1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* calibrate.c: default delay calibration |
3 | * |
4 | * Excised from init/main.c |
5 | * Copyright (C) 1991, 1992 Linus Torvalds |
6 | */ |
7 | |
8 | #include <linux/jiffies.h> |
9 | #include <linux/delay.h> |
10 | #include <linux/init.h> |
11 | #include <linux/timex.h> |
12 | #include <linux/smp.h> |
13 | #include <linux/percpu.h> |
14 | |
15 | unsigned long lpj_fine; |
16 | unsigned long preset_lpj; |
17 | static int __init lpj_setup(char *str) |
18 | { |
19 | preset_lpj = simple_strtoul(str,NULL,0); |
20 | return 1; |
21 | } |
22 | |
23 | __setup("lpj=" , lpj_setup); |
24 | |
25 | #ifdef ARCH_HAS_READ_CURRENT_TIMER |
26 | |
27 | /* This routine uses the read_current_timer() routine and gets the |
28 | * loops per jiffy directly, instead of guessing it using delay(). |
29 | * Also, this code tries to handle non-maskable asynchronous events |
30 | * (like SMIs) |
31 | */ |
32 | #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100)) |
33 | #define MAX_DIRECT_CALIBRATION_RETRIES 5 |
34 | |
35 | static unsigned long calibrate_delay_direct(void) |
36 | { |
37 | unsigned long pre_start, start, post_start; |
38 | unsigned long pre_end, end, post_end; |
39 | unsigned long start_jiffies; |
40 | unsigned long timer_rate_min, timer_rate_max; |
41 | unsigned long good_timer_sum = 0; |
42 | unsigned long good_timer_count = 0; |
43 | unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES]; |
44 | int max = -1; /* index of measured_times with max/min values or not set */ |
45 | int min = -1; |
46 | int i; |
47 | |
48 | if (read_current_timer(timer_val: &pre_start) < 0 ) |
49 | return 0; |
50 | |
51 | /* |
52 | * A simple loop like |
53 | * while ( jiffies < start_jiffies+1) |
54 | * start = read_current_timer(); |
55 | * will not do. As we don't really know whether jiffy switch |
56 | * happened first or timer_value was read first. And some asynchronous |
57 | * event can happen between these two events introducing errors in lpj. |
58 | * |
59 | * So, we do |
60 | * 1. pre_start <- When we are sure that jiffy switch hasn't happened |
61 | * 2. check jiffy switch |
62 | * 3. start <- timer value before or after jiffy switch |
63 | * 4. post_start <- When we are sure that jiffy switch has happened |
64 | * |
65 | * Note, we don't know anything about order of 2 and 3. |
66 | * Now, by looking at post_start and pre_start difference, we can |
67 | * check whether any asynchronous event happened or not |
68 | */ |
69 | |
70 | for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { |
71 | pre_start = 0; |
72 | read_current_timer(timer_val: &start); |
73 | start_jiffies = jiffies; |
74 | while (time_before_eq(jiffies, start_jiffies + 1)) { |
75 | pre_start = start; |
76 | read_current_timer(timer_val: &start); |
77 | } |
78 | read_current_timer(timer_val: &post_start); |
79 | |
80 | pre_end = 0; |
81 | end = post_start; |
82 | while (time_before_eq(jiffies, start_jiffies + 1 + |
83 | DELAY_CALIBRATION_TICKS)) { |
84 | pre_end = end; |
85 | read_current_timer(timer_val: &end); |
86 | } |
87 | read_current_timer(timer_val: &post_end); |
88 | |
89 | timer_rate_max = (post_end - pre_start) / |
90 | DELAY_CALIBRATION_TICKS; |
91 | timer_rate_min = (pre_end - post_start) / |
92 | DELAY_CALIBRATION_TICKS; |
93 | |
94 | /* |
95 | * If the upper limit and lower limit of the timer_rate is |
96 | * >= 12.5% apart, redo calibration. |
97 | */ |
98 | if (start >= post_end) |
99 | printk(KERN_NOTICE "calibrate_delay_direct() ignoring " |
100 | "timer_rate as we had a TSC wrap around" |
