| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/fs/ext4/readpage.c |
| 4 | * |
| 5 | * Copyright (C) 2002, Linus Torvalds. |
| 6 | * Copyright (C) 2015, Google, Inc. |
| 7 | * |
| 8 | * This was originally taken from fs/mpage.c |
| 9 | * |
| 10 | * The ext4_mpage_readpages() function here is intended to |
| 11 | * replace mpage_readahead() in the general case, not just for |
| 12 | * encrypted files. It has some limitations (see below), where it |
| 13 | * will fall back to read_block_full_page(), but these limitations |
| 14 | * should only be hit when page_size != block_size. |
| 15 | * |
| 16 | * This will allow us to attach a callback function to support ext4 |
| 17 | * encryption. |
| 18 | * |
| 19 | * If anything unusual happens, such as: |
| 20 | * |
| 21 | * - encountering a page which has buffers |
| 22 | * - encountering a page which has a non-hole after a hole |
| 23 | * - encountering a page with non-contiguous blocks |
| 24 | * |
| 25 | * then this code just gives up and calls the buffer_head-based read function. |
| 26 | * It does handle a page which has holes at the end - that is a common case: |
| 27 | * the end-of-file on blocksize < PAGE_SIZE setups. |
| 28 | * |
| 29 | */ |
| 30 | |
| 31 | #include <linux/kernel.h> |
| 32 | #include <linux/export.h> |
| 33 | #include <linux/mm.h> |
| 34 | #include <linux/kdev_t.h> |
| 35 | #include <linux/gfp.h> |
| 36 | #include <linux/bio.h> |
| 37 | #include <linux/fs.h> |
| 38 | #include <linux/buffer_head.h> |
| 39 | #include <linux/blkdev.h> |
| 40 | #include <linux/highmem.h> |
| 41 | #include <linux/prefetch.h> |
| 42 | #include <linux/mpage.h> |
| 43 | #include <linux/writeback.h> |
| 44 | #include <linux/backing-dev.h> |
| 45 | #include <linux/pagevec.h> |
| 46 | |
| 47 | #include "ext4.h" |
| 48 | |
| 49 | #define NUM_PREALLOC_POST_READ_CTXS 128 |
| 50 | |
| 51 | static struct kmem_cache *bio_post_read_ctx_cache; |
| 52 | static mempool_t *bio_post_read_ctx_pool; |
| 53 | |
| 54 | /* postprocessing steps for read bios */ |
| 55 | enum bio_post_read_step { |
| 56 | STEP_INITIAL = 0, |
| 57 | STEP_DECRYPT, |
| 58 | STEP_VERITY, |
| 59 | STEP_MAX, |
| 60 | }; |
| 61 | |
| 62 | struct bio_post_read_ctx { |
| 63 | struct bio *bio; |
| 64 | struct work_struct work; |
| 65 | unsigned int cur_step; |
| 66 | unsigned int enabled_steps; |
| 67 | }; |
| 68 | |
| 69 | static void __read_end_io(struct bio *bio) |
| 70 | { |
| 71 | struct folio_iter fi; |
| 72 | |
| 73 | bio_for_each_folio_all(fi, bio) |
| 74 | folio_end_read(folio: fi.folio, success: bio->bi_status == 0); |
| 75 | if (bio->bi_private) |
| 76 | mempool_free(element: bio->bi_private, pool: bio_post_read_ctx_pool); |
| 77 | bio_put(bio); |
| 78 | } |
| 79 | |
| 80 | static void bio_post_read_processing(struct bio_post_read_ctx *ctx); |
| 81 | |
| 82 | static void decrypt_work(struct work_struct *work) |
| 83 | { |
| 84 | struct bio_post_read_ctx *ctx = |
| 85 | container_of(work, struct bio_post_read_ctx, work); |
| 86 | struct bio *bio = ctx->bio; |
| 87 | |
| 88 | if (fscrypt_decrypt_bio(bio)) |
| 89 | bio_post_read_processing(ctx); |
| 90 | else |
| 91 | __read_end_io(bio); |
| 92 | } |
| 93 | |
| 94 | static void verity_work(struct work_struct *work) |
| 95 | { |
| 96 | struct bio_post_read_ctx *ctx = |
| 97 | container_of(work, struct bio_post_read_ctx, work); |
| 98 | struct bio *bio = ctx->bio; |
| 99 | |
| 100 | /* |
| 101 | * fsverity_verify_bio() may call readahead() again, and although verity |
| 102 | * will be disabled for that, decryption may still be needed, causing |
| 103 | * another bio_post_read_ctx to be allocated. So to guarantee that |
| 104 | * mempool_alloc() never deadlocks we must free the current ctx first. |
