1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8#ifndef _CRYPTO_HASH_H
9#define _CRYPTO_HASH_H
10
11#include <linux/crypto.h>
12#include <linux/scatterlist.h>
13#include <linux/slab.h>
14#include <linux/string.h>
15
16/* Set this bit for virtual address instead of SG list. */
17#define CRYPTO_AHASH_REQ_VIRT 0x00000001
18
19#define CRYPTO_AHASH_REQ_PRIVATE \
20 CRYPTO_AHASH_REQ_VIRT
21
22struct crypto_ahash;
23
24/**
25 * DOC: Message Digest Algorithm Definitions
26 *
27 * These data structures define modular message digest algorithm
28 * implementations, managed via crypto_register_ahash(),
29 * crypto_register_shash(), crypto_unregister_ahash() and
30 * crypto_unregister_shash().
31 */
32
33/*
34 * struct hash_alg_common - define properties of message digest
35 * @digestsize: Size of the result of the transformation. A buffer of this size
36 * must be available to the @final and @finup calls, so they can
37 * store the resulting hash into it. For various predefined sizes,
38 * search include/crypto/ using
39 * git grep _DIGEST_SIZE include/crypto.
40 * @statesize: Size of the block for partial state of the transformation. A
41 * buffer of this size must be passed to the @export function as it
42 * will save the partial state of the transformation into it. On the
43 * other side, the @import function will load the state from a
44 * buffer of this size as well.
45 * @base: Start of data structure of cipher algorithm. The common data
46 * structure of crypto_alg contains information common to all ciphers.
47 * The hash_alg_common data structure now adds the hash-specific
48 * information.
49 */
50#define HASH_ALG_COMMON { \
51 unsigned int digestsize; \
52 unsigned int statesize; \
53 \
54 struct crypto_alg base; \
55}
56struct hash_alg_common HASH_ALG_COMMON;
57
58struct ahash_request {
59 struct crypto_async_request base;
60
61 unsigned int nbytes;
62 union {
63 struct scatterlist *src;
64 const u8 *svirt;
65 };
66 u8 *result;
67
68 struct scatterlist sg_head[2];
69 crypto_completion_t saved_complete;
70 void *saved_data;
71
72 void *__ctx[] CRYPTO_MINALIGN_ATTR;
73};
74
75/**
76 * struct ahash_alg - asynchronous message digest definition
77 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
78 * state of the HASH transformation at the beginning. This shall fill in
79 * the internal structures used during the entire duration of the whole
80 * transformation. No data processing happens at this point. Driver code
81 * implementation must not use req->result.
82 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
83 * function actually pushes blocks of data from upper layers into the
84 * driver, which then passes those to the hardware as seen fit. This
85 * function must not finalize the HASH transformation by calculating the
86 * final message digest as this only adds more data into the
87 * transformation. This function shall not modify the transformation
88 * context, as this function may be called in parallel with the same
89 * transformation object. Data processing can happen synchronously
90 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
91 * req->result.
92 * For block-only algorithms, @update must return the number
93 * of bytes to store in the API partial block buffer.
94 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
95 * transformation and retrieves the resulting hash from the driver and
96 * pushes it back to upper layers. No data processing happens at this
97 * point unless hardware requires it to finish the transformation
98 * (then the data buffered by the device driver is processed).
99 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
100 * combination of @update and @final calls issued in sequence. As some
101 * hardware cannot do @update and @final separately, this callback was
102 * added to allow such hardware to be used at least by IPsec. Data
103 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
104 * at this point.
105 * @digest: Combination of @init and @update and @final. This function
106 * effectively behaves as the entire chain of operations, @init,
107 * @update and @final issued in sequence. Just like @finup, this was
108 * added for hardware which cannot do even the @finup, but can only do
109 * the whole transformation in one run. Data processing can happen
110 * synchronously [SHASH] or asynchronously [AHASH] at this point.
111 * @setkey: Set optional key used by the hashing algorithm. Intended to push
112 * optional key used by the hashing algorithm from upper layers into
113 * the driver. This function can store the key in the transformation
114 * context or can outright program it into the hardware. In the former
115 * case, one must be careful to program the key into the hardware at
116 * appropriate time and one must be careful that .setkey() can be
117 * called multiple times during the existence of the transformation
118 * object. Not all hashing algorithms do implement this function as it
119 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
120 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
121 * this function. This function must be called before any other of the
122 * @init, @update, @final, @finup, @digest is called. No data
123 * processing happens at this point.
