1/*
2 * Copyright (c) Yann Collet, Facebook, Inc.
3 * All rights reserved.
4 *
5 * This source code is licensed under both the BSD-style license (found in the
6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7 * in the COPYING file in the root directory of this source tree).
8 * You may select, at your option, one of the above-listed licenses.
9 */
10
11#ifndef ZSTD_CWKSP_H
12#define ZSTD_CWKSP_H
13
14/*-*************************************
15* Dependencies
16***************************************/
17#include "../common/zstd_internal.h"
18
19
20/*-*************************************
21* Constants
22***************************************/
23
24/* Since the workspace is effectively its own little malloc implementation /
25 * arena, when we run under ASAN, we should similarly insert redzones between
26 * each internal element of the workspace, so ASAN will catch overruns that
27 * reach outside an object but that stay inside the workspace.
28 *
29 * This defines the size of that redzone.
30 */
31#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
32#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
33#endif
34
35
36/* Set our tables and aligneds to align by 64 bytes */
37#define ZSTD_CWKSP_ALIGNMENT_BYTES 64
38
39/*-*************************************
40* Structures
41***************************************/
42typedef enum {
43 ZSTD_cwksp_alloc_objects,
44 ZSTD_cwksp_alloc_buffers,
45 ZSTD_cwksp_alloc_aligned
46} ZSTD_cwksp_alloc_phase_e;
47
48/*
49 * Used to describe whether the workspace is statically allocated (and will not
50 * necessarily ever be freed), or if it's dynamically allocated and we can
51 * expect a well-formed caller to free this.
52 */
53typedef enum {
54 ZSTD_cwksp_dynamic_alloc,
55 ZSTD_cwksp_static_alloc
56} ZSTD_cwksp_static_alloc_e;
57
58/*
59 * Zstd fits all its internal datastructures into a single continuous buffer,
60 * so that it only needs to perform a single OS allocation (or so that a buffer
61 * can be provided to it and it can perform no allocations at all). This buffer
62 * is called the workspace.
63 *
64 * Several optimizations complicate that process of allocating memory ranges
65 * from this workspace for each internal datastructure:
66 *
67 * - These different internal datastructures have different setup requirements:
68 *
69 * - The static objects need to be cleared once and can then be trivially
70 * reused for each compression.
71 *
72 * - Various buffers don't need to be initialized at all--they are always
73 * written into before they're read.
74 *
75 * - The matchstate tables have a unique requirement that they don't need
76 * their memory to be totally cleared, but they do need the memory to have
77 * some bound, i.e., a guarantee that all values in the memory they've been
78 * allocated is less than some maximum value (which is the starting value
79 * for the indices that they will then use for compression). When this
80 * guarantee is provided to them, they can use the memory without any setup
81 * work. When it can't, they have to clear the area.
82 *
83 * - These buffers also have different alignment requirements.
84 *
85 * - We would like to reuse the objects in the workspace for multiple
86 * compressions without having to perform any expensive reallocation or
87 * reinitialization work.
88 *
89 * - We would like to be able to efficiently reuse the workspace across
90 * multiple compressions **even when the compression parameters change** and
91 * we need to resize some of the objects (where possible).
92 *
93 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
94 * abstraction was created. It works as follows:
95 *
96 * Workspace Layout:
97 *
98 * [ ... workspace ... ]
99 * [objects][tables ... ->] free space [<- ... aligned][<- ... buffers]
100 *
101 * The various objects that live in the workspace are divided into the
102 * following categories, and are allocated separately:
103 *
104 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
105 * so that literally everything fits in a single buffer. Note: if present,
106 * this must be the first object in the workspace, since ZSTD_customFree{CCtx,
107 * CDict}() rely on a pointer comparison to see whether one or two frees are
108 * required.
109 *
110 * - Fixed size objects: these are fixed-size, fixed-count objects that are
111 * nonetheless "dynamically" allocated in the workspace so that we can
112 * control how they're initialized separately from the broader ZSTD_CCtx.
113 * Examples:
114 * - Entropy Workspace
115 * - 2 x ZSTD_compressedBlockState_t
116 * - CDict dictionary contents
117 *
118 * - Tables: these are any of several different datastructures (hash tables,
119 * chain tables, binary trees) that all respect a common format: they are
120 * uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
121 * Their sizes depend on the cparams. These tables are 64-byte aligned.
122 *
123 * - Aligned: these buffers are used for various purposes that require 4 byte
124 * alignment, but don't require any initialization before they're used. These
125 * buffers are each aligned to 64 bytes.
126 *
127 * - Buffers: these buffers are used for various purposes that don't require
128 * any alignment or initialization before they're used. This means they can
129 * be moved around at no cost for a new compression.
130 *
131 * Allocating Memory:
132 *
133 * The various types of objects must be allocated in order, so they can be
134 * correctly packed into the workspace buffer. That order is:
135 *
136 * 1. Objects
137 * 2. Buffers
138 * 3. Aligned/Tables
139 *
140 * Attempts to reserve objects of different types out of order will fail.
