1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
9#include <linux/fs.h>
10#include <linux/random.h>
11#include <linux/slab.h>
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17/*
18 * LOG FILE structs
19 */
20
21// clang-format off
22
23#define MaxLogFileSize 0x100000000ull
24#define DefaultLogPageSize 4096
25#define MinLogRecordPages 0x30
26
27struct RESTART_HDR {
28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 __le32 page_size; // 0x14: Log page size used for this log file.
31 __le16 ra_off; // 0x18:
32 __le16 minor_ver; // 0x1A:
33 __le16 major_ver; // 0x1C:
34 __le16 fixups[];
35};
36
37#define LFS_NO_CLIENT 0xffff
38#define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39
40struct CLIENT_REC {
41 __le64 oldest_lsn;
42 __le64 restart_lsn; // 0x08:
43 __le16 prev_client; // 0x10:
44 __le16 next_client; // 0x12:
45 __le16 seq_num; // 0x14:
46 u8 align[6]; // 0x16:
47 __le32 name_bytes; // 0x1C: In bytes.
48 __le16 name[32]; // 0x20: Name of client.
49};
50
51static_assert(sizeof(struct CLIENT_REC) == 0x60);
52
53/* Two copies of these will exist at the beginning of the log file */
54struct RESTART_AREA {
55 __le64 current_lsn; // 0x00: Current logical end of log file.
56 __le16 log_clients; // 0x08: Maximum number of clients.
57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays.
58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number.
60 __le16 ra_len; // 0x14:
61 __le16 client_off; // 0x16:
62 __le64 l_size; // 0x18: Usable log file size.
63 __le32 last_lsn_data_len; // 0x20:
64 __le16 rec_hdr_len; // 0x24: Log page data offset.
65 __le16 data_off; // 0x26: Log page data length.
66 __le32 open_log_count; // 0x28:
67 __le32 align[5]; // 0x2C:
68 struct CLIENT_REC clients[]; // 0x40:
69};
70
71struct LOG_REC_HDR {
72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION
73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION
74 __le16 redo_off; // 0x04: Offset to Redo record.
75 __le16 redo_len; // 0x06: Redo length.
76 __le16 undo_off; // 0x08: Offset to Undo record.
77 __le16 undo_len; // 0x0A: Undo length.
78 __le16 target_attr; // 0x0C:
79 __le16 lcns_follow; // 0x0E:
80 __le16 record_off; // 0x10:
81 __le16 attr_off; // 0x12:
82 __le16 cluster_off; // 0x14:
83 __le16 reserved; // 0x16:
84 __le64 target_vcn; // 0x18:
85 __le64 page_lcns[]; // 0x20:
86};
87
88static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89
90#define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF
91#define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92
93struct RESTART_TABLE {
94 __le16 size; // 0x00: In bytes
95 __le16 used; // 0x02: Entries
96 __le16 total; // 0x04: Entries
97 __le16 res[3]; // 0x06:
98 __le32 free_goal; // 0x0C:
99 __le32 first_free; // 0x10:
100 __le32 last_free; // 0x14:
101
102};
103
104static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105
106struct ATTR_NAME_ENTRY {
107 __le16 off; // Offset in the Open attribute Table.
108 __le16 name_bytes;
109 __le16 name[];
110};
111
112struct OPEN_ATTR_ENRTY {
113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 __le32 bytes_per_index; // 0x04:
115 enum ATTR_TYPE type; // 0x08:
116 u8 is_dirty_pages; // 0x0C:
117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr'
118 u8 name_len; // 0x0C: Faked field to manage 'ptr'
119 u8 res;
120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute
121 __le64 open_record_lsn; // 0x18:
122 void *ptr; // 0x20:
123};
124
125/* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126struct OPEN_ATTR_ENRTY_32 {
127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 __le32 ptr; // 0x04:
129 struct MFT_REF ref; // 0x08:
130 __le64 open_record_lsn; // 0x10:
131 u8 is_dirty_pages; // 0x18:
132 u8 is_attr_name; // 0x19:
133 u8 res1[2];
134 enum ATTR_TYPE type; // 0x1C:
135 u8 name_len; // 0x20: In wchar
136 u8 res2[3];
137 __le32 AttributeName; // 0x24:
138 __le32 bytes_per_index; // 0x28:
139};
140
141#define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142// static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144
145/*
146 * One entry exists in the Dirty Pages Table for each page which is dirty at
147 * the time the Restart Area is written.
148 */
149struct DIR_PAGE_ENTRY {
150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 __le32 target_attr; // 0x04: Index into the Open attribute Table
152 __le32 transfer_len; // 0x08:
153 __le32 lcns_follow; // 0x0C:
154 __le64 vcn; // 0x10: Vcn of dirty page
155 __le64 oldest_lsn; // 0x18:
156 __le64 page_lcns[]; // 0x20:
157};
158
159static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160
161/* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162struct DIR_PAGE_ENTRY_32 {
163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 __le32 target_attr; // 0x04: Index into the Open attribute Table
165 __le32 transfer_len; // 0x08:
166 __le32 lcns_follow; // 0x0C:
167 __le32 reserved; // 0x10:
168 __le32 vcn_low; // 0x14: Vcn of dirty page
169 __le32 vcn_hi; // 0x18: Vcn of dirty page
170 __le32 oldest_lsn_low; // 0x1C:
171 __le32 oldest_lsn_hi; // 0x1C:
172 __le32 page_lcns_low; // 0x24:
173 __le32 page_lcns_hi; // 0x24:
174};
175
176static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178
179enum transact_state {
180 TransactionUninitialized = 0,
181 TransactionActive,
182 TransactionPrepared,
183 TransactionCommitted
184};
185
186struct TRANSACTION_ENTRY {
187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 u8 transact_state; // 0x04:
189 u8 reserved[3]; // 0x05:
190 __le64 first_lsn; // 0x08:
191 __le64 prev_lsn; // 0x10:
192 __le64 undo_next_lsn; // 0x18:
193 __le32 undo_records; // 0x20: Number of undo log records pending abort
194 __le32 undo_len; // 0x24: Total undo size
195};
196
197static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198
199struct NTFS_RESTART {
200 __le32 major_ver; // 0x00:
201 __le32 minor_ver; // 0x04:
202 __le64 check_point_start; // 0x08:
203 __le64 open_attr_table_lsn; // 0x10:
204 __le64 attr_names_lsn; // 0x18:
205 __le64 dirty_pages_table_lsn; // 0x20:
206 __le64 transact_table_lsn; // 0x28:
207 __le32 open_attr_len; // 0x30: In bytes
208 __le32 attr_names_len; // 0x34: In bytes
209 __le32 dirty_pages_len; // 0x38: In bytes
210 __le32 transact_table_len; // 0x3C: In bytes
211};
212
213static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214
215struct NEW_ATTRIBUTE_SIZES {
216 __le64 alloc_size;
217 __le64 valid_size;
218 __le64 data_size;
219 __le64 total_size;
220};
221
222struct BITMAP_RANGE {
223 __le32 bitmap_off;
224 __le32 bits;
225};
226
227struct LCN_RANGE {
228 __le64 lcn;
229 __le64 len;
230};
231
232/* The following type defines the different log record types. */
233#define LfsClientRecord cpu_to_le32(1)
234#define LfsClientRestart cpu_to_le32(2)
235
236/* This is used to uniquely identify a client for a particular log file. */
237struct CLIENT_ID {
238 __le16 seq_num;
239 __le16 client_idx;
240};
241
242/* This is the header that begins every Log Record in the log file. */
243struct LFS_RECORD_HDR {
244 __le64 this_lsn; // 0x00:
245 __le64 client_prev_lsn; // 0x08:
246 __le64 client_undo_next_lsn; // 0x10:
247 __le32 client_data_len; // 0x18:
248 struct CLIENT_ID client; // 0x1C: Owner of this log record.
249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart.
250 __le32 transact_id; // 0x24:
251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE
252 u8 align[6]; // 0x2A:
253};
254
255#define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256
257static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258
259struct LFS_RECORD {
260 __le16 next_record_off; // 0x00: Offset of the free space in the page,
261 u8 align[6]; // 0x02:
262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page,
263};
264
265static_assert(sizeof(struct LFS_RECORD) == 0x10);
266
267struct RECORD_PAGE_HDR {
268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END
270 __le16 page_count; // 0x14:
271 __le16 page_pos; // 0x16:
272 struct LFS_RECORD record_hdr; // 0x18:
273 __le16 fixups[10]; // 0x28:
274 __le32 file_off; // 0x3c: Used when major version >= 2
275};
276
277// clang-format on
278
279// Page contains the end of a log record.
280#define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281
282static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283{
284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285}
286
287static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288
289/*
290 * END of NTFS LOG structures
291 */
292
293/* Define some tuning parameters to keep the restart tables a reasonable size. */
294#define INITIAL_NUMBER_TRANSACTIONS 5
295
296enum NTFS_LOG_OPERATION {
297
298 Noop = 0x00,
299 CompensationLogRecord = 0x01,
300 InitializeFileRecordSegment = 0x02,
301 DeallocateFileRecordSegment = 0x03,
302 WriteEndOfFileRecordSegment = 0x04,
303 CreateAttribute = 0x05,
304 DeleteAttribute = 0x06,
305 UpdateResidentValue = 0x07,
306 UpdateNonresidentValue = 0x08,
307 UpdateMappingPairs = 0x09,
308 DeleteDirtyClusters = 0x0A,
309 SetNewAttributeSizes = 0x0B,
310 AddIndexEntryRoot = 0x0C,
311 DeleteIndexEntryRoot = 0x0D,
312 AddIndexEntryAllocation = 0x0E,
313 DeleteIndexEntryAllocation = 0x0F,
314 WriteEndOfIndexBuffer = 0x10,
315 SetIndexEntryVcnRoot = 0x11,
316 SetIndexEntryVcnAllocation = 0x12,
317 UpdateFileNameRoot = 0x13,
318 UpdateFileNameAllocation = 0x14,
319 SetBitsInNonresidentBitMap = 0x15,
320 ClearBitsInNonresidentBitMap = 0x16,
321 HotFix = 0x17,
322 EndTopLevelAction = 0x18,
323 PrepareTransaction = 0x19,
324 CommitTransaction = 0x1A,
325 ForgetTransaction = 0x1B,
326 OpenNonresidentAttribute = 0x1C,
327 OpenAttributeTableDump = 0x1D,
328 AttributeNamesDump = 0x1E,
329 DirtyPageTableDump = 0x1F,
330 TransactionTableDump = 0x20,
331 UpdateRecordDataRoot = 0x21,
332 UpdateRecordDataAllocation = 0x22,
333
334 UpdateRelativeDataInIndex =
335 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 UpdateRelativeDataInIndex2 = 0x24,
337 ZeroEndOfFileRecord = 0x25,
338};
339
340/*
341 * Array for log records which require a target attribute.
342 * A true indicates that the corresponding restart operation
343 * requires a target attribute.
344 */
345static const u8 AttributeRequired[] = {
346 0xFC, 0xFB, 0xFF, 0x10, 0x06,
347};
348
349static inline bool is_target_required(u16 op)
350{
351 bool ret = op <= UpdateRecordDataAllocation &&
352 (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 return ret;
354}
355
356static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357{
358 switch (op) {
359 case Noop:
360 case DeleteDirtyClusters:
361 case HotFix:
362 case EndTopLevelAction:
363 case PrepareTransaction:
364 case CommitTransaction:
365 case ForgetTransaction:
366 case CompensationLogRecord:
367 case OpenNonresidentAttribute:
368 case OpenAttributeTableDump:
369 case AttributeNamesDump:
370 case DirtyPageTableDump:
371 case TransactionTableDump:
372 return true;
373 default:
374 return false;
375 }
376}
377
378enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379
380/* Bytes per restart table. */
381static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382{
383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 sizeof(struct RESTART_TABLE);
385}
386
387/* Log record length. */
388static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389{
390 u16 t16 = le16_to_cpu(lr->lcns_follow);
391
392 return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393}
394
395struct lcb {
396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 struct LOG_REC_HDR *log_rec;
398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 struct CLIENT_ID client;
400 bool alloc; // If true the we should deallocate 'log_rec'.
401};
402
403static void lcb_put(struct lcb *lcb)
404{
405 if (lcb->alloc)
406 kfree(objp: lcb->log_rec);
407 kfree(objp: lcb->lrh);
408 kfree(objp: lcb);
409}
410
411/* Find the oldest lsn from active clients. */
412static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 __le16 next_client, u64 *oldest_lsn)
414{
415 while (next_client != LFS_NO_CLIENT_LE) {
416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418
419 /* Ignore this block if it's oldest lsn is 0. */
420 if (lsn && lsn < *oldest_lsn)
421 *oldest_lsn = lsn;
422
423 next_client = cr->next_client;
424 }
425}
426
427static inline bool is_rst_page_hdr_valid(u32 file_off,
428 const struct RESTART_HDR *rhdr)
429{
430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 u32 page_size = le32_to_cpu(rhdr->page_size);
432 u32 end_usa;
433 u16 ro;
434
435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 return false;
438 }
439
440 /* Check that if the file offset isn't 0, it is the system page size. */
441 if (file_off && file_off != sys_page)
442 return false;
443
444 /* Check support version 1.1+. */
445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 return false;
447
448 if (le16_to_cpu(rhdr->major_ver) > 2)
449 return false;
450
451 ro = le16_to_cpu(rhdr->ra_off);
452 if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 return false;
454
455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457
458 if (ro < end_usa)
459 return false;
460
461 return true;
462}
463
464static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465{
466 const struct RESTART_AREA *ra;
467 u16 cl, fl, ul;
468 u32 off, l_size, seq_bits;
469 u16 ro = le16_to_cpu(rhdr->ra_off);
470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471
472 if (ro + offsetof(struct RESTART_AREA, l_size) >
473 SECTOR_SIZE - sizeof(short))
474 return false;
475
476 ra = Add2Ptr(rhdr, ro);
477 cl = le16_to_cpu(ra->log_clients);
478
479 if (cl > 1)
480 return false;
481
482 off = le16_to_cpu(ra->client_off);
483
484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 return false;
486
487 off += cl * sizeof(struct CLIENT_REC);
488
489 if (off > sys_page)
490 return false;
491
492 /*
493 * Check the restart length field and whether the entire
494 * restart area is contained that length.
495 */
496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 off > le16_to_cpu(ra->ra_len)) {
498 return false;
499 }
500
501 /*
502 * As a final check make sure that the use list and the free list
503 * are either empty or point to a valid client.
504 */
505 fl = le16_to_cpu(ra->client_idx[0]);
506 ul = le16_to_cpu(ra->client_idx[1]);
507 if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 (ul != LFS_NO_CLIENT && ul >= cl))
509 return false;
510
511 /* Make sure the sequence number bits match the log file size. */
512 l_size = le64_to_cpu(ra->l_size);
513
514 seq_bits = sizeof(u64) * 8 + 3;
515 while (l_size) {
516 l_size >>= 1;
517 seq_bits -= 1;
518 }
519
520 if (seq_bits != ra->seq_num_bits)
521 return false;
522
523 /* The log page data offset and record header length must be quad-aligned. */
524 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526 return false;
527
528 return true;
529}
530
531static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532 bool usa_error)
533{
534 u16 ro = le16_to_cpu(rhdr->ra_off);
535 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536 u16 ra_len = le16_to_cpu(ra->ra_len);
537 const struct CLIENT_REC *ca;
538 u32 i;
539
540 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541 return false;
542
543 /* Find the start of the client array. */
544 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545
546 /*
547 * Start with the free list.
548 * Check that all the clients are valid and that there isn't a cycle.
549 * Do the in-use list on the second pass.
550 */
551 for (i = 0; i < 2; i++) {
552 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553 bool first_client = true;
554 u16 clients = le16_to_cpu(ra->log_clients);
555
556 while (client_idx != LFS_NO_CLIENT) {
557 const struct CLIENT_REC *cr;
558
559 if (!clients ||
560 client_idx >= le16_to_cpu(ra->log_clients))
561 return false;
562
563 clients -= 1;
564 cr = ca + client_idx;
565
566 client_idx = le16_to_cpu(cr->next_client);
567
568 if (first_client) {
569 first_client = false;
570 if (cr->prev_client != LFS_NO_CLIENT_LE)
571 return false;
572 }
573 }
574 }
575
576 return true;
577}
578
579/*
580 * remove_client
581 *
582 * Remove a client record from a client record list an restart area.
583 */
584static inline void remove_client(struct CLIENT_REC *ca,
585 const struct CLIENT_REC *cr, __le16 *head)
586{
587 if (cr->prev_client == LFS_NO_CLIENT_LE)
588 *head = cr->next_client;
589 else
590 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591
592 if (cr->next_client != LFS_NO_CLIENT_LE)
593 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594}
595
596/*
597 * add_client - Add a client record to the start of a list.
598 */
599static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600{
601 struct CLIENT_REC *cr = ca + index;
602
603 cr->prev_client = LFS_NO_CLIENT_LE;
604 cr->next_client = *head;
605
606 if (*head != LFS_NO_CLIENT_LE)
607 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608
609 *head = cpu_to_le16(index);
610}
611
612static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
613{
614 __le32 *e;
615 u32 bprt;
616 u16 rsize = t ? le16_to_cpu(t->size) : 0;
617
618 if (!c) {
619 if (!t || !t->total)
620 return NULL;
621 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
622 } else {
623 e = Add2Ptr(c, rsize);
624 }
625
626 /* Loop until we hit the first one allocated, or the end of the list. */
627 for (bprt = bytes_per_rt(rt: t); PtrOffset(t, e) < bprt;
628 e = Add2Ptr(e, rsize)) {
629 if (*e == RESTART_ENTRY_ALLOCATED_LE)
630 return e;
631 }
632 return NULL;
633}
634
635/*
636 * find_dp - Search for a @vcn in Dirty Page Table.
637 */
638static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
639 u32 target_attr, u64 vcn)
640{
641 __le32 ta = cpu_to_le32(target_attr);
642 struct DIR_PAGE_ENTRY *dp = NULL;
643
644 while ((dp = enum_rstbl(t: dptbl, c: dp))) {
645 u64 dp_vcn = le64_to_cpu(dp->vcn);
646
647 if (dp->target_attr == ta && vcn >= dp_vcn &&
648 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
649 return dp;
650 }
651 }
652 return NULL;
653}
654
655static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
656{
657 if (use_default)
658 page_size = DefaultLogPageSize;
659
660 /* Round the file size down to a system page boundary. */
661 *l_size &= ~(page_size - 1);
662
663 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
664 if (*l_size < (MinLogRecordPages + 2) * page_size)
665 return 0;
666
667 return page_size;
668}
669
670static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
671 u32 bytes_per_attr_entry)
672{
673 u16 t16;
674
675 if (bytes < sizeof(struct LOG_REC_HDR))
676 return false;
677 if (!tr)
678 return false;
679
680 if ((tr - sizeof(struct RESTART_TABLE)) %
681 sizeof(struct TRANSACTION_ENTRY))
682 return false;
683
684 if (le16_to_cpu(lr->redo_off) & 7)
685 return false;
686
687 if (le16_to_cpu(lr->undo_off) & 7)
688 return false;
689
690 if (lr->target_attr)
691 goto check_lcns;
692
693 if (is_target_required(le16_to_cpu(lr->redo_op)))
694 return false;
695
696 if (is_target_required(le16_to_cpu(lr->undo_op)))
697 return false;
698
699check_lcns:
700 if (!lr->lcns_follow)
701 goto check_length;
702
703 t16 = le16_to_cpu(lr->target_attr);
704 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
705 return false;
706
707check_length:
708 if (bytes < lrh_length(lr))
709 return false;
710
711 return true;
712}
713
714static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
715{
716 u32 ts;
717 u32 i, off;
718 u16 rsize = le16_to_cpu(rt->size);
719 u16 ne = le16_to_cpu(rt->used);
720 u32 ff = le32_to_cpu(rt->first_free);
721 u32 lf = le32_to_cpu(rt->last_free);
722
723 ts = rsize * ne + sizeof(struct RESTART_TABLE);
724
725 if (!rsize || rsize > bytes ||
726 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
727 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
728 (ff && ff < sizeof(struct RESTART_TABLE)) ||
729 (lf && lf < sizeof(struct RESTART_TABLE))) {
730 return false;
731 }
732
733 /*
734 * Verify each entry is either allocated or points
735 * to a valid offset the table.