124 * @export: Export partial state of the transformation. This function dumps the
125 * entire state of the ongoing transformation into a provided block of
126 * data so it can be @import 'ed back later on. This is useful in case
127 * you want to save partial result of the transformation after
128 * processing certain amount of data and reload this partial result
129 * multiple times later on for multiple re-use. No data processing
130 * happens at this point. Driver must not use req->result.
131 * @import: Import partial state of the transformation. This function loads the
132 * entire state of the ongoing transformation from a provided block of
133 * data so the transformation can continue from this point onward. No
134 * data processing happens at this point. Driver must not use
135 * req->result.
136 * @export_core: Export partial state without partial block. Only defined
137 * for algorithms that are not block-only.
138 * @import_core: Import partial state without partial block. Only defined
139 * for algorithms that are not block-only.
140 * @init_tfm: Initialize the cryptographic transformation object.
141 * This function is called only once at the instantiation
142 * time, right after the transformation context was
143 * allocated. In case the cryptographic hardware has
144 * some special requirements which need to be handled
145 * by software, this function shall check for the precise
146 * requirement of the transformation and put any software
147 * fallbacks in place.
148 * @exit_tfm: Deinitialize the cryptographic transformation object.
149 * This is a counterpart to @init_tfm, used to remove
150 * various changes set in @init_tfm.
151 * @clone_tfm: Copy transform into new object, may allocate memory.
152 * @halg: see struct hash_alg_common
153 */
154struct ahash_alg {
155 int (*init)(struct ahash_request *req);
156 int (*update)(struct ahash_request *req);
157 int (*final)(struct ahash_request *req);
158 int (*finup)(struct ahash_request *req);
159 int (*digest)(struct ahash_request *req);
160 int (*export)(struct ahash_request *req, void *out);
161 int (*import)(struct ahash_request *req, const void *in);
162 int (*export_core)(struct ahash_request *req, void *out);
163 int (*import_core)(struct ahash_request *req, const void *in);
164 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
165 unsigned int keylen);
166 int (*init_tfm)(struct crypto_ahash *tfm);
167 void (*exit_tfm)(struct crypto_ahash *tfm);
168 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
169
170 struct hash_alg_common halg;
171};
172
173struct shash_desc {
174 struct crypto_shash *tfm;
175 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
176};
177
178#define HASH_MAX_DIGESTSIZE 64
179
180/* Worst case is sha3-224. */
181#define HASH_MAX_STATESIZE 200 + 144 + 1
182
183/*
184 * Worst case is hmac(sha3-224-s390). Its context is a nested 'shash_desc'
185 * containing a 'struct s390_sha_ctx'.
186 */
187#define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360)
188#define MAX_SYNC_HASH_REQSIZE (sizeof(struct ahash_request) + \
189 HASH_MAX_DESCSIZE)
190
191#define SHASH_DESC_ON_STACK(shash, ctx) \
192 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
193 __aligned(__alignof__(struct shash_desc)); \
194 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
195
196#define HASH_REQUEST_ON_STACK(name, _tfm) \
197 char __##name##_req[sizeof(struct ahash_request) + \
198 MAX_SYNC_HASH_REQSIZE] CRYPTO_MINALIGN_ATTR; \
199 struct ahash_request *name = \
200 ahash_request_on_stack_init(__##name##_req, (_tfm))
201
202#define HASH_REQUEST_CLONE(name, gfp) \
203 hash_request_clone(name, sizeof(__##name##_req), gfp)
204
205/**
206 * struct shash_alg - synchronous message digest definition
207 * @init: see struct ahash_alg
208 * @update: see struct ahash_alg
209 * @final: see struct ahash_alg
210 * @finup: see struct ahash_alg
211 * @digest: see struct ahash_alg
212 * @export: see struct ahash_alg
213 * @import: see struct ahash_alg
214 * @export_core: see struct ahash_alg
215 * @import_core: see struct ahash_alg
216 * @setkey: see struct ahash_alg
217 * @init_tfm: Initialize the cryptographic transformation object.
218 * This function is called only once at the instantiation
219 * time, right after the transformation context was
220 * allocated. In case the cryptographic hardware has
221 * some special requirements which need to be handled
222 * by software, this function shall check for the precise
223 * requirement of the transformation and put any software
224 * fallbacks in place.
225 * @exit_tfm: Deinitialize the cryptographic transformation object.
