1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef _LINUX_PID_H |
3 | #define _LINUX_PID_H |
4 | |
5 | #include <linux/pid_types.h> |
6 | #include <linux/rculist.h> |
7 | #include <linux/rcupdate.h> |
8 | #include <linux/refcount.h> |
9 | #include <linux/sched.h> |
10 | #include <linux/wait.h> |
11 | |
12 | /* |
13 | * What is struct pid? |
14 | * |
15 | * A struct pid is the kernel's internal notion of a process identifier. |
16 | * It refers to individual tasks, process groups, and sessions. While |
17 | * there are processes attached to it the struct pid lives in a hash |
18 | * table, so it and then the processes that it refers to can be found |
19 | * quickly from the numeric pid value. The attached processes may be |
20 | * quickly accessed by following pointers from struct pid. |
21 | * |
22 | * Storing pid_t values in the kernel and referring to them later has a |
23 | * problem. The process originally with that pid may have exited and the |
24 | * pid allocator wrapped, and another process could have come along |
25 | * and been assigned that pid. |
26 | * |
27 | * Referring to user space processes by holding a reference to struct |
28 | * task_struct has a problem. When the user space process exits |
29 | * the now useless task_struct is still kept. A task_struct plus a |
30 | * stack consumes around 10K of low kernel memory. More precisely |
31 | * this is THREAD_SIZE + sizeof(struct task_struct). By comparison |
32 | * a struct pid is about 64 bytes. |
33 | * |
34 | * Holding a reference to struct pid solves both of these problems. |
35 | * It is small so holding a reference does not consume a lot of |
36 | * resources, and since a new struct pid is allocated when the numeric pid |
37 | * value is reused (when pids wrap around) we don't mistakenly refer to new |
38 | * processes. |
39 | */ |
40 | |
41 | |
42 | /* |
43 | * struct upid is used to get the id of the struct pid, as it is |
44 | * seen in particular namespace. Later the struct pid is found with |
45 | * find_pid_ns() using the int nr and struct pid_namespace *ns. |
46 | */ |
47 | |
48 | #define RESERVED_PIDS 300 |
49 | |
50 | struct upid { |
51 | int nr; |
52 | struct pid_namespace *ns; |
53 | }; |
54 | |
55 | struct pid |
56 | { |
57 | refcount_t count; |
58 | unsigned int level; |
59 | spinlock_t lock; |
60 | struct dentry *stashed; |
61 | u64 ino; |
62 | /* lists of tasks that use this pid */ |
63 | struct hlist_head tasks[PIDTYPE_MAX]; |
64 | struct hlist_head inodes; |
65 | /* wait queue for pidfd notifications */ |
66 | wait_queue_head_t wait_pidfd; |
67 | struct rcu_head rcu; |
68 | struct upid numbers[]; |
69 | }; |
70 | |
71 | extern struct pid init_struct_pid; |
72 | |
73 | struct file; |
74 | |
75 | struct pid *pidfd_pid(const struct file *file); |
76 | struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); |
77 | struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags); |
78 | int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret); |
79 | void do_notify_pidfd(struct task_struct *task); |
80 | |
81 | static inline struct pid *get_pid(struct pid *pid) |
82 | { |
83 | if (pid) |
84 | refcount_inc(r: &pid->count); |
85 | return pid; |
86 | } |
87 | |
88 | extern void put_pid(struct pid *pid); |
89 | extern struct task_struct *pid_task(struct pid *pid, enum pid_type); |
90 | static inline bool pid_has_task(struct pid *pid, enum pid_type type) |
91 | { |
92 | return !hlist_empty(h: &pid->tasks[type]); |
93 | } |
94 | extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); |
95 | |
96 | extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); |
97 | |
98 | /* |
99 | * these helpers must be called with the tasklist_lock write-held. |
100 | */ |
101 | extern void attach_pid(struct task_struct *task, enum pid_type); |
102 | extern void detach_pid(struct task_struct *task, enum pid_type); |