736 */
737 for (i = 0; i < ne; i++) {
738 off = le32_to_cpu(*(__le32 *)Add2Ptr(
739 rt, i * rsize + sizeof(struct RESTART_TABLE)));
740
741 if (off != RESTART_ENTRY_ALLOCATED && off &&
742 (off < sizeof(struct RESTART_TABLE) ||
743 ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
744 return false;
745 }
746 }
747
748 /*
749 * Walk through the list headed by the first entry to make
750 * sure none of the entries are currently being used.
751 */
752 for (off = ff; off;) {
753 if (off == RESTART_ENTRY_ALLOCATED)
754 return false;
755
756 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
757 }
758
759 return true;
760}
761
762/*
763 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
764 */
765static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
766{
767 __le32 *e;
768 u32 lf = le32_to_cpu(rt->last_free);
769 __le32 off_le = cpu_to_le32(off);
770
771 e = Add2Ptr(rt, off);
772
773 if (off < le32_to_cpu(rt->free_goal)) {
774 *e = rt->first_free;
775 rt->first_free = off_le;
776 if (!lf)
777 rt->last_free = off_le;
778 } else {
779 if (lf)
780 *(__le32 *)Add2Ptr(rt, lf) = off_le;
781 else
782 rt->first_free = off_le;
783
784 rt->last_free = off_le;
785 *e = 0;
786 }
787
788 le16_sub_cpu(var: &rt->total, val: 1);
789}
790
791static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
792{
793 __le32 *e, *last_free;
794 u32 off;
795 u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
796 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
797 struct RESTART_TABLE *t = kzalloc(size: bytes, GFP_NOFS);
798
799 if (!t)
800 return NULL;
801
802 t->size = cpu_to_le16(esize);
803 t->used = cpu_to_le16(used);
804 t->free_goal = cpu_to_le32(~0u);
805 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
806 t->last_free = cpu_to_le32(lf);
807
808 e = (__le32 *)(t + 1);
809 last_free = Add2Ptr(t, lf);
810
811 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
812 e = Add2Ptr(e, esize), off += esize) {
813 *e = cpu_to_le32(off);
814 }
815 return t;
816}
817
818static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
819 u32 add, u32 free_goal)
820{
821 u16 esize = le16_to_cpu(tbl->size);
822 __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
823 u32 used = le16_to_cpu(tbl->used);
824 struct RESTART_TABLE *rt;
825
826 rt = init_rsttbl(esize, used: used + add);
827 if (!rt)
828 return NULL;
829
830 memcpy(rt + 1, tbl + 1, esize * used);
831
832 rt->free_goal = free_goal == ~0u ?
833 cpu_to_le32(~0u) :
834 cpu_to_le32(sizeof(struct RESTART_TABLE) +
835 free_goal * esize);
836
837 if (tbl->first_free) {
838 rt->first_free = tbl->first_free;
839 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
840 } else {
841 rt->first_free = osize;
842 }
843
844 rt->total = tbl->total;
845
846 kfree(objp: tbl);
847 return rt;
848}
849
850/*
851 * alloc_rsttbl_idx
852 *
853 * Allocate an index from within a previously initialized Restart Table.
854 */
855static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
856{
857 u32 off;
858 __le32 *e;
859 struct RESTART_TABLE *t = *tbl;
860
861 if (!t->first_free) {
862 *tbl = t = extend_rsttbl(tbl: t, add: 16, free_goal: ~0u);
863 if (!t)
864 return NULL;
865 }
866
867 off = le32_to_cpu(t->first_free);
868
869 /* Dequeue this entry and zero it. */
870 e = Add2Ptr(t, off);
871
872 t->first_free = *e;
873
874 memset(e, 0, le16_to_cpu(t->size));
875
876 *e = RESTART_ENTRY_ALLOCATED_LE;
877
878 /* If list is going empty, then we fix the last_free as well. */
879 if (!t->first_free)
880 t->last_free = 0;
881
882 le16_add_cpu(var: &t->total, val: 1);
883
884 return Add2Ptr(t, off);
885}
886
887/*
888 * alloc_rsttbl_from_idx
889 *
890 * Allocate a specific index from within a previously initialized Restart Table.
891 */
892static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
893{
894 u32 off;
895 __le32 *e;
896 struct RESTART_TABLE *rt = *tbl;
897 u32 bytes = bytes_per_rt(rt);
898 u16 esize = le16_to_cpu(rt->size);
899
900 /* If the entry is not the table, we will have to extend the table. */
901 if (vbo >= bytes) {
902 /*
903 * Extend the size by computing the number of entries between
904 * the existing size and the desired index and adding 1 to that.
905 */
906 u32 bytes2idx = vbo - bytes;
907
908 /*
909 * There should always be an integral number of entries
910 * being added. Now extend the table.
911 */
912 *tbl = rt = extend_rsttbl(tbl: rt, add: bytes2idx / esize + 1, free_goal: bytes);
913 if (!rt)
914 return NULL;
915 }
916
917 /* See if the entry is already allocated, and just return if it is. */
918 e = Add2Ptr(rt, vbo);
919
920 if (*e == RESTART_ENTRY_ALLOCATED_LE)
921 return e;
922
923 /*
924 * Walk through the table, looking for the entry we're
925 * interested and the previous entry.
926 */
927 off = le32_to_cpu(rt->first_free);
928 e = Add2Ptr(rt, off);
929
930 if (off == vbo) {
931 /* this is a match */
932 rt->first_free = *e;
933 goto skip_looking;
934 }
935
936 /*
937 * Need to walk through the list looking for the predecessor
938 * of our entry.
939 */
940 for (;;) {
941 /* Remember the entry just found */
942 u32 last_off = off;
943 __le32 *last_e = e;
944
945 /* Should never run of entries. */
946
947 /* Lookup up the next entry the list. */
948 off = le32_to_cpu(*last_e);
949 e = Add2Ptr(rt, off);
950
951 /* If this is our match we are done. */
952 if (off == vbo) {
953 *last_e = *e;
954
955 /*
956 * If this was the last entry, we update that
957 * table as well.
958 */
959 if (le32_to_cpu(rt->last_free) == off)
960 rt->last_free = cpu_to_le32(last_off);
961 break;
962 }
963 }
964
965skip_looking:
966 /* If the list is now empty, we fix the last_free as well. */
967 if (!rt->first_free)
968 rt->last_free = 0;
969
970 /* Zero this entry. */
971 memset(e, 0, esize);
972 *e = RESTART_ENTRY_ALLOCATED_LE;
973
974 le16_add_cpu(var: &rt->total, val: 1);
975
976 return e;
977}
978
979struct restart_info {
980 u64 last_lsn;
981 struct RESTART_HDR *r_page;
982 u32 vbo;
983 bool chkdsk_was_run;
984 bool valid_page;
985 bool initialized;
986 bool restart;
987};
988
989#define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
990
991#define NTFSLOG_WRAPPED 0x00000001
992#define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
993#define NTFSLOG_NO_LAST_LSN 0x00000004
994#define NTFSLOG_REUSE_TAIL 0x00000010
995#define NTFSLOG_NO_OLDEST_LSN 0x00000020
996
997/* Helper struct to work with NTFS $LogFile. */
998struct ntfs_log {
999 struct ntfs_inode *ni;
1000
1001 u32 l_size;
1002 u32 orig_file_size;
1003 u32 sys_page_size;
1004 u32 sys_page_mask;
1005 u32 page_size;
1006 u32 page_mask; // page_size - 1
1007 u8 page_bits;
1008 struct RECORD_PAGE_HDR *one_page_buf;
1009
1010 struct RESTART_TABLE *open_attr_tbl;
1011 u32 transaction_id;
1012 u32 clst_per_page;
1013
1014 u32 first_page;
1015 u32 next_page;
1016 u32 ra_off;
1017 u32 data_off;
1018 u32 restart_size;
1019 u32 data_size;
1020 u16 record_header_len;
1021 u64 seq_num;
1022 u32 seq_num_bits;
1023 u32 file_data_bits;
1024 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1025
1026 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1027 u32 ra_size; /* The usable size of the restart area. */
1028
1029 /*
1030 * If true, then the in-memory restart area is to be written
1031 * to the first position on the disk.
1032 */
1033 bool init_ra;
1034 bool set_dirty; /* True if we need to set dirty flag. */
1035
1036 u64 oldest_lsn;
1037
1038 u32 oldest_lsn_off;
1039 u64 last_lsn;
1040
1041 u32 total_avail;
1042 u32 total_avail_pages;
1043 u32 total_undo_commit;
1044 u32 max_current_avail;
1045 u32 current_avail;
1046 u32 reserved;
1047
1048 short major_ver;
1049 short minor_ver;
1050
1051 u32 l_flags; /* See NTFSLOG_XXX */
1052 u32 current_openlog_count; /* On-disk value for open_log_count. */
1053
1054 struct CLIENT_ID client_id;
1055 u32 client_undo_commit;
1056
1057 struct restart_info rst_info, rst_info2;
1058};
1059
1060static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1061{
1062 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1063
1064 return vbo;
1065}
1066
1067/* Compute the offset in the log file of the next log page. */
1068static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1069{
1070 off = (off & ~log->sys_page_mask) + log->page_size;
1071 return off >= log->l_size ? log->first_page : off;
1072}
1073
1074static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1075{
1076 return (((u32)lsn) << 3) & log->page_mask;
1077}
1078
1079static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1080{
1081 return (off >> 3) + (Seq << log->file_data_bits);
1082}
1083
1084static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1085{
1086 return lsn >= log->oldest_lsn &&
1087 lsn <= le64_to_cpu(log->ra->current_lsn);
1088}
1089
1090static inline u32 hdr_file_off(struct ntfs_log *log,
1091 struct RECORD_PAGE_HDR *hdr)
1092{
1093 if (log->major_ver < 2)
1094 return le64_to_cpu(hdr->rhdr.lsn);
1095
1096 return le32_to_cpu(hdr->file_off);
1097}
1098
1099static inline u64 base_lsn(struct ntfs_log *log,
1100 const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1101{
1102 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1103 u64 ret = (((h_lsn >> log->file_data_bits) +
1104 (lsn < (lsn_to_vbo(log, lsn: h_lsn) & ~log->page_mask) ? 1 : 0))
1105 << log->file_data_bits) +
1106 ((((is_log_record_end(hdr) &&
1107 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1108 le16_to_cpu(hdr->record_hdr.next_record_off) :
1109 log->page_size) +
1110 lsn) >>
1111 3);
1112
1113 return ret;
1114}
1115
1116static inline bool verify_client_lsn(struct ntfs_log *log,
1117 const struct CLIENT_REC *client, u64 lsn)
1118{
1119 return lsn >= le64_to_cpu(client->oldest_lsn) &&
1120 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1121}
1122
1123static int read_log_page(struct ntfs_log *log, u32 vbo,
1124 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1125{
1126 int err = 0;
1127 u32 page_idx = vbo >> log->page_bits;
1128 u32 page_off = vbo & log->page_mask;
1129 u32 bytes = log->page_size - page_off;
1130 void *to_free = NULL;
1131 u32 page_vbo = page_idx << log->page_bits;
1132 struct RECORD_PAGE_HDR *page_buf;
1133 struct ntfs_inode *ni = log->ni;
1134 bool bBAAD;
1135
1136 if (vbo >= log->l_size)
1137 return -EINVAL;
1138
1139 if (!*buffer) {
1140 to_free = kmalloc(size: log->page_size, GFP_NOFS);
1141 if (!to_free)
1142 return -ENOMEM;
1143 *buffer = to_free;
1144 }
1145
1146 page_buf = page_off ? log->one_page_buf : *buffer;
1147
1148 err = ntfs_read_run_nb(sbi: ni->mi.sbi, run: &ni->file.run, vbo: page_vbo, buf: page_buf,
1149 bytes: log->page_size, NULL);
1150 if (err)
1151 goto out;
1152
1153 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1154 ntfs_fix_post_read(rhdr: &page_buf->rhdr, PAGE_SIZE, simple: false);
1155
1156 if (page_buf != *buffer)
1157 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1158
1159 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1160
1161 if (usa_error)
1162 *usa_error = bBAAD;
1163 /* Check that the update sequence array for this page is valid */
1164 /* If we don't allow errors, raise an error status */
1165 else if (bBAAD)
1166 err = -EINVAL;
1167
1168out:
1169 if (err && to_free) {
1170 kfree(objp: to_free);
1171 *buffer = NULL;
1172 }
1173
1174 return err;
1175}
1176
1177/*
1178 * log_read_rst
1179 *
1180 * It walks through 512 blocks of the file looking for a valid
1181 * restart page header. It will stop the first time we find a
1182 * valid page header.
1183 */
1184static int log_read_rst(struct ntfs_log *log, bool first,
1185 struct restart_info *info)
1186{
1187 u32 skip, vbo;
1188 struct RESTART_HDR *r_page = NULL;
1189
1190 /* Determine which restart area we are looking for. */
1191 if (first) {
1192 vbo = 0;
1193 skip = 512;
1194 } else {
1195 vbo = 512;
1196 skip = 0;
1197 }
1198
1199 /* Loop continuously until we succeed. */
1200 for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) {
1201 bool usa_error;
1202 bool brst, bchk;
1203 struct RESTART_AREA *ra;
1204
1205 /* Read a page header at the current offset. */
1206 if (read_log_page(log, vbo, buffer: (struct RECORD_PAGE_HDR **)&r_page,
1207 usa_error: &usa_error)) {
1208 /* Ignore any errors. */
1209 continue;
1210 }
1211
1212 /* Exit if the signature is a log record page. */
1213 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1214 info->initialized = true;
1215 break;
1216 }
1217
1218 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1219 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1220
1221 if (!bchk && !brst) {
1222 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1223 /*
1224 * Remember if the signature does not
1225 * indicate uninitialized file.
1226 */
1227 info->initialized = true;
1228 }
1229 continue;
1230 }
1231
1232 ra = NULL;
1233 info->valid_page = false;
1234 info->initialized = true;
1235 info->vbo = vbo;
1236
1237 /* Let's check the restart area if this is a valid page. */
1238 if (!is_rst_page_hdr_valid(file_off: vbo, rhdr: r_page))
1239 goto check_result;
1240 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1241
1242 if (!is_rst_area_valid(rhdr: r_page))
1243 goto check_result;
1244
1245 /*
1246 * We have a valid restart page header and restart area.
1247 * If chkdsk was run or we have no clients then we have
1248 * no more checking to do.
1249 */
1250 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1251 info->valid_page = true;
1252 goto check_result;
1253 }
1254
1255 if (is_client_area_valid(rhdr: r_page, usa_error)) {
1256 info->valid_page = true;
1257 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1258 }
1259
1260check_result:
1261 /*
1262 * If chkdsk was run then update the caller's
1263 * values and return.
1264 */
1265 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1266 info->chkdsk_was_run = true;
1267 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1268 info->restart = true;
1269 info->r_page = r_page;
1270 return 0;
1271 }
1272
1273 /*
1274 * If we have a valid page then copy the values
1275 * we need from it.
1276 */
1277 if (info->valid_page) {
1278 info->last_lsn = le64_to_cpu(ra->current_lsn);
1279 info->restart = true;
1280 info->r_page = r_page;
1281 return 0;
1282 }
1283 }
1284
1285 kfree(objp: r_page);
1286
1287 return 0;
1288}
1289
1290/*
1291 * Ilog_init_pg_hdr - Init @log from restart page header.
1292 */
1293static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver)
1294{
1295 log->sys_page_size = log->page_size;
1296 log->sys_page_mask = log->page_mask;
1297
1298 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1299 if (!log->clst_per_page)
1300 log->clst_per_page = 1;
1301
1302 log->first_page = major_ver >= 2 ? 0x22 * log->page_size :
1303 4 * log->page_size;
1304 log->major_ver = major_ver;
1305 log->minor_ver = minor_ver;
1306}
1307
1308/*
1309 * log_create - Init @log in cases when we don't have a restart area to use.
1310 */
1311static void log_create(struct ntfs_log *log, const u64 last_lsn,
1312 u32 open_log_count, bool wrapped, bool use_multi_page)
1313{
1314 /* All file offsets must be quadword aligned. */
1315 log->file_data_bits = blksize_bits(size: log->l_size) - 3;
1316 log->seq_num_mask = (8 << log->file_data_bits) - 1;
1317 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1318 log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1319 log->next_page = log->first_page;
1320 log->oldest_lsn = log->seq_num << log->file_data_bits;
1321 log->oldest_lsn_off = 0;
1322 log->last_lsn = log->oldest_lsn;
1323
1324 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1325
1326 /* Set the correct flags for the I/O and indicate if we have wrapped. */
1327 if (wrapped)
1328 log->l_flags |= NTFSLOG_WRAPPED;
1329
1330 if (use_multi_page)
1331 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1332
1333 /* Compute the log page values. */
1334 log->data_off = ALIGN(
1335 offsetof(struct RECORD_PAGE_HDR, fixups) +
1336 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1337 8);
1338 log->data_size = log->page_size - log->data_off;
1339 log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1340
1341 /* Remember the different page sizes for reservation. */
1342 log->reserved = log->data_size - log->record_header_len;
1343
1344 /* Compute the restart page values. */
1345 log->ra_off = ALIGN(
1346 offsetof(struct RESTART_HDR, fixups) +
1347 sizeof(short) *
1348 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1349 8);
1350 log->restart_size = log->sys_page_size - log->ra_off;
1351 log->ra_size = struct_size(log->ra, clients, 1);
1352 log->current_openlog_count = open_log_count;
1353
1354 /*
1355 * The total available log file space is the number of
1356 * log file pages times the space available on each page.
1357 */
1358 log->total_avail_pages = log->l_size - log->first_page;
1359 log->total_avail = log->total_avail_pages >> log->page_bits;
1360
1361 /*
1362 * We assume that we can't use the end of the page less than
1363 * the file record size.
1364 * Then we won't need to reserve more than the caller asks for.
1365 */
1366 log->max_current_avail = log->total_avail * log->reserved;
1367 log->total_avail = log->total_avail * log->data_size;
1368 log->current_avail = log->max_current_avail;
1369}
1370
1371/*
1372 * log_create_ra - Fill a restart area from the values stored in @log.
1373 */
1374static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1375{
1376 struct CLIENT_REC *cr;
1377 struct RESTART_AREA *ra = kzalloc(size: log->restart_size, GFP_NOFS);
1378
1379 if (!ra)
1380 return NULL;
1381
1382 ra->current_lsn = cpu_to_le64(log->last_lsn);
1383 ra->log_clients = cpu_to_le16(1);
1384 ra->client_idx[1] = LFS_NO_CLIENT_LE;
1385 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1386 ra->flags = RESTART_SINGLE_PAGE_IO;
1387 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1388 ra->ra_len = cpu_to_le16(log->ra_size);
1389 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1390 ra->l_size = cpu_to_le64(log->l_size);
1391 ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1392 ra->data_off = cpu_to_le16(log->data_off);
1393 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1394
1395 cr = ra->clients;
1396
1397 cr->prev_client = LFS_NO_CLIENT_LE;
1398 cr->next_client = LFS_NO_CLIENT_LE;
1399
1400 return ra;
1401}
1402
1403static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1404{
1405 u32 base_vbo = lsn << 3;
1406 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1407 u32 page_off = base_vbo & log->page_mask;
1408 u32 tail = log->page_size - page_off;
1409
1410 page_off -= 1;
1411
1412 /* Add the length of the header. */
1413 data_len += log->record_header_len;
1414
1415 /*
1416 * If this lsn is contained this log page we are done.
1417 * Otherwise we need to walk through several log pages.
1418 */
1419 if (data_len > tail) {
1420 data_len -= tail;
1421 tail = log->data_size;
1422 page_off = log->data_off - 1;
1423
1424 for (;;) {
1425 final_log_off = next_page_off(log, off: final_log_off);
1426
1427 /*
1428 * We are done if the remaining bytes
1429 * fit on this page.
