1// SPDX-License-Identifier: GPL-2.0-only
2#include "cgroup-internal.h"
3
4#include <linux/sched/cputime.h>
5
6#include <linux/bpf.h>
7#include <linux/btf.h>
8#include <linux/btf_ids.h>
9
10static DEFINE_SPINLOCK(cgroup_rstat_lock);
11static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
12
13static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
14
15static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
16{
17 return per_cpu_ptr(cgrp->rstat_cpu, cpu);
18}
19
20/**
21 * cgroup_rstat_updated - keep track of updated rstat_cpu
22 * @cgrp: target cgroup
23 * @cpu: cpu on which rstat_cpu was updated
24 *
25 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching
26 * rstat_cpu->updated_children list. See the comment on top of
27 * cgroup_rstat_cpu definition for details.
28 */
29__bpf_kfunc void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
30{
31 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
32 unsigned long flags;
33
34 /*
35 * Speculative already-on-list test. This may race leading to
36 * temporary inaccuracies, which is fine.
37 *
38 * Because @parent's updated_children is terminated with @parent
39 * instead of NULL, we can tell whether @cgrp is on the list by
40 * testing the next pointer for NULL.
41 */
42 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next))
43 return;
44
45 raw_spin_lock_irqsave(cpu_lock, flags);
46
47 /* put @cgrp and all ancestors on the corresponding updated lists */
48 while (true) {
49 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
50 struct cgroup *parent = cgroup_parent(cgrp);
51 struct cgroup_rstat_cpu *prstatc;
52
53 /*
54 * Both additions and removals are bottom-up. If a cgroup
55 * is already in the tree, all ancestors are.
56 */
57 if (rstatc->updated_next)
58 break;
59
60 /* Root has no parent to link it to, but mark it busy */
61 if (!parent) {
62 rstatc->updated_next = cgrp;
63 break;
64 }
65
66 prstatc = cgroup_rstat_cpu(cgrp: parent, cpu);
67 rstatc->updated_next = prstatc->updated_children;
68 prstatc->updated_children = cgrp;
69
70 cgrp = parent;
71 }
72
73 raw_spin_unlock_irqrestore(cpu_lock, flags);
74}
75
76/**
77 * cgroup_rstat_push_children - push children cgroups into the given list
78 * @head: current head of the list (= subtree root)
79 * @child: first child of the root
80 * @cpu: target cpu
81 * Return: A new singly linked list of cgroups to be flush
82 *
83 * Iteratively traverse down the cgroup_rstat_cpu updated tree level by
84 * level and push all the parents first before their next level children
85 * into a singly linked list built from the tail backward like "pushing"
86 * cgroups into a stack. The root is pushed by the caller.
87 */
88static struct cgroup *cgroup_rstat_push_children(struct cgroup *head,
89 struct cgroup *child, int cpu)
90{
91 struct cgroup *chead = child; /* Head of child cgroup level */
92 struct cgroup *ghead = NULL; /* Head of grandchild cgroup level */
93 struct cgroup *parent, *grandchild;
94 struct cgroup_rstat_cpu *crstatc;
95
96 child->rstat_flush_next = NULL;
97
98next_level:
99 while (chead) {
100 child = chead;
101 chead = child->rstat_flush_next;
102 parent = cgroup_parent(cgrp: child);
103
104 /* updated_next is parent cgroup terminated */
105 while (child != parent) {
106 child->rstat_flush_next = head;
107 head = child;
108 crstatc = cgroup_rstat_cpu(cgrp: child, cpu);
109 grandchild = crstatc->updated_children;
110 if (grandchild != child) {
111 /* Push the grand child to the next level */
112 crstatc->updated_children = child;
113 grandchild->rstat_flush_next = ghead;
114 ghead = grandchild;
115 }
116 child = crstatc->updated_next;
117 crstatc->updated_next = NULL;
118 }
119 }
120
121 if (ghead) {
122 chead = ghead;
123 ghead = NULL;
124 goto next_level;
125 }
126 return head;
127}
128
129/**
130 * cgroup_rstat_updated_list - return a list of updated cgroups to be flushed
131 * @root: root of the cgroup subtree to traverse
132 * @cpu: target cpu
133 * Return: A singly linked list of cgroups to be flushed
134 *
135 * Walks the updated rstat_cpu tree on @cpu from @root. During traversal,
136 * each returned cgroup is unlinked from the updated tree.