226 * This is a counterpart to @init_tfm, used to remove
227 * various changes set in @init_tfm.
228 * @clone_tfm: Copy transform into new object, may allocate memory.
229 * @descsize: Size of the operational state for the message digest. This state
230 * size is the memory size that needs to be allocated for
231 * shash_desc.__ctx
232 * @halg: see struct hash_alg_common
233 * @HASH_ALG_COMMON: see struct hash_alg_common
234 */
235struct shash_alg {
236 int (*init)(struct shash_desc *desc);
237 int (*update)(struct shash_desc *desc, const u8 *data,
238 unsigned int len);
239 int (*final)(struct shash_desc *desc, u8 *out);
240 int (*finup)(struct shash_desc *desc, const u8 *data,
241 unsigned int len, u8 *out);
242 int (*digest)(struct shash_desc *desc, const u8 *data,
243 unsigned int len, u8 *out);
244 int (*export)(struct shash_desc *desc, void *out);
245 int (*import)(struct shash_desc *desc, const void *in);
246 int (*export_core)(struct shash_desc *desc, void *out);
247 int (*import_core)(struct shash_desc *desc, const void *in);
248 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
249 unsigned int keylen);
250 int (*init_tfm)(struct crypto_shash *tfm);
251 void (*exit_tfm)(struct crypto_shash *tfm);
252 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
253
254 unsigned int descsize;
255
256 union {
257 struct HASH_ALG_COMMON;
258 struct hash_alg_common halg;
259 };
260};
261#undef HASH_ALG_COMMON
262
263struct crypto_ahash {
264 bool using_shash; /* Underlying algorithm is shash, not ahash */
265 unsigned int statesize;
266 unsigned int reqsize;
267 struct crypto_tfm base;
268};
269
270struct crypto_shash {
271 struct crypto_tfm base;
272};
273
274/**
275 * DOC: Asynchronous Message Digest API
276 *
277 * The asynchronous message digest API is used with the ciphers of type
278 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
279 *
280 * The asynchronous cipher operation discussion provided for the
281 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
282 */
283
284static inline bool ahash_req_on_stack(struct ahash_request *req)
285{
286 return crypto_req_on_stack(req: &req->base);
287}
288
289static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
290{
291 return container_of(tfm, struct crypto_ahash, base);
292}
293
294/**
295 * crypto_alloc_ahash() - allocate ahash cipher handle
296 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
297 * ahash cipher
298 * @type: specifies the type of the cipher
299 * @mask: specifies the mask for the cipher
300 *
301 * Allocate a cipher handle for an ahash. The returned struct
302 * crypto_ahash is the cipher handle that is required for any subsequent
303 * API invocation for that ahash.
304 *
305 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
306 * of an error, PTR_ERR() returns the error code.
307 */
308struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
309 u32 mask);
310
311struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
312
313static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
314{
315 return &tfm->base;
316}
317
318/**
319 * crypto_free_ahash() - zeroize and free the ahash handle
320 * @tfm: cipher handle to be freed
321 *
322 * If @tfm is a NULL or error pointer, this function does nothing.
323 */
324static inline void crypto_free_ahash(struct crypto_ahash *tfm)
325{
326 crypto_destroy_tfm(mem: tfm, tfm: crypto_ahash_tfm(tfm));
327}
328
329/**
330 * crypto_has_ahash() - Search for the availability of an ahash.
331 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
332 * ahash
333 * @type: specifies the type of the ahash
334 * @mask: specifies the mask for the ahash
335 *
336 * Return: true when the ahash is known to the kernel crypto API; false
337 * otherwise
338 */
339int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
340
341static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
342{
343 return crypto_tfm_alg_name(tfm: crypto_ahash_tfm(tfm));
344}
345
346static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
347{
348 return crypto_tfm_alg_driver_name(tfm: crypto_ahash_tfm(tfm));
349}
350
351/**
352 * crypto_ahash_blocksize() - obtain block size for cipher
353 * @tfm: cipher handle
354 *
355 * The block size for the message digest cipher referenced with the cipher
356 * handle is returned.
