * inodes:
5698 *
5699 * inode 257 a directory
5700 * inode 258 with references "zz" and "zz_link" on inode 257
5701 * inode 259 with reference "a" on inode 257
5702 *
5703 * And in the current (uncommitted) transaction we have:
5704 *
5705 * inode 257 a directory, unchanged
5706 * inode 258 with references "a" and "a2" on inode 257
5707 * inode 259 with reference "zz_link" on inode 257
5708 * inode 261 with reference "zz" on inode 257
5709 *
5710 * When logging inode 261 the following infinite loop could
5711 * happen if we don't skip already logged inodes:
5712 *
5713 * - we detect inode 258 as a conflicting inode, with inode 261
5714 * on reference "zz", and log it;
5715 *
5716 * - we detect inode 259 as a conflicting inode, with inode 258
5717 * on reference "a", and log it;
5718 *
5719 * - we detect inode 258 as a conflicting inode, with inode 259
5720 * on reference "zz_link", and log it - again! After this we
5721 * repeat the above steps forever.
5722 *
5723 * Here we can use need_log_inode() because we only need to log the
5724 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5725 * so that the log ends up with the new name and without the old name.
5726 */
5727 if (!need_log_inode(trans, inode: BTRFS_I(inode))) {
5728 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
5729 return 0;
5730 }
5731
5732 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
5733
5734 ino_elem = kmalloc(size: sizeof(*ino_elem), GFP_NOFS);
5735 if (!ino_elem)
5736 return -ENOMEM;
5737 ino_elem->ino = ino;
5738 ino_elem->parent = parent;
5739 list_add_tail(new: &ino_elem->list, head: &ctx->conflict_inodes);
5740 ctx->num_conflict_inodes++;
5741
5742 return 0;
5743}
5744
5745static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5746 struct btrfs_root *root,
5747 struct btrfs_log_ctx *ctx)
5748{
5749 struct btrfs_fs_info *fs_info = root->fs_info;
5750 int ret = 0;
5751
5752 /*
5753 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5754 * otherwise we could have unbounded recursion of btrfs_log_inode()
5755 * calls. This check guarantees we can have only 1 level of recursion.
5756 */
5757 if (ctx->logging_conflict_inodes)
5758 return 0;
5759
5760 ctx->logging_conflict_inodes = true;
5761
5762 /*
5763 * New conflicting inodes may be found and added to the list while we
5764 * are logging a conflicting inode, so keep iterating while the list is
5765 * not empty.
5766 */
5767 while (!list_empty(head: &ctx->conflict_inodes)) {
5768 struct btrfs_ino_list *curr;
5769 struct inode *inode;
5770 u64 ino;
5771 u64 parent;
5772
5773 curr = list_first_entry(&ctx->conflict_inodes,
5774 struct btrfs_ino_list, list);
5775 ino = curr->ino;
5776 parent = curr->parent;
5777 list_del(entry: &curr->list);
5778 kfree(objp: curr);
5779
5780 inode = btrfs_iget(s: fs_info->sb, ino, root);
5781 /*
5782 * If the other inode that had a conflicting dir entry was
5783 * deleted in the current transaction, we need to log its parent
5784 * directory. See the comment at add_conflicting_inode().
5785 */
5786 if (IS_ERR(ptr: inode)) {
5787 ret = PTR_ERR(ptr: inode);
5788 if (ret != -ENOENT)
5789 break;
5790
5791 inode = btrfs_iget(s: fs_info->sb, ino: parent, root);
5792 if (IS_ERR(ptr: inode)) {
5793 ret = PTR_ERR(ptr: inode);
5794 break;
5795 }
5796
5797 /*
5798 * Always log the directory, we cannot make this
5799 * conditional on need_log_inode() because the directory
5800 * might have been logged in LOG_INODE_EXISTS mode or
5801 * the dir index of the conflicting inode is not in a
5802 * dir index key range logged for the directory. So we
5803 * must make sure the deletion is recorded.
5804 */
5805 ret = btrfs_log_inode(trans, inode: BTRFS_I(inode),
5806 inode_only: LOG_INODE_ALL, ctx);
5807 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
5808 if (ret)
5809 break;
5810 continue;
5811 }
5812
5813 /*
5814 * Here we can use need_log_inode() because we only need to log
5815 * the inode in LOG_INODE_EXISTS mode and rename operations
5816 * update the log, so that the log ends up with the new name and
5817 * without the old name.
5818 *
5819 * We did this check at add_conflicting_inode(), but here we do
5820 * it again because if some other task logged the inode after
5821 * that, we can avoid doing it again.
5822 */
5823 if (!need_log_inode(trans, inode: BTRFS_I(inode))) {
5824 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
5825 continue;
5826 }
5827
5828 /*
5829 * We are safe logging the other inode without acquiring its
5830 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5831 * are safe against concurrent renames of the other inode as
5832 * well because during a rename we pin the log and update the
5833 * log with the new name before we unpin it.
5834 */
5835 ret = btrfs_log_inode(trans, inode: BTRFS_I(inode), inode_only: LOG_INODE_EXISTS, ctx);
5836 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
5837 if (ret)
5838 break;
5839 }
5840
5841 ctx->logging_conflict_inodes = false;
5842 if (ret)
5843 free_conflicting_inodes(ctx);
5844
5845 return ret;
5846}
5847
5848static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5849 struct btrfs_inode *inode,
5850 struct btrfs_key *min_key,
5851 const struct btrfs_key *max_key,
5852 struct btrfs_path *path,
5853 struct btrfs_path *dst_path,
5854 const u64 logged_isize,
5855 const int inode_only,
5856 struct btrfs_log_ctx *ctx,
5857 bool *need_log_inode_item)
5858{
5859 const u64 i_size = i_size_read(inode: &inode->vfs_inode);
5860 struct btrfs_root *root = inode->root;
5861 int ins_start_slot = 0;
5862 int ins_nr = 0;
5863 int ret;
5864
5865 while (1) {
5866 ret = btrfs_search_forward(root, min_key, path, min_trans: trans->transid);
5867 if (ret < 0)
5868 return ret;
5869 if (ret > 0) {
5870 ret = 0;
5871 break;
5872 }
5873again:
5874 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5875 if (min_key->objectid != max_key->objectid)
5876 break;
5877 if (min_key->type > max_key->type)
5878 break;
5879
5880 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5881 *need_log_inode_item = false;
5882 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5883 min_key->offset >= i_size) {
5884 /*
5885 * Extents at and beyond eof are logged with
5886 * btrfs_log_prealloc_extents().
5887 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5888 * and no keys greater than that, so bail out.
5889 */
5890 break;
5891 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5892 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5893 (inode->generation == trans->transid ||
5894 ctx->logging_conflict_inodes)) {
5895 u64 other_ino = 0;
5896 u64 other_parent = 0;
5897
5898 ret = btrfs_check_ref_name_override(eb: path->nodes[0],
5899 slot: path->slots[0], key: min_key, inode,
5900 other_ino: &other_ino, other_parent: &other_parent);
5901 if (ret < 0) {
5902 return ret;
5903 } else if (ret > 0 &&
5904 other_ino != btrfs_ino(inode: BTRFS_I(inode: ctx->inode))) {
5905 if (ins_nr > 0) {
5906 ins_nr++;
5907 } else {
5908 ins_nr = 1;
5909 ins_start_slot = path->slots[0];
5910 }
5911 ret = copy_items(trans, inode, dst_path, src_path: path,
5912 start_slot: ins_start_slot, nr: ins_nr,
5913 inode_only, logged_isize, ctx);
5914 if (ret < 0)
5915 return ret;
5916 ins_nr = 0;
5917
5918 btrfs_release_path(p: path);
5919 ret = add_conflicting_inode(trans, root, path,
5920 ino: other_ino,
5921 parent: other_parent, ctx);
5922 if (ret)
5923 return ret;
5924 goto next_key;
5925 }
5926 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5927 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5928 if (ins_nr == 0)
5929 goto next_slot;
5930 ret = copy_items(trans, inode, dst_path, src_path: path,
5931 start_slot: ins_start_slot,
5932 nr: ins_nr, inode_only, logged_isize, ctx);
5933 if (ret < 0)
5934 return ret;
5935 ins_nr = 0;
5936 goto next_slot;
5937 }
5938
5939 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5940 ins_nr++;
5941 goto next_slot;
5942 } else if (!ins_nr) {
5943 ins_start_slot = path->slots[0];
5944 ins_nr = 1;
5945 goto next_slot;
5946 }
5947
5948 ret = copy_items(trans, inode, dst_path, src_path: path, start_slot: ins_start_slot,
5949 nr: ins_nr, inode_only, logged_isize, ctx);
5950 if (ret < 0)
5951 return ret;
5952 ins_nr = 1;
5953 ins_start_slot = path->slots[0];
5954next_slot:
5955 path->slots[0]++;
5956 if (path->slots[0] < btrfs_header_nritems(eb: path->nodes[0])) {
5957 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: min_key,
5958 nr: path->slots[0]);
5959 goto again;
5960 }
5961 if (ins_nr) {
5962 ret = copy_items(trans, inode, dst_path, src_path: path,
5963 start_slot: ins_start_slot, nr: ins_nr, inode_only,
5964 logged_isize, ctx);
5965 if (ret < 0)
5966 return ret;
5967 ins_nr = 0;
5968 }
5969 btrfs_release_path(p: path);
5970next_key:
5971 if (min_key->offset < (u64)-1) {
5972 min_key->offset++;
5973 } else if (min_key->type < max_key->type) {
5974 min_key->type++;
5975 min_key->offset = 0;
5976 } else {
5977 break;
5978 }
5979
5980 /*
5981 * We may process many leaves full of items for our inode, so
5982 * avoid monopolizing a cpu for too long by rescheduling while
5983 * not holding locks on any tree.