1430 */
1431 if (data_len <= tail)
1432 break;
1433 data_len -= tail;
1434 }
1435 }
1436
1437 /*
1438 * We add the remaining bytes to our starting position on this page
1439 * and then add that value to the file offset of this log page.
1440 */
1441 return final_log_off + data_len + page_off;
1442}
1443
1444static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1445 u64 *lsn)
1446{
1447 int err;
1448 u64 this_lsn = le64_to_cpu(rh->this_lsn);
1449 u32 vbo = lsn_to_vbo(log, lsn: this_lsn);
1450 u32 end =
1451 final_log_off(log, lsn: this_lsn, le32_to_cpu(rh->client_data_len));
1452 u32 hdr_off = end & ~log->sys_page_mask;
1453 u64 seq = this_lsn >> log->file_data_bits;
1454 struct RECORD_PAGE_HDR *page = NULL;
1455
1456 /* Remember if we wrapped. */
1457 if (end <= vbo)
1458 seq += 1;
1459
1460 /* Log page header for this page. */
1461 err = read_log_page(log, vbo: hdr_off, buffer: &page, NULL);
1462 if (err)
1463 return err;
1464
1465 /*
1466 * If the lsn we were given was not the last lsn on this page,
1467 * then the starting offset for the next lsn is on a quad word
1468 * boundary following the last file offset for the current lsn.
1469 * Otherwise the file offset is the start of the data on the next page.
1470 */
1471 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1472 /* If we wrapped, we need to increment the sequence number. */
1473 hdr_off = next_page_off(log, off: hdr_off);
1474 if (hdr_off == log->first_page)
1475 seq += 1;
1476
1477 vbo = hdr_off + log->data_off;
1478 } else {
1479 vbo = ALIGN(end, 8);
1480 }
1481
1482 /* Compute the lsn based on the file offset and the sequence count. */
1483 *lsn = vbo_to_lsn(log, off: vbo, Seq: seq);
1484
1485 /*
1486 * If this lsn is within the legal range for the file, we return true.
1487 * Otherwise false indicates that there are no more lsn's.
1488 */
1489 if (!is_lsn_in_file(log, lsn: *lsn))
1490 *lsn = 0;
1491
1492 kfree(objp: page);
1493
1494 return 0;
1495}
1496
1497/*
1498 * current_log_avail - Calculate the number of bytes available for log records.
1499 */
1500static u32 current_log_avail(struct ntfs_log *log)
1501{
1502 u32 oldest_off, next_free_off, free_bytes;
1503
1504 if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1505 /* The entire file is available. */
1506 return log->max_current_avail;
1507 }
1508
1509 /*
1510 * If there is a last lsn the restart area then we know that we will
1511 * have to compute the free range.
1512 * If there is no oldest lsn then start at the first page of the file.
1513 */
1514 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1515 log->first_page :
1516 (log->oldest_lsn_off & ~log->sys_page_mask);
1517
1518 /*
1519 * We will use the next log page offset to compute the next free page.
1520 * If we are going to reuse this page go to the next page.
1521 * If we are at the first page then use the end of the file.
1522 */
1523 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1524 log->next_page + log->page_size :
1525 log->next_page == log->first_page ? log->l_size :
1526 log->next_page;
1527
1528 /* If the two offsets are the same then there is no available space. */
1529 if (oldest_off == next_free_off)
1530 return 0;
1531 /*
1532 * If the free offset follows the oldest offset then subtract
1533 * this range from the total available pages.
1534 */
1535 free_bytes =
1536 oldest_off < next_free_off ?
1537 log->total_avail_pages - (next_free_off - oldest_off) :
1538 oldest_off - next_free_off;
1539
1540 free_bytes >>= log->page_bits;
1541 return free_bytes * log->reserved;
1542}
1543
1544static bool check_subseq_log_page(struct ntfs_log *log,
1545 const struct RECORD_PAGE_HDR *rp, u32 vbo,
1546 u64 seq)
1547{
1548 u64 lsn_seq;
1549 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1550 u64 lsn = le64_to_cpu(rhdr->lsn);
1551
1552 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1553 return false;
1554
1555 /*
1556 * If the last lsn on the page occurs was written after the page
1557 * that caused the original error then we have a fatal error.
1558 */
1559 lsn_seq = lsn >> log->file_data_bits;
1560
1561 /*
1562 * If the sequence number for the lsn the page is equal or greater
1563 * than lsn we expect, then this is a subsequent write.
1564 */
1565 return lsn_seq >= seq ||
1566 (lsn_seq == seq - 1 && log->first_page == vbo &&
1567 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1568}
1569
1570/*
1571 * last_log_lsn
1572 *
1573 * Walks through the log pages for a file, searching for the
1574 * last log page written to the file.
1575 */
1576static int last_log_lsn(struct ntfs_log *log)
1577{
1578 int err;
1579 bool usa_error = false;
1580 bool replace_page = false;
1581 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1582 bool wrapped_file, wrapped;
1583
1584 u32 page_cnt = 1, page_pos = 1;
1585 u32 page_off = 0, page_off1 = 0, saved_off = 0;
1586 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1587 u32 first_file_off = 0, second_file_off = 0;
1588 u32 part_io_count = 0;
1589 u32 tails = 0;
1590 u32 this_off, curpage_off, nextpage_off, remain_pages;
1591
1592 u64 expected_seq, seq_base = 0, lsn_base = 0;
1593 u64 best_lsn, best_lsn1, best_lsn2;
1594 u64 lsn_cur, lsn1, lsn2;
1595 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1596
1597 u16 cur_pos, best_page_pos;
1598
1599 struct RECORD_PAGE_HDR *page = NULL;
1600 struct RECORD_PAGE_HDR *tst_page = NULL;
1601 struct RECORD_PAGE_HDR *first_tail = NULL;
1602 struct RECORD_PAGE_HDR *second_tail = NULL;
1603 struct RECORD_PAGE_HDR *tail_page = NULL;
1604 struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1605 struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1606 struct RECORD_PAGE_HDR *page_bufs = NULL;
1607 struct RECORD_PAGE_HDR *best_page;
1608
1609 if (log->major_ver >= 2) {
1610 final_off = 0x02 * log->page_size;
1611 second_off = 0x12 * log->page_size;
1612
1613 // 0x10 == 0x12 - 0x2
1614 page_bufs = kmalloc(size: log->page_size * 0x10, GFP_NOFS);
1615 if (!page_bufs)
1616 return -ENOMEM;
1617 } else {
1618 second_off = log->first_page - log->page_size;
1619 final_off = second_off - log->page_size;
1620 }
1621
1622next_tail:
1623 /* Read second tail page (at pos 3/0x12000). */
1624 if (read_log_page(log, vbo: second_off, buffer: &second_tail, usa_error: &usa_error) ||
1625 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1626 kfree(objp: second_tail);
1627 second_tail = NULL;
1628 second_file_off = 0;
1629 lsn2 = 0;
1630 } else {
1631 second_file_off = hdr_file_off(log, hdr: second_tail);
1632 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1633 }
1634
1635 /* Read first tail page (at pos 2/0x2000). */
1636 if (read_log_page(log, vbo: final_off, buffer: &first_tail, usa_error: &usa_error) ||
1637 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1638 kfree(objp: first_tail);
1639 first_tail = NULL;
1640 first_file_off = 0;
1641 lsn1 = 0;
1642 } else {
1643 first_file_off = hdr_file_off(log, hdr: first_tail);
1644 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1645 }
1646
1647 if (log->major_ver < 2) {
1648 int best_page;
1649
1650 first_tail_prev = first_tail;
1651 final_off_prev = first_file_off;
1652 second_tail_prev = second_tail;
1653 second_off_prev = second_file_off;
1654 tails = 1;
1655
1656 if (!first_tail && !second_tail)
1657 goto tail_read;
1658
1659 if (first_tail && second_tail)
1660 best_page = lsn1 < lsn2 ? 1 : 0;
1661 else if (first_tail)
1662 best_page = 0;
1663 else
1664 best_page = 1;
1665
1666 page_off = best_page ? second_file_off : first_file_off;
1667 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1668 goto tail_read;
1669 }
1670
1671 best_lsn1 = first_tail ? base_lsn(log, hdr: first_tail, lsn: first_file_off) : 0;
1672 best_lsn2 = second_tail ? base_lsn(log, hdr: second_tail, lsn: second_file_off) :
1673 0;
1674
1675 if (first_tail && second_tail) {
1676 if (best_lsn1 > best_lsn2) {
1677 best_lsn = best_lsn1;
1678 best_page = first_tail;
1679 this_off = first_file_off;
1680 } else {
1681 best_lsn = best_lsn2;
1682 best_page = second_tail;
1683 this_off = second_file_off;
1684 }
1685 } else if (first_tail) {
1686 best_lsn = best_lsn1;
1687 best_page = first_tail;
1688 this_off = first_file_off;
1689 } else if (second_tail) {
1690 best_lsn = best_lsn2;
1691 best_page = second_tail;
1692 this_off = second_file_off;
1693 } else {
1694 goto tail_read;
1695 }
1696
1697 best_page_pos = le16_to_cpu(best_page->page_pos);
1698
1699 if (!tails) {
1700 if (best_page_pos == page_pos) {
1701 seq_base = best_lsn >> log->file_data_bits;
1702 saved_off = page_off = le32_to_cpu(best_page->file_off);
1703 lsn_base = best_lsn;
1704
1705 memmove(page_bufs, best_page, log->page_size);
1706
1707 page_cnt = le16_to_cpu(best_page->page_count);
1708 if (page_cnt > 1)
1709 page_pos += 1;
1710
1711 tails = 1;
1712 }
1713 } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1714 saved_off + log->page_size == this_off &&
1715 lsn_base < best_lsn &&
1716 (page_pos != page_cnt || best_page_pos == page_pos ||
1717 best_page_pos == 1) &&
1718 (page_pos >= page_cnt || best_page_pos == page_pos)) {
1719 u16 bppc = le16_to_cpu(best_page->page_count);
1720
1721 saved_off += log->page_size;
1722 lsn_base = best_lsn;
1723
1724 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1725 log->page_size);
1726
1727 tails += 1;
1728
1729 if (best_page_pos != bppc) {
1730 page_cnt = bppc;
1731 page_pos = best_page_pos;
1732
1733 if (page_cnt > 1)
1734 page_pos += 1;
1735 } else {
1736 page_pos = page_cnt = 1;
1737 }
1738 } else {
1739 kfree(objp: first_tail);
1740 kfree(objp: second_tail);
1741 goto tail_read;
1742 }
1743
1744 kfree(objp: first_tail_prev);
1745 first_tail_prev = first_tail;
1746 final_off_prev = first_file_off;
1747 first_tail = NULL;
1748
1749 kfree(objp: second_tail_prev);
1750 second_tail_prev = second_tail;
1751 second_off_prev = second_file_off;
1752 second_tail = NULL;
1753
1754 final_off += log->page_size;
1755 second_off += log->page_size;
1756
1757 if (tails < 0x10)
1758 goto next_tail;
1759tail_read:
1760 first_tail = first_tail_prev;
1761 final_off = final_off_prev;
1762
1763 second_tail = second_tail_prev;
1764 second_off = second_off_prev;
1765
1766 page_cnt = page_pos = 1;
1767
1768 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1769 log->next_page;
1770
1771 wrapped_file =
1772 curpage_off == log->first_page &&
1773 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1774
1775 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1776
1777 nextpage_off = curpage_off;
1778
1779next_page:
1780 tail_page = NULL;
1781 /* Read the next log page. */
1782 err = read_log_page(log, vbo: curpage_off, buffer: &page, usa_error: &usa_error);
1783
1784 /* Compute the next log page offset the file. */
1785 nextpage_off = next_page_off(log, off: curpage_off);
1786 wrapped = nextpage_off == log->first_page;
1787
1788 if (tails > 1) {
1789 struct RECORD_PAGE_HDR *cur_page =
1790 Add2Ptr(page_bufs, curpage_off - page_off);
1791
1792 if (curpage_off == saved_off) {
1793 tail_page = cur_page;
1794 goto use_tail_page;
1795 }
1796
1797 if (page_off > curpage_off || curpage_off >= saved_off)
1798 goto use_tail_page;
1799
1800 if (page_off1)
1801 goto use_cur_page;
1802
1803 if (!err && !usa_error &&
1804 page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1805 cur_page->rhdr.lsn == page->rhdr.lsn &&
1806 cur_page->record_hdr.next_record_off ==
1807 page->record_hdr.next_record_off &&
1808 ((page_pos == page_cnt &&
1809 le16_to_cpu(page->page_pos) == 1) ||
1810 (page_pos != page_cnt &&
1811 le16_to_cpu(page->page_pos) == page_pos + 1 &&
1812 le16_to_cpu(page->page_count) == page_cnt))) {
1813 cur_page = NULL;
1814 goto use_tail_page;
1815 }
1816
1817 page_off1 = page_off;
1818
1819use_cur_page:
1820
1821 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1822
1823 if (last_ok_lsn !=
1824 le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1825 ((lsn_cur >> log->file_data_bits) +
1826 ((curpage_off <
1827 (lsn_to_vbo(log, lsn: lsn_cur) & ~log->page_mask)) ?
1828 1 :
1829 0)) != expected_seq) {
1830 goto check_tail;
1831 }
1832
1833 if (!is_log_record_end(hdr: cur_page)) {
1834 tail_page = NULL;
1835 last_ok_lsn = lsn_cur;
1836 goto next_page_1;
1837 }
1838
1839 log->seq_num = expected_seq;
1840 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1841 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1842 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1843
1844 if (log->record_header_len <=
1845 log->page_size -
1846 le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1847 log->l_flags |= NTFSLOG_REUSE_TAIL;
1848 log->next_page = curpage_off;
1849 } else {
1850 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1851 log->next_page = nextpage_off;
1852 }
1853
1854 if (wrapped_file)
1855 log->l_flags |= NTFSLOG_WRAPPED;
1856
1857 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1858 goto next_page_1;
1859 }
1860
1861 /*
1862 * If we are at the expected first page of a transfer check to see
1863 * if either tail copy is at this offset.
1864 * If this page is the last page of a transfer, check if we wrote
1865 * a subsequent tail copy.
1866 */
1867 if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1868 /*
1869 * Check if the offset matches either the first or second
1870 * tail copy. It is possible it will match both.
1871 */
1872 if (curpage_off == final_off)
1873 tail_page = first_tail;
1874
1875 /*
1876 * If we already matched on the first page then
1877 * check the ending lsn's.
1878 */
1879 if (curpage_off == second_off) {
1880 if (!tail_page ||
1881 (second_tail &&
1882 le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1883 le64_to_cpu(first_tail->record_hdr
1884 .last_end_lsn))) {
1885 tail_page = second_tail;
1886 }
1887 }
1888 }
1889
1890use_tail_page:
1891 if (tail_page) {
1892 /* We have a candidate for a tail copy. */
1893 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1894
1895 if (last_ok_lsn < lsn_cur) {
1896 /*
1897 * If the sequence number is not expected,
1898 * then don't use the tail copy.
1899 */
1900 if (expected_seq != (lsn_cur >> log->file_data_bits))
1901 tail_page = NULL;
1902 } else if (last_ok_lsn > lsn_cur) {
1903 /*
1904 * If the last lsn is greater than the one on
1905 * this page then forget this tail.
1906 */
1907 tail_page = NULL;
1908 }
1909 }
1910
1911 /*
1912 *If we have an error on the current page,
1913 * we will break of this loop.
1914 */
1915 if (err || usa_error)
1916 goto check_tail;
1917
1918 /*
1919 * Done if the last lsn on this page doesn't match the previous known
1920 * last lsn or the sequence number is not expected.
1921 */
1922 lsn_cur = le64_to_cpu(page->rhdr.lsn);
1923 if (last_ok_lsn != lsn_cur &&
1924 expected_seq != (lsn_cur >> log->file_data_bits)) {
1925 goto check_tail;
1926 }
1927
1928 /*
1929 * Check that the page position and page count values are correct.
1930 * If this is the first page of a transfer the position must be 1
1931 * and the count will be unknown.
1932 */
1933 if (page_cnt == page_pos) {
1934 if (page->page_pos != cpu_to_le16(1) &&
1935 (!reuse_page || page->page_pos != page->page_count)) {
1936 /*
1937 * If the current page is the first page we are
1938 * looking at and we are reusing this page then
1939 * it can be either the first or last page of a
1940 * transfer. Otherwise it can only be the first.
1941 */
1942 goto check_tail;
1943 }
1944 } else if (le16_to_cpu(page->page_count) != page_cnt ||
1945 le16_to_cpu(page->page_pos) != page_pos + 1) {
1946 /*
1947 * The page position better be 1 more than the last page
1948 * position and the page count better match.
1949 */
1950 goto check_tail;
1951 }
1952
1953 /*
1954 * We have a valid page the file and may have a valid page
1955 * the tail copy area.
1956 * If the tail page was written after the page the file then
1957 * break of the loop.
1958 */
1959 if (tail_page &&
1960 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1961 /* Remember if we will replace the page. */
1962 replace_page = true;
1963 goto check_tail;
1964 }
1965
1966 tail_page = NULL;
1967
1968 if (is_log_record_end(hdr: page)) {
1969 /*
1970 * Since we have read this page we know the sequence number
1971 * is the same as our expected value.
1972 */
1973 log->seq_num = expected_seq;
1974 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1975 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1976 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1977
1978 /*
1979 * If there is room on this page for another header then
1980 * remember we want to reuse the page.
1981 */
1982 if (log->record_header_len <=
1983 log->page_size -
1984 le16_to_cpu(page->record_hdr.next_record_off)) {
1985 log->l_flags |= NTFSLOG_REUSE_TAIL;
1986 log->next_page = curpage_off;
1987 } else {
1988 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1989 log->next_page = nextpage_off;
1990 }
1991
1992 /* Remember if we wrapped the log file. */
1993 if (wrapped_file)
1994 log->l_flags |= NTFSLOG_WRAPPED;
1995 }
1996
1997 /*
1998 * Remember the last page count and position.
1999 * Also remember the last known lsn.
2000 */
2001 page_cnt = le16_to_cpu(page->page_count);
2002 page_pos = le16_to_cpu(page->page_pos);
2003 last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2004
2005next_page_1:
2006
2007 if (wrapped) {
2008 expected_seq += 1;
2009 wrapped_file = 1;
2010 }
2011
2012 curpage_off = nextpage_off;
2013 kfree(objp: page);
2014 page = NULL;
2015 reuse_page = 0;
2016 goto next_page;
2017
2018check_tail:
2019 if (tail_page) {
2020 log->seq_num = expected_seq;
2021 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2022 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2023 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2024
2025 if (log->page_size -
2026 le16_to_cpu(
2027 tail_page->record_hdr.next_record_off) >=
2028 log->record_header_len) {
2029 log->l_flags |= NTFSLOG_REUSE_TAIL;
2030 log->next_page = curpage_off;
2031 } else {
2032 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2033 log->next_page = nextpage_off;
2034 }
2035
2036 if (wrapped)
2037 log->l_flags |= NTFSLOG_WRAPPED;
2038 }
2039
2040 /* Remember that the partial IO will start at the next page. */
2041 second_off = nextpage_off;
2042
2043 /*
2044 * If the next page is the first page of the file then update
2045 * the sequence number for log records which begon the next page.
2046 */
2047 if (wrapped)
2048 expected_seq += 1;
2049
2050 /*
2051 * If we have a tail copy or are performing single page I/O we can
2052 * immediately look at the next page.
2053 */
2054 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2055 page_cnt = 2;
2056 page_pos = 1;
2057 goto check_valid;
2058 }
2059
2060 if (page_pos != page_cnt)
2061 goto check_valid;
2062 /*
2063 * If the next page causes us to wrap to the beginning of the log
2064 * file then we know which page to check next.
2065 */
2066 if (wrapped) {
2067 page_cnt = 2;
2068 page_pos = 1;
2069 goto check_valid;
2070 }
2071
2072 cur_pos = 2;
2073
2074next_test_page:
2075 kfree(objp: tst_page);
2076 tst_page = NULL;
2077
2078 /* Walk through the file, reading log pages. */
2079 err = read_log_page(log, vbo: nextpage_off, buffer: &tst_page, usa_error: &usa_error);
2080
2081 /*
2082 * If we get a USA error then assume that we correctly found
2083 * the end of the original transfer.