357 *
358 * Return: block size of cipher
359 */
360static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
361{
362 return crypto_tfm_alg_blocksize(tfm: crypto_ahash_tfm(tfm));
363}
364
365static inline struct hash_alg_common *__crypto_hash_alg_common(
366 struct crypto_alg *alg)
367{
368 return container_of(alg, struct hash_alg_common, base);
369}
370
371static inline struct hash_alg_common *crypto_hash_alg_common(
372 struct crypto_ahash *tfm)
373{
374 return __crypto_hash_alg_common(alg: crypto_ahash_tfm(tfm)->__crt_alg);
375}
376
377/**
378 * crypto_ahash_digestsize() - obtain message digest size
379 * @tfm: cipher handle
380 *
381 * The size for the message digest created by the message digest cipher
382 * referenced with the cipher handle is returned.
383 *
384 *
385 * Return: message digest size of cipher
386 */
387static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
388{
389 return crypto_hash_alg_common(tfm)->digestsize;
390}
391
392/**
393 * crypto_ahash_statesize() - obtain size of the ahash state
394 * @tfm: cipher handle
395 *
396 * Return the size of the ahash state. With the crypto_ahash_export()
397 * function, the caller can export the state into a buffer whose size is
398 * defined with this function.
399 *
400 * Return: size of the ahash state
401 */
402static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
403{
404 return tfm->statesize;
405}
406
407static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
408{
409 return crypto_tfm_get_flags(tfm: crypto_ahash_tfm(tfm));
410}
411
412static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
413{
414 crypto_tfm_set_flags(tfm: crypto_ahash_tfm(tfm), flags);
415}
416
417static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
418{
419 crypto_tfm_clear_flags(tfm: crypto_ahash_tfm(tfm), flags);
420}
421
422/**
423 * crypto_ahash_reqtfm() - obtain cipher handle from request
424 * @req: asynchronous request handle that contains the reference to the ahash
425 * cipher handle
426 *
427 * Return the ahash cipher handle that is registered with the asynchronous
428 * request handle ahash_request.
429 *
430 * Return: ahash cipher handle
431 */
432static inline struct crypto_ahash *crypto_ahash_reqtfm(
433 struct ahash_request *req)
434{
435 return __crypto_ahash_cast(tfm: req->base.tfm);
436}
437
438/**
439 * crypto_ahash_reqsize() - obtain size of the request data structure
440 * @tfm: cipher handle
441 *
442 * Return: size of the request data
443 */
444static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
445{
446 return tfm->reqsize;
447}
448
449static inline void *ahash_request_ctx(struct ahash_request *req)
450{
451 return req->__ctx;
452}
453
454/**
455 * crypto_ahash_setkey - set key for cipher handle
456 * @tfm: cipher handle
457 * @key: buffer holding the key
458 * @keylen: length of the key in bytes
459 *
460 * The caller provided key is set for the ahash cipher. The cipher
461 * handle must point to a keyed hash in order for this function to succeed.
462 *
463 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
464 */
465int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
466 unsigned int keylen);
467
468/**
469 * crypto_ahash_finup() - update and finalize message digest
470 * @req: reference to the ahash_request handle that holds all information
471 * needed to perform the cipher operation
472 *
473 * This function is a "short-hand" for the function calls of
474 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
475 * meaning as discussed for those separate functions.
476 *
477 * Return: see crypto_ahash_final()
478 */
479int crypto_ahash_finup(struct ahash_request *req);
480
481/**
482 * crypto_ahash_final() - calculate message digest
483 * @req: reference to the ahash_request handle that holds all information
484 * needed to perform the cipher operation
485 *
486 * Finalize the message digest operation and create the message digest
487 * based on all data added to the cipher handle. The message digest is placed
488 * into the output buffer registered with the ahash_request handle.
489 *
490 * Return:
491 * 0 if the message digest was successfully calculated;
492 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later;
493 * -EBUSY if queue is full and request should be resubmitted later;
494 * other < 0 if an error occurred
495 */
496static inline int crypto_ahash_final(struct ahash_request *req)
497{
498 req->nbytes = 0;
499 return crypto_ahash_finup(req);
500}
501
502/**
503 * crypto_ahash_digest() - calculate message digest for a buffer
504 * @req: reference to the ahash_request handle that holds all information
505 * needed to perform the cipher operation
506 *
507 * This function is a "short-hand" for the function calls of crypto_ahash_init,
508 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
509 * meaning as discussed for those separate three functions.
510 *
511 * Return: see crypto_ahash_final()
512 */
513int crypto_ahash_digest(struct ahash_request *req);
514
515/**
516 * crypto_ahash_export() - extract current message digest state
517 * @req: reference to the ahash_request handle whose state is exported
518 * @out: output buffer of sufficient size that can hold the hash state
519 *
520 * This function exports the hash state of the ahash_request handle into the
521 * caller-allocated output buffer out which must have sufficient size (e.g. by
522 * calling crypto_ahash_statesize()).