5984 */
5985 cond_resched();
5986 }
5987 if (ins_nr) {
5988 ret = copy_items(trans, inode, dst_path, src_path: path, start_slot: ins_start_slot,
5989 nr: ins_nr, inode_only, logged_isize, ctx);
5990 if (ret)
5991 return ret;
5992 }
5993
5994 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5995 /*
5996 * Release the path because otherwise we might attempt to double
5997 * lock the same leaf with btrfs_log_prealloc_extents() below.
5998 */
5999 btrfs_release_path(p: path);
6000 ret = btrfs_log_prealloc_extents(trans, inode, path: dst_path, ctx);
6001 }
6002
6003 return ret;
6004}
6005
6006static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6007 struct btrfs_root *log,
6008 struct btrfs_path *path,
6009 const struct btrfs_item_batch *batch,
6010 const struct btrfs_delayed_item *first_item)
6011{
6012 const struct btrfs_delayed_item *curr = first_item;
6013 int ret;
6014
6015 ret = btrfs_insert_empty_items(trans, root: log, path, batch);
6016 if (ret)
6017 return ret;
6018
6019 for (int i = 0; i < batch->nr; i++) {
6020 char *data_ptr;
6021
6022 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6023 write_extent_buffer(eb: path->nodes[0], src: &curr->data,
6024 start: (unsigned long)data_ptr, len: curr->data_len);
6025 curr = list_next_entry(curr, log_list);
6026 path->slots[0]++;
6027 }
6028
6029 btrfs_release_path(p: path);
6030
6031 return 0;
6032}
6033
6034static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6035 struct btrfs_inode *inode,
6036 struct btrfs_path *path,
6037 const struct list_head *delayed_ins_list,
6038 struct btrfs_log_ctx *ctx)
6039{
6040 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6041 const int max_batch_size = 195;
6042 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(info: trans->fs_info);
6043 const u64 ino = btrfs_ino(inode);
6044 struct btrfs_root *log = inode->root->log_root;
6045 struct btrfs_item_batch batch = {
6046 .nr = 0,
6047 .total_data_size = 0,
6048 };
6049 const struct btrfs_delayed_item *first = NULL;
6050 const struct btrfs_delayed_item *curr;
6051 char *ins_data;
6052 struct btrfs_key *ins_keys;
6053 u32 *ins_sizes;
6054 u64 curr_batch_size = 0;
6055 int batch_idx = 0;
6056 int ret;
6057
6058 /* We are adding dir index items to the log tree. */
6059 lockdep_assert_held(&inode->log_mutex);
6060
6061 /*
6062 * We collect delayed items before copying index keys from the subvolume
6063 * to the log tree. However just after we collected them, they may have
6064 * been flushed (all of them or just some of them), and therefore we
6065 * could have copied them from the subvolume tree to the log tree.
6066 * So find the first delayed item that was not yet logged (they are
6067 * sorted by index number).
6068 */
6069 list_for_each_entry(curr, delayed_ins_list, log_list) {
6070 if (curr->index > inode->last_dir_index_offset) {
6071 first = curr;
6072 break;
6073 }
6074 }
6075
6076 /* Empty list or all delayed items were already logged. */
6077 if (!first)
6078 return 0;
6079
6080 ins_data = kmalloc(size: max_batch_size * sizeof(u32) +
6081 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6082 if (!ins_data)
6083 return -ENOMEM;
6084 ins_sizes = (u32 *)ins_data;
6085 batch.data_sizes = ins_sizes;
6086 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6087 batch.keys = ins_keys;
6088
6089 curr = first;
6090 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6091 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6092
6093 if (curr_batch_size + curr_size > leaf_data_size ||
6094 batch.nr == max_batch_size) {
6095 ret = insert_delayed_items_batch(trans, log, path,
6096 batch: &batch, first_item: first);
6097 if (ret)
6098 goto out;
6099 batch_idx = 0;
6100 batch.nr = 0;
6101 batch.total_data_size = 0;
6102 curr_batch_size = 0;
6103 first = curr;
6104 }
6105
6106 ins_sizes[batch_idx] = curr->data_len;
6107 ins_keys[batch_idx].objectid = ino;
6108 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6109 ins_keys[batch_idx].offset = curr->index;
6110 curr_batch_size += curr_size;
6111 batch.total_data_size += curr->data_len;
6112 batch.nr++;
6113 batch_idx++;
6114 curr = list_next_entry(curr, log_list);
6115 }
6116
6117 ASSERT(batch.nr >= 1);
6118 ret = insert_delayed_items_batch(trans, log, path, batch: &batch, first_item: first);
6119
6120 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6121 log_list);
6122 inode->last_dir_index_offset = curr->index;
6123out:
6124 kfree(objp: ins_data);
6125
6126 return ret;
6127}
6128
6129static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6130 struct btrfs_inode *inode,
6131 struct btrfs_path *path,
6132 const struct list_head *delayed_del_list,
6133 struct btrfs_log_ctx *ctx)
6134{
6135 const u64 ino = btrfs_ino(inode);
6136 const struct btrfs_delayed_item *curr;
6137
6138 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6139 log_list);
6140
6141 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6142 u64 first_dir_index = curr->index;
6143 u64 last_dir_index;
6144 const struct btrfs_delayed_item *next;
6145 int ret;
6146
6147 /*
6148 * Find a range of consecutive dir index items to delete. Like
6149 * this we log a single dir range item spanning several contiguous
6150 * dir items instead of logging one range item per dir index item.