2084 */
2085 if (usa_error)
2086 goto file_is_valid;
2087
2088 /*
2089 * If we were able to read the page, we examine it to see if it
2090 * is the same or different Io block.
2091 */
2092 if (err)
2093 goto next_test_page_1;
2094
2095 if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2096 check_subseq_log_page(log, rp: tst_page, vbo: nextpage_off, seq: expected_seq)) {
2097 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2098 page_pos = le16_to_cpu(tst_page->page_pos);
2099 goto check_valid;
2100 } else {
2101 goto file_is_valid;
2102 }
2103
2104next_test_page_1:
2105
2106 nextpage_off = next_page_off(log, off: curpage_off);
2107 wrapped = nextpage_off == log->first_page;
2108
2109 if (wrapped) {
2110 expected_seq += 1;
2111 page_cnt = 2;
2112 page_pos = 1;
2113 }
2114
2115 cur_pos += 1;
2116 part_io_count += 1;
2117 if (!wrapped)
2118 goto next_test_page;
2119
2120check_valid:
2121 /* Skip over the remaining pages this transfer. */
2122 remain_pages = page_cnt - page_pos - 1;
2123 part_io_count += remain_pages;
2124
2125 while (remain_pages--) {
2126 nextpage_off = next_page_off(log, off: curpage_off);
2127 wrapped = nextpage_off == log->first_page;
2128
2129 if (wrapped)
2130 expected_seq += 1;
2131 }
2132
2133 /* Call our routine to check this log page. */
2134 kfree(objp: tst_page);
2135 tst_page = NULL;
2136
2137 err = read_log_page(log, vbo: nextpage_off, buffer: &tst_page, usa_error: &usa_error);
2138 if (!err && !usa_error &&
2139 check_subseq_log_page(log, rp: tst_page, vbo: nextpage_off, seq: expected_seq)) {
2140 err = -EINVAL;
2141 goto out;
2142 }
2143
2144file_is_valid:
2145
2146 /* We have a valid file. */
2147 if (page_off1 || tail_page) {
2148 struct RECORD_PAGE_HDR *tmp_page;
2149
2150 if (sb_rdonly(sb: log->ni->mi.sbi->sb)) {
2151 err = -EROFS;
2152 goto out;
2153 }
2154
2155 if (page_off1) {
2156 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2157 tails -= (page_off1 - page_off) / log->page_size;
2158 if (!tail_page)
2159 tails -= 1;
2160 } else {
2161 tmp_page = tail_page;
2162 tails = 1;
2163 }
2164
2165 while (tails--) {
2166 u64 off = hdr_file_off(log, hdr: tmp_page);
2167
2168 if (!page) {
2169 page = kmalloc(size: log->page_size, GFP_NOFS);
2170 if (!page) {
2171 err = -ENOMEM;
2172 goto out;
2173 }
2174 }
2175
2176 /*
2177 * Correct page and copy the data from this page
2178 * into it and flush it to disk.
2179 */
2180 memcpy(page, tmp_page, log->page_size);
2181
2182 /* Fill last flushed lsn value flush the page. */
2183 if (log->major_ver < 2)
2184 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2185 else
2186 page->file_off = 0;
2187
2188 page->page_pos = page->page_count = cpu_to_le16(1);
2189
2190 ntfs_fix_pre_write(rhdr: &page->rhdr, bytes: log->page_size);
2191
2192 err = ntfs_sb_write_run(sbi: log->ni->mi.sbi,
2193 run: &log->ni->file.run, vbo: off, buf: page,
2194 bytes: log->page_size, sync: 0);
2195
2196 if (err)
2197 goto out;
2198
2199 if (part_io_count && second_off == off) {
2200 second_off += log->page_size;
2201 part_io_count -= 1;
2202 }
2203
2204 tmp_page = Add2Ptr(tmp_page, log->page_size);
2205 }
2206 }
2207
2208 if (part_io_count) {
2209 if (sb_rdonly(sb: log->ni->mi.sbi->sb)) {
2210 err = -EROFS;
2211 goto out;
2212 }
2213 }
2214
2215out:
2216 kfree(objp: second_tail);
2217 kfree(objp: first_tail);
2218 kfree(objp: page);
2219 kfree(objp: tst_page);
2220 kfree(objp: page_bufs);
2221
2222 return err;
2223}
2224
2225/*
2226 * read_log_rec_buf - Copy a log record from the file to a buffer.
2227 *
2228 * The log record may span several log pages and may even wrap the file.
2229 */
2230static int read_log_rec_buf(struct ntfs_log *log,
2231 const struct LFS_RECORD_HDR *rh, void *buffer)
2232{
2233 int err;
2234 struct RECORD_PAGE_HDR *ph = NULL;
2235 u64 lsn = le64_to_cpu(rh->this_lsn);
2236 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2237 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2238 u32 data_len = le32_to_cpu(rh->client_data_len);
2239
2240 /*
2241 * While there are more bytes to transfer,
2242 * we continue to attempt to perform the read.
2243 */
2244 for (;;) {
2245 bool usa_error;
2246 u32 tail = log->page_size - off;
2247
2248 if (tail >= data_len)
2249 tail = data_len;
2250
2251 data_len -= tail;
2252
2253 err = read_log_page(log, vbo, buffer: &ph, usa_error: &usa_error);
2254 if (err)
2255 goto out;
2256
2257 /*
2258 * The last lsn on this page better be greater or equal
2259 * to the lsn we are copying.
2260 */
2261 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2262 err = -EINVAL;
2263 goto out;
2264 }
2265
2266 memcpy(buffer, Add2Ptr(ph, off), tail);
2267
2268 /* If there are no more bytes to transfer, we exit the loop. */
2269 if (!data_len) {
2270 if (!is_log_record_end(hdr: ph) ||
2271 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2272 err = -EINVAL;
2273 goto out;
2274 }
2275 break;
2276 }
2277
2278 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2279 lsn > le64_to_cpu(ph->rhdr.lsn)) {
2280 err = -EINVAL;
2281 goto out;
2282 }
2283
2284 vbo = next_page_off(log, off: vbo);
2285 off = log->data_off;
2286
2287 /*
2288 * Adjust our pointer the user's buffer to transfer
2289 * the next block to.
2290 */
2291 buffer = Add2Ptr(buffer, tail);
2292 }
2293
2294out:
2295 kfree(objp: ph);
2296 return err;
2297}
2298
2299static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2300 u64 *lsn)
2301{
2302 int err;
2303 struct LFS_RECORD_HDR *rh = NULL;
2304 const struct CLIENT_REC *cr =
2305 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2306 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2307 u32 len;
2308 struct NTFS_RESTART *rst;
2309
2310 *lsn = 0;
2311 *rst_ = NULL;
2312
2313 /* If the client doesn't have a restart area, go ahead and exit now. */
2314 if (!lsnc)
2315 return 0;
2316
2317 err = read_log_page(log, vbo: lsn_to_vbo(log, lsn: lsnc),
2318 buffer: (struct RECORD_PAGE_HDR **)&rh, NULL);
2319 if (err)
2320 return err;
2321
2322 rst = NULL;
2323 lsnr = le64_to_cpu(rh->this_lsn);
2324
2325 if (lsnc != lsnr) {
2326 /* If the lsn values don't match, then the disk is corrupt. */
2327 err = -EINVAL;
2328 goto out;
2329 }
2330
2331 *lsn = lsnr;
2332 len = le32_to_cpu(rh->client_data_len);
2333
2334 if (!len) {
2335 err = 0;
2336 goto out;
2337 }
2338
2339 if (len < sizeof(struct NTFS_RESTART)) {
2340 err = -EINVAL;
2341 goto out;
2342 }
2343
2344 rst = kmalloc(size: len, GFP_NOFS);
2345 if (!rst) {
2346 err = -ENOMEM;
2347 goto out;
2348 }
2349
2350 /* Copy the data into the 'rst' buffer. */
2351 err = read_log_rec_buf(log, rh, buffer: rst);
2352 if (err)
2353 goto out;
2354
2355 *rst_ = rst;
2356 rst = NULL;
2357
2358out:
2359 kfree(objp: rh);
2360 kfree(objp: rst);
2361
2362 return err;
2363}
2364
2365static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2366{
2367 int err;
2368 struct LFS_RECORD_HDR *rh = lcb->lrh;
2369 u32 rec_len, len;
2370
2371 /* Read the record header for this lsn. */
2372 if (!rh) {
2373 err = read_log_page(log, vbo: lsn_to_vbo(log, lsn),
2374 buffer: (struct RECORD_PAGE_HDR **)&rh, NULL);
2375
2376 lcb->lrh = rh;
2377 if (err)
2378 return err;
2379 }
2380
2381 /*
2382 * If the lsn the log record doesn't match the desired
2383 * lsn then the disk is corrupt.
2384 */
2385 if (lsn != le64_to_cpu(rh->this_lsn))
2386 return -EINVAL;
2387
2388 len = le32_to_cpu(rh->client_data_len);
2389
2390 /*
2391 * Check that the length field isn't greater than the total
2392 * available space the log file.
2393 */
2394 rec_len = len + log->record_header_len;
2395 if (rec_len >= log->total_avail)
2396 return -EINVAL;
2397
2398 /*
2399 * If the entire log record is on this log page,
2400 * put a pointer to the log record the context block.
2401 */
2402 if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2403 void *lr = kmalloc(size: len, GFP_NOFS);
2404
2405 if (!lr)
2406 return -ENOMEM;
2407
2408 lcb->log_rec = lr;
2409 lcb->alloc = true;
2410
2411 /* Copy the data into the buffer returned. */
2412 err = read_log_rec_buf(log, rh, buffer: lr);
2413 if (err)
2414 return err;
2415 } else {
2416 /* If beyond the end of the current page -> an error. */
2417 u32 page_off = lsn_to_page_off(log, lsn);
2418
2419 if (page_off + len + log->record_header_len > log->page_size)
2420 return -EINVAL;
2421
2422 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2423 lcb->alloc = false;
2424 }
2425
2426 return 0;
2427}
2428
2429/*
2430 * read_log_rec_lcb - Init the query operation.
2431 */
2432static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2433 struct lcb **lcb_)
2434{
2435 int err;
2436 const struct CLIENT_REC *cr;
2437 struct lcb *lcb;
2438
2439 switch (ctx_mode) {
2440 case lcb_ctx_undo_next:
2441 case lcb_ctx_prev:
2442 case lcb_ctx_next:
2443 break;
2444 default:
2445 return -EINVAL;
2446 }
2447
2448 /* Check that the given lsn is the legal range for this client. */
2449 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2450
2451 if (!verify_client_lsn(log, client: cr, lsn))
2452 return -EINVAL;
2453
2454 lcb = kzalloc(size: sizeof(struct lcb), GFP_NOFS);
2455 if (!lcb)
2456 return -ENOMEM;
2457 lcb->client = log->client_id;
2458 lcb->ctx_mode = ctx_mode;
2459
2460 /* Find the log record indicated by the given lsn. */
2461 err = find_log_rec(log, lsn, lcb);
2462 if (err)
2463 goto out;
2464
2465 *lcb_ = lcb;
2466 return 0;
2467
2468out:
2469 lcb_put(lcb);
2470 *lcb_ = NULL;
2471 return err;
2472}
2473
2474/*
2475 * find_client_next_lsn
2476 *
2477 * Attempt to find the next lsn to return to a client based on the context mode.
2478 */
2479static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2480{
2481 int err;
2482 u64 next_lsn;
2483 struct LFS_RECORD_HDR *hdr;
2484
2485 hdr = lcb->lrh;
2486 *lsn = 0;
2487
2488 if (lcb_ctx_next != lcb->ctx_mode)
2489 goto check_undo_next;
2490
2491 /* Loop as long as another lsn can be found. */
2492 for (;;) {
2493 u64 current_lsn;
2494
2495 err = next_log_lsn(log, rh: hdr, lsn: &current_lsn);
2496 if (err)
2497 goto out;
2498
2499 if (!current_lsn)
2500 break;
2501
2502 if (hdr != lcb->lrh)
2503 kfree(objp: hdr);
2504
2505 hdr = NULL;
2506 err = read_log_page(log, vbo: lsn_to_vbo(log, lsn: current_lsn),
2507 buffer: (struct RECORD_PAGE_HDR **)&hdr, NULL);
2508 if (err)
2509 goto out;
2510
2511 if (memcmp(p: &hdr->client, q: &lcb->client,
2512 size: sizeof(struct CLIENT_ID))) {
2513 /*err = -EINVAL; */
2514 } else if (LfsClientRecord == hdr->record_type) {
2515 kfree(objp: lcb->lrh);
2516 lcb->lrh = hdr;
2517 *lsn = current_lsn;
2518 return 0;
2519 }
2520 }
2521
2522out:
2523 if (hdr != lcb->lrh)
2524 kfree(objp: hdr);
2525 return err;
2526
2527check_undo_next:
2528 if (lcb_ctx_undo_next == lcb->ctx_mode)
2529 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2530 else if (lcb_ctx_prev == lcb->ctx_mode)
2531 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2532 else
2533 return 0;
2534
2535 if (!next_lsn)
2536 return 0;
2537
2538 if (!verify_client_lsn(
2539 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2540 lsn: next_lsn))
2541 return 0;
2542
2543 hdr = NULL;
2544 err = read_log_page(log, vbo: lsn_to_vbo(log, lsn: next_lsn),
2545 buffer: (struct RECORD_PAGE_HDR **)&hdr, NULL);
2546 if (err)
2547 return err;
2548 kfree(objp: lcb->lrh);
2549 lcb->lrh = hdr;
2550
2551 *lsn = next_lsn;
2552
2553 return 0;
2554}
2555
2556static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2557{
2558 int err;
2559
2560 err = find_client_next_lsn(log, lcb, lsn);
2561 if (err)
2562 return err;
2563
2564 if (!*lsn)
2565 return 0;
2566
2567 if (lcb->alloc)
2568 kfree(objp: lcb->log_rec);
2569
2570 lcb->log_rec = NULL;
2571 lcb->alloc = false;
2572 kfree(objp: lcb->lrh);
2573 lcb->lrh = NULL;
2574
2575 return find_log_rec(log, lsn: *lsn, lcb);
2576}
2577
2578bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2579{
2580 __le16 mask;
2581 u32 min_de, de_off, used, total;
2582 const struct NTFS_DE *e;
2583
2584 if (hdr_has_subnode(hdr)) {
2585 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2586 mask = NTFS_IE_HAS_SUBNODES;
2587 } else {
2588 min_de = sizeof(struct NTFS_DE);
2589 mask = 0;
2590 }
2591
2592 de_off = le32_to_cpu(hdr->de_off);
2593 used = le32_to_cpu(hdr->used);
2594 total = le32_to_cpu(hdr->total);
2595
2596 if (de_off > bytes - min_de || used > bytes || total > bytes ||
2597 de_off + min_de > used || used > total) {
2598 return false;
2599 }
2600
2601 e = Add2Ptr(hdr, de_off);
2602 for (;;) {
2603 u16 esize = le16_to_cpu(e->size);
2604 struct NTFS_DE *next = Add2Ptr(e, esize);
2605
2606 if (esize < min_de || PtrOffset(hdr, next) > used ||
2607 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2608 return false;
2609 }
2610
2611 if (de_is_last(e))
2612 break;
2613
2614 e = next;
2615 }
2616
2617 return true;
2618}
2619
2620static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2621{
2622 u16 fo;
2623 const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2624
2625 if (r->sign != NTFS_INDX_SIGNATURE)
2626 return false;
2627
2628 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2629
2630 if (le16_to_cpu(r->fix_off) > fo)
2631 return false;
2632
2633 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2634 return false;
2635
2636 return check_index_header(hdr: &ib->ihdr,
2637 bytes: bytes - offsetof(struct INDEX_BUFFER, ihdr));
2638}
2639
2640static inline bool check_index_root(const struct ATTRIB *attr,
2641 struct ntfs_sb_info *sbi)
2642{
2643 bool ret;
2644 const struct INDEX_ROOT *root = resident_data(attr);
2645 u8 index_bits = le32_to_cpu(root->index_block_size) >=
2646 sbi->cluster_size ?