523 *
524 * Return: 0 if the export was successful; < 0 if an error occurred
525 */
526int crypto_ahash_export(struct ahash_request *req, void *out);
527
528/**
529 * crypto_ahash_import() - import message digest state
530 * @req: reference to ahash_request handle the state is imported into
531 * @in: buffer holding the state
532 *
533 * This function imports the hash state into the ahash_request handle from the
534 * input buffer. That buffer should have been generated with the
535 * crypto_ahash_export function.
536 *
537 * Return: 0 if the import was successful; < 0 if an error occurred
538 */
539int crypto_ahash_import(struct ahash_request *req, const void *in);
540
541/**
542 * crypto_ahash_init() - (re)initialize message digest handle
543 * @req: ahash_request handle that already is initialized with all necessary
544 * data using the ahash_request_* API functions
545 *
546 * The call (re-)initializes the message digest referenced by the ahash_request
547 * handle. Any potentially existing state created by previous operations is
548 * discarded.
549 *
550 * Return: see crypto_ahash_final()
551 */
552int crypto_ahash_init(struct ahash_request *req);
553
554/**
555 * crypto_ahash_update() - add data to message digest for processing
556 * @req: ahash_request handle that was previously initialized with the
557 * crypto_ahash_init call.
558 *
559 * Updates the message digest state of the &ahash_request handle. The input data
560 * is pointed to by the scatter/gather list registered in the &ahash_request
561 * handle
562 *
563 * Return: see crypto_ahash_final()
564 */
565int crypto_ahash_update(struct ahash_request *req);
566
567/**
568 * DOC: Asynchronous Hash Request Handle
569 *
570 * The &ahash_request data structure contains all pointers to data
571 * required for the asynchronous cipher operation. This includes the cipher
572 * handle (which can be used by multiple &ahash_request instances), pointer
573 * to plaintext and the message digest output buffer, asynchronous callback
574 * function, etc. It acts as a handle to the ahash_request_* API calls in a
575 * similar way as ahash handle to the crypto_ahash_* API calls.
576 */
577
578/**
579 * ahash_request_set_tfm() - update cipher handle reference in request
580 * @req: request handle to be modified
581 * @tfm: cipher handle that shall be added to the request handle
582 *
583 * Allow the caller to replace the existing ahash handle in the request
584 * data structure with a different one.
585 */
586static inline void ahash_request_set_tfm(struct ahash_request *req,
587 struct crypto_ahash *tfm)
588{
589 crypto_request_set_tfm(req: &req->base, tfm: crypto_ahash_tfm(tfm));
590}
591
592/**
593 * ahash_request_alloc() - allocate request data structure
594 * @tfm: cipher handle to be registered with the request
595 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
596 *
597 * Allocate the request data structure that must be used with the ahash
598 * message digest API calls. During
599 * the allocation, the provided ahash handle
600 * is registered in the request data structure.
601 *
602 * Return: allocated request handle in case of success, or NULL if out of memory
603 */
604static inline struct ahash_request *ahash_request_alloc_noprof(
605 struct crypto_ahash *tfm, gfp_t gfp)
606{
607 struct ahash_request *req;
608
609 req = kmalloc_noprof(size: sizeof(struct ahash_request) +
610 crypto_ahash_reqsize(tfm), flags: gfp);
611
612 if (likely(req))
613 ahash_request_set_tfm(req, tfm);
614
615 return req;
616}
617#define ahash_request_alloc(...) alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__))
618
619/**
620 * ahash_request_free() - zeroize and free the request data structure
621 * @req: request data structure cipher handle to be freed
622 */
623void ahash_request_free(struct ahash_request *req);
624
625static inline void ahash_request_zero(struct ahash_request *req)
626{
627 memzero_explicit(s: req, count: sizeof(*req) +
628 crypto_ahash_reqsize(tfm: crypto_ahash_reqtfm(req)));
629}
630
631static inline struct ahash_request *ahash_request_cast(
632 struct crypto_async_request *req)
633{
634 return container_of(req, struct ahash_request, base);
635}
636
637/**
638 * ahash_request_set_callback() - set asynchronous callback function
639 * @req: request handle
640 * @flags: specify zero or an ORing of the flags
641 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
642 * increase the wait queue beyond the initial maximum size;
643 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
644 * @compl: callback function pointer to be registered with the request handle
645 * @data: The data pointer refers to memory that is not used by the kernel
646 * crypto API, but provided to the callback function for it to use. Here,
647 * the caller can provide a reference to memory the callback function can
648 * operate on. As the callback function is invoked asynchronously to the
649 * related functionality, it may need to access data structures of the
650 * related functionality which can be referenced using this pointer. The
651 * callback function can access the memory via the "data" field in the
652 * &crypto_async_request data structure provided to the callback function.