137 *
138 * The only ordering guarantee is that, for a parent and a child pair
139 * covered by a given traversal, the child is before its parent in
140 * the list.
141 *
142 * Note that updated_children is self terminated and points to a list of
143 * child cgroups if not empty. Whereas updated_next is like a sibling link
144 * within the children list and terminated by the parent cgroup. An exception
145 * here is the cgroup root whose updated_next can be self terminated.
146 */
147static struct cgroup *cgroup_rstat_updated_list(struct cgroup *root, int cpu)
148{
149 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
150 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp: root, cpu);
151 struct cgroup *head = NULL, *parent, *child;
152 unsigned long flags;
153
154 /*
155 * The _irqsave() is needed because cgroup_rstat_lock is
156 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring
157 * this lock with the _irq() suffix only disables interrupts on
158 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables
159 * interrupts on both configurations. The _irqsave() ensures
160 * that interrupts are always disabled and later restored.
161 */
162 raw_spin_lock_irqsave(cpu_lock, flags);
163
164 /* Return NULL if this subtree is not on-list */
165 if (!rstatc->updated_next)
166 goto unlock_ret;
167
168 /*
169 * Unlink @root from its parent. As the updated_children list is
170 * singly linked, we have to walk it to find the removal point.
171 */
172 parent = cgroup_parent(cgrp: root);
173 if (parent) {
174 struct cgroup_rstat_cpu *prstatc;
175 struct cgroup **nextp;
176
177 prstatc = cgroup_rstat_cpu(cgrp: parent, cpu);
178 nextp = &prstatc->updated_children;
179 while (*nextp != root) {
180 struct cgroup_rstat_cpu *nrstatc;
181
182 nrstatc = cgroup_rstat_cpu(cgrp: *nextp, cpu);
183 WARN_ON_ONCE(*nextp == parent);
184 nextp = &nrstatc->updated_next;
185 }
186 *nextp = rstatc->updated_next;
187 }
188
189 rstatc->updated_next = NULL;
190
191 /* Push @root to the list first before pushing the children */
192 head = root;
193 root->rstat_flush_next = NULL;
194 child = rstatc->updated_children;
195 rstatc->updated_children = root;
196 if (child != root)
197 head = cgroup_rstat_push_children(head, child, cpu);
198unlock_ret:
199 raw_spin_unlock_irqrestore(cpu_lock, flags);
200 return head;
201}
202
203/*
204 * A hook for bpf stat collectors to attach to and flush their stats.
205 * Together with providing bpf kfuncs for cgroup_rstat_updated() and
206 * cgroup_rstat_flush(), this enables a complete workflow where bpf progs that
207 * collect cgroup stats can integrate with rstat for efficient flushing.
208 *
209 * A static noinline declaration here could cause the compiler to optimize away
210 * the function. A global noinline declaration will keep the definition, but may
211 * optimize away the callsite. Therefore, __weak is needed to ensure that the
212 * call is still emitted, by telling the compiler that we don't know what the
213 * function might eventually be.