6151 */
6152 next = list_next_entry(curr, log_list);
6153 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6154 if (next->index != curr->index + 1)
6155 break;
6156 curr = next;
6157 next = list_next_entry(next, log_list);
6158 }
6159
6160 last_dir_index = curr->index;
6161 ASSERT(last_dir_index >= first_dir_index);
6162
6163 ret = insert_dir_log_key(trans, log: inode->root->log_root, path,
6164 dirid: ino, first_offset: first_dir_index, last_offset: last_dir_index);
6165 if (ret)
6166 return ret;
6167 curr = list_next_entry(curr, log_list);
6168 }
6169
6170 return 0;
6171}
6172
6173static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6174 struct btrfs_inode *inode,
6175 struct btrfs_path *path,
6176 struct btrfs_log_ctx *ctx,
6177 const struct list_head *delayed_del_list,
6178 const struct btrfs_delayed_item *first,
6179 const struct btrfs_delayed_item **last_ret)
6180{
6181 const struct btrfs_delayed_item *next;
6182 struct extent_buffer *leaf = path->nodes[0];
6183 const int last_slot = btrfs_header_nritems(eb: leaf) - 1;
6184 int slot = path->slots[0] + 1;
6185 const u64 ino = btrfs_ino(inode);
6186
6187 next = list_next_entry(first, log_list);
6188
6189 while (slot < last_slot &&
6190 !list_entry_is_head(next, delayed_del_list, log_list)) {
6191 struct btrfs_key key;
6192
6193 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
6194 if (key.objectid != ino ||
6195 key.type != BTRFS_DIR_INDEX_KEY ||
6196 key.offset != next->index)
6197 break;
6198
6199 slot++;
6200 *last_ret = next;
6201 next = list_next_entry(next, log_list);
6202 }
6203
6204 return btrfs_del_items(trans, root: inode->root->log_root, path,
6205 slot: path->slots[0], nr: slot - path->slots[0]);
6206}
6207
6208static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6209 struct btrfs_inode *inode,
6210 struct btrfs_path *path,
6211 const struct list_head *delayed_del_list,
6212 struct btrfs_log_ctx *ctx)
6213{
6214 struct btrfs_root *log = inode->root->log_root;
6215 const struct btrfs_delayed_item *curr;
6216 u64 last_range_start = 0;
6217 u64 last_range_end = 0;
6218 struct btrfs_key key;
6219
6220 key.objectid = btrfs_ino(inode);
6221 key.type = BTRFS_DIR_INDEX_KEY;
6222 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6223 log_list);
6224
6225 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6226 const struct btrfs_delayed_item *last = curr;
6227 u64 first_dir_index = curr->index;
6228 u64 last_dir_index;
6229 bool deleted_items = false;
6230 int ret;
6231
6232 key.offset = curr->index;
6233 ret = btrfs_search_slot(trans, root: log, key: &key, p: path, ins_len: -1, cow: 1);
6234 if (ret < 0) {
6235 return ret;
6236 } else if (ret == 0) {
6237 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6238 delayed_del_list, first: curr,
6239 last_ret: &last);
6240 if (ret)
6241 return ret;
6242 deleted_items = true;
6243 }
6244
6245 btrfs_release_path(p: path);
6246
6247 /*
6248 * If we deleted items from the leaf, it means we have a range
6249 * item logging their range, so no need to add one or update an
6250 * existing one. Otherwise we have to log a dir range item.
6251 */
6252 if (deleted_items)
6253 goto next_batch;
6254
6255 last_dir_index = last->index;
6256 ASSERT(last_dir_index >= first_dir_index);
6257 /*
6258 * If this range starts right after where the previous one ends,
6259 * then we want to reuse the previous range item and change its
6260 * end offset to the end of this range. This is just to minimize
6261 * leaf space usage, by avoiding adding a new range item.
6262 */
6263 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6264 first_dir_index = last_range_start;
6265
6266 ret = insert_dir_log_key(trans, log, path, dirid: key.objectid,
6267 first_offset: first_dir_index, last_offset: last_dir_index);
6268 if (ret)
6269 return ret;
6270
6271 last_range_start = first_dir_index;
6272 last_range_end = last_dir_index;
6273next_batch:
6274 curr = list_next_entry(last, log_list);
6275 }
6276
6277 return 0;
6278}
6279
6280static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6281 struct btrfs_inode *inode,
6282 struct btrfs_path *path,
6283 const struct list_head *delayed_del_list,
6284 struct btrfs_log_ctx *ctx)
6285{
6286 /*
6287 * We are deleting dir index items from the log tree or adding range
6288 * items to it.
6289 */
6290 lockdep_assert_held(&inode->log_mutex);
6291
6292 if (list_empty(head: delayed_del_list))
6293 return 0;
6294
6295 if (ctx->logged_before)
6296 return log_delayed_deletions_incremental(trans, inode, path,
6297 delayed_del_list, ctx);
6298
6299 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6300 ctx);
6301}
6302
6303/*
6304 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6305 * items instead of the subvolume tree.
6306 */
6307static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6308 struct btrfs_inode *inode,
6309 const struct list_head *delayed_ins_list,
6310 struct btrfs_log_ctx *ctx)
6311{
6312 const bool orig_log_new_dentries = ctx->log_new_dentries;
6313 struct btrfs_fs_info *fs_info = trans->fs_info;
6314 struct btrfs_delayed_item *item;
6315 int ret = 0;
6316
6317 /*
6318 * No need for the log mutex, plus to avoid potential deadlocks or
6319 * lockdep annotations due to nesting of delayed inode mutexes and log
6320 * mutexes.
6321 */
6322 lockdep_assert_not_held(&inode->log_mutex);
6323
6324 ASSERT(!ctx->logging_new_delayed_dentries);
6325 ctx->logging_new_delayed_dentries = true;
6326
6327 list_for_each_entry(item, delayed_ins_list, log_list) {
6328 struct btrfs_dir_item *dir_item;
6329 struct inode *di_inode;
6330 struct btrfs_key key;
6331 int log_mode = LOG_INODE_EXISTS;
6332
6333 dir_item = (struct btrfs_dir_item *)item->data;
6334 btrfs_disk_key_to_cpu(cpu_key: &key, disk_key: &dir_item->location);
6335
6336 if (key.type == BTRFS_ROOT_ITEM_KEY)
6337 continue;
6338
6339 di_inode = btrfs_iget(s: fs_info->sb, ino: key.objectid, root: inode->root);
6340 if (IS_ERR(ptr: di_inode)) {
6341 ret = PTR_ERR(ptr: di_inode);
6342 break;
6343 }
6344
6345 if (!need_log_inode(trans, inode: BTRFS_I(inode: di_inode))) {
6346 btrfs_add_delayed_iput(inode: BTRFS_I(inode: di_inode));
6347 continue;
6348 }
6349
6350 if (btrfs_stack_dir_ftype(item: dir_item) == BTRFS_FT_DIR)
6351 log_mode = LOG_INODE_ALL;
6352
6353 ctx->log_new_dentries = false;
6354 ret = btrfs_log_inode(trans, inode: BTRFS_I(inode: di_inode), inode_only: log_mode, ctx);
6355
6356 if (!ret && ctx->log_new_dentries)
6357 ret = log_new_dir_dentries(trans, start_inode: BTRFS_I(inode: di_inode), ctx);
6358
6359 btrfs_add_delayed_iput(inode: BTRFS_I(inode: di_inode));
6360
6361 if (ret)
6362 break;
6363 }
6364
6365 ctx->log_new_dentries = orig_log_new_dentries;
6366 ctx->logging_new_delayed_dentries = false;
6367
6368 return ret;
6369}
6370
6371/* log a single inode in the tree log.
6372 * At least one parent directory for this inode must exist in the tree
6373 * or be logged already.
6374 *
6375 * Any items from this inode changed by the current transaction are copied
6376 * to the log tree. An extra reference is taken on any extents in this
6377 * file, allowing us to avoid a whole pile of corner cases around logging
6378 * blocks that have been removed from the tree.
6379 *
6380 * See LOG_INODE_ALL and related defines for a description of what inode_only
6381 * does.
6382 *
6383 * This handles both files and directories.
6384 */
6385static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6386 struct btrfs_inode *inode,
6387 int inode_only,
6388 struct btrfs_log_ctx *ctx)
6389{
6390 struct btrfs_path *path;
6391 struct btrfs_path *dst_path;
6392 struct btrfs_key min_key;
6393 struct btrfs_key max_key;
6394 struct btrfs_root *log = inode->root->log_root;
6395 int ret;
6396 bool fast_search = false;
6397 u64 ino = btrfs_ino(inode);
6398 struct extent_map_tree *em_tree = &inode->extent_tree;
6399 u64 logged_isize = 0;
6400 bool need_log_inode_item = true;
6401 bool xattrs_logged = false;
6402 bool inode_item_dropped = true;
6403 bool full_dir_logging = false;
6404 LIST_HEAD(delayed_ins_list);
6405 LIST_HEAD(delayed_del_list);
6406
6407 path = btrfs_alloc_path();
6408 if (!path)
6409 return -ENOMEM;
6410 dst_path = btrfs_alloc_path();
6411 if (!dst_path) {
6412 btrfs_free_path(p: path);
6413 return -ENOMEM;
6414 }
6415
6416 min_key.objectid = ino;
6417 min_key.type = BTRFS_INODE_ITEM_KEY;
6418 min_key.offset = 0;
6419
6420 max_key.objectid = ino;
6421
6422
6423 /* today the code can only do partial logging of directories */
6424 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6425 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6426 &inode->runtime_flags) &&
6427 inode_only >= LOG_INODE_EXISTS))
6428 max_key.type = BTRFS_XATTR_ITEM_KEY;
6429 else
6430 max_key.type = (u8)-1;
6431 max_key.offset = (u64)-1;
6432
6433 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6434 full_dir_logging = true;
6435
6436 /*
6437 * If we are logging a directory while we are logging dentries of the
6438 * delayed items of some other inode, then we need to flush the delayed
6439 * items of this directory and not log the delayed items directly. This
6440 * is to prevent more than one level of recursion into btrfs_log_inode()
6441 * by having something like this:
6442 *
6443 * $ mkdir -p a/b/c/d/e/f/g/h/...