653 *
654 * This function allows setting the callback function that is triggered once
655 * the cipher operation completes.
656 *
657 * The callback function is registered with the &ahash_request handle and
658 * must comply with the following template::
659 *
660 * void callback_function(struct crypto_async_request *req, int error)
661 */
662static inline void ahash_request_set_callback(struct ahash_request *req,
663 u32 flags,
664 crypto_completion_t compl,
665 void *data)
666{
667 flags &= ~CRYPTO_AHASH_REQ_PRIVATE;
668 flags |= req->base.flags & CRYPTO_AHASH_REQ_PRIVATE;
669 crypto_request_set_callback(req: &req->base, flags, compl, data);
670}
671
672/**
673 * ahash_request_set_crypt() - set data buffers
674 * @req: ahash_request handle to be updated
675 * @src: source scatter/gather list
676 * @result: buffer that is filled with the message digest -- the caller must
677 * ensure that the buffer has sufficient space by, for example, calling
678 * crypto_ahash_digestsize()
679 * @nbytes: number of bytes to process from the source scatter/gather list
680 *
681 * By using this call, the caller references the source scatter/gather list.
682 * The source scatter/gather list points to the data the message digest is to
683 * be calculated for.
684 */
685static inline void ahash_request_set_crypt(struct ahash_request *req,
686 struct scatterlist *src, u8 *result,
687 unsigned int nbytes)
688{
689 req->src = src;
690 req->nbytes = nbytes;
691 req->result = result;
692 req->base.flags &= ~CRYPTO_AHASH_REQ_VIRT;
693}
694
695/**
696 * ahash_request_set_virt() - set virtual address data buffers
697 * @req: ahash_request handle to be updated
698 * @src: source virtual address
699 * @result: buffer that is filled with the message digest -- the caller must
700 * ensure that the buffer has sufficient space by, for example, calling
701 * crypto_ahash_digestsize()
702 * @nbytes: number of bytes to process from the source virtual address
703 *
704 * By using this call, the caller references the source virtual address.
705 * The source virtual address points to the data the message digest is to
706 * be calculated for.
707 */
708static inline void ahash_request_set_virt(struct ahash_request *req,
709 const u8 *src, u8 *result,
710 unsigned int nbytes)
711{
712 req->svirt = src;
713 req->nbytes = nbytes;
714 req->result = result;
715 req->base.flags |= CRYPTO_AHASH_REQ_VIRT;
716}
717
718/**
719 * DOC: Synchronous Message Digest API
720 *
721 * The synchronous message digest API is used with the ciphers of type
722 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
723 *
724 * The message digest API is able to maintain state information for the
725 * caller.
726 *
727 * The synchronous message digest API can store user-related context in its
728 * shash_desc request data structure.
729 */
730
731/**
732 * crypto_alloc_shash() - allocate message digest handle
733 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
734 * message digest cipher
735 * @type: specifies the type of the cipher
736 * @mask: specifies the mask for the cipher
737 *
738 * Allocate a cipher handle for a message digest. The returned &struct
739 * crypto_shash is the cipher handle that is required for any subsequent
740 * API invocation for that message digest.
741 *
742 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
743 * of an error, PTR_ERR() returns the error code.
744 */
745struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
746 u32 mask);
747
748struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
749
750int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
751
752static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
753{
754 return &tfm->base;
755}
756
757/**
758 * crypto_free_shash() - zeroize and free the message digest handle
759 * @tfm: cipher handle to be freed
760 *
761 * If @tfm is a NULL or error pointer, this function does nothing.