2647 sbi->cluster_bits :
2648 SECTOR_SHIFT;
2649 u8 block_clst = root->index_block_clst;
2650
2651 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2652 (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2653 (root->type == ATTR_NAME &&
2654 root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2655 (le32_to_cpu(root->index_block_size) !=
2656 (block_clst << index_bits)) ||
2657 (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2658 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2659 block_clst != 0x40 && block_clst != 0x80)) {
2660 return false;
2661 }
2662
2663 ret = check_index_header(hdr: &root->ihdr,
2664 le32_to_cpu(attr->res.data_size) -
2665 offsetof(struct INDEX_ROOT, ihdr));
2666 return ret;
2667}
2668
2669static inline bool check_attr(const struct MFT_REC *rec,
2670 const struct ATTRIB *attr,
2671 struct ntfs_sb_info *sbi)
2672{
2673 u32 asize = le32_to_cpu(attr->size);
2674 u32 rsize = 0;
2675 u64 dsize, svcn, evcn;
2676 u16 run_off;
2677
2678 /* Check the fixed part of the attribute record header. */
2679 if (asize >= sbi->record_size ||
2680 asize + PtrOffset(rec, attr) >= sbi->record_size ||
2681 (attr->name_len &&
2682 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2683 asize)) {
2684 return false;
2685 }
2686
2687 /* Check the attribute fields. */
2688 switch (attr->non_res) {
2689 case 0:
2690 rsize = le32_to_cpu(attr->res.data_size);
2691 if (rsize >= asize ||
2692 le16_to_cpu(attr->res.data_off) + rsize > asize) {
2693 return false;
2694 }
2695 break;
2696
2697 case 1:
2698 dsize = le64_to_cpu(attr->nres.data_size);
2699 svcn = le64_to_cpu(attr->nres.svcn);
2700 evcn = le64_to_cpu(attr->nres.evcn);
2701 run_off = le16_to_cpu(attr->nres.run_off);
2702
2703 if (svcn > evcn + 1 || run_off >= asize ||
2704 le64_to_cpu(attr->nres.valid_size) > dsize ||
2705 dsize > le64_to_cpu(attr->nres.alloc_size)) {
2706 return false;
2707 }
2708
2709 if (run_off > asize)
2710 return false;
2711
2712 if (run_unpack(NULL, sbi, ino: 0, svcn, evcn, vcn: svcn,
2713 Add2Ptr(attr, run_off), run_buf_size: asize - run_off) < 0) {
2714 return false;
2715 }
2716
2717 return true;
2718
2719 default:
2720 return false;
2721 }
2722
2723 switch (attr->type) {
2724 case ATTR_NAME:
2725 if (fname_full_size(Add2Ptr(
2726 attr, le16_to_cpu(attr->res.data_off))) > asize) {
2727 return false;
2728 }
2729 break;
2730
2731 case ATTR_ROOT:
2732 return check_index_root(attr, sbi);
2733
2734 case ATTR_STD:
2735 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2736 rsize != sizeof(struct ATTR_STD_INFO)) {
2737 return false;
2738 }
2739 break;
2740
2741 case ATTR_LIST:
2742 case ATTR_ID:
2743 case ATTR_SECURE:
2744 case ATTR_LABEL:
2745 case ATTR_VOL_INFO:
2746 case ATTR_DATA:
2747 case ATTR_ALLOC:
2748 case ATTR_BITMAP:
2749 case ATTR_REPARSE:
2750 case ATTR_EA_INFO:
2751 case ATTR_EA:
2752 case ATTR_PROPERTYSET:
2753 case ATTR_LOGGED_UTILITY_STREAM:
2754 break;
2755
2756 default:
2757 return false;
2758 }
2759
2760 return true;
2761}
2762
2763static inline bool check_file_record(const struct MFT_REC *rec,
2764 const struct MFT_REC *rec2,
2765 struct ntfs_sb_info *sbi)
2766{
2767 const struct ATTRIB *attr;
2768 u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2769 u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2770 u16 ao = le16_to_cpu(rec->attr_off);
2771 u32 rs = sbi->record_size;
2772
2773 /* Check the file record header for consistency. */
2774 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2775 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2776 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2777 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2778 le32_to_cpu(rec->total) != rs) {
2779 return false;
2780 }
2781
2782 /* Loop to check all of the attributes. */
2783 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2784 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2785 if (check_attr(rec, attr, sbi))
2786 continue;
2787 return false;
2788 }
2789
2790 return true;
2791}
2792
2793static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2794 const u64 *rlsn)
2795{
2796 u64 lsn;
2797
2798 if (!rlsn)
2799 return true;
2800
2801 lsn = le64_to_cpu(hdr->lsn);
2802
2803 if (hdr->sign == NTFS_HOLE_SIGNATURE)
2804 return false;
2805
2806 if (*rlsn > lsn)
2807 return true;
2808
2809 return false;
2810}
2811
2812static inline bool check_if_attr(const struct MFT_REC *rec,
2813 const struct LOG_REC_HDR *lrh)
2814{
2815 u16 ro = le16_to_cpu(lrh->record_off);
2816 u16 o = le16_to_cpu(rec->attr_off);
2817 const struct ATTRIB *attr = Add2Ptr(rec, o);
2818
2819 while (o < ro) {
2820 u32 asize;
2821
2822 if (attr->type == ATTR_END)
2823 break;
2824
2825 asize = le32_to_cpu(attr->size);
2826 if (!asize)
2827 break;
2828
2829 o += asize;
2830 attr = Add2Ptr(attr, asize);
2831 }
2832
2833 return o == ro;
2834}
2835
2836static inline bool check_if_index_root(const struct MFT_REC *rec,
2837 const struct LOG_REC_HDR *lrh)
2838{
2839 u16 ro = le16_to_cpu(lrh->record_off);
2840 u16 o = le16_to_cpu(rec->attr_off);
2841 const struct ATTRIB *attr = Add2Ptr(rec, o);
2842
2843 while (o < ro) {
2844 u32 asize;
2845
2846 if (attr->type == ATTR_END)
2847 break;
2848
2849 asize = le32_to_cpu(attr->size);
2850 if (!asize)
2851 break;
2852
2853 o += asize;
2854 attr = Add2Ptr(attr, asize);
2855 }
2856
2857 return o == ro && attr->type == ATTR_ROOT;
2858}
2859
2860static inline bool check_if_root_index(const struct ATTRIB *attr,
2861 const struct INDEX_HDR *hdr,
2862 const struct LOG_REC_HDR *lrh)
2863{
2864 u16 ao = le16_to_cpu(lrh->attr_off);
2865 u32 de_off = le32_to_cpu(hdr->de_off);
2866 u32 o = PtrOffset(attr, hdr) + de_off;
2867 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2868 u32 asize = le32_to_cpu(attr->size);
2869
2870 while (o < ao) {
2871 u16 esize;
2872
2873 if (o >= asize)
2874 break;
2875
2876 esize = le16_to_cpu(e->size);
2877 if (!esize)
2878 break;
2879
2880 o += esize;
2881 e = Add2Ptr(e, esize);
2882 }
2883
2884 return o == ao;
2885}
2886
2887static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2888 u32 attr_off)
2889{
2890 u32 de_off = le32_to_cpu(hdr->de_off);
2891 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2892 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2893 u32 used = le32_to_cpu(hdr->used);
2894
2895 while (o < attr_off) {
2896 u16 esize;
2897
2898 if (de_off >= used)
2899 break;
2900
2901 esize = le16_to_cpu(e->size);
2902 if (!esize)
2903 break;
2904
2905 o += esize;
2906 de_off += esize;
2907 e = Add2Ptr(e, esize);
2908 }
2909
2910 return o == attr_off;
2911}
2912
2913static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2914 u32 nsize)
2915{
2916 u32 asize = le32_to_cpu(attr->size);
2917 int dsize = nsize - asize;
2918 u8 *next = Add2Ptr(attr, asize);
2919 u32 used = le32_to_cpu(rec->used);
2920
2921 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2922
2923 rec->used = cpu_to_le32(used + dsize);
2924 attr->size = cpu_to_le32(nsize);
2925}
2926
2927struct OpenAttr {
2928 struct ATTRIB *attr;
2929 struct runs_tree *run1;
2930 struct runs_tree run0;
2931 struct ntfs_inode *ni;
2932 // CLST rno;
2933};
2934
2935/*
2936 * cmp_type_and_name
2937 *
2938 * Return: 0 if 'attr' has the same type and name.
2939 */
2940static inline int cmp_type_and_name(const struct ATTRIB *a1,
2941 const struct ATTRIB *a2)
2942{
2943 return a1->type != a2->type || a1->name_len != a2->name_len ||
2944 (a1->name_len && memcmp(p: attr_name(attr: a1), q: attr_name(attr: a2),
2945 size: a1->name_len * sizeof(short)));
2946}
2947
2948static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2949 const struct ATTRIB *attr, CLST rno)
2950{
2951 struct OPEN_ATTR_ENRTY *oe = NULL;
2952
2953 while ((oe = enum_rstbl(t: log->open_attr_tbl, c: oe))) {
2954 struct OpenAttr *op_attr;
2955
2956 if (ino_get(ref: &oe->ref) != rno)
2957 continue;
2958
2959 op_attr = (struct OpenAttr *)oe->ptr;
2960 if (!cmp_type_and_name(a1: op_attr->attr, a2: attr))
2961 return op_attr;
2962 }
2963 return NULL;
2964}
2965
2966static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2967 enum ATTR_TYPE type, u64 size,
2968 const u16 *name, size_t name_len,
2969 __le16 flags)
2970{
2971 struct ATTRIB *attr;
2972 u32 name_size = ALIGN(name_len * sizeof(short), 8);
2973 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2974 u32 asize = name_size +
2975 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2976
2977 attr = kzalloc(size: asize, GFP_NOFS);
2978 if (!attr)
2979 return NULL;
2980
2981 attr->type = type;
2982 attr->size = cpu_to_le32(asize);
2983 attr->flags = flags;
2984 attr->non_res = 1;
2985 attr->name_len = name_len;
2986
2987 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2988 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2989 attr->nres.data_size = cpu_to_le64(size);
2990 attr->nres.valid_size = attr->nres.data_size;
2991 if (is_ext) {
2992 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2993 if (is_attr_compressed(attr))
2994 attr->nres.c_unit = COMPRESSION_UNIT;
2995
2996 attr->nres.run_off =
2997 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2998 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
2999 name_len * sizeof(short));
3000 } else {
3001 attr->name_off = SIZEOF_NONRESIDENT_LE;
3002 attr->nres.run_off =
3003 cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3004 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3005 name_len * sizeof(short));
3006 }
3007
3008 return attr;
3009}
3010
3011/*
3012 * do_action - Common routine for the Redo and Undo Passes.
3013 * @rlsn: If it is NULL then undo.
3014 */
3015static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3016 const struct LOG_REC_HDR *lrh, u32 op, void *data,
3017 u32 dlen, u32 rec_len, const u64 *rlsn)
3018{
3019 int err = 0;
3020 struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3021 struct inode *inode = NULL, *inode_parent;
3022 struct mft_inode *mi = NULL, *mi2_child = NULL;
3023 CLST rno = 0, rno_base = 0;
3024 struct INDEX_BUFFER *ib = NULL;
3025 struct MFT_REC *rec = NULL;
3026 struct ATTRIB *attr = NULL, *attr2;
3027 struct INDEX_HDR *hdr;
3028 struct INDEX_ROOT *root;
3029 struct NTFS_DE *e, *e1, *e2;
3030 struct NEW_ATTRIBUTE_SIZES *new_sz;
3031 struct ATTR_FILE_NAME *fname;
3032 struct OpenAttr *oa, *oa2;
3033 u32 nsize, t32, asize, used, esize, off, bits;
3034 u16 id, id2;
3035 u32 record_size = sbi->record_size;
3036 u64 t64;
3037 u16 roff = le16_to_cpu(lrh->record_off);
3038 u16 aoff = le16_to_cpu(lrh->attr_off);
3039 u64 lco = 0;
3040 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3041 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3042 u64 vbo = cbo + tvo;
3043 void *buffer_le = NULL;
3044 u32 bytes = 0;
3045 bool a_dirty = false;
3046 u16 data_off;
3047
3048 oa = oe->ptr;
3049
3050 /* Big switch to prepare. */
3051 switch (op) {
3052 /* ============================================================
3053 * Process MFT records, as described by the current log record.
3054 * ============================================================
3055 */
3056 case InitializeFileRecordSegment:
3057 case DeallocateFileRecordSegment:
3058 case WriteEndOfFileRecordSegment:
3059 case CreateAttribute:
3060 case DeleteAttribute:
3061 case UpdateResidentValue:
3062 case UpdateMappingPairs:
3063 case SetNewAttributeSizes:
3064 case AddIndexEntryRoot:
3065 case DeleteIndexEntryRoot:
3066 case SetIndexEntryVcnRoot:
3067 case UpdateFileNameRoot:
3068 case UpdateRecordDataRoot:
3069 case ZeroEndOfFileRecord:
3070 rno = vbo >> sbi->record_bits;
3071 inode = ilookup(sb: sbi->sb, ino: rno);
3072 if (inode) {
3073 mi = &ntfs_i(inode)->mi;
3074 } else if (op == InitializeFileRecordSegment) {
3075 mi = kzalloc(size: sizeof(struct mft_inode), GFP_NOFS);
3076 if (!mi)
3077 return -ENOMEM;
3078 err = mi_format_new(mi, sbi, rno, flags: 0, is_mft: false);
3079 if (err)
3080 goto out;
3081 } else {
3082 /* Read from disk. */
3083 err = mi_get(sbi, rno, mi: &mi);
3084 if (err)
3085 return err;
3086 }
3087 rec = mi->mrec;
3088
3089 if (op == DeallocateFileRecordSegment)
3090 goto skip_load_parent;
3091
3092 if (InitializeFileRecordSegment != op) {
3093 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3094 goto dirty_vol;
3095 if (!check_lsn(hdr: &rec->rhdr, rlsn))
3096 goto out;
3097 if (!check_file_record(rec, NULL, sbi))
3098 goto dirty_vol;
3099 attr = Add2Ptr(rec, roff);
3100 }
3101
3102 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3103 rno_base = rno;
3104 goto skip_load_parent;
3105 }
3106
3107 rno_base = ino_get(ref: &rec->parent_ref);
3108 inode_parent = ntfs_iget5(sb: sbi->sb, ref: &rec->parent_ref, NULL);
3109 if (IS_ERR(ptr: inode_parent))
3110 goto skip_load_parent;
3111
3112 if (is_bad_inode(inode_parent)) {
3113 iput(inode_parent);
3114 goto skip_load_parent;
3115 }
3116
3117 if (ni_load_mi_ex(ni: ntfs_i(inode: inode_parent), rno, mi: &mi2_child)) {
3118 iput(inode_parent);
3119 } else {
3120 if (mi2_child->mrec != mi->mrec)
3121 memcpy(mi2_child->mrec, mi->mrec,
3122 sbi->record_size);
3123
3124 if (inode)
3125 iput(inode);
3126 else if (mi)
3127 mi_put(mi);
3128
3129 inode = inode_parent;
3130 mi = mi2_child;
3131 rec = mi2_child->mrec;
3132 attr = Add2Ptr(rec, roff);
3133 }
3134
3135skip_load_parent:
3136 inode_parent = NULL;
3137 break;
3138
3139 /*
3140 * Process attributes, as described by the current log record.
3141 */
3142 case UpdateNonresidentValue:
3143 case AddIndexEntryAllocation:
3144 case DeleteIndexEntryAllocation:
3145 case WriteEndOfIndexBuffer:
3146 case SetIndexEntryVcnAllocation:
3147 case UpdateFileNameAllocation:
3148 case SetBitsInNonresidentBitMap:
3149 case ClearBitsInNonresidentBitMap:
3150 case UpdateRecordDataAllocation:
3151 attr = oa->attr;
3152 bytes = UpdateNonresidentValue == op ? dlen : 0;
3153 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3154
3155 if (attr->type == ATTR_ALLOC) {
3156 t32 = le32_to_cpu(oe->bytes_per_index);
3157 if (bytes < t32)
3158 bytes = t32;
3159 }
3160
3161 if (!bytes)
3162 bytes = lco - cbo;
3163
3164 bytes += roff;
3165 if (attr->type == ATTR_ALLOC)
3166 bytes = (bytes + 511) & ~511; // align
3167
3168 buffer_le = kmalloc(size: bytes, GFP_NOFS);
3169 if (!buffer_le)
3170 return -ENOMEM;
3171
3172 err = ntfs_read_run_nb(sbi, run: oa->run1, vbo, buf: buffer_le, bytes,
3173 NULL);
3174 if (err)
3175 goto out;
3176
3177 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3178 ntfs_fix_post_read(rhdr: buffer_le, bytes, simple: false);
3179 break;
3180
3181 default:
3182 WARN_ON(1);
3183 }
3184
3185 /* Big switch to do operation. */
3186 switch (op) {
3187 case InitializeFileRecordSegment:
3188 if (roff + dlen > record_size)
3189 goto dirty_vol;
3190
3191 memcpy(Add2Ptr(rec, roff), data, dlen);
3192 mi->dirty = true;
3193 break;
3194
3195 case DeallocateFileRecordSegment:
3196 clear_rec_inuse(rec);
3197 le16_add_cpu(var: &rec->seq, val: 1);
3198 mi->dirty = true;
3199 break;
3200
3201 case WriteEndOfFileRecordSegment:
3202 attr2 = (struct ATTRIB *)data;
3203 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3204 goto dirty_vol;
3205
3206 memmove(attr, attr2, dlen);
3207 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3208
3209 mi->dirty = true;
3210 break;
3211
3212 case CreateAttribute:
3213 attr2 = (struct ATTRIB *)data;
3214 asize = le32_to_cpu(attr2->size);
3215 used = le32_to_cpu(rec->used);
3216
3217 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3218 !IS_ALIGNED(asize, 8) ||
3219 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3220 dlen > record_size - used) {
3221 goto dirty_vol;
3222 }
3223
3224 memmove(Add2Ptr(attr, asize), attr, used - roff);
3225 memcpy(attr, attr2, asize);
3226
3227 rec->used = cpu_to_le32(used + asize);
3228 id = le16_to_cpu(rec->next_attr_id);
3229 id2 = le16_to_cpu(attr2->id);
3230 if (id <= id2)
3231 rec->next_attr_id = cpu_to_le16(id2 + 1);
3232 if (is_attr_indexed(attr))
3233 le16_add_cpu(var: &rec->hard_links, val: 1);
3234
3235 oa2 = find_loaded_attr(log, attr, rno: rno_base);
3236 if (oa2) {
3237 void *p2 = kmemdup(p: attr, le32_to_cpu(attr->size),
3238 GFP_NOFS);
3239 if (p2) {
3240 // run_close(oa2->run1);
3241 kfree(objp: oa2->attr);
3242 oa2->attr = p2;
3243 }
3244 }
3245
3246 mi->dirty = true;
3247 break;
3248
3249 case DeleteAttribute:
3250 asize = le32_to_cpu(attr->size);
3251 used = le32_to_cpu(rec->used);
3252
3253 if (!check_if_attr(rec, lrh))
3254 goto dirty_vol;
3255
3256 rec->used = cpu_to_le32(used - asize);
3257 if (is_attr_indexed(attr))
3258 le16_add_cpu(var: &rec->hard_links, val: -1);
3259
3260 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3261
3262 mi->dirty = true;
3263 break;
3264
3265 case UpdateResidentValue:
3266 nsize = aoff + dlen;
3267
3268 if (!check_if_attr(rec, lrh))
3269 goto dirty_vol;
3270
3271 asize = le32_to_cpu(attr->size);
3272 used = le32_to_cpu(rec->used);
3273
3274 if (lrh->redo_len == lrh->undo_len) {
3275 if (nsize > asize)
3276 goto dirty_vol;
3277 goto move_data;
3278 }
3279
3280 if (nsize > asize && nsize - asize > record_size - used)
3281 goto dirty_vol;
3282
3283 nsize = ALIGN(nsize, 8);
3284 data_off = le16_to_cpu(attr->res.data_off);
3285
3286 if (nsize < asize) {
3287 memmove(Add2Ptr(attr, aoff), data, dlen);
3288 data = NULL; // To skip below memmove().