6444 * $ xfs_io -c "fsync" a
6445 *
6446 * Where all directories in the path did not exist before and are
6447 * created in the current transaction.
6448 * So in such a case we directly log the delayed items of the main
6449 * directory ("a") without flushing them first, while for each of its
6450 * subdirectories we flush their delayed items before logging them.
6451 * This prevents a potential unbounded recursion like this:
6452 *
6453 * btrfs_log_inode()
6454 * log_new_delayed_dentries()
6455 * btrfs_log_inode()
6456 * log_new_delayed_dentries()
6457 * btrfs_log_inode()
6458 * log_new_delayed_dentries()
6459 * (...)
6460 *
6461 * We have thresholds for the maximum number of delayed items to have in
6462 * memory, and once they are hit, the items are flushed asynchronously.
6463 * However the limit is quite high, so lets prevent deep levels of
6464 * recursion to happen by limiting the maximum depth to be 1.
6465 */
6466 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6467 ret = btrfs_commit_inode_delayed_items(trans, inode);
6468 if (ret)
6469 goto out;
6470 }
6471
6472 mutex_lock(&inode->log_mutex);
6473
6474 /*
6475 * For symlinks, we must always log their content, which is stored in an
6476 * inline extent, otherwise we could end up with an empty symlink after
6477 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6478 * one attempts to create an empty symlink).
6479 * We don't need to worry about flushing delalloc, because when we create
6480 * the inline extent when the symlink is created (we never have delalloc
6481 * for symlinks).
6482 */
6483 if (S_ISLNK(inode->vfs_inode.i_mode))
6484 inode_only = LOG_INODE_ALL;
6485
6486 /*
6487 * Before logging the inode item, cache the value returned by
6488 * inode_logged(), because after that we have the need to figure out if
6489 * the inode was previously logged in this transaction.
6490 */
6491 ret = inode_logged(trans, inode, path_in: path);
6492 if (ret < 0)
6493 goto out_unlock;
6494 ctx->logged_before = (ret == 1);
6495 ret = 0;
6496
6497 /*
6498 * This is for cases where logging a directory could result in losing a
6499 * a file after replaying the log. For example, if we move a file from a
6500 * directory A to a directory B, then fsync directory A, we have no way
6501 * to known the file was moved from A to B, so logging just A would
6502 * result in losing the file after a log replay.
6503 */
6504 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6505 ret = BTRFS_LOG_FORCE_COMMIT;
6506 goto out_unlock;
6507 }
6508
6509 /*
6510 * a brute force approach to making sure we get the most uptodate
6511 * copies of everything.
6512 */
6513 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6514 clear_bit(nr: BTRFS_INODE_COPY_EVERYTHING, addr: &inode->runtime_flags);
6515 if (ctx->logged_before)
6516 ret = drop_inode_items(trans, log, path, inode,
6517 BTRFS_XATTR_ITEM_KEY);
6518 } else {
6519 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6520 /*
6521 * Make sure the new inode item we write to the log has
6522 * the same isize as the current one (if it exists).
6523 * This is necessary to prevent data loss after log
6524 * replay, and also to prevent doing a wrong expanding
6525 * truncate - for e.g. create file, write 4K into offset
6526 * 0, fsync, write 4K into offset 4096, add hard link,
6527 * fsync some other file (to sync log), power fail - if
6528 * we use the inode's current i_size, after log replay
6529 * we get a 8Kb file, with the last 4Kb extent as a hole
6530 * (zeroes), as if an expanding truncate happened,
6531 * instead of getting a file of 4Kb only.
6532 */
6533 ret = logged_inode_size(log, inode, path, size_ret: &logged_isize);
6534 if (ret)
6535 goto out_unlock;
6536 }
6537 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6538 &inode->runtime_flags)) {
6539 if (inode_only == LOG_INODE_EXISTS) {
6540 max_key.type = BTRFS_XATTR_ITEM_KEY;
6541 if (ctx->logged_before)
6542 ret = drop_inode_items(trans, log, path,
6543 inode, max_key_type: max_key.type);
6544 } else {
6545 clear_bit(nr: BTRFS_INODE_NEEDS_FULL_SYNC,
6546 addr: &inode->runtime_flags);
6547 clear_bit(nr: BTRFS_INODE_COPY_EVERYTHING,
6548 addr: &inode->runtime_flags);
6549 if (ctx->logged_before)
6550 ret = truncate_inode_items(trans, log_root: log,
6551 inode, new_size: 0, min_type: 0);
6552 }
6553 } else if (test_and_clear_bit(nr: BTRFS_INODE_COPY_EVERYTHING,
6554 addr: &inode->runtime_flags) ||
6555 inode_only == LOG_INODE_EXISTS) {
6556 if (inode_only == LOG_INODE_ALL)
6557 fast_search = true;
6558 max_key.type = BTRFS_XATTR_ITEM_KEY;
6559 if (ctx->logged_before)
6560 ret = drop_inode_items(trans, log, path, inode,
6561 max_key_type: max_key.type);
6562 } else {
6563 if (inode_only == LOG_INODE_ALL)
6564 fast_search = true;
6565 inode_item_dropped = false;
6566 goto log_extents;
6567 }
6568
6569 }
6570 if (ret)
6571 goto out_unlock;
6572
6573 /*
6574 * If we are logging a directory in full mode, collect the delayed items
6575 * before iterating the subvolume tree, so that we don't miss any new
6576 * dir index items in case they get flushed while or right after we are
6577 * iterating the subvolume tree.
6578 */
6579 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6580 btrfs_log_get_delayed_items(inode, ins_list: &delayed_ins_list,
6581 del_list: &delayed_del_list);
6582
6583 ret = copy_inode_items_to_log(trans, inode, min_key: &min_key, max_key: &max_key,
6584 path, dst_path, logged_isize,
6585 inode_only, ctx,
6586 need_log_inode_item: &need_log_inode_item);
6587 if (ret)
6588 goto out_unlock;
6589
6590 btrfs_release_path(p: path);
6591 btrfs_release_path(p: dst_path);
6592 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6593 if (ret)
6594 goto out_unlock;
6595 xattrs_logged = true;
6596 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6597 btrfs_release_path(p: path);
6598 btrfs_release_path(p: dst_path);
6599 ret = btrfs_log_holes(trans, inode, path);
6600 if (ret)
6601 goto out_unlock;
6602 }
6603log_extents:
6604 btrfs_release_path(p: path);
6605 btrfs_release_path(p: dst_path);
6606 if (need_log_inode_item) {
6607 ret = log_inode_item(trans, log, path: dst_path, inode, inode_item_dropped);
6608 if (ret)
6609 goto out_unlock;
6610 /*
6611 * If we are doing a fast fsync and the inode was logged before
6612 * in this transaction, we don't need to log the xattrs because
6613 * they were logged before. If xattrs were added, changed or
6614 * deleted since the last time we logged the inode, then we have
6615 * already logged them because the inode had the runtime flag
6616 * BTRFS_INODE_COPY_EVERYTHING set.
6617 */
6618 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6619 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6620 if (ret)
6621 goto out_unlock;
6622 btrfs_release_path(p: path);
6623 }
6624 }
6625 if (fast_search) {
6626 ret = btrfs_log_changed_extents(trans, inode, path: dst_path, ctx);
6627 if (ret)
6628 goto out_unlock;
6629 } else if (inode_only == LOG_INODE_ALL) {
6630 struct extent_map *em, *n;
6631
6632 write_lock(&em_tree->lock);
6633 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6634 list_del_init(entry: &em->list);
6635 write_unlock(&em_tree->lock);
6636 }
6637
6638 if (full_dir_logging) {
6639 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6640 if (ret)
6641 goto out_unlock;
6642 ret = log_delayed_insertion_items(trans, inode, path,
6643 delayed_ins_list: &delayed_ins_list, ctx);
6644 if (ret)
6645 goto out_unlock;
6646 ret = log_delayed_deletion_items(trans, inode, path,
6647 delayed_del_list: &delayed_del_list, ctx);
6648 if (ret)
6649 goto out_unlock;
6650 }
6651
6652 spin_lock(lock: &inode->lock);
6653 inode->logged_trans = trans->transid;
6654 /*
6655 * Don't update last_log_commit if we logged that an inode exists.