| 105 | * This is safe because verity is the last post-read step. |
| 106 | */ |
| 107 | BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX); |
| 108 | mempool_free(element: ctx, pool: bio_post_read_ctx_pool); |
| 109 | bio->bi_private = NULL; |
| 110 | |
| 111 | fsverity_verify_bio(bio); |
| 112 | |
| 113 | __read_end_io(bio); |
| 114 | } |
| 115 | |
| 116 | static void bio_post_read_processing(struct bio_post_read_ctx *ctx) |
| 117 | { |
| 118 | /* |
| 119 | * We use different work queues for decryption and for verity because |
| 120 | * verity may require reading metadata pages that need decryption, and |
| 121 | * we shouldn't recurse to the same workqueue. |
| 122 | */ |
| 123 | switch (++ctx->cur_step) { |
| 124 | case STEP_DECRYPT: |
| 125 | if (ctx->enabled_steps & (1 << STEP_DECRYPT)) { |
| 126 | INIT_WORK(&ctx->work, decrypt_work); |
| 127 | fscrypt_enqueue_decrypt_work(&ctx->work); |
| 128 | return; |
| 129 | } |
| 130 | ctx->cur_step++; |
| 131 | fallthrough; |
| 132 | case STEP_VERITY: |
| 133 | if (ctx->enabled_steps & (1 << STEP_VERITY)) { |
| 134 | INIT_WORK(&ctx->work, verity_work); |
| 135 | fsverity_enqueue_verify_work(work: &ctx->work); |
| 136 | return; |
| 137 | } |
| 138 | ctx->cur_step++; |
| 139 | fallthrough; |
| 140 | default: |
| 141 | __read_end_io(bio: ctx->bio); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | static bool bio_post_read_required(struct bio *bio) |
| 146 | { |
| 147 | return bio->bi_private && !bio->bi_status; |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * I/O completion handler for multipage BIOs. |
| 152 | * |
| 153 | * The mpage code never puts partial pages into a BIO (except for end-of-file). |
| 154 | * If a page does not map to a contiguous run of blocks then it simply falls |
| 155 | * back to block_read_full_folio(). |
| 156 | * |
| 157 | * Why is this? If a page's completion depends on a number of different BIOs |
| 158 | * which can complete in any order (or at the same time) then determining the |
| 159 | * status of that page is hard. See end_buffer_async_read() for the details. |
| 160 | * There is no point in duplicating all that complexity. |
| 161 | */ |
| 162 | static void mpage_end_io(struct bio *bio) |
| 163 | { |
| 164 | if (bio_post_read_required(bio)) { |
| 165 | struct bio_post_read_ctx *ctx = bio->bi_private; |
| 166 | |
| 167 | ctx->cur_step = STEP_INITIAL; |
| 168 | bio_post_read_processing(ctx); |
| 169 | return; |
| 170 | } |
| 171 | __read_end_io(bio); |
| 172 | } |
| 173 | |
| 174 | static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx) |
| 175 | { |
| 176 | return fsverity_active(inode) && |
| 177 | idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); |
| 178 | } |
| 179 | |
| 180 | static void ext4_set_bio_post_read_ctx(struct bio *bio, |
| 181 | const struct inode *inode, |
| 182 | pgoff_t first_idx) |
| 183 | { |
| 184 | unsigned int post_read_steps = 0; |
| 185 | |
| 186 | if (fscrypt_inode_uses_fs_layer_crypto(inode)) |
| 187 | post_read_steps |= 1 << STEP_DECRYPT; |
| 188 | |
| 189 | if (ext4_need_verity(inode, idx: first_idx)) |
| 190 | post_read_steps |= 1 << STEP_VERITY; |
| 191 | |
| 192 | if (post_read_steps) { |
| 193 | /* Due to the mempool, this never fails. */ |
| 194 | struct bio_post_read_ctx *ctx = |
| 195 | mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); |
| 196 | |
| 197 | ctx->bio = bio; |
| 198 | ctx->enabled_steps = post_read_steps; |
| 199 | bio->bi_private = ctx; |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | static inline loff_t ext4_readpage_limit(struct inode *inode) |
| 204 | { |
| 205 | if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) |