214 */
215
216__bpf_hook_start();
217
218__weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
219 struct cgroup *parent, int cpu)
220{
221}
222
223__bpf_hook_end();
224
225/* see cgroup_rstat_flush() */
226static void cgroup_rstat_flush_locked(struct cgroup *cgrp)
227 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
228{
229 int cpu;
230
231 lockdep_assert_held(&cgroup_rstat_lock);
232
233 for_each_possible_cpu(cpu) {
234 struct cgroup *pos = cgroup_rstat_updated_list(root: cgrp, cpu);
235
236 for (; pos; pos = pos->rstat_flush_next) {
237 struct cgroup_subsys_state *css;
238
239 cgroup_base_stat_flush(cgrp: pos, cpu);
240 bpf_rstat_flush(cgrp: pos, parent: cgroup_parent(cgrp: pos), cpu);
241
242 rcu_read_lock();
243 list_for_each_entry_rcu(css, &pos->rstat_css_list,
244 rstat_css_node)
245 css->ss->css_rstat_flush(css, cpu);
246 rcu_read_unlock();
247 }
248
249 /* play nice and yield if necessary */
250 if (need_resched() || spin_needbreak(lock: &cgroup_rstat_lock)) {
251 spin_unlock_irq(lock: &cgroup_rstat_lock);
252 if (!cond_resched())
253 cpu_relax();
254 spin_lock_irq(lock: &cgroup_rstat_lock);
255 }
256 }
257}
258
259/**
260 * cgroup_rstat_flush - flush stats in @cgrp's subtree
261 * @cgrp: target cgroup
262 *
263 * Collect all per-cpu stats in @cgrp's subtree into the global counters
264 * and propagate them upwards. After this function returns, all cgroups in
265 * the subtree have up-to-date ->stat.
266 *
267 * This also gets all cgroups in the subtree including @cgrp off the
268 * ->updated_children lists.
269 *
270 * This function may block.
271 */
272__bpf_kfunc void cgroup_rstat_flush(struct cgroup *cgrp)
273{
274 might_sleep();
275
276 spin_lock_irq(lock: &cgroup_rstat_lock);
277 cgroup_rstat_flush_locked(cgrp);
278 spin_unlock_irq(lock: &cgroup_rstat_lock);
279}
280
281/**
282 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold
283 * @cgrp: target cgroup
284 *
285 * Flush stats in @cgrp's subtree and prevent further flushes. Must be
286 * paired with cgroup_rstat_flush_release().
287 *
288 * This function may block.
289 */
290void cgroup_rstat_flush_hold(struct cgroup *cgrp)
291 __acquires(&cgroup_rstat_lock)
292{
293 might_sleep();
294 spin_lock_irq(lock: &cgroup_rstat_lock);
295 cgroup_rstat_flush_locked(cgrp);
296}
297
298/**
299 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold()
300 */
301void cgroup_rstat_flush_release(void)
302 __releases(&cgroup_rstat_lock)
303{
304 spin_unlock_irq(lock: &cgroup_rstat_lock);
305}
306
307int cgroup_rstat_init(struct cgroup *cgrp)
308{
309 int cpu;
310
311 /* the root cgrp has rstat_cpu preallocated */
312 if (!cgrp->rstat_cpu) {
313 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
314 if (!cgrp->rstat_cpu)
315 return -ENOMEM;
316 }
317
318 /* ->updated_children list is self terminated */
319 for_each_possible_cpu(cpu) {
320 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
321
322 rstatc->updated_children = cgrp;
323 u64_stats_init(syncp: &rstatc->bsync);
324 }
325
326 return 0;
327}
328
329void cgroup_rstat_exit(struct cgroup *cgrp)
330{
331 int cpu;
332
333 cgroup_rstat_flush(cgrp);
334
335 /* sanity check */
336 for_each_possible_cpu(cpu) {
337 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
338
339 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
340 WARN_ON_ONCE(rstatc->updated_next))
341 return;
342 }
343
344 free_percpu(pdata: cgrp->rstat_cpu);
345 cgrp->rstat_cpu = NULL;
346}
347
348void __init cgroup_rstat_boot(void)
349{
350 int cpu;
351
352 for_each_possible_cpu(cpu)
353 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
354}
355
356/*
357 * Functions for cgroup basic resource statistics implemented on top of
358 * rstat.