103 | extern void change_pid(struct task_struct *task, enum pid_type, |
104 | struct pid *pid); |
105 | extern void exchange_tids(struct task_struct *task, struct task_struct *old); |
106 | extern void transfer_pid(struct task_struct *old, struct task_struct *new, |
107 | enum pid_type); |
108 | |
109 | extern int pid_max; |
110 | extern int pid_max_min, pid_max_max; |
111 | |
112 | /* |
113 | * look up a PID in the hash table. Must be called with the tasklist_lock |
114 | * or rcu_read_lock() held. |
115 | * |
116 | * find_pid_ns() finds the pid in the namespace specified |
117 | * find_vpid() finds the pid by its virtual id, i.e. in the current namespace |
118 | * |
119 | * see also find_task_by_vpid() set in include/linux/sched.h |
120 | */ |
121 | extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); |
122 | extern struct pid *find_vpid(int nr); |
123 | |
124 | /* |
125 | * Lookup a PID in the hash table, and return with it's count elevated. |
126 | */ |
127 | extern struct pid *find_get_pid(int nr); |
128 | extern struct pid *find_ge_pid(int nr, struct pid_namespace *); |
129 | |
130 | extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, |
131 | size_t set_tid_size); |
132 | extern void free_pid(struct pid *pid); |
133 | extern void disable_pid_allocation(struct pid_namespace *ns); |
134 | |
135 | /* |
136 | * ns_of_pid() returns the pid namespace in which the specified pid was |
137 | * allocated. |
138 | * |
139 | * NOTE: |
140 | * ns_of_pid() is expected to be called for a process (task) that has |
141 | * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid |
142 | * is expected to be non-NULL. If @pid is NULL, caller should handle |
143 | * the resulting NULL pid-ns. |
144 | */ |
145 | static inline struct pid_namespace *ns_of_pid(struct pid *pid) |
146 | { |
147 | struct pid_namespace *ns = NULL; |
148 | if (pid) |
149 | ns = pid->numbers[pid->level].ns; |
150 | return ns; |
151 | } |
152 | |
153 | /* |
154 | * is_child_reaper returns true if the pid is the init process |
155 | * of the current namespace. As this one could be checked before |
156 | * pid_ns->child_reaper is assigned in copy_process, we check |
157 | * with the pid number. |
158 | */ |
159 | static inline bool is_child_reaper(struct pid *pid) |
160 | { |
161 | return pid->numbers[pid->level].nr == 1; |
162 | } |
163 | |
164 | /* |
165 | * the helpers to get the pid's id seen from different namespaces |
166 | * |
167 | * pid_nr() : global id, i.e. the id seen from the init namespace; |
168 | * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of |
169 | * current. |
170 | * pid_nr_ns() : id seen from the ns specified. |
171 | * |
172 | * see also task_xid_nr() etc in include/linux/sched.h |
173 | */ |
174 | |
175 | static inline pid_t pid_nr(struct pid *pid) |
176 | { |
177 | pid_t nr = 0; |
178 | if (pid) |
179 | nr = pid->numbers[0].nr; |
180 | return nr; |
181 | } |
182 | |
183 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); |
184 | pid_t pid_vnr(struct pid *pid); |
185 | |
186 | #define do_each_pid_task(pid, type, task) \ |
187 | do { \ |
188 | if ((pid) != NULL) \ |
189 | hlist_for_each_entry_rcu((task), \ |
190 | &(pid)->tasks[type], pid_links[type]) { |
191 | |
192 | /* |
193 | * Both old and new leaders may be attached to |
194 | * the same pid in the middle of de_thread(). |
195 | */ |
196 | #define while_each_pid_task(pid, type, task) \ |
197 | if (type == PIDTYPE_PID) \ |
198 | break; \ |
199 | } \ |
200 | } while (0) |
201 | |
202 | #define do_each_pid_thread(pid, type, task) \ |
203 | do_each_pid_task(pid, type, task) { \ |
204 | struct task_struct *tg___ = task; \ |
205 | for_each_thread(tg___, task) { |
206 | |
207 | #define while_each_pid_thread(pid, type, task) \ |
208 | } \ |
209 | task = tg___; \ |
210 | } while_each_pid_task(pid, type, task) |
211 | |
212 | static inline struct pid *task_pid(struct task_struct *task) |