762 */
763static inline void crypto_free_shash(struct crypto_shash *tfm)
764{
765 crypto_destroy_tfm(mem: tfm, tfm: crypto_shash_tfm(tfm));
766}
767
768static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
769{
770 return crypto_tfm_alg_name(tfm: crypto_shash_tfm(tfm));
771}
772
773static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
774{
775 return crypto_tfm_alg_driver_name(tfm: crypto_shash_tfm(tfm));
776}
777
778/**
779 * crypto_shash_blocksize() - obtain block size for cipher
780 * @tfm: cipher handle
781 *
782 * The block size for the message digest cipher referenced with the cipher
783 * handle is returned.
784 *
785 * Return: block size of cipher
786 */
787static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
788{
789 return crypto_tfm_alg_blocksize(tfm: crypto_shash_tfm(tfm));
790}
791
792static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
793{
794 return container_of(alg, struct shash_alg, base);
795}
796
797static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
798{
799 return __crypto_shash_alg(alg: crypto_shash_tfm(tfm)->__crt_alg);
800}
801
802/**
803 * crypto_shash_digestsize() - obtain message digest size
804 * @tfm: cipher handle
805 *
806 * The size for the message digest created by the message digest cipher
807 * referenced with the cipher handle is returned.
808 *
809 * Return: digest size of cipher
810 */
811static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
812{
813 return crypto_shash_alg(tfm)->digestsize;
814}
815
816static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
817{
818 return crypto_shash_alg(tfm)->statesize;
819}
820
821static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
822{
823 return crypto_tfm_get_flags(tfm: crypto_shash_tfm(tfm));
824}
825
826static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
827{
828 crypto_tfm_set_flags(tfm: crypto_shash_tfm(tfm), flags);
829}
830
831static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
832{
833 crypto_tfm_clear_flags(tfm: crypto_shash_tfm(tfm), flags);
834}
835
836/**
837 * crypto_shash_descsize() - obtain the operational state size
838 * @tfm: cipher handle
839 *
840 * The size of the operational state the cipher needs during operation is
841 * returned for the hash referenced with the cipher handle. This size is
842 * required to calculate the memory requirements to allow the caller allocating
843 * sufficient memory for operational state.
844 *
845 * The operational state is defined with struct shash_desc where the size of
846 * that data structure is to be calculated as
847 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
848 *
849 * Return: size of the operational state
850 */
851static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
852{
853 return crypto_shash_alg(tfm)->descsize;
854}
855
856static inline void *shash_desc_ctx(struct shash_desc *desc)
857{
858 return desc->__ctx;
859}
860
861/**
862 * crypto_shash_setkey() - set key for message digest
863 * @tfm: cipher handle
864 * @key: buffer holding the key
865 * @keylen: length of the key in bytes
866 *
867 * The caller provided key is set for the keyed message digest cipher. The
868 * cipher handle must point to a keyed message digest cipher in order for this
869 * function to succeed.
870 *
871 * Context: Softirq or process context.
872 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
873 */
874int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
875 unsigned int keylen);
876
877/**
878 * crypto_shash_digest() - calculate message digest for buffer
879 * @desc: see crypto_shash_final()
880 * @data: see crypto_shash_update()
881 * @len: see crypto_shash_update()
882 * @out: see crypto_shash_final()
883 *
884 * This function is a "short-hand" for the function calls of crypto_shash_init,
885 * crypto_shash_update and crypto_shash_final. The parameters have the same
886 * meaning as discussed for those separate three functions.
887 *
888 * Context: Softirq or process context.
889 * Return: 0 if the message digest creation was successful; < 0 if an error
890 * occurred
891 */
892int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
893 unsigned int len, u8 *out);
894
895/**
896 * crypto_shash_tfm_digest() - calculate message digest for buffer
897 * @tfm: hash transformation object
898 * @data: see crypto_shash_update()
899 * @len: see crypto_shash_update()
900 * @out: see crypto_shash_final()
901 *
902 * This is a simplified version of crypto_shash_digest() for users who don't
903 * want to allocate their own hash descriptor (shash_desc). Instead,
904 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
905 * directly, and it allocates a hash descriptor on the stack internally.
906 * Note that this stack allocation may be fairly large.
907 *
908 * Context: Softirq or process context.
909 * Return: 0 on success; < 0 if an error occurred.
910 */
911int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
912 unsigned int len, u8 *out);
913
914int crypto_hash_digest(struct crypto_ahash *tfm, const u8 *data,
915 unsigned int len, u8 *out);
916
917/**
918 * crypto_shash_export() - extract operational state for message digest
919 * @desc: reference to the operational state handle whose state is exported
920 * @out: output buffer of sufficient size that can hold the hash state
921 *
922 * This function exports the hash state of the operational state handle into the
923 * caller-allocated output buffer out which must have sufficient size (e.g. by
924 * calling crypto_shash_descsize).