101 | " start=%lu >=post_end=%lu\n" , |
102 | start, post_end); |
103 | if (start < post_end && pre_start != 0 && pre_end != 0 && |
104 | (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) { |
105 | good_timer_count++; |
106 | good_timer_sum += timer_rate_max; |
107 | measured_times[i] = timer_rate_max; |
108 | if (max < 0 || timer_rate_max > measured_times[max]) |
109 | max = i; |
110 | if (min < 0 || timer_rate_max < measured_times[min]) |
111 | min = i; |
112 | } else |
113 | measured_times[i] = 0; |
114 | |
115 | } |
116 | |
117 | /* |
118 | * Find the maximum & minimum - if they differ too much throw out the |
119 | * one with the largest difference from the mean and try again... |
120 | */ |
121 | while (good_timer_count > 1) { |
122 | unsigned long estimate; |
123 | unsigned long maxdiff; |
124 | |
125 | /* compute the estimate */ |
126 | estimate = (good_timer_sum/good_timer_count); |
127 | maxdiff = estimate >> 3; |
128 | |
129 | /* if range is within 12% let's take it */ |
130 | if ((measured_times[max] - measured_times[min]) < maxdiff) |
131 | return estimate; |
132 | |
133 | /* ok - drop the worse value and try again... */ |
134 | good_timer_sum = 0; |
135 | good_timer_count = 0; |
136 | if ((measured_times[max] - estimate) < |
137 | (estimate - measured_times[min])) { |
138 | printk(KERN_NOTICE "calibrate_delay_direct() dropping " |
139 | "min bogoMips estimate %d = %lu\n" , |
140 | min, measured_times[min]); |
141 | measured_times[min] = 0; |
142 | min = max; |
143 | } else { |
144 | printk(KERN_NOTICE "calibrate_delay_direct() dropping " |
145 | "max bogoMips estimate %d = %lu\n" , |
146 | max, measured_times[max]); |
147 | measured_times[max] = 0; |
148 | max = min; |
149 | } |
150 | |
151 | for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { |
152 | if (measured_times[i] == 0) |
153 | continue; |
154 | good_timer_count++; |
155 | good_timer_sum += measured_times[i]; |
156 | if (measured_times[i] < measured_times[min]) |
157 | min = i; |
158 | if (measured_times[i] > measured_times[max]) |
159 | max = i; |
160 | } |
161 | |
162 | } |
163 | |
164 | printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good " |
165 | "estimate for loops_per_jiffy.\nProbably due to long platform " |
166 | "interrupts. Consider using \"lpj=\" boot option.\n" ); |
167 | return 0; |
168 | } |
169 | #else |
170 | static unsigned long calibrate_delay_direct(void) |
171 | { |
172 | return 0; |
173 | } |
174 | #endif |
175 | |
176 | /* |
177 | * This is the number of bits of precision for the loops_per_jiffy. Each |
178 | * time we refine our estimate after the first takes 1.5/HZ seconds, so try |
179 | * to start with a good estimate. |
180 | * For the boot cpu we can skip the delay calibration and assign it a value |
181 | * calculated based on the timer frequency. |
182 | * For the rest of the CPUs we cannot assume that the timer frequency is same as |
183 | * the cpu frequency, hence do the calibration for those. |
184 | */ |
185 | #define LPS_PREC 8 |
186 | |
187 | static unsigned long calibrate_delay_converge(void) |
188 | { |
189 | /* First stage - slowly accelerate to find initial bounds */ |
190 | unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit; |
191 | int trials = 0, band = 0, trial_in_band = 0; |
192 | |
193 | lpj = (1<<12); |
194 | |
195 | /* wait for "start of" clock tick */ |
196 | ticks = jiffies; |
197 | while (ticks == jiffies) |
198 | ; /* nothing */ |
199 | /* Go .. */ |
200 | ticks = jiffies; |
201 | do { |
202 | if (++trial_in_band == (1<<band)) { |
203 | ++band; |
204 | trial_in_band = 0; |
205 | } |