359 */
360static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
361 struct cgroup_base_stat *src_bstat)
362{
363 dst_bstat->cputime.utime += src_bstat->cputime.utime;
364 dst_bstat->cputime.stime += src_bstat->cputime.stime;
365 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
366#ifdef CONFIG_SCHED_CORE
367 dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
368#endif
369}
370
371static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
372 struct cgroup_base_stat *src_bstat)
373{
374 dst_bstat->cputime.utime -= src_bstat->cputime.utime;
375 dst_bstat->cputime.stime -= src_bstat->cputime.stime;
376 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
377#ifdef CONFIG_SCHED_CORE
378 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
379#endif
380}
381
382static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
383{
384 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
385 struct cgroup *parent = cgroup_parent(cgrp);
386 struct cgroup_rstat_cpu *prstatc;
387 struct cgroup_base_stat delta;
388 unsigned seq;
389
390 /* Root-level stats are sourced from system-wide CPU stats */
391 if (!parent)
392 return;
393
394 /* fetch the current per-cpu values */
395 do {
396 seq = __u64_stats_fetch_begin(syncp: &rstatc->bsync);
397 delta = rstatc->bstat;
398 } while (__u64_stats_fetch_retry(syncp: &rstatc->bsync, start: seq));
399
400 /* propagate per-cpu delta to cgroup and per-cpu global statistics */
401 cgroup_base_stat_sub(dst_bstat: &delta, src_bstat: &rstatc->last_bstat);
402 cgroup_base_stat_add(dst_bstat: &cgrp->bstat, src_bstat: &delta);
403 cgroup_base_stat_add(dst_bstat: &rstatc->last_bstat, src_bstat: &delta);
404 cgroup_base_stat_add(dst_bstat: &rstatc->subtree_bstat, src_bstat: &delta);
405
406 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */
407 if (cgroup_parent(cgrp: parent)) {
408 delta = cgrp->bstat;
409 cgroup_base_stat_sub(dst_bstat: &delta, src_bstat: &cgrp->last_bstat);
410 cgroup_base_stat_add(dst_bstat: &parent->bstat, src_bstat: &delta);
411 cgroup_base_stat_add(dst_bstat: &cgrp->last_bstat, src_bstat: &delta);
412
413 delta = rstatc->subtree_bstat;
414 prstatc = cgroup_rstat_cpu(cgrp: parent, cpu);
415 cgroup_base_stat_sub(dst_bstat: &delta, src_bstat: &rstatc->last_subtree_bstat);
416 cgroup_base_stat_add(dst_bstat: &prstatc->subtree_bstat, src_bstat: &delta);
417 cgroup_base_stat_add(dst_bstat: &rstatc->last_subtree_bstat, src_bstat: &delta);
418 }
419}
420
421static struct cgroup_rstat_cpu *
422cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
423{
424 struct cgroup_rstat_cpu *rstatc;
425
426 rstatc = get_cpu_ptr(cgrp->rstat_cpu);
427 *flags = u64_stats_update_begin_irqsave(syncp: &rstatc->bsync);
428 return rstatc;
429}
430
431static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
432 struct cgroup_rstat_cpu *rstatc,
433 unsigned long flags)
434{
435 u64_stats_update_end_irqrestore(syncp: &rstatc->bsync, flags);
436 cgroup_rstat_updated(cgrp, smp_processor_id());
437 put_cpu_ptr(rstatc);
438}
439
440void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
441{
442 struct cgroup_rstat_cpu *rstatc;
443 unsigned long flags;
444
445 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, flags: &flags);
446 rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
447 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
448}
449
450void __cgroup_account_cputime_field(struct cgroup *cgrp,
451 enum cpu_usage_stat index, u64 delta_exec)
452{
453 struct cgroup_rstat_cpu *rstatc;
454 unsigned long flags;
455
456 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, flags: &flags);
457
458 switch (index) {
459 case CPUTIME_USER:
460 case CPUTIME_NICE:
461 rstatc->bstat.cputime.utime += delta_exec;
462 break;
463 case CPUTIME_SYSTEM:
464 case CPUTIME_IRQ:
465 case CPUTIME_SOFTIRQ:
466 rstatc->bstat.cputime.stime += delta_exec;
467 break;
468#ifdef CONFIG_SCHED_CORE
469 case CPUTIME_FORCEIDLE:
470 rstatc->bstat.forceidle_sum += delta_exec;
471 break;
472#endif
473 default:
474 break;
475 }
476
477 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
478}
479
480/*
481 * compute the cputime for the root cgroup by getting the per cpu data
482 * at a global level, then categorizing the fields in a manner consistent
483 * with how it is done by __cgroup_account_cputime_field for each bit of
484 * cpu time attributed to a cgroup.