3289 }
3290
3291 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3292 used - le16_to_cpu(lrh->record_off) - asize);
3293
3294 rec->used = cpu_to_le32(used + nsize - asize);
3295 attr->size = cpu_to_le32(nsize);
3296 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3297
3298move_data:
3299 if (data)
3300 memmove(Add2Ptr(attr, aoff), data, dlen);
3301
3302 oa2 = find_loaded_attr(log, attr, rno: rno_base);
3303 if (oa2) {
3304 void *p2 = kmemdup(p: attr, le32_to_cpu(attr->size),
3305 GFP_NOFS);
3306 if (p2) {
3307 // run_close(&oa2->run0);
3308 oa2->run1 = &oa2->run0;
3309 kfree(objp: oa2->attr);
3310 oa2->attr = p2;
3311 }
3312 }
3313
3314 mi->dirty = true;
3315 break;
3316
3317 case UpdateMappingPairs:
3318 nsize = aoff + dlen;
3319 asize = le32_to_cpu(attr->size);
3320 used = le32_to_cpu(rec->used);
3321
3322 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3323 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3324 (nsize > asize && nsize - asize > record_size - used)) {
3325 goto dirty_vol;
3326 }
3327
3328 nsize = ALIGN(nsize, 8);
3329
3330 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3331 used - le16_to_cpu(lrh->record_off) - asize);
3332 rec->used = cpu_to_le32(used + nsize - asize);
3333 attr->size = cpu_to_le32(nsize);
3334 memmove(Add2Ptr(attr, aoff), data, dlen);
3335
3336 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3337 run_buf: attr_run(attr), highest_vcn: &t64)) {
3338 goto dirty_vol;
3339 }
3340
3341 attr->nres.evcn = cpu_to_le64(t64);
3342 oa2 = find_loaded_attr(log, attr, rno: rno_base);
3343 if (oa2 && oa2->attr->non_res)
3344 oa2->attr->nres.evcn = attr->nres.evcn;
3345
3346 mi->dirty = true;
3347 break;
3348
3349 case SetNewAttributeSizes:
3350 new_sz = data;
3351 if (!check_if_attr(rec, lrh) || !attr->non_res)
3352 goto dirty_vol;
3353
3354 attr->nres.alloc_size = new_sz->alloc_size;
3355 attr->nres.data_size = new_sz->data_size;
3356 attr->nres.valid_size = new_sz->valid_size;
3357
3358 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3359 attr->nres.total_size = new_sz->total_size;
3360
3361 oa2 = find_loaded_attr(log, attr, rno: rno_base);
3362 if (oa2) {
3363 void *p2 = kmemdup(p: attr, le32_to_cpu(attr->size),
3364 GFP_NOFS);
3365 if (p2) {
3366 kfree(objp: oa2->attr);
3367 oa2->attr = p2;
3368 }
3369 }
3370 mi->dirty = true;
3371 break;
3372
3373 case AddIndexEntryRoot:
3374 e = (struct NTFS_DE *)data;
3375 esize = le16_to_cpu(e->size);
3376 root = resident_data(attr);
3377 hdr = &root->ihdr;
3378 used = le32_to_cpu(hdr->used);
3379
3380 if (!check_if_index_root(rec, lrh) ||
3381 !check_if_root_index(attr, hdr, lrh) ||
3382 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3383 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3384 goto dirty_vol;
3385 }
3386
3387 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3388
3389 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3390
3391 memmove(Add2Ptr(e1, esize), e1,
3392 PtrOffset(e1, Add2Ptr(hdr, used)));
3393 memmove(e1, e, esize);
3394
3395 le32_add_cpu(var: &attr->res.data_size, val: esize);
3396 hdr->used = cpu_to_le32(used + esize);
3397 le32_add_cpu(var: &hdr->total, val: esize);
3398
3399 mi->dirty = true;
3400 break;
3401
3402 case DeleteIndexEntryRoot:
3403 root = resident_data(attr);
3404 hdr = &root->ihdr;
3405 used = le32_to_cpu(hdr->used);
3406
3407 if (!check_if_index_root(rec, lrh) ||
3408 !check_if_root_index(attr, hdr, lrh)) {
3409 goto dirty_vol;
3410 }
3411
3412 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3413 esize = le16_to_cpu(e1->size);
3414 e2 = Add2Ptr(e1, esize);
3415
3416 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3417
3418 le32_sub_cpu(var: &attr->res.data_size, val: esize);
3419 hdr->used = cpu_to_le32(used - esize);
3420 le32_sub_cpu(var: &hdr->total, val: esize);
3421
3422 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3423
3424 mi->dirty = true;
3425 break;
3426
3427 case SetIndexEntryVcnRoot:
3428 root = resident_data(attr);
3429 hdr = &root->ihdr;
3430
3431 if (!check_if_index_root(rec, lrh) ||
3432 !check_if_root_index(attr, hdr, lrh)) {
3433 goto dirty_vol;
3434 }
3435
3436 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3437
3438 de_set_vbn_le(e, vcn: *(__le64 *)data);
3439 mi->dirty = true;
3440 break;
3441
3442 case UpdateFileNameRoot:
3443 root = resident_data(attr);
3444 hdr = &root->ihdr;
3445
3446 if (!check_if_index_root(rec, lrh) ||
3447 !check_if_root_index(attr, hdr, lrh)) {
3448 goto dirty_vol;
3449 }
3450
3451 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3452 fname = (struct ATTR_FILE_NAME *)(e + 1);
3453 memmove(&fname->dup, data, sizeof(fname->dup)); //
3454 mi->dirty = true;
3455 break;
3456
3457 case UpdateRecordDataRoot:
3458 root = resident_data(attr);
3459 hdr = &root->ihdr;
3460
3461 if (!check_if_index_root(rec, lrh) ||
3462 !check_if_root_index(attr, hdr, lrh)) {
3463 goto dirty_vol;
3464 }
3465
3466 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3467
3468 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3469
3470 mi->dirty = true;
3471 break;
3472
3473 case ZeroEndOfFileRecord:
3474 if (roff + dlen > record_size)
3475 goto dirty_vol;
3476
3477 memset(attr, 0, dlen);
3478 mi->dirty = true;
3479 break;
3480
3481 case UpdateNonresidentValue:
3482 if (lco < cbo + roff + dlen)
3483 goto dirty_vol;
3484
3485 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3486
3487 a_dirty = true;
3488 if (attr->type == ATTR_ALLOC)
3489 ntfs_fix_pre_write(rhdr: buffer_le, bytes);
3490 break;
3491
3492 case AddIndexEntryAllocation:
3493 ib = Add2Ptr(buffer_le, roff);
3494 hdr = &ib->ihdr;
3495 e = data;
3496 esize = le16_to_cpu(e->size);
3497 e1 = Add2Ptr(ib, aoff);
3498
3499 if (is_baad(hdr: &ib->rhdr))
3500 goto dirty_vol;
3501 if (!check_lsn(hdr: &ib->rhdr, rlsn))
3502 goto out;
3503
3504 used = le32_to_cpu(hdr->used);
3505
3506 if (!check_index_buffer(ib, bytes) ||
3507 !check_if_alloc_index(hdr, attr_off: aoff) ||
3508 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3509 used + esize > le32_to_cpu(hdr->total)) {
3510 goto dirty_vol;
3511 }
3512
3513 memmove(Add2Ptr(e1, esize), e1,
3514 PtrOffset(e1, Add2Ptr(hdr, used)));
3515 memcpy(e1, e, esize);
3516
3517 hdr->used = cpu_to_le32(used + esize);
3518
3519 a_dirty = true;
3520
3521 ntfs_fix_pre_write(rhdr: &ib->rhdr, bytes);
3522 break;
3523
3524 case DeleteIndexEntryAllocation:
3525 ib = Add2Ptr(buffer_le, roff);
3526 hdr = &ib->ihdr;
3527 e = Add2Ptr(ib, aoff);
3528 esize = le16_to_cpu(e->size);
3529
3530 if (is_baad(hdr: &ib->rhdr))
3531 goto dirty_vol;
3532 if (!check_lsn(hdr: &ib->rhdr, rlsn))
3533 goto out;
3534
3535 if (!check_index_buffer(ib, bytes) ||
3536 !check_if_alloc_index(hdr, attr_off: aoff)) {
3537 goto dirty_vol;
3538 }
3539
3540 e1 = Add2Ptr(e, esize);
3541 nsize = esize;
3542 used = le32_to_cpu(hdr->used);
3543
3544 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3545
3546 hdr->used = cpu_to_le32(used - nsize);
3547
3548 a_dirty = true;
3549
3550 ntfs_fix_pre_write(rhdr: &ib->rhdr, bytes);
3551 break;
3552
3553 case WriteEndOfIndexBuffer:
3554 ib = Add2Ptr(buffer_le, roff);
3555 hdr = &ib->ihdr;
3556 e = Add2Ptr(ib, aoff);
3557
3558 if (is_baad(hdr: &ib->rhdr))
3559 goto dirty_vol;
3560 if (!check_lsn(hdr: &ib->rhdr, rlsn))
3561 goto out;
3562 if (!check_index_buffer(ib, bytes) ||
3563 !check_if_alloc_index(hdr, attr_off: aoff) ||
3564 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3565 le32_to_cpu(hdr->total)) {
3566 goto dirty_vol;
3567 }
3568
3569 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3570 memmove(e, data, dlen);
3571
3572 a_dirty = true;
3573 ntfs_fix_pre_write(rhdr: &ib->rhdr, bytes);
3574 break;
3575
3576 case SetIndexEntryVcnAllocation:
3577 ib = Add2Ptr(buffer_le, roff);
3578 hdr = &ib->ihdr;
3579 e = Add2Ptr(ib, aoff);
3580
3581 if (is_baad(hdr: &ib->rhdr))
3582 goto dirty_vol;
3583
3584 if (!check_lsn(hdr: &ib->rhdr, rlsn))
3585 goto out;
3586 if (!check_index_buffer(ib, bytes) ||
3587 !check_if_alloc_index(hdr, attr_off: aoff)) {
3588 goto dirty_vol;
3589 }
3590
3591 de_set_vbn_le(e, vcn: *(__le64 *)data);
3592
3593 a_dirty = true;
3594 ntfs_fix_pre_write(rhdr: &ib->rhdr, bytes);
3595 break;
3596
3597 case UpdateFileNameAllocation:
3598 ib = Add2Ptr(buffer_le, roff);
3599 hdr = &ib->ihdr;
3600 e = Add2Ptr(ib, aoff);
3601
3602 if (is_baad(hdr: &ib->rhdr))
3603 goto dirty_vol;
3604
3605 if (!check_lsn(hdr: &ib->rhdr, rlsn))
3606 goto out;
3607 if (!check_index_buffer(ib, bytes) ||
3608 !check_if_alloc_index(hdr, attr_off: aoff)) {
3609 goto dirty_vol;
3610 }
3611
3612 fname = (struct ATTR_FILE_NAME *)(e + 1);
3613 memmove(&fname->dup, data, sizeof(fname->dup));
3614
3615 a_dirty = true;
3616 ntfs_fix_pre_write(rhdr: &ib->rhdr, bytes);
3617 break;
3618
3619 case SetBitsInNonresidentBitMap:
3620 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3621 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3622
3623 if (cbo + (off + 7) / 8 > lco ||
3624 cbo + ((off + bits + 7) / 8) > lco) {
3625 goto dirty_vol;
3626 }
3627
3628 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), start: off, len: bits);
3629 a_dirty = true;
3630 break;
3631
3632 case ClearBitsInNonresidentBitMap:
3633 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3634 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3635
3636 if (cbo + (off + 7) / 8 > lco ||
3637 cbo + ((off + bits + 7) / 8) > lco) {
3638 goto dirty_vol;
3639 }
3640
3641 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), start: off, len: bits);
3642 a_dirty = true;
3643 break;
3644
3645 case UpdateRecordDataAllocation:
3646 ib = Add2Ptr(buffer_le, roff);
3647 hdr = &ib->ihdr;
3648 e = Add2Ptr(ib, aoff);
3649
3650 if (is_baad(hdr: &ib->rhdr))
3651 goto dirty_vol;
3652
3653 if (!check_lsn(hdr: &ib->rhdr, rlsn))
3654 goto out;
3655 if (!check_index_buffer(ib, bytes) ||
3656 !check_if_alloc_index(hdr, attr_off: aoff)) {
3657 goto dirty_vol;
3658 }
3659
3660 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3661
3662 a_dirty = true;
3663 ntfs_fix_pre_write(rhdr: &ib->rhdr, bytes);
3664 break;
3665
3666 default:
3667 WARN_ON(1);
3668 }
3669
3670 if (rlsn) {
3671 __le64 t64 = cpu_to_le64(*rlsn);
3672
3673 if (rec)
3674 rec->rhdr.lsn = t64;
3675 if (ib)
3676 ib->rhdr.lsn = t64;
3677 }
3678
3679 if (mi && mi->dirty) {
3680 err = mi_write(mi, wait: 0);
3681 if (err)
3682 goto out;
3683 }
3684
3685 if (a_dirty) {
3686 attr = oa->attr;
3687 err = ntfs_sb_write_run(sbi, run: oa->run1, vbo, buf: buffer_le, bytes,
3688 sync: 0);
3689 if (err)
3690 goto out;
3691 }
3692
3693out:
3694
3695 if (inode)
3696 iput(inode);
3697 else if (mi != mi2_child)
3698 mi_put(mi);
3699
3700 kfree(objp: buffer_le);
3701
3702 return err;
3703
3704dirty_vol:
3705 log->set_dirty = true;
3706 goto out;
3707}
3708
3709/*
3710 * log_replay - Replays log and empties it.
3711 *
3712 * This function is called during mount operation.
3713 * It replays log and empties it.
3714 * Initialized is set false if logfile contains '-1'.
3715 */
3716int log_replay(struct ntfs_inode *ni, bool *initialized)
3717{
3718 int err;
3719 struct ntfs_sb_info *sbi = ni->mi.sbi;
3720 struct ntfs_log *log;
3721
3722 u64 rec_lsn, checkpt_lsn = 0, rlsn = 0;
3723 struct ATTR_NAME_ENTRY *attr_names = NULL;
3724 struct RESTART_TABLE *dptbl = NULL;
3725 struct RESTART_TABLE *trtbl = NULL;
3726 const struct RESTART_TABLE *rt;
3727 struct RESTART_TABLE *oatbl = NULL;
3728 struct inode *inode;
3729 struct OpenAttr *oa;
3730 struct ntfs_inode *ni_oe;
3731 struct ATTRIB *attr = NULL;
3732 u64 size, vcn, undo_next_lsn;
3733 CLST rno, lcn, lcn0, len0, clen;
3734 void *data;
3735 struct NTFS_RESTART *rst = NULL;
3736 struct lcb *lcb = NULL;
3737 struct OPEN_ATTR_ENRTY *oe;
3738 struct TRANSACTION_ENTRY *tr;
3739 struct DIR_PAGE_ENTRY *dp;
3740 u32 i, bytes_per_attr_entry;
3741 u32 vbo, tail, off, dlen;
3742 u32 saved_len, rec_len, transact_id;
3743 bool use_second_page;
3744 struct RESTART_AREA *ra2, *ra = NULL;
3745 struct CLIENT_REC *ca, *cr;
3746 __le16 client;
3747 struct RESTART_HDR *rh;
3748 const struct LFS_RECORD_HDR *frh;
3749 const struct LOG_REC_HDR *lrh;
3750 bool is_mapped;
3751 bool is_ro = sb_rdonly(sb: sbi->sb);
3752 u64 t64;
3753 u16 t16;
3754 u32 t32;
3755
3756 log = kzalloc(size: sizeof(struct ntfs_log), GFP_NOFS);
3757 if (!log)
3758 return -ENOMEM;
3759
3760 log->ni = ni;
3761 log->l_size = log->orig_file_size = ni->vfs_inode.i_size;
3762
3763 /* Get the size of page. NOTE: To replay we can use default page. */
3764#if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3765 log->page_size = norm_file_page(PAGE_SIZE, l_size: &log->l_size, use_default: true);
3766#else
3767 log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false);
3768#endif
3769 if (!log->page_size) {
3770 err = -EINVAL;
3771 goto out;
3772 }
3773
3774 log->one_page_buf = kmalloc(size: log->page_size, GFP_NOFS);
3775 if (!log->one_page_buf) {
3776 err = -ENOMEM;
3777 goto out;
3778 }
3779
3780 log->page_mask = log->page_size - 1;
3781 log->page_bits = blksize_bits(size: log->page_size);
3782
3783 /* Look for a restart area on the disk. */
3784 err = log_read_rst(log, first: true, info: &log->rst_info);
3785 if (err)
3786 goto out;
3787
3788 /* remember 'initialized' */
3789 *initialized = log->rst_info.initialized;
3790
3791 if (!log->rst_info.restart) {
3792 if (log->rst_info.initialized) {
3793 /* No restart area but the file is not initialized. */
3794 err = -EINVAL;
3795 goto out;
3796 }
3797
3798 log_init_pg_hdr(log, major_ver: 1, minor_ver: 1);
3799 log_create(log, last_lsn: 0, open_log_count: get_random_u32(), wrapped: false, use_multi_page: false);
3800
3801 ra = log_create_ra(log);
3802 if (!ra) {
3803 err = -ENOMEM;
3804 goto out;
3805 }
3806 log->ra = ra;
3807 log->init_ra = true;
3808
3809 goto process_log;
3810 }
3811
3812 /*
3813 * If the restart offset above wasn't zero then we won't
3814 * look for a second restart.
3815 */
3816 if (log->rst_info.vbo)
3817 goto check_restart_area;
3818
3819 err = log_read_rst(log, first: false, info: &log->rst_info2);
3820 if (err)
3821 goto out;
3822
3823 /* Determine which restart area to use. */
3824 if (!log->rst_info2.restart ||
3825 log->rst_info2.last_lsn <= log->rst_info.last_lsn)
3826 goto use_first_page;
3827
3828 use_second_page = true;
3829
3830 if (log->rst_info.chkdsk_was_run &&
3831 log->page_size != log->rst_info.vbo) {
3832 struct RECORD_PAGE_HDR *sp = NULL;
3833 bool usa_error;
3834
3835 if (!read_log_page(log, vbo: log->page_size, buffer: &sp, usa_error: &usa_error) &&
3836 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3837 use_second_page = false;
3838 }
3839 kfree(objp: sp);
3840 }
3841
3842 if (use_second_page) {
3843 kfree(objp: log->rst_info.r_page);
3844 memcpy(&log->rst_info, &log->rst_info2,
3845 sizeof(struct restart_info));
3846 log->rst_info2.r_page = NULL;
3847 }
3848
3849use_first_page:
3850 kfree(objp: log->rst_info2.r_page);
3851
3852check_restart_area:
3853 /*
3854 * If the restart area is at offset 0, we want
3855 * to write the second restart area first.
3856 */
3857 log->init_ra = !!log->rst_info.vbo;
3858
3859 /* If we have a valid page then grab a pointer to the restart area. */
3860 ra2 = log->rst_info.valid_page ?
3861 Add2Ptr(log->rst_info.r_page,
3862 le16_to_cpu(log->rst_info.r_page->ra_off)) :
3863 NULL;
3864
3865 if (log->rst_info.chkdsk_was_run ||
3866 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3867 bool wrapped = false;
3868 bool use_multi_page = false;
3869 u32 open_log_count;
3870
3871 /* Do some checks based on whether we have a valid log page. */
3872 open_log_count = log->rst_info.valid_page ?
3873 le32_to_cpu(ra2->open_log_count) :
3874 get_random_u32();
3875
3876 log_init_pg_hdr(log, major_ver: 1, minor_ver: 1);
3877
3878 log_create(log, last_lsn: log->rst_info.last_lsn, open_log_count, wrapped,
3879 use_multi_page);
3880
3881 ra = log_create_ra(log);
3882 if (!ra) {
3883 err = -ENOMEM;
3884 goto out;
3885 }
3886 log->ra = ra;
3887
3888 /* Put the restart areas and initialize
3889 * the log file as required.
3890 */
3891 goto process_log;
3892 }
3893
3894 if (!ra2) {
3895 err = -EINVAL;
3896 goto out;
3897 }
3898
3899 /*
3900 * If the log page or the system page sizes have changed, we can't
3901 * use the log file. We must use the system page size instead of the
3902 * default size if there is not a clean shutdown.
3903 */
3904 t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size);
3905 if (log->page_size != t32) {
3906 log->l_size = log->orig_file_size;
3907 log->page_size = norm_file_page(page_size: t32, l_size: &log->l_size,
3908 use_default: t32 == DefaultLogPageSize);
3909 }
3910
3911 if (log->page_size != t32 ||
3912 log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) {
3913 err = -EINVAL;
3914 goto out;
3915 }
3916
3917 /* If the file size has shrunk then we won't mount it. */
3918 if (log->l_size < le64_to_cpu(ra2->l_size)) {
3919 err = -EINVAL;
3920 goto out;
3921 }
3922
3923 log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver),
3924 le16_to_cpu(log->rst_info.r_page->minor_ver));
3925
3926 log->l_size = le64_to_cpu(ra2->l_size);
3927 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3928 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3929 log->seq_num_mask = (8 << log->file_data_bits) - 1;
3930 log->last_lsn = le64_to_cpu(ra2->current_lsn);
3931 log->seq_num = log->last_lsn >> log->file_data_bits;
3932 log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off);
3933 log->restart_size = log->sys_page_size - log->ra_off;
3934 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3935 log->ra_size = le16_to_cpu(ra2->ra_len);
3936 log->data_off = le16_to_cpu(ra2->data_off);
3937 log->data_size = log->page_size - log->data_off;
3938 log->reserved = log->data_size - log->record_header_len;
3939
3940 vbo = lsn_to_vbo(log, lsn: log->last_lsn);
3941
3942 if (vbo < log->first_page) {
3943 /* This is a pseudo lsn. */
3944 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3945 log->next_page = log->first_page;
3946 goto find_oldest;
3947 }
3948
3949 /* Find the end of this log record. */
3950 off = final_log_off(log, lsn: log->last_lsn,
3951 le32_to_cpu(ra2->last_lsn_data_len));
3952
3953 /* If we wrapped the file then increment the sequence number. */
3954 if (off <= vbo) {
3955 log->seq_num += 1;
3956 log->l_flags |= NTFSLOG_WRAPPED;
3957 }
3958
3959 /* Now compute the next log page to use. */
3960 vbo &= ~log->sys_page_mask;
3961 tail = log->page_size - (off & log->page_mask) - 1;
3962
3963 /*
3964 *If we can fit another log record on the page,
3965 * move back a page the log file.
3966 */
3967 if (tail >= log->record_header_len) {
3968 log->l_flags |= NTFSLOG_REUSE_TAIL;
3969 log->next_page = vbo;
3970 } else {
3971 log->next_page = next_page_off(log, off: vbo);
3972 }
3973
3974find_oldest:
3975 /*
3976 * Find the oldest client lsn. Use the last
3977 * flushed lsn as a starting point.