206 | __delay(loops: lpj * band); |
207 | trials += band; |
208 | } while (ticks == jiffies); |
209 | /* |
210 | * We overshot, so retreat to a clear underestimate. Then estimate |
211 | * the largest likely undershoot. This defines our chop bounds. |
212 | */ |
213 | trials -= band; |
214 | loopadd_base = lpj * band; |
215 | lpj_base = lpj * trials; |
216 | |
217 | recalibrate: |
218 | lpj = lpj_base; |
219 | loopadd = loopadd_base; |
220 | |
221 | /* |
222 | * Do a binary approximation to get lpj set to |
223 | * equal one clock (up to LPS_PREC bits) |
224 | */ |
225 | chop_limit = lpj >> LPS_PREC; |
226 | while (loopadd > chop_limit) { |
227 | lpj += loopadd; |
228 | ticks = jiffies; |
229 | while (ticks == jiffies) |
230 | ; /* nothing */ |
231 | ticks = jiffies; |
232 | __delay(loops: lpj); |
233 | if (jiffies != ticks) /* longer than 1 tick */ |
234 | lpj -= loopadd; |
235 | loopadd >>= 1; |
236 | } |
237 | /* |
238 | * If we incremented every single time possible, presume we've |
239 | * massively underestimated initially, and retry with a higher |
240 | * start, and larger range. (Only seen on x86_64, due to SMIs) |
241 | */ |
242 | if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) { |
243 | lpj_base = lpj; |
244 | loopadd_base <<= 2; |
245 | goto recalibrate; |
246 | } |
247 | |
248 | return lpj; |
249 | } |
250 | |
251 | static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 }; |
252 | |
253 | /* |
254 | * Check if cpu calibration delay is already known. For example, |
255 | * some processors with multi-core sockets may have all cores |
256 | * with the same calibration delay. |
257 | * |
258 | * Architectures should override this function if a faster calibration |
259 | * method is available. |
260 | */ |
261 | unsigned long __attribute__((weak)) calibrate_delay_is_known(void) |
262 | { |
263 | return 0; |
264 | } |
265 | |
266 | /* |
267 | * Indicate the cpu delay calibration is done. This can be used by |
268 | * architectures to stop accepting delay timer registrations after this point. |
269 | */ |
270 | |
271 | void __attribute__((weak)) calibration_delay_done(void) |
272 | { |
273 | } |
274 | |
275 | void calibrate_delay(void) |
276 | { |
277 | unsigned long lpj; |
278 | static bool printed; |
279 | int this_cpu = smp_processor_id(); |
280 | |
281 | if (per_cpu(cpu_loops_per_jiffy, this_cpu)) { |
282 | lpj = per_cpu(cpu_loops_per_jiffy, this_cpu); |
283 | if (!printed) |
284 | pr_info("Calibrating delay loop (skipped) " |
285 | "already calibrated this CPU" ); |
286 | } else if (preset_lpj) { |
287 | lpj = preset_lpj; |
288 | if (!printed) |
289 | pr_info("Calibrating delay loop (skipped) " |
290 | "preset value.. " ); |
291 | } else if ((!printed) && lpj_fine) { |
292 | lpj = lpj_fine; |
293 | pr_info("Calibrating delay loop (skipped), " |
294 | "value calculated using timer frequency.. " ); |
295 | } else if ((lpj = calibrate_delay_is_known())) { |
296 | ; |
297 | } else if ((lpj = calibrate_delay_direct()) != 0) { |
298 | if (!printed) |
299 | pr_info("Calibrating delay using timer " |
300 | "specific routine.. " ); |
301 | } else { |
302 | if (!printed) |
303 | pr_info("Calibrating delay loop... " ); |
304 | lpj = calibrate_delay_converge(); |
305 | } |
306 | per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj; |
307 | if (!printed) |
308 | pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n" , |
309 | lpj/(500000/HZ), |
310 | (lpj/(5000/HZ)) % 100, lpj); |
311 | |
312 | loops_per_jiffy = lpj; |
313 | printed = true; |
314 | |
315 | calibration_delay_done(); |
316 | } |
317 | |