6656 * We do this for three reasons:
6657 *
6658 * 1) We might have had buffered writes to this inode that were
6659 * flushed and had their ordered extents completed in this
6660 * transaction, but we did not previously log the inode with
6661 * LOG_INODE_ALL. Later the inode was evicted and after that
6662 * it was loaded again and this LOG_INODE_EXISTS log operation
6663 * happened. We must make sure that if an explicit fsync against
6664 * the inode is performed later, it logs the new extents, an
6665 * updated inode item, etc, and syncs the log. The same logic
6666 * applies to direct IO writes instead of buffered writes.
6667 *
6668 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6669 * is logged with an i_size of 0 or whatever value was logged
6670 * before. If later the i_size of the inode is increased by a
6671 * truncate operation, the log is synced through an fsync of
6672 * some other inode and then finally an explicit fsync against
6673 * this inode is made, we must make sure this fsync logs the
6674 * inode with the new i_size, the hole between old i_size and
6675 * the new i_size, and syncs the log.
6676 *
6677 * 3) If we are logging that an ancestor inode exists as part of
6678 * logging a new name from a link or rename operation, don't update
6679 * its last_log_commit - otherwise if an explicit fsync is made
6680 * against an ancestor, the fsync considers the inode in the log
6681 * and doesn't sync the log, resulting in the ancestor missing after
6682 * a power failure unless the log was synced as part of an fsync
6683 * against any other unrelated inode.
6684 */
6685 if (inode_only != LOG_INODE_EXISTS)
6686 inode->last_log_commit = inode->last_sub_trans;
6687 spin_unlock(lock: &inode->lock);
6688
6689 /*
6690 * Reset the last_reflink_trans so that the next fsync does not need to
6691 * go through the slower path when logging extents and their checksums.
6692 */
6693 if (inode_only == LOG_INODE_ALL)
6694 inode->last_reflink_trans = 0;
6695
6696out_unlock:
6697 mutex_unlock(lock: &inode->log_mutex);
6698out:
6699 btrfs_free_path(p: path);
6700 btrfs_free_path(p: dst_path);
6701
6702 if (ret)
6703 free_conflicting_inodes(ctx);
6704 else
6705 ret = log_conflicting_inodes(trans, root: inode->root, ctx);
6706
6707 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6708 if (!ret)
6709 ret = log_new_delayed_dentries(trans, inode,
6710 delayed_ins_list: &delayed_ins_list, ctx);
6711
6712 btrfs_log_put_delayed_items(inode, ins_list: &delayed_ins_list,
6713 del_list: &delayed_del_list);
6714 }
6715
6716 return ret;
6717}
6718
6719static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6720 struct btrfs_inode *inode,
6721 struct btrfs_log_ctx *ctx)
6722{
6723 struct btrfs_fs_info *fs_info = trans->fs_info;
6724 int ret;
6725 struct btrfs_path *path;
6726 struct btrfs_key key;
6727 struct btrfs_root *root = inode->root;
6728 const u64 ino = btrfs_ino(inode);
6729
6730 path = btrfs_alloc_path();
6731 if (!path)
6732 return -ENOMEM;
6733 path->skip_locking = 1;
6734 path->search_commit_root = 1;
6735
6736 key.objectid = ino;
6737 key.type = BTRFS_INODE_REF_KEY;
6738 key.offset = 0;
6739 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
6740 if (ret < 0)
6741 goto out;
6742
6743 while (true) {
6744 struct extent_buffer *leaf = path->nodes[0];
6745 int slot = path->slots[0];
6746 u32 cur_offset = 0;
6747 u32 item_size;
6748 unsigned long ptr;
6749
6750 if (slot >= btrfs_header_nritems(eb: leaf)) {
6751 ret = btrfs_next_leaf(root, path);
6752 if (ret < 0)
6753 goto out;
6754 else if (ret > 0)
6755 break;
6756 continue;
6757 }
6758
6759 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
6760 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6761 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6762 break;
6763
6764 item_size = btrfs_item_size(eb: leaf, slot);
6765 ptr = btrfs_item_ptr_offset(leaf, slot);
6766 while (cur_offset < item_size) {
6767 struct btrfs_key inode_key;
6768 struct inode *dir_inode;
6769
6770 inode_key.type = BTRFS_INODE_ITEM_KEY;
6771 inode_key.offset = 0;
6772
6773 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6774 struct btrfs_inode_extref *extref;
6775
6776 extref = (struct btrfs_inode_extref *)
6777 (ptr + cur_offset);
6778 inode_key.objectid = btrfs_inode_extref_parent(
6779 eb: leaf, s: extref);
6780 cur_offset += sizeof(*extref);
6781 cur_offset += btrfs_inode_extref_name_len(eb: leaf,
6782 s: extref);
6783 } else {
6784 inode_key.objectid = key.offset;
6785 cur_offset = item_size;
6786 }
6787
6788 dir_inode = btrfs_iget(s: fs_info->sb, ino: inode_key.objectid,
6789 root);
6790 /*
6791 * If the parent inode was deleted, return an error to
6792 * fallback to a transaction commit. This is to prevent
6793 * getting an inode that was moved from one parent A to
6794 * a parent B, got its former parent A deleted and then
6795 * it got fsync'ed, from existing at both parents after
6796 * a log replay (and the old parent still existing).
6797 * Example:
6798 *
6799 * mkdir /mnt/A
6800 * mkdir /mnt/B
6801 * touch /mnt/B/bar
6802 * sync
6803 * mv /mnt/B/bar /mnt/A/bar
6804 * mv -T /mnt/A /mnt/B
6805 * fsync /mnt/B/bar
6806 * <power fail>
6807 *
6808 * If we ignore the old parent B which got deleted,
6809 * after a log replay we would have file bar linked
6810 * at both parents and the old parent B would still
6811 * exist.