| 206 | return inode->i_sb->s_maxbytes; |
| 207 | |
| 208 | return i_size_read(inode); |
| 209 | } |
| 210 | |
| 211 | int ext4_mpage_readpages(struct inode *inode, |
| 212 | struct readahead_control *rac, struct folio *folio) |
| 213 | { |
| 214 | struct bio *bio = NULL; |
| 215 | sector_t last_block_in_bio = 0; |
| 216 | |
| 217 | const unsigned blkbits = inode->i_blkbits; |
| 218 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; |
| 219 | const unsigned blocksize = 1 << blkbits; |
| 220 | sector_t next_block; |
| 221 | sector_t block_in_file; |
| 222 | sector_t last_block; |
| 223 | sector_t last_block_in_file; |
| 224 | sector_t first_block; |
| 225 | unsigned page_block; |
| 226 | struct block_device *bdev = inode->i_sb->s_bdev; |
| 227 | int length; |
| 228 | unsigned relative_block = 0; |
| 229 | struct ext4_map_blocks map; |
| 230 | unsigned int nr_pages, folio_pages; |
| 231 | |
| 232 | map.m_pblk = 0; |
| 233 | map.m_lblk = 0; |
| 234 | map.m_len = 0; |
| 235 | map.m_flags = 0; |
| 236 | |
| 237 | nr_pages = rac ? readahead_count(rac) : folio_nr_pages(folio); |
| 238 | for (; nr_pages; nr_pages -= folio_pages) { |
| 239 | int fully_mapped = 1; |
| 240 | unsigned int first_hole; |
| 241 | unsigned int blocks_per_folio; |
| 242 | |
| 243 | if (rac) |
| 244 | folio = readahead_folio(ractl: rac); |
| 245 | |
| 246 | folio_pages = folio_nr_pages(folio); |
| 247 | prefetchw(x: &folio->flags); |
| 248 | |
| 249 | if (folio_buffers(folio)) |
| 250 | goto confused; |
| 251 | |
| 252 | blocks_per_folio = folio_size(folio) >> blkbits; |
| 253 | first_hole = blocks_per_folio; |
| 254 | block_in_file = next_block = |
| 255 | (sector_t)folio->index << (PAGE_SHIFT - blkbits); |
| 256 | last_block = block_in_file + nr_pages * blocks_per_page; |
| 257 | last_block_in_file = (ext4_readpage_limit(inode) + |
| 258 | blocksize - 1) >> blkbits; |
| 259 | if (last_block > last_block_in_file) |
| 260 | last_block = last_block_in_file; |
| 261 | page_block = 0; |
| 262 | |
| 263 | /* |
| 264 | * Map blocks using the previous result first. |
| 265 | */ |
| 266 | if ((map.m_flags & EXT4_MAP_MAPPED) && |
| 267 | block_in_file > map.m_lblk && |
| 268 | block_in_file < (map.m_lblk + map.m_len)) { |
| 269 | unsigned map_offset = block_in_file - map.m_lblk; |
| 270 | unsigned last = map.m_len - map_offset; |
| 271 | |
| 272 | first_block = map.m_pblk + map_offset; |
| 273 | for (relative_block = 0; ; relative_block++) { |
| 274 | if (relative_block == last) { |
| 275 | /* needed? */ |
| 276 | map.m_flags &= ~EXT4_MAP_MAPPED; |
| 277 | break; |
| 278 | } |
| 279 | if (page_block == blocks_per_folio) |
| 280 | break; |
| 281 | page_block++; |
| 282 | block_in_file++; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | /* |
| 287 | * Then do more ext4_map_blocks() calls until we are |
| 288 | * done with this folio. |
| 289 | */ |
| 290 | while (page_block < blocks_per_folio) { |
| 291 | if (block_in_file < last_block) { |
| 292 | map.m_lblk = block_in_file; |
| 293 | map.m_len = last_block - block_in_file; |
| 294 | |
| 295 | if (ext4_map_blocks(NULL, inode, map: &map, flags: 0) < 0) { |
| 296 | set_error_page: |
| 297 | folio_zero_segment(folio, start: 0, |
| 298 | xend: folio_size(folio)); |
| 299 | folio_unlock(folio); |
| 300 | goto next_page; |
| 301 | } |
| 302 | } |
| 303 | if ((map.m_flags & EXT4_MAP_MAPPED) == 0) { |
| 304 | fully_mapped = 0; |
| 305 | if (first_hole == blocks_per_folio) |
| 306 | first_hole = page_block; |
| 307 | page_block++; |
| 308 | block_in_file++; |
| 309 | continue; |
| 310 | } |
| 311 | if (first_hole != blocks_per_folio) |
| 312 | goto confused; /* hole -> non-hole */ |
| 313 | |