3978 */
3979 log->oldest_lsn = log->last_lsn;
3980 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3981 next_client: ra2->client_idx[1], oldest_lsn: &log->oldest_lsn);
3982 log->oldest_lsn_off = lsn_to_vbo(log, lsn: log->oldest_lsn);
3983
3984 if (log->oldest_lsn_off < log->first_page)
3985 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
3986
3987 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
3988 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
3989
3990 log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
3991 log->total_avail_pages = log->l_size - log->first_page;
3992 log->total_avail = log->total_avail_pages >> log->page_bits;
3993 log->max_current_avail = log->total_avail * log->reserved;
3994 log->total_avail = log->total_avail * log->data_size;
3995
3996 log->current_avail = current_log_avail(log);
3997
3998 ra = kzalloc(size: log->restart_size, GFP_NOFS);
3999 if (!ra) {
4000 err = -ENOMEM;
4001 goto out;
4002 }
4003 log->ra = ra;
4004
4005 t16 = le16_to_cpu(ra2->client_off);
4006 if (t16 == offsetof(struct RESTART_AREA, clients)) {
4007 memcpy(ra, ra2, log->ra_size);
4008 } else {
4009 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4010 memcpy(ra->clients, Add2Ptr(ra2, t16),
4011 le16_to_cpu(ra2->ra_len) - t16);
4012
4013 log->current_openlog_count = get_random_u32();
4014 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4015 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4016 sizeof(struct CLIENT_REC);
4017 ra->client_off =
4018 cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4019 ra->ra_len = cpu_to_le16(log->ra_size);
4020 }
4021
4022 le32_add_cpu(var: &ra->open_log_count, val: 1);
4023
4024 /* Now we need to walk through looking for the last lsn. */
4025 err = last_log_lsn(log);
4026 if (err)
4027 goto out;
4028
4029 log->current_avail = current_log_avail(log);
4030
4031 /* Remember which restart area to write first. */
4032 log->init_ra = log->rst_info.vbo;
4033
4034process_log:
4035 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4036 switch ((log->major_ver << 16) + log->minor_ver) {
4037 case 0x10000:
4038 case 0x10001:
4039 case 0x20000:
4040 break;
4041 default:
4042 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4043 log->major_ver, log->minor_ver);
4044 err = -EOPNOTSUPP;
4045 log->set_dirty = true;
4046 goto out;
4047 }
4048
4049 /* One client "NTFS" per logfile. */
4050 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4051
4052 for (client = ra->client_idx[1];; client = cr->next_client) {
4053 if (client == LFS_NO_CLIENT_LE) {
4054 /* Insert "NTFS" client LogFile. */
4055 client = ra->client_idx[0];
4056 if (client == LFS_NO_CLIENT_LE) {
4057 err = -EINVAL;
4058 goto out;
4059 }
4060
4061 t16 = le16_to_cpu(client);
4062 cr = ca + t16;
4063
4064 remove_client(ca, cr, head: &ra->client_idx[0]);
4065
4066 cr->restart_lsn = 0;
4067 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4068 cr->name_bytes = cpu_to_le32(8);
4069 cr->name[0] = cpu_to_le16('N');
4070 cr->name[1] = cpu_to_le16('T');
4071 cr->name[2] = cpu_to_le16('F');
4072 cr->name[3] = cpu_to_le16('S');
4073
4074 add_client(ca, index: t16, head: &ra->client_idx[1]);
4075 break;
4076 }
4077
4078 cr = ca + le16_to_cpu(client);
4079
4080 if (cpu_to_le32(8) == cr->name_bytes &&
4081 cpu_to_le16('N') == cr->name[0] &&
4082 cpu_to_le16('T') == cr->name[1] &&
4083 cpu_to_le16('F') == cr->name[2] &&
4084 cpu_to_le16('S') == cr->name[3])
4085 break;
4086 }
4087
4088 /* Update the client handle with the client block information. */
4089 log->client_id.seq_num = cr->seq_num;
4090 log->client_id.client_idx = client;
4091
4092 err = read_rst_area(log, rst_: &rst, lsn: &checkpt_lsn);
4093 if (err)
4094 goto out;
4095
4096 if (!rst)
4097 goto out;
4098
4099 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4100
4101 if (rst->check_point_start)
4102 checkpt_lsn = le64_to_cpu(rst->check_point_start);
4103
4104 /* Allocate and Read the Transaction Table. */
4105 if (!rst->transact_table_len)
4106 goto check_dirty_page_table;
4107
4108 t64 = le64_to_cpu(rst->transact_table_lsn);
4109 err = read_log_rec_lcb(log, lsn: t64, ctx_mode: lcb_ctx_prev, lcb_: &lcb);
4110 if (err)
4111 goto out;
4112
4113 lrh = lcb->log_rec;
4114 frh = lcb->lrh;
4115 rec_len = le32_to_cpu(frh->client_data_len);
4116
4117 if (!check_log_rec(lr: lrh, bytes: rec_len, le32_to_cpu(frh->transact_id),
4118 bytes_per_attr_entry)) {
4119 err = -EINVAL;
4120 goto out;
4121 }
4122
4123 t16 = le16_to_cpu(lrh->redo_off);
4124
4125 rt = Add2Ptr(lrh, t16);
4126 t32 = rec_len - t16;
4127
4128 /* Now check that this is a valid restart table. */
4129 if (!check_rstbl(rt, bytes: t32)) {
4130 err = -EINVAL;
4131 goto out;
4132 }
4133
4134 trtbl = kmemdup(p: rt, size: t32, GFP_NOFS);
4135 if (!trtbl) {
4136 err = -ENOMEM;
4137 goto out;
4138 }
4139
4140 lcb_put(lcb);
4141 lcb = NULL;
4142
4143check_dirty_page_table:
4144 /* The next record back should be the Dirty Pages Table. */
4145 if (!rst->dirty_pages_len)
4146 goto check_attribute_names;
4147
4148 t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4149 err = read_log_rec_lcb(log, lsn: t64, ctx_mode: lcb_ctx_prev, lcb_: &lcb);
4150 if (err)
4151 goto out;
4152
4153 lrh = lcb->log_rec;
4154 frh = lcb->lrh;
4155 rec_len = le32_to_cpu(frh->client_data_len);
4156
4157 if (!check_log_rec(lr: lrh, bytes: rec_len, le32_to_cpu(frh->transact_id),
4158 bytes_per_attr_entry)) {
4159 err = -EINVAL;
4160 goto out;
4161 }
4162
4163 t16 = le16_to_cpu(lrh->redo_off);
4164
4165 rt = Add2Ptr(lrh, t16);
4166 t32 = rec_len - t16;
4167
4168 /* Now check that this is a valid restart table. */
4169 if (!check_rstbl(rt, bytes: t32)) {
4170 err = -EINVAL;
4171 goto out;
4172 }
4173
4174 dptbl = kmemdup(p: rt, size: t32, GFP_NOFS);
4175 if (!dptbl) {
4176 err = -ENOMEM;
4177 goto out;
4178 }
4179
4180 /* Convert Ra version '0' into version '1'. */
4181 if (rst->major_ver)
4182 goto end_conv_1;
4183
4184 dp = NULL;
4185 while ((dp = enum_rstbl(t: dptbl, c: dp))) {
4186 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4187 // NOTE: Danger. Check for of boundary.
4188 memmove(&dp->vcn, &dp0->vcn_low,
4189 2 * sizeof(u64) +
4190 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4191 }
4192
4193end_conv_1:
4194 lcb_put(lcb);
4195 lcb = NULL;
4196
4197 /*
4198 * Go through the table and remove the duplicates,
4199 * remembering the oldest lsn values.
4200 */
4201 if (sbi->cluster_size <= log->page_size)
4202 goto trace_dp_table;
4203
4204 dp = NULL;
4205 while ((dp = enum_rstbl(t: dptbl, c: dp))) {
4206 struct DIR_PAGE_ENTRY *next = dp;
4207
4208 while ((next = enum_rstbl(t: dptbl, c: next))) {
4209 if (next->target_attr == dp->target_attr &&
4210 next->vcn == dp->vcn) {
4211 if (le64_to_cpu(next->oldest_lsn) <
4212 le64_to_cpu(dp->oldest_lsn)) {
4213 dp->oldest_lsn = next->oldest_lsn;
4214 }
4215
4216 free_rsttbl_idx(rt: dptbl, PtrOffset(dptbl, next));
4217 }
4218 }
4219 }
4220trace_dp_table:
4221check_attribute_names:
4222 /* The next record should be the Attribute Names. */
4223 if (!rst->attr_names_len)
4224 goto check_attr_table;
4225
4226 t64 = le64_to_cpu(rst->attr_names_lsn);
4227 err = read_log_rec_lcb(log, lsn: t64, ctx_mode: lcb_ctx_prev, lcb_: &lcb);
4228 if (err)
4229 goto out;
4230
4231 lrh = lcb->log_rec;
4232 frh = lcb->lrh;
4233 rec_len = le32_to_cpu(frh->client_data_len);
4234
4235 if (!check_log_rec(lr: lrh, bytes: rec_len, le32_to_cpu(frh->transact_id),
4236 bytes_per_attr_entry)) {
4237 err = -EINVAL;
4238 goto out;
4239 }
4240
4241 t32 = lrh_length(lr: lrh);
4242 rec_len -= t32;
4243
4244 attr_names = kmemdup(Add2Ptr(lrh, t32), size: rec_len, GFP_NOFS);
4245 if (!attr_names) {
4246 err = -ENOMEM;
4247 goto out;
4248 }
4249
4250 lcb_put(lcb);
4251 lcb = NULL;
4252
4253check_attr_table:
4254 /* The next record should be the attribute Table. */
4255 if (!rst->open_attr_len)
4256 goto check_attribute_names2;
4257
4258 t64 = le64_to_cpu(rst->open_attr_table_lsn);
4259 err = read_log_rec_lcb(log, lsn: t64, ctx_mode: lcb_ctx_prev, lcb_: &lcb);
4260 if (err)
4261 goto out;
4262
4263 lrh = lcb->log_rec;
4264 frh = lcb->lrh;
4265 rec_len = le32_to_cpu(frh->client_data_len);
4266
4267 if (!check_log_rec(lr: lrh, bytes: rec_len, le32_to_cpu(frh->transact_id),
4268 bytes_per_attr_entry)) {
4269 err = -EINVAL;
4270 goto out;
4271 }
4272
4273 t16 = le16_to_cpu(lrh->redo_off);
4274
4275 rt = Add2Ptr(lrh, t16);
4276 t32 = rec_len - t16;
4277
4278 if (!check_rstbl(rt, bytes: t32)) {
4279 err = -EINVAL;
4280 goto out;
4281 }
4282
4283 oatbl = kmemdup(p: rt, size: t32, GFP_NOFS);
4284 if (!oatbl) {
4285 err = -ENOMEM;
4286 goto out;
4287 }
4288
4289 log->open_attr_tbl = oatbl;
4290
4291 /* Clear all of the Attr pointers. */
4292 oe = NULL;
4293 while ((oe = enum_rstbl(t: oatbl, c: oe))) {
4294 if (!rst->major_ver) {
4295 struct OPEN_ATTR_ENRTY_32 oe0;
4296
4297 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4298 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4299
4300 oe->bytes_per_index = oe0.bytes_per_index;
4301 oe->type = oe0.type;
4302 oe->is_dirty_pages = oe0.is_dirty_pages;
4303 oe->name_len = 0;
4304 oe->ref = oe0.ref;
4305 oe->open_record_lsn = oe0.open_record_lsn;
4306 }
4307
4308 oe->is_attr_name = 0;
4309 oe->ptr = NULL;
4310 }
4311
4312 lcb_put(lcb);
4313 lcb = NULL;
4314
4315check_attribute_names2:
4316 if (rst->attr_names_len && oatbl) {
4317 struct ATTR_NAME_ENTRY *ane = attr_names;
4318 while (ane->off) {
4319 /* TODO: Clear table on exit! */
4320 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4321 t16 = le16_to_cpu(ane->name_bytes);
4322 oe->name_len = t16 / sizeof(short);
4323 oe->ptr = ane->name;
4324 oe->is_attr_name = 2;
4325 ane = Add2Ptr(ane,
4326 sizeof(struct ATTR_NAME_ENTRY) + t16);
4327 }
4328 }
4329
4330 /*
4331 * If the checkpt_lsn is zero, then this is a freshly
4332 * formatted disk and we have no work to do.
4333 */
4334 if (!checkpt_lsn) {
4335 err = 0;
4336 goto out;
4337 }
4338
4339 if (!oatbl) {
4340 oatbl = init_rsttbl(esize: bytes_per_attr_entry, used: 8);
4341 if (!oatbl) {
4342 err = -ENOMEM;
4343 goto out;
4344 }
4345 }
4346
4347 log->open_attr_tbl = oatbl;
4348
4349 /* Start the analysis pass from the Checkpoint lsn. */
4350 rec_lsn = checkpt_lsn;
4351
4352 /* Read the first lsn. */
4353 err = read_log_rec_lcb(log, lsn: checkpt_lsn, ctx_mode: lcb_ctx_next, lcb_: &lcb);
4354 if (err)
4355 goto out;
4356
4357 /* Loop to read all subsequent records to the end of the log file. */
4358next_log_record_analyze:
4359 err = read_next_log_rec(log, lcb, lsn: &rec_lsn);
4360 if (err)
4361 goto out;
4362
4363 if (!rec_lsn)
4364 goto end_log_records_enumerate;
4365
4366 frh = lcb->lrh;
4367 transact_id = le32_to_cpu(frh->transact_id);
4368 rec_len = le32_to_cpu(frh->client_data_len);
4369 lrh = lcb->log_rec;
4370
4371 if (!check_log_rec(lr: lrh, bytes: rec_len, tr: transact_id, bytes_per_attr_entry)) {
4372 err = -EINVAL;
4373 goto out;
4374 }
4375
4376 /*
4377 * The first lsn after the previous lsn remembered
4378 * the checkpoint is the first candidate for the rlsn.
4379 */
4380 if (!rlsn)
4381 rlsn = rec_lsn;
4382
4383 if (LfsClientRecord != frh->record_type)
4384 goto next_log_record_analyze;
4385
4386 /*
4387 * Now update the Transaction Table for this transaction. If there
4388 * is no entry present or it is unallocated we allocate the entry.
4389 */
4390 if (!trtbl) {
4391 trtbl = init_rsttbl(esize: sizeof(struct TRANSACTION_ENTRY),
4392 INITIAL_NUMBER_TRANSACTIONS);
4393 if (!trtbl) {
4394 err = -ENOMEM;
4395 goto out;
4396 }
4397 }
4398
4399 tr = Add2Ptr(trtbl, transact_id);
4400
4401 if (transact_id >= bytes_per_rt(rt: trtbl) ||
4402 tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4403 tr = alloc_rsttbl_from_idx(tbl: &trtbl, vbo: transact_id);
4404 if (!tr) {
4405 err = -ENOMEM;
4406 goto out;
4407 }
4408 tr->transact_state = TransactionActive;
4409 tr->first_lsn = cpu_to_le64(rec_lsn);
4410 }
4411
4412 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4413
4414 /*
4415 * If this is a compensation log record, then change
4416 * the undo_next_lsn to be the undo_next_lsn of this record.
4417 */
4418 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4419 tr->undo_next_lsn = frh->client_undo_next_lsn;
4420
4421 /* Dispatch to handle log record depending on type. */
4422 switch (le16_to_cpu(lrh->redo_op)) {
4423 case InitializeFileRecordSegment:
4424 case DeallocateFileRecordSegment:
4425 case WriteEndOfFileRecordSegment:
4426 case CreateAttribute:
4427 case DeleteAttribute:
4428 case UpdateResidentValue:
4429 case UpdateNonresidentValue:
4430 case UpdateMappingPairs:
4431 case SetNewAttributeSizes:
4432 case AddIndexEntryRoot:
4433 case DeleteIndexEntryRoot:
4434 case AddIndexEntryAllocation:
4435 case DeleteIndexEntryAllocation:
4436 case WriteEndOfIndexBuffer:
4437 case SetIndexEntryVcnRoot:
4438 case SetIndexEntryVcnAllocation:
4439 case UpdateFileNameRoot:
4440 case UpdateFileNameAllocation:
4441 case SetBitsInNonresidentBitMap:
4442 case ClearBitsInNonresidentBitMap:
4443 case UpdateRecordDataRoot:
4444 case UpdateRecordDataAllocation:
4445 case ZeroEndOfFileRecord:
4446 t16 = le16_to_cpu(lrh->target_attr);
4447 t64 = le64_to_cpu(lrh->target_vcn);
4448 dp = find_dp(dptbl, target_attr: t16, vcn: t64);
4449
4450 if (dp)
4451 goto copy_lcns;
4452
4453 /*
4454 * Calculate the number of clusters per page the system
4455 * which wrote the checkpoint, possibly creating the table.
4456 */
4457 if (dptbl) {
4458 t32 = (le16_to_cpu(dptbl->size) -
4459 sizeof(struct DIR_PAGE_ENTRY)) /
4460 sizeof(u64);
4461 } else {
4462 t32 = log->clst_per_page;
4463 kfree(objp: dptbl);
4464 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4465 used: 32);
4466 if (!dptbl) {
4467 err = -ENOMEM;
4468 goto out;
4469 }
4470 }
4471
4472 dp = alloc_rsttbl_idx(tbl: &dptbl);
4473 if (!dp) {
4474 err = -ENOMEM;
4475 goto out;
4476 }
4477 dp->target_attr = cpu_to_le32(t16);
4478 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4479 dp->lcns_follow = cpu_to_le32(t32);
4480 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4481 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4482
4483copy_lcns:
4484 /*
4485 * Copy the Lcns from the log record into the Dirty Page Entry.
4486 * TODO: For different page size support, must somehow make
4487 * whole routine a loop, case Lcns do not fit below.
4488 */
4489 t16 = le16_to_cpu(lrh->lcns_follow);
4490 for (i = 0; i < t16; i++) {
4491 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4492 le64_to_cpu(dp->vcn));
4493 dp->page_lcns[j + i] = lrh->page_lcns[i];
4494 }
4495
4496 goto next_log_record_analyze;
4497
4498 case DeleteDirtyClusters: {
4499 u32 range_count =
4500 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4501 const struct LCN_RANGE *r =
4502 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4503
4504 /* Loop through all of the Lcn ranges this log record. */
4505 for (i = 0; i < range_count; i++, r++) {
4506 u64 lcn0 = le64_to_cpu(r->lcn);
4507 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4508
4509 dp = NULL;
4510 while ((dp = enum_rstbl(t: dptbl, c: dp))) {
4511 u32 j;
4512
4513 t32 = le32_to_cpu(dp->lcns_follow);
4514 for (j = 0; j < t32; j++) {
4515 t64 = le64_to_cpu(dp->page_lcns[j]);
4516 if (t64 >= lcn0 && t64 <= lcn_e)
4517 dp->page_lcns[j] = 0;
4518 }
4519 }
4520 }
4521 goto next_log_record_analyze;
4522 ;
4523 }
4524
4525 case OpenNonresidentAttribute:
4526 t16 = le16_to_cpu(lrh->target_attr);
4527 if (t16 >= bytes_per_rt(rt: oatbl)) {
4528 /*
4529 * Compute how big the table needs to be.
4530 * Add 10 extra entries for some cushion.
4531 */
4532 u32 new_e = t16 / le16_to_cpu(oatbl->size);
4533
4534 new_e += 10 - le16_to_cpu(oatbl->used);
4535
4536 oatbl = extend_rsttbl(tbl: oatbl, add: new_e, free_goal: ~0u);
4537 log->open_attr_tbl = oatbl;
4538 if (!oatbl) {
4539 err = -ENOMEM;
4540 goto out;
4541 }
4542 }
4543
4544 /* Point to the entry being opened. */
4545 oe = alloc_rsttbl_from_idx(tbl: &oatbl, vbo: t16);
4546 log->open_attr_tbl = oatbl;
4547 if (!oe) {
4548 err = -ENOMEM;
4549 goto out;
4550 }
4551
4552 /* Initialize this entry from the log record. */
4553 t16 = le16_to_cpu(lrh->redo_off);
4554 if (!rst->major_ver) {
4555 /* Convert version '0' into version '1'. */
4556 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4557
4558 oe->bytes_per_index = oe0->bytes_per_index;
4559 oe->type = oe0->type;
4560 oe->is_dirty_pages = oe0->is_dirty_pages;
4561 oe->name_len = 0; //oe0.name_len;
4562 oe->ref = oe0->ref;
4563 oe->open_record_lsn = oe0->open_record_lsn;
4564 } else {
4565 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4566 }
4567
4568 t16 = le16_to_cpu(lrh->undo_len);
4569 if (t16) {
4570 oe->ptr = kmalloc(size: t16, GFP_NOFS);
4571 if (!oe->ptr) {
4572 err = -ENOMEM;
4573 goto out;
4574 }
4575 oe->name_len = t16 / sizeof(short);
4576 memcpy(oe->ptr,
4577 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4578 oe->is_attr_name = 1;
4579 } else {
4580 oe->ptr = NULL;
4581 oe->is_attr_name = 0;
4582 }
4583
4584 goto next_log_record_analyze;
4585
4586 case HotFix:
4587 t16 = le16_to_cpu(lrh->target_attr);
4588 t64 = le64_to_cpu(lrh->target_vcn);
4589 dp = find_dp(dptbl, target_attr: t16, vcn: t64);
4590 if (dp) {
4591 size_t j = le64_to_cpu(lrh->target_vcn) -
4592 le64_to_cpu(dp->vcn);
4593 if (dp->page_lcns[j])
4594 dp->page_lcns[j] = lrh->page_lcns[0];
4595 }
4596 goto next_log_record_analyze;
4597
4598 case EndTopLevelAction:
4599 tr = Add2Ptr(trtbl, transact_id);
4600 tr->prev_lsn = cpu_to_le64(rec_lsn);
4601 tr->undo_next_lsn = frh->client_undo_next_lsn;
4602 goto next_log_record_analyze;
4603
4604 case PrepareTransaction:
4605 tr = Add2Ptr(trtbl, transact_id);
4606 tr->transact_state = TransactionPrepared;
4607 goto next_log_record_analyze;
4608
4609 case CommitTransaction:
4610 tr = Add2Ptr(trtbl, transact_id);
4611 tr->transact_state = TransactionCommitted;
4612 goto next_log_record_analyze;
4613
4614 case ForgetTransaction:
4615 free_rsttbl_idx(rt: trtbl, off: transact_id);
4616 goto next_log_record_analyze;
4617
4618 case Noop:
4619 case OpenAttributeTableDump:
4620 case AttributeNamesDump:
4621 case DirtyPageTableDump:
4622 case TransactionTableDump:
4623 /* The following cases require no action the Analysis Pass. */
4624 goto next_log_record_analyze;
4625
4626 default:
4627 /*
4628 * All codes will be explicitly handled.