6812 */
6813 if (IS_ERR(ptr: dir_inode)) {
6814 ret = PTR_ERR(ptr: dir_inode);
6815 goto out;
6816 }
6817
6818 if (!need_log_inode(trans, inode: BTRFS_I(inode: dir_inode))) {
6819 btrfs_add_delayed_iput(inode: BTRFS_I(inode: dir_inode));
6820 continue;
6821 }
6822
6823 ctx->log_new_dentries = false;
6824 ret = btrfs_log_inode(trans, inode: BTRFS_I(inode: dir_inode),
6825 inode_only: LOG_INODE_ALL, ctx);
6826 if (!ret && ctx->log_new_dentries)
6827 ret = log_new_dir_dentries(trans,
6828 start_inode: BTRFS_I(inode: dir_inode), ctx);
6829 btrfs_add_delayed_iput(inode: BTRFS_I(inode: dir_inode));
6830 if (ret)
6831 goto out;
6832 }
6833 path->slots[0]++;
6834 }
6835 ret = 0;
6836out:
6837 btrfs_free_path(p: path);
6838 return ret;
6839}
6840
6841static int log_new_ancestors(struct btrfs_trans_handle *trans,
6842 struct btrfs_root *root,
6843 struct btrfs_path *path,
6844 struct btrfs_log_ctx *ctx)
6845{
6846 struct btrfs_key found_key;
6847
6848 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &found_key, nr: path->slots[0]);
6849
6850 while (true) {
6851 struct btrfs_fs_info *fs_info = root->fs_info;
6852 struct extent_buffer *leaf;
6853 int slot;
6854 struct btrfs_key search_key;
6855 struct inode *inode;
6856 u64 ino;
6857 int ret = 0;
6858
6859 btrfs_release_path(p: path);
6860
6861 ino = found_key.offset;
6862
6863 search_key.objectid = found_key.offset;
6864 search_key.type = BTRFS_INODE_ITEM_KEY;
6865 search_key.offset = 0;
6866 inode = btrfs_iget(s: fs_info->sb, ino, root);
6867 if (IS_ERR(ptr: inode))
6868 return PTR_ERR(ptr: inode);
6869
6870 if (BTRFS_I(inode)->generation >= trans->transid &&
6871 need_log_inode(trans, inode: BTRFS_I(inode)))
6872 ret = btrfs_log_inode(trans, inode: BTRFS_I(inode),
6873 inode_only: LOG_INODE_EXISTS, ctx);
6874 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
6875 if (ret)
6876 return ret;
6877
6878 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6879 break;
6880
6881 search_key.type = BTRFS_INODE_REF_KEY;
6882 ret = btrfs_search_slot(NULL, root, key: &search_key, p: path, ins_len: 0, cow: 0);
6883 if (ret < 0)
6884 return ret;
6885
6886 leaf = path->nodes[0];
6887 slot = path->slots[0];
6888 if (slot >= btrfs_header_nritems(eb: leaf)) {
6889 ret = btrfs_next_leaf(root, path);
6890 if (ret < 0)
6891 return ret;
6892 else if (ret > 0)
6893 return -ENOENT;
6894 leaf = path->nodes[0];
6895 slot = path->slots[0];
6896 }
6897
6898 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: slot);
6899 if (found_key.objectid != search_key.objectid ||
6900 found_key.type != BTRFS_INODE_REF_KEY)
6901 return -ENOENT;
6902 }
6903 return 0;
6904}
6905
6906static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6907 struct btrfs_inode *inode,
6908 struct dentry *parent,
6909 struct btrfs_log_ctx *ctx)
6910{
6911 struct btrfs_root *root = inode->root;
6912 struct dentry *old_parent = NULL;
6913 struct super_block *sb = inode->vfs_inode.i_sb;
6914 int ret = 0;
6915
6916 while (true) {
6917 if (!parent || d_really_is_negative(dentry: parent) ||
6918 sb != parent->d_sb)
6919 break;
6920
6921 inode = BTRFS_I(inode: d_inode(dentry: parent));
6922 if (root != inode->root)
6923 break;
6924
6925 if (inode->generation >= trans->transid &&
6926 need_log_inode(trans, inode)) {
6927 ret = btrfs_log_inode(trans, inode,
6928 inode_only: LOG_INODE_EXISTS, ctx);
6929 if (ret)
6930 break;
6931 }
6932 if (IS_ROOT(parent))
6933 break;
6934
6935 parent = dget_parent(dentry: parent);
6936 dput(old_parent);
6937 old_parent = parent;
6938 }
6939 dput(old_parent);
6940
6941 return ret;
6942}
6943
6944static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6945 struct btrfs_inode *inode,
6946 struct dentry *parent,
6947 struct btrfs_log_ctx *ctx)
6948{
6949 struct btrfs_root *root = inode->root;
6950 const u64 ino = btrfs_ino(inode);
6951 struct btrfs_path *path;
6952 struct btrfs_key search_key;
6953 int ret;
6954
6955 /*
6956 * For a single hard link case, go through a fast path that does not
6957 * need to iterate the fs/subvolume tree.
6958 */
6959 if (inode->vfs_inode.i_nlink < 2)
6960 return log_new_ancestors_fast(trans, inode, parent, ctx);
6961
6962 path = btrfs_alloc_path();
6963 if (!path)
6964 return -ENOMEM;
6965
6966 search_key.objectid = ino;
6967 search_key.type = BTRFS_INODE_REF_KEY;
6968 search_key.offset = 0;
6969again:
6970 ret = btrfs_search_slot(NULL, root, key: &search_key, p: path, ins_len: 0, cow: 0);
6971 if (ret < 0)
6972 goto out;
6973 if (ret == 0)
6974 path->slots[0]++;
6975
6976 while (true) {
6977 struct extent_buffer *leaf = path->nodes[0];
6978 int slot = path->slots[0];
6979 struct btrfs_key found_key;
6980
6981 if (slot >= btrfs_header_nritems(eb: leaf)) {
6982 ret = btrfs_next_leaf(root, path);
6983 if (ret < 0)
6984 goto out;
6985 else if (ret > 0)
6986 break;
6987 continue;
6988 }
6989
6990 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: slot);
6991 if (found_key.objectid != ino ||
6992 found_key.type > BTRFS_INODE_EXTREF_KEY)
6993 break;
6994
6995 /*
6996 * Don't deal with extended references because they are rare
6997 * cases and too complex to deal with (we would need to keep
6998 * track of which subitem we are processing for each item in
6999 * this loop, etc). So just return some error to fallback to
7000 * a transaction commit.
7001 */
7002 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7003 ret = -EMLINK;
7004 goto out;
7005 }
7006
7007 /*
7008 * Logging ancestors needs to do more searches on the fs/subvol
7009 * tree, so it releases the path as needed to avoid deadlocks.
7010 * Keep track of the last inode ref key and resume from that key
7011 * after logging all new ancestors for the current hard link.
7012 */
7013 memcpy(&search_key, &found_key, sizeof(search_key));
7014
7015 ret = log_new_ancestors(trans, root, path, ctx);
7016 if (ret)
7017 goto out;
7018 btrfs_release_path(p: path);
7019 goto again;
7020 }
7021 ret = 0;
7022out:
7023 btrfs_free_path(p: path);
7024 return ret;
7025}
7026
7027/*
7028 * helper function around btrfs_log_inode to make sure newly created
7029 * parent directories also end up in the log. A minimal inode and backref
7030 * only logging is done of any parent directories that are older than
7031 * the last committed transaction
7032 */
7033static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7034 struct btrfs_inode *inode,
7035 struct dentry *parent,
7036 int inode_only,
7037 struct btrfs_log_ctx *ctx)
7038{
7039 struct btrfs_root *root = inode->root;
7040 struct btrfs_fs_info *fs_info = root->fs_info;
7041 int ret = 0;
7042 bool log_dentries = false;
7043
7044 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7045 ret = BTRFS_LOG_FORCE_COMMIT;
7046 goto end_no_trans;
7047 }
7048
7049 if (btrfs_root_refs(s: &root->root_item) == 0) {
7050 ret = BTRFS_LOG_FORCE_COMMIT;
7051 goto end_no_trans;
7052 }
7053
7054 /*
7055 * Skip already logged inodes or inodes corresponding to tmpfiles
7056 * (since logging them is pointless, a link count of 0 means they
7057 * will never be accessible).
7058 */
7059 if ((btrfs_inode_in_log(inode, generation: trans->transid) &&
7060 list_empty(head: &ctx->ordered_extents)) ||
7061 inode->vfs_inode.i_nlink == 0) {
7062 ret = BTRFS_NO_LOG_SYNC;
7063 goto end_no_trans;
7064 }
7065
7066 ret = start_log_trans(trans, root, ctx);
7067 if (ret)
7068 goto end_no_trans;
7069
7070 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7071 if (ret)
7072 goto end_trans;
7073
7074 /*
7075 * for regular files, if its inode is already on disk, we don't
7076 * have to worry about the parents at all. This is because
7077 * we can use the last_unlink_trans field to record renames
7078 * and other fun in this file.
7079 */
7080 if (S_ISREG(inode->vfs_inode.i_mode) &&
7081 inode->generation < trans->transid &&
7082 inode->last_unlink_trans < trans->transid) {
7083 ret = 0;
7084 goto end_trans;
7085 }
7086
7087 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7088 log_dentries = true;
7089
7090 /*
7091 * On unlink we must make sure all our current and old parent directory
7092 * inodes are fully logged. This is to prevent leaving dangling
7093 * directory index entries in directories that were our parents but are
7094 * not anymore. Not doing this results in old parent directory being
7095 * impossible to delete after log replay (rmdir will always fail with
7096 * error -ENOTEMPTY).
7097 *
7098 * Example 1:
7099 *
7100 * mkdir testdir
7101 * touch testdir/foo
7102 * ln testdir/foo testdir/bar
7103 * sync
7104 * unlink testdir/bar
7105 * xfs_io -c fsync testdir/foo
7106 * <power failure>
7107 * mount fs, triggers log replay
7108 *
7109 * If we don't log the parent directory (testdir), after log replay the
7110 * directory still has an entry pointing to the file inode using the bar
7111 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7112 * the file inode has a link count of 1.
7113 *
7114 * Example 2:
7115 *
7116 * mkdir testdir
7117 * touch foo
7118 * ln foo testdir/foo2
7119 * ln foo testdir/foo3
7120 * sync
7121 * unlink testdir/foo3
7122 * xfs_io -c fsync foo
7123 * <power failure>
7124 * mount fs, triggers log replay
7125 *
7126 * Similar as the first example, after log replay the parent directory
7127 * testdir still has an entry pointing to the inode file with name foo3
7128 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7129 * and has a link count of 2.