925 *
926 * Context: Softirq or process context.
927 * Return: 0 if the export creation was successful; < 0 if an error occurred
928 */
929int crypto_shash_export(struct shash_desc *desc, void *out);
930
931/**
932 * crypto_shash_import() - import operational state
933 * @desc: reference to the operational state handle the state imported into
934 * @in: buffer holding the state
935 *
936 * This function imports the hash state into the operational state handle from
937 * the input buffer. That buffer should have been generated with the
938 * crypto_ahash_export function.
939 *
940 * Context: Softirq or process context.
941 * Return: 0 if the import was successful; < 0 if an error occurred
942 */
943int crypto_shash_import(struct shash_desc *desc, const void *in);
944
945/**
946 * crypto_shash_init() - (re)initialize message digest
947 * @desc: operational state handle that is already filled
948 *
949 * The call (re-)initializes the message digest referenced by the
950 * operational state handle. Any potentially existing state created by
951 * previous operations is discarded.
952 *
953 * Context: Softirq or process context.
954 * Return: 0 if the message digest initialization was successful; < 0 if an
955 * error occurred
956 */
957int crypto_shash_init(struct shash_desc *desc);
958
959/**
960 * crypto_shash_finup() - calculate message digest of buffer
961 * @desc: see crypto_shash_final()
962 * @data: see crypto_shash_update()
963 * @len: see crypto_shash_update()
964 * @out: see crypto_shash_final()
965 *
966 * This function is a "short-hand" for the function calls of
967 * crypto_shash_update and crypto_shash_final. The parameters have the same
968 * meaning as discussed for those separate functions.
969 *
970 * Context: Softirq or process context.
971 * Return: 0 if the message digest creation was successful; < 0 if an error
972 * occurred
973 */
974int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
975 unsigned int len, u8 *out);
976
977/**
978 * crypto_shash_update() - add data to message digest for processing
979 * @desc: operational state handle that is already initialized
980 * @data: input data to be added to the message digest
981 * @len: length of the input data
982 *
983 * Updates the message digest state of the operational state handle.
984 *
985 * Context: Softirq or process context.
986 * Return: 0 if the message digest update was successful; < 0 if an error
987 * occurred
988 */
989static inline int crypto_shash_update(struct shash_desc *desc, const u8 *data,
990 unsigned int len)
991{
992 return crypto_shash_finup(desc, data, len, NULL);
993}
994
995/**
996 * crypto_shash_final() - calculate message digest
997 * @desc: operational state handle that is already filled with data
998 * @out: output buffer filled with the message digest
999 *
1000 * Finalize the message digest operation and create the message digest
1001 * based on all data added to the cipher handle. The message digest is placed
1002 * into the output buffer. The caller must ensure that the output buffer is
1003 * large enough by using crypto_shash_digestsize.
1004 *
1005 * Context: Softirq or process context.
1006 * Return: 0 if the message digest creation was successful; < 0 if an error
1007 * occurred
1008 */
1009static inline int crypto_shash_final(struct shash_desc *desc, u8 *out)
1010{
1011 return crypto_shash_finup(desc, NULL, len: 0, out);
1012}
1013
1014static inline void shash_desc_zero(struct shash_desc *desc)
1015{
1016 memzero_explicit(s: desc,
1017 count: sizeof(*desc) + crypto_shash_descsize(tfm: desc->tfm));
1018}
1019
1020static inline bool ahash_is_async(struct crypto_ahash *tfm)
1021{
1022 return crypto_tfm_is_async(tfm: &tfm->base);
1023}
1024
1025static inline struct ahash_request *ahash_request_on_stack_init(
1026 char *buf, struct crypto_ahash *tfm)
1027{
1028 struct ahash_request *req = (void *)buf;
1029
1030 crypto_stack_request_init(req: &req->base, tfm: crypto_ahash_tfm(tfm));
1031 return req;
1032}
1033
1034static inline struct ahash_request *ahash_request_clone(
1035 struct ahash_request *req, size_t total, gfp_t gfp)
1036{
1037 return container_of(crypto_request_clone(&req->base, total, gfp),
1038 struct ahash_request, base);
1039}
1040
1041#endif /* _CRYPTO_HASH_H */
1042

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/include/crypto/hash.h