213 | { |
214 | return task->thread_pid; |
215 | } |
216 | |
217 | /* |
218 | * the helpers to get the task's different pids as they are seen |
219 | * from various namespaces |
220 | * |
221 | * task_xid_nr() : global id, i.e. the id seen from the init namespace; |
222 | * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of |
223 | * current. |
224 | * task_xid_nr_ns() : id seen from the ns specified; |
225 | * |
226 | * see also pid_nr() etc in include/linux/pid.h |
227 | */ |
228 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); |
229 | |
230 | static inline pid_t task_pid_nr(struct task_struct *tsk) |
231 | { |
232 | return tsk->pid; |
233 | } |
234 | |
235 | static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
236 | { |
237 | return __task_pid_nr_ns(task: tsk, type: PIDTYPE_PID, ns); |
238 | } |
239 | |
240 | static inline pid_t task_pid_vnr(struct task_struct *tsk) |
241 | { |
242 | return __task_pid_nr_ns(task: tsk, type: PIDTYPE_PID, NULL); |
243 | } |
244 | |
245 | |
246 | static inline pid_t task_tgid_nr(struct task_struct *tsk) |
247 | { |
248 | return tsk->tgid; |
249 | } |
250 | |
251 | /** |
252 | * pid_alive - check that a task structure is not stale |
253 | * @p: Task structure to be checked. |
254 | * |
255 | * Test if a process is not yet dead (at most zombie state) |
256 | * If pid_alive fails, then pointers within the task structure |
257 | * can be stale and must not be dereferenced. |
258 | * |
259 | * Return: 1 if the process is alive. 0 otherwise. |
260 | */ |
261 | static inline int pid_alive(const struct task_struct *p) |
262 | { |
263 | return p->thread_pid != NULL; |
264 | } |
265 | |
266 | static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
267 | { |
268 | return __task_pid_nr_ns(task: tsk, type: PIDTYPE_PGID, ns); |
269 | } |
270 | |
271 | static inline pid_t task_pgrp_vnr(struct task_struct *tsk) |
272 | { |
273 | return __task_pid_nr_ns(task: tsk, type: PIDTYPE_PGID, NULL); |
274 | } |
275 | |
276 | |
277 | static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
278 | { |
279 | return __task_pid_nr_ns(task: tsk, type: PIDTYPE_SID, ns); |
280 | } |
281 | |
282 | static inline pid_t task_session_vnr(struct task_struct *tsk) |
283 | { |
284 | return __task_pid_nr_ns(task: tsk, type: PIDTYPE_SID, NULL); |
285 | } |
286 | |
287 | static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
288 | { |
289 | return __task_pid_nr_ns(task: tsk, type: PIDTYPE_TGID, ns); |
290 | } |
291 | |
292 | static inline pid_t task_tgid_vnr(struct task_struct *tsk) |
293 | { |
294 | return __task_pid_nr_ns(task: tsk, type: PIDTYPE_TGID, NULL); |
295 | } |
296 | |
297 | static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) |
298 | { |
299 | pid_t pid = 0; |
300 | |
301 | rcu_read_lock(); |
302 | if (pid_alive(p: tsk)) |
303 | pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); |
304 | rcu_read_unlock(); |
305 | |
306 | return pid; |
307 | } |
308 | |
309 | static inline pid_t task_ppid_nr(const struct task_struct *tsk) |
310 | { |
311 | return task_ppid_nr_ns(tsk, ns: &init_pid_ns); |
312 | } |
313 | |
314 | /* Obsolete, do not use: */ |
315 | static inline pid_t task_pgrp_nr(struct task_struct *tsk) |
316 | { |
317 | return task_pgrp_nr_ns(tsk, ns: &init_pid_ns); |
318 | } |
319 | |
320 | /** |
321 | * is_global_init - check if a task structure is init. Since init |
322 | * is free to have sub-threads we need to check tgid. |
323 | * @tsk: Task structure to be checked. |
324 | * |
325 | * Check if a task structure is the first user space task the kernel created. |
326 | * |
327 | * Return: 1 if the task structure is init. 0 otherwise. |
328 | */ |
329 | static inline int is_global_init(struct task_struct *tsk) |
330 | { |
331 | return task_tgid_nr(tsk) == 1; |
332 | } |
333 | |
334 | #endif /* _LINUX_PID_H */ |
335 | |