7130 */
7131 if (inode->last_unlink_trans >= trans->transid) {
7132 ret = btrfs_log_all_parents(trans, inode, ctx);
7133 if (ret)
7134 goto end_trans;
7135 }
7136
7137 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7138 if (ret)
7139 goto end_trans;
7140
7141 if (log_dentries)
7142 ret = log_new_dir_dentries(trans, start_inode: inode, ctx);
7143 else
7144 ret = 0;
7145end_trans:
7146 if (ret < 0) {
7147 btrfs_set_log_full_commit(trans);
7148 ret = BTRFS_LOG_FORCE_COMMIT;
7149 }
7150
7151 if (ret)
7152 btrfs_remove_log_ctx(root, ctx);
7153 btrfs_end_log_trans(root);
7154end_no_trans:
7155 return ret;
7156}
7157
7158/*
7159 * it is not safe to log dentry if the chunk root has added new
7160 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7161 * If this returns 1, you must commit the transaction to safely get your
7162 * data on disk.
7163 */
7164int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7165 struct dentry *dentry,
7166 struct btrfs_log_ctx *ctx)
7167{
7168 struct dentry *parent = dget_parent(dentry);
7169 int ret;
7170
7171 ret = btrfs_log_inode_parent(trans, inode: BTRFS_I(inode: d_inode(dentry)), parent,
7172 inode_only: LOG_INODE_ALL, ctx);
7173 dput(parent);
7174
7175 return ret;
7176}
7177
7178/*
7179 * should be called during mount to recover any replay any log trees
7180 * from the FS
7181 */
7182int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7183{
7184 int ret;
7185 struct btrfs_path *path;
7186 struct btrfs_trans_handle *trans;
7187 struct btrfs_key key;
7188 struct btrfs_key found_key;
7189 struct btrfs_root *log;
7190 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7191 struct walk_control wc = {
7192 .process_func = process_one_buffer,
7193 .stage = LOG_WALK_PIN_ONLY,
7194 };
7195
7196 path = btrfs_alloc_path();
7197 if (!path)
7198 return -ENOMEM;
7199
7200 set_bit(nr: BTRFS_FS_LOG_RECOVERING, addr: &fs_info->flags);
7201
7202 trans = btrfs_start_transaction(root: fs_info->tree_root, num_items: 0);
7203 if (IS_ERR(ptr: trans)) {
7204 ret = PTR_ERR(ptr: trans);
7205 goto error;
7206 }
7207
7208 wc.trans = trans;
7209 wc.pin = 1;
7210
7211 ret = walk_log_tree(trans, log: log_root_tree, wc: &wc);
7212 if (ret) {
7213 btrfs_abort_transaction(trans, ret);
7214 goto error;
7215 }
7216
7217again:
7218 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7219 key.offset = (u64)-1;
7220 key.type = BTRFS_ROOT_ITEM_KEY;
7221
7222 while (1) {
7223 ret = btrfs_search_slot(NULL, root: log_root_tree, key: &key, p: path, ins_len: 0, cow: 0);
7224
7225 if (ret < 0) {
7226 btrfs_abort_transaction(trans, ret);
7227 goto error;
7228 }
7229 if (ret > 0) {
7230 if (path->slots[0] == 0)
7231 break;
7232 path->slots[0]--;
7233 }
7234 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &found_key,
7235 nr: path->slots[0]);
7236 btrfs_release_path(p: path);
7237 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7238 break;
7239
7240 log = btrfs_read_tree_root(tree_root: log_root_tree, key: &found_key);
7241 if (IS_ERR(ptr: log)) {
7242 ret = PTR_ERR(ptr: log);
7243 btrfs_abort_transaction(trans, ret);
7244 goto error;
7245 }
7246
7247 wc.replay_dest = btrfs_get_fs_root(fs_info, objectid: found_key.offset,
7248 check_ref: true);
7249 if (IS_ERR(ptr: wc.replay_dest)) {
7250 ret = PTR_ERR(ptr: wc.replay_dest);
7251
7252 /*
7253 * We didn't find the subvol, likely because it was
7254 * deleted. This is ok, simply skip this log and go to
7255 * the next one.
7256 *
7257 * We need to exclude the root because we can't have
7258 * other log replays overwriting this log as we'll read
7259 * it back in a few more times. This will keep our
7260 * block from being modified, and we'll just bail for
7261 * each subsequent pass.
7262 */
7263 if (ret == -ENOENT)
7264 ret = btrfs_pin_extent_for_log_replay(trans, eb: log->node);
7265 btrfs_put_root(root: log);
7266
7267 if (!ret)
7268 goto next;
7269 btrfs_abort_transaction(trans, ret);
7270 goto error;
7271 }
7272
7273 wc.replay_dest->log_root = log;
7274 ret = btrfs_record_root_in_trans(trans, root: wc.replay_dest);
7275 if (ret)
7276 /* The loop needs to continue due to the root refs */
7277 btrfs_abort_transaction(trans, ret);
7278 else
7279 ret = walk_log_tree(trans, log, wc: &wc);
7280
7281 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7282 ret = fixup_inode_link_counts(trans, root: wc.replay_dest,
7283 path);
7284 if (ret)
7285 btrfs_abort_transaction(trans, ret);
7286 }
7287
7288 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7289 struct btrfs_root *root = wc.replay_dest;
7290
7291 btrfs_release_path(p: path);
7292
7293 /*
7294 * We have just replayed everything, and the highest
7295 * objectid of fs roots probably has changed in case
7296 * some inode_item's got replayed.
7297 *
7298 * root->objectid_mutex is not acquired as log replay
7299 * could only happen during mount.
7300 */
7301 ret = btrfs_init_root_free_objectid(root);
7302 if (ret)
7303 btrfs_abort_transaction(trans, ret);
7304 }
7305
7306 wc.replay_dest->log_root = NULL;
7307 btrfs_put_root(root: wc.replay_dest);
7308 btrfs_put_root(root: log);
7309
7310 if (ret)
7311 goto error;
7312next:
7313 if (found_key.offset == 0)
7314 break;
7315 key.offset = found_key.offset - 1;
7316 }
7317 btrfs_release_path(p: path);
7318
7319 /* step one is to pin it all, step two is to replay just inodes */
7320 if (wc.pin) {
7321 wc.pin = 0;
7322 wc.process_func = replay_one_buffer;
7323 wc.stage = LOG_WALK_REPLAY_INODES;
7324 goto again;
7325 }
7326 /* step three is to replay everything */
7327 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7328 wc.stage++;
7329 goto again;
7330 }
7331
7332 btrfs_free_path(p: path);
7333
7334 /* step 4: commit the transaction, which also unpins the blocks */
7335 ret = btrfs_commit_transaction(trans);
7336 if (ret)
7337 return ret;
7338
7339 log_root_tree->log_root = NULL;
7340 clear_bit(nr: BTRFS_FS_LOG_RECOVERING, addr: &fs_info->flags);
7341 btrfs_put_root(root: log_root_tree);
7342
7343 return 0;
7344error:
7345 if (wc.trans)
7346 btrfs_end_transaction(trans: wc.trans);
7347 clear_bit(nr: BTRFS_FS_LOG_RECOVERING, addr: &fs_info->flags);
7348 btrfs_free_path(p: path);
7349 return ret;
7350}
7351
7352/*
7353 * there are some corner cases where we want to force a full
7354 * commit instead of allowing a directory to be logged.
7355 *
7356 * They revolve around files there were unlinked from the directory, and
7357 * this function updates the parent directory so that a full commit is
7358 * properly done if it is fsync'd later after the unlinks are done.
7359 *
7360 * Must be called before the unlink operations (updates to the subvolume tree,
7361 * inodes, etc) are done.
7362 */
7363void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7364 struct btrfs_inode *dir, struct btrfs_inode *inode,
7365 bool for_rename)
7366{
7367 /*
7368 * when we're logging a file, if it hasn't been renamed
7369 * or unlinked, and its inode is fully committed on disk,
7370 * we don't have to worry about walking up the directory chain
7371 * to log its parents.
7372 *
7373 * So, we use the last_unlink_trans field to put this transid
7374 * into the file. When the file is logged we check it and
7375 * don't log the parents if the file is fully on disk.