| 314 | /* Contiguous blocks? */ |
| 315 | if (!page_block) |
| 316 | first_block = map.m_pblk; |
| 317 | else if (first_block + page_block != map.m_pblk) |
| 318 | goto confused; |
| 319 | for (relative_block = 0; ; relative_block++) { |
| 320 | if (relative_block == map.m_len) { |
| 321 | /* needed? */ |
| 322 | map.m_flags &= ~EXT4_MAP_MAPPED; |
| 323 | break; |
| 324 | } else if (page_block == blocks_per_folio) |
| 325 | break; |
| 326 | page_block++; |
| 327 | block_in_file++; |
| 328 | } |
| 329 | } |
| 330 | if (first_hole != blocks_per_folio) { |
| 331 | folio_zero_segment(folio, start: first_hole << blkbits, |
| 332 | xend: folio_size(folio)); |
| 333 | if (first_hole == 0) { |
| 334 | if (ext4_need_verity(inode, idx: folio->index) && |
| 335 | !fsverity_verify_folio(folio)) |
| 336 | goto set_error_page; |
| 337 | folio_end_read(folio, success: true); |
| 338 | continue; |
| 339 | } |
| 340 | } else if (fully_mapped) { |
| 341 | folio_set_mappedtodisk(folio); |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * This folio will go to BIO. Do we need to send this |
| 346 | * BIO off first? |
| 347 | */ |
| 348 | if (bio && (last_block_in_bio != first_block - 1 || |
| 349 | !fscrypt_mergeable_bio(bio, inode, next_lblk: next_block))) { |
| 350 | submit_and_realloc: |
| 351 | submit_bio(bio); |
| 352 | bio = NULL; |
| 353 | } |
| 354 | if (bio == NULL) { |
| 355 | /* |
| 356 | * bio_alloc will _always_ be able to allocate a bio if |
| 357 | * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset(). |
| 358 | */ |
| 359 | bio = bio_alloc(bdev, nr_vecs: bio_max_segs(nr_segs: nr_pages), |
| 360 | opf: REQ_OP_READ, GFP_KERNEL); |
| 361 | fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk: next_block, |
| 362 | GFP_KERNEL); |
| 363 | ext4_set_bio_post_read_ctx(bio, inode, first_idx: folio->index); |
| 364 | bio->bi_iter.bi_sector = first_block << (blkbits - 9); |
| 365 | bio->bi_end_io = mpage_end_io; |
| 366 | if (rac) |
| 367 | bio->bi_opf |= REQ_RAHEAD; |
| 368 | } |
| 369 | |
| 370 | length = first_hole << blkbits; |
| 371 | if (!bio_add_folio(bio, folio, len: length, off: 0)) |
| 372 | goto submit_and_realloc; |
| 373 | |
| 374 | if (((map.m_flags & EXT4_MAP_BOUNDARY) && |
| 375 | (relative_block == map.m_len)) || |
| 376 | (first_hole != blocks_per_folio)) { |
| 377 | submit_bio(bio); |
| 378 | bio = NULL; |
| 379 | } else |
| 380 | last_block_in_bio = first_block + blocks_per_folio - 1; |
| 381 | continue; |
| 382 | confused: |
| 383 | if (bio) { |
| 384 | submit_bio(bio); |
| 385 | bio = NULL; |
| 386 | } |
| 387 | if (!folio_test_uptodate(folio)) |
| 388 | block_read_full_folio(folio, ext4_get_block); |
| 389 | else |
| 390 | folio_unlock(folio); |
| 391 | next_page: |
| 392 | ; /* A label shall be followed by a statement until C23 */ |
| 393 | } |
| 394 | if (bio) |
| 395 | submit_bio(bio); |
| 396 | return 0; |
| 397 | } |
| 398 | |
| 399 | int __init ext4_init_post_read_processing(void) |
| 400 | { |
| 401 | bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT); |
| 402 | |
| 403 | if (!bio_post_read_ctx_cache) |
| 404 | goto fail; |
| 405 | bio_post_read_ctx_pool = |
| 406 | mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, |
| 407 | bio_post_read_ctx_cache); |
| 408 | if (!bio_post_read_ctx_pool) |
| 409 | goto fail_free_cache; |
| 410 | return 0; |
| 411 | |
| 412 | fail_free_cache: |
| 413 | kmem_cache_destroy(s: bio_post_read_ctx_cache); |
| 414 | fail: |
| 415 | return -ENOMEM; |
| 416 | } |
| 417 | |
| 418 | void ext4_exit_post_read_processing(void) |
| 419 | { |
| 420 | mempool_destroy(pool: bio_post_read_ctx_pool); |
| 421 | kmem_cache_destroy(s: bio_post_read_ctx_cache); |
| 422 | } |
| 423 | |