1 | #ifndef _LINUX_HASH_H |
2 | #define _LINUX_HASH_H |
3 | /* Fast hashing routine for ints, longs and pointers. |
4 | (C) 2002 Nadia Yvette Chambers, IBM */ |
5 | |
6 | #include <asm/types.h> |
7 | #include <linux/compiler.h> |
8 | |
9 | /* |
10 | * The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and |
11 | * fs/inode.c. It's not actually prime any more (the previous primes |
12 | * were actively bad for hashing), but the name remains. |
13 | */ |
14 | #if BITS_PER_LONG == 32 |
15 | #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32 |
16 | #define hash_long(val, bits) hash_32(val, bits) |
17 | #elif BITS_PER_LONG == 64 |
18 | #define hash_long(val, bits) hash_64(val, bits) |
19 | #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64 |
20 | #else |
21 | #error Wordsize not 32 or 64 |
22 | #endif |
23 | |
24 | /* |
25 | * This hash multiplies the input by a large odd number and takes the |
26 | * high bits. Since multiplication propagates changes to the most |
27 | * significant end only, it is essential that the high bits of the |
28 | * product be used for the hash value. |
29 | * |
30 | * Chuck Lever verified the effectiveness of this technique: |
31 | * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf |
32 | * |
33 | * Although a random odd number will do, it turns out that the golden |
34 | * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice |
35 | * properties. (See Knuth vol 3, section 6.4, exercise 9.) |
36 | * |
37 | * These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2, |
38 | * which is very slightly easier to multiply by and makes no |
39 | * difference to the hash distribution. |
40 | */ |
41 | #define GOLDEN_RATIO_32 0x61C88647 |
42 | #define GOLDEN_RATIO_64 0x61C8864680B583EBull |
43 | |
44 | #ifdef CONFIG_HAVE_ARCH_HASH |
45 | /* This header may use the GOLDEN_RATIO_xx constants */ |
46 | #include <asm/hash.h> |
47 | #endif |
48 | |
49 | /* |
50 | * The _generic versions exist only so lib/test_hash.c can compare |
51 | * the arch-optimized versions with the generic. |
52 | * |
53 | * Note that if you change these, any <asm/hash.h> that aren't updated |
54 | * to match need to have their HAVE_ARCH_* define values updated so the |
55 | * self-test will not false-positive. |
56 | */ |
57 | #ifndef HAVE_ARCH__HASH_32 |
58 | #define __hash_32 __hash_32_generic |
59 | #endif |
60 | static inline u32 __hash_32_generic(u32 val) |
61 | { |
62 | return val * GOLDEN_RATIO_32; |
63 | } |
64 | |
65 | static inline u32 hash_32(u32 val, unsigned int bits) |
66 | { |
67 | /* High bits are more random, so use them. */ |
68 | return __hash_32(val) >> (32 - bits); |
69 | } |
70 | |
71 | #ifndef HAVE_ARCH_HASH_64 |
72 | #define hash_64 hash_64_generic |
73 | #endif |
74 | static __always_inline u32 hash_64_generic(u64 val, unsigned int bits) |
75 | { |
76 | #if BITS_PER_LONG == 64 |
77 | /* 64x64-bit multiply is efficient on all 64-bit processors */ |
78 | return val * GOLDEN_RATIO_64 >> (64 - bits); |
79 | #else |
80 | /* Hash 64 bits using only 32x32-bit multiply. */ |
81 | return hash_32((u32)val ^ __hash_32(val >> 32), bits); |
82 | #endif |
83 | } |
84 | |
85 | static inline u32 hash_ptr(const void *ptr, unsigned int bits) |
86 | { |
87 | return hash_long((unsigned long)ptr, bits); |
88 | } |
89 | |
90 | /* This really should be called fold32_ptr; it does no hashing to speak of. */ |
91 | static inline u32 hash32_ptr(const void *ptr) |
92 | { |
93 | unsigned long val = (unsigned long)ptr; |
94 | |
95 | #if BITS_PER_LONG == 64 |
96 | val ^= (val >> 32); |
97 | #endif |
98 | return (u32)val; |
99 | } |
100 | |
101 | #endif /* _LINUX_HASH_H */ |
102 | |