7376 */
7377 mutex_lock(&inode->log_mutex);
7378 inode->last_unlink_trans = trans->transid;
7379 mutex_unlock(lock: &inode->log_mutex);
7380
7381 if (!for_rename)
7382 return;
7383
7384 /*
7385 * If this directory was already logged, any new names will be logged
7386 * with btrfs_log_new_name() and old names will be deleted from the log
7387 * tree with btrfs_del_dir_entries_in_log() or with
7388 * btrfs_del_inode_ref_in_log().
7389 */
7390 if (inode_logged(trans, inode: dir, NULL) == 1)
7391 return;
7392
7393 /*
7394 * If the inode we're about to unlink was logged before, the log will be
7395 * properly updated with the new name with btrfs_log_new_name() and the
7396 * old name removed with btrfs_del_dir_entries_in_log() or with
7397 * btrfs_del_inode_ref_in_log().
7398 */
7399 if (inode_logged(trans, inode, NULL) == 1)
7400 return;
7401
7402 /*
7403 * when renaming files across directories, if the directory
7404 * there we're unlinking from gets fsync'd later on, there's
7405 * no way to find the destination directory later and fsync it
7406 * properly. So, we have to be conservative and force commits
7407 * so the new name gets discovered.
7408 */
7409 mutex_lock(&dir->log_mutex);
7410 dir->last_unlink_trans = trans->transid;
7411 mutex_unlock(lock: &dir->log_mutex);
7412}
7413
7414/*
7415 * Make sure that if someone attempts to fsync the parent directory of a deleted
7416 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7417 * that after replaying the log tree of the parent directory's root we will not
7418 * see the snapshot anymore and at log replay time we will not see any log tree
7419 * corresponding to the deleted snapshot's root, which could lead to replaying
7420 * it after replaying the log tree of the parent directory (which would replay
7421 * the snapshot delete operation).
7422 *
7423 * Must be called before the actual snapshot destroy operation (updates to the
7424 * parent root and tree of tree roots trees, etc) are done.
7425 */
7426void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7427 struct btrfs_inode *dir)
7428{
7429 mutex_lock(&dir->log_mutex);
7430 dir->last_unlink_trans = trans->transid;
7431 mutex_unlock(lock: &dir->log_mutex);
7432}
7433
7434/*
7435 * Update the log after adding a new name for an inode.
7436 *
7437 * @trans: Transaction handle.
7438 * @old_dentry: The dentry associated with the old name and the old
7439 * parent directory.
7440 * @old_dir: The inode of the previous parent directory for the case
7441 * of a rename. For a link operation, it must be NULL.
7442 * @old_dir_index: The index number associated with the old name, meaningful
7443 * only for rename operations (when @old_dir is not NULL).
7444 * Ignored for link operations.
7445 * @parent: The dentry associated with the directory under which the
7446 * new name is located.
7447 *
7448 * Call this after adding a new name for an inode, as a result of a link or
7449 * rename operation, and it will properly update the log to reflect the new name.
7450 */
7451void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7452 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7453 u64 old_dir_index, struct dentry *parent)
7454{
7455 struct btrfs_inode *inode = BTRFS_I(inode: d_inode(dentry: old_dentry));
7456 struct btrfs_root *root = inode->root;
7457 struct btrfs_log_ctx ctx;
7458 bool log_pinned = false;
7459 int ret;
7460
7461 /*
7462 * this will force the logging code to walk the dentry chain
7463 * up for the file
7464 */
7465 if (!S_ISDIR(inode->vfs_inode.i_mode))
7466 inode->last_unlink_trans = trans->transid;
7467
7468 /*
7469 * if this inode hasn't been logged and directory we're renaming it
7470 * from hasn't been logged, we don't need to log it
7471 */
7472 ret = inode_logged(trans, inode, NULL);
7473 if (ret < 0) {
7474 goto out;
7475 } else if (ret == 0) {
7476 if (!old_dir)
7477 return;
7478 /*
7479 * If the inode was not logged and we are doing a rename (old_dir is not
7480 * NULL), check if old_dir was logged - if it was not we can return and
7481 * do nothing.
7482 */
7483 ret = inode_logged(trans, inode: old_dir, NULL);
7484 if (ret < 0)
7485 goto out;
7486 else if (ret == 0)
7487 return;
7488 }
7489 ret = 0;
7490
7491 /*
7492 * If we are doing a rename (old_dir is not NULL) from a directory that
7493 * was previously logged, make sure that on log replay we get the old
7494 * dir entry deleted. This is needed because we will also log the new
7495 * name of the renamed inode, so we need to make sure that after log
7496 * replay we don't end up with both the new and old dir entries existing.
7497 */
7498 if (old_dir && old_dir->logged_trans == trans->transid) {
7499 struct btrfs_root *log = old_dir->root->log_root;
7500 struct btrfs_path *path;
7501 struct fscrypt_name fname;
7502
7503 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7504
7505 ret = fscrypt_setup_filename(inode: &old_dir->vfs_inode,
7506 iname: &old_dentry->d_name, lookup: 0, fname: &fname);
7507 if (ret)
7508 goto out;
7509 /*
7510 * We have two inodes to update in the log, the old directory and
7511 * the inode that got renamed, so we must pin the log to prevent
7512 * anyone from syncing the log until we have updated both inodes
7513 * in the log.
7514 */
7515 ret = join_running_log_trans(root);
7516 /*
7517 * At least one of the inodes was logged before, so this should
7518 * not fail, but if it does, it's not serious, just bail out and
7519 * mark the log for a full commit.
7520 */
7521 if (WARN_ON_ONCE(ret < 0)) {
7522 fscrypt_free_filename(fname: &fname);
7523 goto out;
7524 }
7525
7526 log_pinned = true;
7527
7528 path = btrfs_alloc_path();
7529 if (!path) {
7530 ret = -ENOMEM;
7531 fscrypt_free_filename(fname: &fname);
7532 goto out;
7533 }
7534
7535 /*
7536 * Other concurrent task might be logging the old directory,
7537 * as it can be triggered when logging other inode that had or
7538 * still has a dentry in the old directory. We lock the old
7539 * directory's log_mutex to ensure the deletion of the old
7540 * name is persisted, because during directory logging we
7541 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7542 * the old name's dir index item is in the delayed items, so
7543 * it could be missed by an in progress directory logging.
7544 */
7545 mutex_lock(&old_dir->log_mutex);
7546 ret = del_logged_dentry(trans, log, path, dir_ino: btrfs_ino(inode: old_dir),
7547 name: &fname.disk_name, index: old_dir_index);
7548 if (ret > 0) {
7549 /*
7550 * The dentry does not exist in the log, so record its
7551 * deletion.
7552 */
7553 btrfs_release_path(p: path);
7554 ret = insert_dir_log_key(trans, log, path,
7555 dirid: btrfs_ino(inode: old_dir),
7556 first_offset: old_dir_index, last_offset: old_dir_index);
7557 }
7558 mutex_unlock(lock: &old_dir->log_mutex);
7559
7560 btrfs_free_path(p: path);
7561 fscrypt_free_filename(fname: &fname);
7562 if (ret < 0)
7563 goto out;
7564 }
7565
7566 btrfs_init_log_ctx(ctx: &ctx, inode: &inode->vfs_inode);
7567 ctx.logging_new_name = true;
7568 btrfs_init_log_ctx_scratch_eb(ctx: &ctx);
7569 /*
7570 * We don't care about the return value. If we fail to log the new name
7571 * then we know the next attempt to sync the log will fallback to a full
7572 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7573 * we don't need to worry about getting a log committed that has an
7574 * inconsistent state after a rename operation.
7575 */
7576 btrfs_log_inode_parent(trans, inode, parent, inode_only: LOG_INODE_EXISTS, ctx: &ctx);
7577 free_extent_buffer(eb: ctx.scratch_eb);
7578 ASSERT(list_empty(&ctx.conflict_inodes));
7579out:
7580 /*
7581 * If an error happened mark the log for a full commit because it's not
7582 * consistent and up to date or we couldn't find out if one of the
7583 * inodes was logged before in this transaction. Do it before unpinning
7584 * the log, to avoid any races with someone else trying to commit it.
7585 */
7586 if (ret < 0)
7587 btrfs_set_log_full_commit(trans);
7588 if (log_pinned)
7589 btrfs_end_log_trans(root);
7590}
7591
7592

source code of linux/fs/btrfs/tree-log.c