4629 * If we see a code we do not expect, then we are trouble.
4630 */
4631 goto next_log_record_analyze;
4632 }
4633
4634end_log_records_enumerate:
4635 lcb_put(lcb);
4636 lcb = NULL;
4637
4638 /*
4639 * Scan the Dirty Page Table and Transaction Table for
4640 * the lowest lsn, and return it as the Redo lsn.
4641 */
4642 dp = NULL;
4643 while ((dp = enum_rstbl(t: dptbl, c: dp))) {
4644 t64 = le64_to_cpu(dp->oldest_lsn);
4645 if (t64 && t64 < rlsn)
4646 rlsn = t64;
4647 }
4648
4649 tr = NULL;
4650 while ((tr = enum_rstbl(t: trtbl, c: tr))) {
4651 t64 = le64_to_cpu(tr->first_lsn);
4652 if (t64 && t64 < rlsn)
4653 rlsn = t64;
4654 }
4655
4656 /*
4657 * Only proceed if the Dirty Page Table or Transaction
4658 * table are not empty.
4659 */
4660 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4661 goto end_reply;
4662
4663 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4664 if (is_ro)
4665 goto out;
4666
4667 /* Reopen all of the attributes with dirty pages. */
4668 oe = NULL;
4669next_open_attribute:
4670
4671 oe = enum_rstbl(t: oatbl, c: oe);
4672 if (!oe) {
4673 err = 0;
4674 dp = NULL;
4675 goto next_dirty_page;
4676 }
4677
4678 oa = kzalloc(size: sizeof(struct OpenAttr), GFP_NOFS);
4679 if (!oa) {
4680 err = -ENOMEM;
4681 goto out;
4682 }
4683
4684 inode = ntfs_iget5(sb: sbi->sb, ref: &oe->ref, NULL);
4685 if (IS_ERR(ptr: inode))
4686 goto fake_attr;
4687
4688 if (is_bad_inode(inode)) {
4689 iput(inode);
4690fake_attr:
4691 if (oa->ni) {
4692 iput(&oa->ni->vfs_inode);
4693 oa->ni = NULL;
4694 }
4695
4696 attr = attr_create_nonres_log(sbi, type: oe->type, size: 0, name: oe->ptr,
4697 name_len: oe->name_len, flags: 0);
4698 if (!attr) {
4699 kfree(objp: oa);
4700 err = -ENOMEM;
4701 goto out;
4702 }
4703 oa->attr = attr;
4704 oa->run1 = &oa->run0;
4705 goto final_oe;
4706 }
4707
4708 ni_oe = ntfs_i(inode);
4709 oa->ni = ni_oe;
4710
4711 attr = ni_find_attr(ni: ni_oe, NULL, NULL, type: oe->type, name: oe->ptr, name_len: oe->name_len,
4712 NULL, NULL);
4713
4714 if (!attr)
4715 goto fake_attr;
4716
4717 t32 = le32_to_cpu(attr->size);
4718 oa->attr = kmemdup(p: attr, size: t32, GFP_NOFS);
4719 if (!oa->attr)
4720 goto fake_attr;
4721
4722 if (!S_ISDIR(inode->i_mode)) {
4723 if (attr->type == ATTR_DATA && !attr->name_len) {
4724 oa->run1 = &ni_oe->file.run;
4725 goto final_oe;
4726 }
4727 } else {
4728 if (attr->type == ATTR_ALLOC &&
4729 attr->name_len == ARRAY_SIZE(I30_NAME) &&
4730 !memcmp(p: attr_name(attr), q: I30_NAME, size: sizeof(I30_NAME))) {
4731 oa->run1 = &ni_oe->dir.alloc_run;
4732 goto final_oe;
4733 }
4734 }
4735
4736 if (attr->non_res) {
4737 u16 roff = le16_to_cpu(attr->nres.run_off);
4738 CLST svcn = le64_to_cpu(attr->nres.svcn);
4739
4740 if (roff > t32) {
4741 kfree(objp: oa->attr);
4742 oa->attr = NULL;
4743 goto fake_attr;
4744 }
4745
4746 err = run_unpack(run: &oa->run0, sbi, ino: inode->i_ino, svcn,
4747 le64_to_cpu(attr->nres.evcn), vcn: svcn,
4748 Add2Ptr(attr, roff), run_buf_size: t32 - roff);
4749 if (err < 0) {
4750 kfree(objp: oa->attr);
4751 oa->attr = NULL;
4752 goto fake_attr;
4753 }
4754 err = 0;
4755 }
4756 oa->run1 = &oa->run0;
4757 attr = oa->attr;
4758
4759final_oe:
4760 if (oe->is_attr_name == 1)
4761 kfree(objp: oe->ptr);
4762 oe->is_attr_name = 0;
4763 oe->ptr = oa;
4764 oe->name_len = attr->name_len;
4765
4766 goto next_open_attribute;
4767
4768 /*
4769 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4770 * Mapping that we have, and insert it into the appropriate run.
4771 */
4772next_dirty_page:
4773 dp = enum_rstbl(t: dptbl, c: dp);
4774 if (!dp)
4775 goto do_redo_1;
4776
4777 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4778
4779 if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4780 goto next_dirty_page;
4781
4782 oa = oe->ptr;
4783 if (!oa)
4784 goto next_dirty_page;
4785
4786 i = -1;
4787next_dirty_page_vcn:
4788 i += 1;
4789 if (i >= le32_to_cpu(dp->lcns_follow))
4790 goto next_dirty_page;
4791
4792 vcn = le64_to_cpu(dp->vcn) + i;
4793 size = (vcn + 1) << sbi->cluster_bits;
4794
4795 if (!dp->page_lcns[i])
4796 goto next_dirty_page_vcn;
4797
4798 rno = ino_get(ref: &oe->ref);
4799 if (rno <= MFT_REC_MIRR &&
4800 size < (MFT_REC_VOL + 1) * sbi->record_size &&
4801 oe->type == ATTR_DATA) {
4802 goto next_dirty_page_vcn;
4803 }
4804
4805 lcn = le64_to_cpu(dp->page_lcns[i]);
4806
4807 if ((!run_lookup_entry(run: oa->run1, vcn, lcn: &lcn0, len: &len0, NULL) ||
4808 lcn0 != lcn) &&
4809 !run_add_entry(run: oa->run1, vcn, lcn, len: 1, is_mft: false)) {
4810 err = -ENOMEM;
4811 goto out;
4812 }
4813 attr = oa->attr;
4814 if (size > le64_to_cpu(attr->nres.alloc_size)) {
4815 attr->nres.valid_size = attr->nres.data_size =
4816 attr->nres.alloc_size = cpu_to_le64(size);
4817 }
4818 goto next_dirty_page_vcn;
4819
4820do_redo_1:
4821 /*
4822 * Perform the Redo Pass, to restore all of the dirty pages to the same
4823 * contents that they had immediately before the crash. If the dirty
4824 * page table is empty, then we can skip the entire Redo Pass.
4825 */
4826 if (!dptbl || !dptbl->total)
4827 goto do_undo_action;
4828
4829 rec_lsn = rlsn;
4830
4831 /*
4832 * Read the record at the Redo lsn, before falling
4833 * into common code to handle each record.
4834 */
4835 err = read_log_rec_lcb(log, lsn: rlsn, ctx_mode: lcb_ctx_next, lcb_: &lcb);
4836 if (err)
4837 goto out;
4838
4839 /*
4840 * Now loop to read all of our log records forwards, until
4841 * we hit the end of the file, cleaning up at the end.
4842 */
4843do_action_next:
4844 frh = lcb->lrh;
4845
4846 if (LfsClientRecord != frh->record_type)
4847 goto read_next_log_do_action;
4848
4849 transact_id = le32_to_cpu(frh->transact_id);
4850 rec_len = le32_to_cpu(frh->client_data_len);
4851 lrh = lcb->log_rec;
4852
4853 if (!check_log_rec(lr: lrh, bytes: rec_len, tr: transact_id, bytes_per_attr_entry)) {
4854 err = -EINVAL;
4855 goto out;
4856 }
4857
4858 /* Ignore log records that do not update pages. */
4859 if (lrh->lcns_follow)
4860 goto find_dirty_page;
4861
4862 goto read_next_log_do_action;
4863
4864find_dirty_page:
4865 t16 = le16_to_cpu(lrh->target_attr);
4866 t64 = le64_to_cpu(lrh->target_vcn);
4867 dp = find_dp(dptbl, target_attr: t16, vcn: t64);
4868
4869 if (!dp)
4870 goto read_next_log_do_action;
4871
4872 if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4873 goto read_next_log_do_action;
4874
4875 t16 = le16_to_cpu(lrh->target_attr);
4876 if (t16 >= bytes_per_rt(rt: oatbl)) {
4877 err = -EINVAL;
4878 goto out;
4879 }
4880
4881 oe = Add2Ptr(oatbl, t16);
4882
4883 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4884 err = -EINVAL;
4885 goto out;
4886 }
4887
4888 oa = oe->ptr;
4889
4890 if (!oa) {
4891 err = -EINVAL;
4892 goto out;
4893 }
4894 attr = oa->attr;
4895
4896 vcn = le64_to_cpu(lrh->target_vcn);
4897
4898 if (!run_lookup_entry(run: oa->run1, vcn, lcn: &lcn, NULL, NULL) ||
4899 lcn == SPARSE_LCN) {
4900 goto read_next_log_do_action;
4901 }
4902
4903 /* Point to the Redo data and get its length. */
4904 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4905 dlen = le16_to_cpu(lrh->redo_len);
4906
4907 /* Shorten length by any Lcns which were deleted. */
4908 saved_len = dlen;
4909
4910 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4911 size_t j;
4912 u32 alen, voff;
4913
4914 voff = le16_to_cpu(lrh->record_off) +
4915 le16_to_cpu(lrh->attr_off);
4916 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4917
4918 /* If the Vcn question is allocated, we can just get out. */
4919 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4920 if (dp->page_lcns[j + i - 1])
4921 break;
4922
4923 if (!saved_len)
4924 saved_len = 1;
4925
4926 /*
4927 * Calculate the allocated space left relative to the
4928 * log record Vcn, after removing this unallocated Vcn.
4929 */
4930 alen = (i - 1) << sbi->cluster_bits;
4931
4932 /*
4933 * If the update described this log record goes beyond
4934 * the allocated space, then we will have to reduce the length.
4935 */
4936 if (voff >= alen)
4937 dlen = 0;
4938 else if (voff + dlen > alen)
4939 dlen = alen - voff;
4940 }
4941
4942 /*
4943 * If the resulting dlen from above is now zero,
4944 * we can skip this log record.
4945 */
4946 if (!dlen && saved_len)
4947 goto read_next_log_do_action;
4948
4949 t16 = le16_to_cpu(lrh->redo_op);
4950 if (can_skip_action(op: t16))
4951 goto read_next_log_do_action;
4952
4953 /* Apply the Redo operation a common routine. */
4954 err = do_action(log, oe, lrh, op: t16, data, dlen, rec_len, rlsn: &rec_lsn);
4955 if (err)
4956 goto out;
4957
4958 /* Keep reading and looping back until end of file. */
4959read_next_log_do_action:
4960 err = read_next_log_rec(log, lcb, lsn: &rec_lsn);
4961 if (!err && rec_lsn)
4962 goto do_action_next;
4963
4964 lcb_put(lcb);
4965 lcb = NULL;
4966
4967do_undo_action:
4968 /* Scan Transaction Table. */
4969 tr = NULL;
4970transaction_table_next:
4971 tr = enum_rstbl(t: trtbl, c: tr);
4972 if (!tr)
4973 goto undo_action_done;
4974
4975 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4976 free_rsttbl_idx(rt: trtbl, PtrOffset(trtbl, tr));
4977 goto transaction_table_next;
4978 }
4979
4980 log->transaction_id = PtrOffset(trtbl, tr);
4981 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
4982
4983 /*
4984 * We only have to do anything if the transaction has
4985 * something its undo_next_lsn field.
4986 */
4987 if (!undo_next_lsn)
4988 goto commit_undo;
4989
4990 /* Read the first record to be undone by this transaction. */
4991 err = read_log_rec_lcb(log, lsn: undo_next_lsn, ctx_mode: lcb_ctx_undo_next, lcb_: &lcb);
4992 if (err)
4993 goto out;
4994
4995 /*
4996 * Now loop to read all of our log records forwards,
4997 * until we hit the end of the file, cleaning up at the end.
4998 */
4999undo_action_next:
5000
5001 lrh = lcb->log_rec;
5002 frh = lcb->lrh;
5003 transact_id = le32_to_cpu(frh->transact_id);
5004 rec_len = le32_to_cpu(frh->client_data_len);
5005
5006 if (!check_log_rec(lr: lrh, bytes: rec_len, tr: transact_id, bytes_per_attr_entry)) {
5007 err = -EINVAL;
5008 goto out;
5009 }
5010
5011 if (lrh->undo_op == cpu_to_le16(Noop))
5012 goto read_next_log_undo_action;
5013
5014 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5015 oa = oe->ptr;
5016
5017 t16 = le16_to_cpu(lrh->lcns_follow);
5018 if (!t16)
5019 goto add_allocated_vcns;
5020
5021 is_mapped = run_lookup_entry(run: oa->run1, le64_to_cpu(lrh->target_vcn),
5022 lcn: &lcn, len: &clen, NULL);
5023
5024 /*
5025 * If the mapping isn't already the table or the mapping
5026 * corresponds to a hole the mapping, we need to make sure
5027 * there is no partial page already memory.
5028 */
5029 if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5030 goto add_allocated_vcns;
5031
5032 vcn = le64_to_cpu(lrh->target_vcn);
5033 vcn &= ~(u64)(log->clst_per_page - 1);
5034
5035add_allocated_vcns:
5036 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5037 size = (vcn + 1) << sbi->cluster_bits;
5038 i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5039 attr = oa->attr;
5040 if (!attr->non_res) {
5041 if (size > le32_to_cpu(attr->res.data_size))
5042 attr->res.data_size = cpu_to_le32(size);
5043 } else {
5044 if (size > le64_to_cpu(attr->nres.data_size))
5045 attr->nres.valid_size = attr->nres.data_size =
5046 attr->nres.alloc_size =
5047 cpu_to_le64(size);
5048 }
5049 }
5050
5051 t16 = le16_to_cpu(lrh->undo_op);
5052 if (can_skip_action(op: t16))
5053 goto read_next_log_undo_action;
5054
5055 /* Point to the Redo data and get its length. */
5056 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5057 dlen = le16_to_cpu(lrh->undo_len);
5058
5059 /* It is time to apply the undo action. */
5060 err = do_action(log, oe, lrh, op: t16, data, dlen, rec_len, NULL);
5061
5062read_next_log_undo_action:
5063 /*
5064 * Keep reading and looping back until we have read the
5065 * last record for this transaction.
5066 */
5067 err = read_next_log_rec(log, lcb, lsn: &rec_lsn);
5068 if (err)
5069 goto out;
5070
5071 if (rec_lsn)
5072 goto undo_action_next;
5073
5074 lcb_put(lcb);
5075 lcb = NULL;
5076
5077commit_undo:
5078 free_rsttbl_idx(rt: trtbl, off: log->transaction_id);
5079
5080 log->transaction_id = 0;
5081
5082 goto transaction_table_next;
5083
5084undo_action_done:
5085
5086 ntfs_update_mftmirr(sbi, wait: 0);
5087
5088 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5089
5090end_reply:
5091
5092 err = 0;
5093 if (is_ro)
5094 goto out;
5095
5096 rh = kzalloc(size: log->page_size, GFP_NOFS);
5097 if (!rh) {
5098 err = -ENOMEM;
5099 goto out;
5100 }
5101
5102 rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5103 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5104 t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5105 rh->rhdr.fix_num = cpu_to_le16(t16);
5106 rh->sys_page_size = cpu_to_le32(log->page_size);
5107 rh->page_size = cpu_to_le32(log->page_size);
5108
5109 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5110 8);
5111 rh->ra_off = cpu_to_le16(t16);
5112 rh->minor_ver = cpu_to_le16(1); // 0x1A:
5113 rh->major_ver = cpu_to_le16(1); // 0x1C:
5114
5115 ra2 = Add2Ptr(rh, t16);
5116 memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5117
5118 ra2->client_idx[0] = 0;
5119 ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5120 ra2->flags = cpu_to_le16(2);
5121
5122 le32_add_cpu(var: &ra2->open_log_count, val: 1);
5123
5124 ntfs_fix_pre_write(rhdr: &rh->rhdr, bytes: log->page_size);
5125
5126 err = ntfs_sb_write_run(sbi, run: &ni->file.run, vbo: 0, buf: rh, bytes: log->page_size, sync: 0);
5127 if (!err)
5128 err = ntfs_sb_write_run(sbi, run: &log->ni->file.run, vbo: log->page_size,
5129 buf: rh, bytes: log->page_size, sync: 0);
5130
5131 kfree(objp: rh);
5132 if (err)
5133 goto out;
5134
5135out:
5136 kfree(objp: rst);
5137 if (lcb)
5138 lcb_put(lcb);
5139
5140 /*
5141 * Scan the Open Attribute Table to close all of
5142 * the open attributes.
5143 */
5144 oe = NULL;
5145 while ((oe = enum_rstbl(t: oatbl, c: oe))) {
5146 rno = ino_get(ref: &oe->ref);
5147
5148 if (oe->is_attr_name == 1) {
5149 kfree(objp: oe->ptr);
5150 oe->ptr = NULL;
5151 continue;
5152 }
5153
5154 if (oe->is_attr_name)
5155 continue;
5156
5157 oa = oe->ptr;
5158 if (!oa)
5159 continue;
5160
5161 run_close(run: &oa->run0);
5162 kfree(objp: oa->attr);
5163 if (oa->ni)
5164 iput(&oa->ni->vfs_inode);
5165 kfree(objp: oa);
5166 }
5167
5168 kfree(objp: trtbl);
5169 kfree(objp: oatbl);
5170 kfree(objp: dptbl);
5171 kfree(objp: attr_names);
5172 kfree(objp: log->rst_info.r_page);
5173
5174 kfree(objp: ra);
5175 kfree(objp: log->one_page_buf);
5176
5177 if (err)
5178 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5179
5180 if (err == -EROFS)
5181 err = 0;
5182 else if (log->set_dirty)
5183 ntfs_set_state(sbi, dirty: NTFS_DIRTY_ERROR);
5184
5185 kfree(objp: log);
5186
5187 return err;
5188}
5189

source code of linux/fs/ntfs3/fslog.c