485 */
486static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
487{
488 struct task_cputime *cputime = &bstat->cputime;
489 int i;
490
491 memset(bstat, 0, sizeof(*bstat));
492 for_each_possible_cpu(i) {
493 struct kernel_cpustat kcpustat;
494 u64 *cpustat = kcpustat.cpustat;
495 u64 user = 0;
496 u64 sys = 0;
497
498 kcpustat_cpu_fetch(dst: &kcpustat, cpu: i);
499
500 user += cpustat[CPUTIME_USER];
501 user += cpustat[CPUTIME_NICE];
502 cputime->utime += user;
503
504 sys += cpustat[CPUTIME_SYSTEM];
505 sys += cpustat[CPUTIME_IRQ];
506 sys += cpustat[CPUTIME_SOFTIRQ];
507 cputime->stime += sys;
508
509 cputime->sum_exec_runtime += user;
510 cputime->sum_exec_runtime += sys;
511 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL];
512
513#ifdef CONFIG_SCHED_CORE
514 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
515#endif
516 }
517}
518
519void cgroup_base_stat_cputime_show(struct seq_file *seq)
520{
521 struct cgroup *cgrp = seq_css(seq)->cgroup;
522 u64 usage, utime, stime;
523 struct cgroup_base_stat bstat;
524#ifdef CONFIG_SCHED_CORE
525 u64 forceidle_time;
526#endif
527
528 if (cgroup_parent(cgrp)) {
529 cgroup_rstat_flush_hold(cgrp);
530 usage = cgrp->bstat.cputime.sum_exec_runtime;
531 cputime_adjust(curr: &cgrp->bstat.cputime, prev: &cgrp->prev_cputime,
532 ut: &utime, st: &stime);
533#ifdef CONFIG_SCHED_CORE
534 forceidle_time = cgrp->bstat.forceidle_sum;
535#endif
536 cgroup_rstat_flush_release();
537 } else {
538 root_cgroup_cputime(bstat: &bstat);
539 usage = bstat.cputime.sum_exec_runtime;
540 utime = bstat.cputime.utime;
541 stime = bstat.cputime.stime;
542#ifdef CONFIG_SCHED_CORE
543 forceidle_time = bstat.forceidle_sum;
544#endif
545 }
546
547 do_div(usage, NSEC_PER_USEC);
548 do_div(utime, NSEC_PER_USEC);
549 do_div(stime, NSEC_PER_USEC);
550#ifdef CONFIG_SCHED_CORE
551 do_div(forceidle_time, NSEC_PER_USEC);
552#endif
553
554 seq_printf(m: seq, fmt: "usage_usec %llu\n"
555 "user_usec %llu\n"
556 "system_usec %llu\n",
557 usage, utime, stime);
558
559#ifdef CONFIG_SCHED_CORE
560 seq_printf(m: seq, fmt: "core_sched.force_idle_usec %llu\n", forceidle_time);
561#endif
562}
563
564/* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */
565BTF_KFUNCS_START(bpf_rstat_kfunc_ids)
566BTF_ID_FLAGS(func, cgroup_rstat_updated)
567BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE)
568BTF_KFUNCS_END(bpf_rstat_kfunc_ids)
569
570static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
571 .owner = THIS_MODULE,
572 .set = &bpf_rstat_kfunc_ids,
573};
574
575static int __init bpf_rstat_kfunc_init(void)
576{
577 return register_btf_kfunc_id_set(prog_type: BPF_PROG_TYPE_TRACING,
578 s: &bpf_rstat_kfunc_set);
579}
580late_initcall(bpf_rstat_kfunc_init);
581

source code of linux/kernel/cgroup/rstat.c