141 */
142typedef struct {
143 void* workspace;
144 void* workspaceEnd;
145
146 void* objectEnd;
147 void* tableEnd;
148 void* tableValidEnd;
149 void* allocStart;
150
151 BYTE allocFailed;
152 int workspaceOversizedDuration;
153 ZSTD_cwksp_alloc_phase_e phase;
154 ZSTD_cwksp_static_alloc_e isStatic;
155} ZSTD_cwksp;
156
157/*-*************************************
158* Functions
159***************************************/
160
161MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
162
163MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
164 (void)ws;
165 assert(ws->workspace <= ws->objectEnd);
166 assert(ws->objectEnd <= ws->tableEnd);
167 assert(ws->objectEnd <= ws->tableValidEnd);
168 assert(ws->tableEnd <= ws->allocStart);
169 assert(ws->tableValidEnd <= ws->allocStart);
170 assert(ws->allocStart <= ws->workspaceEnd);
171}
172
173/*
174 * Align must be a power of 2.
175 */
176MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
177 size_t const mask = align - 1;
178 assert((align & mask) == 0);
179 return (size + mask) & ~mask;
180}
181
182/*
183 * Use this to determine how much space in the workspace we will consume to
184 * allocate this object. (Normally it should be exactly the size of the object,
185 * but under special conditions, like ASAN, where we pad each object, it might
186 * be larger.)
187 *
188 * Since tables aren't currently redzoned, you don't need to call through this
189 * to figure out how much space you need for the matchState tables. Everything
190 * else is though.
191 *
192 * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size().
193 */
194MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
195 if (size == 0)
196 return 0;
197 return size;
198}
199
200/*
201 * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
202 * Used to determine the number of bytes required for a given "aligned".
203 */
204MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
205 return ZSTD_cwksp_alloc_size(size: ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES));
206}
207
208/*
209 * Returns the amount of additional space the cwksp must allocate
210 * for internal purposes (currently only alignment).
211 */
212MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
213 /* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes
214 * to align the beginning of tables section, as well as another n_2=[0, 63] bytes
215 * to align the beginning of the aligned section.
216 *
217 * n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and
218 * aligneds being sized in multiples of 64 bytes.
219 */
220 size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES;
221 return slackSpace;
222}
223
224
225/*
226 * Return the number of additional bytes required to align a pointer to the given number of bytes.
227 * alignBytes must be a power of two.
228 */
229MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
230 size_t const alignBytesMask = alignBytes - 1;
231 size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
232 assert((alignBytes & alignBytesMask) == 0);
233 assert(bytes != ZSTD_CWKSP_ALIGNMENT_BYTES);
234 return bytes;
235}
236
237/*
238 * Internal function. Do not use directly.
239 * Reserves the given number of bytes within the aligned/buffer segment of the wksp,
240 * which counts from the end of the wksp (as opposed to the object/table segment).
241 *
242 * Returns a pointer to the beginning of that space.
243 */
244MEM_STATIC void*
245ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
246{
247 void* const alloc = (BYTE*)ws->allocStart - bytes;
248 void* const bottom = ws->tableEnd;
249 DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
250 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
251 ZSTD_cwksp_assert_internal_consistency(ws);
252 assert(alloc >= bottom);
253 if (alloc < bottom) {
254 DEBUGLOG(4, "cwksp: alloc failed!");
255 ws->allocFailed = 1;
256 return NULL;
257 }
258 /* the area is reserved from the end of wksp.
259 * If it overlaps with tableValidEnd, it voids guarantees on values' range */
260 if (alloc < ws->tableValidEnd) {
261 ws->tableValidEnd = alloc;
262 }
263 ws->allocStart = alloc;
264 return alloc;
265}
266
267/*
268 * Moves the cwksp to the next phase, and does any necessary allocations.
269 * cwksp initialization must necessarily go through each phase in order.
270 * Returns a 0 on success, or zstd error
271 */
272MEM_STATIC size_t
273ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
274{
275 assert(phase >= ws->phase);
276 if (phase > ws->phase) {
277 /* Going from allocating objects to allocating buffers */
278 if (ws->phase < ZSTD_cwksp_alloc_buffers &&
279 phase >= ZSTD_cwksp_alloc_buffers) {
280 ws->tableValidEnd = ws->objectEnd;
281 }
282
283 /* Going from allocating buffers to allocating aligneds/tables */
284 if (ws->phase < ZSTD_cwksp_alloc_aligned &&
285 phase >= ZSTD_cwksp_alloc_aligned) {
286 { /* Align the start of the "aligned" to 64 bytes. Use [1, 64] bytes. */
287 size_t const bytesToAlign =
288 ZSTD_CWKSP_ALIGNMENT_BYTES - ZSTD_cwksp_bytes_to_align_ptr(ptr: ws->allocStart, ZSTD_CWKSP_ALIGNMENT_BYTES);
289 DEBUGLOG(5, "reserving aligned alignment addtl space: %zu", bytesToAlign);
290 ZSTD_STATIC_ASSERT((ZSTD_CWKSP_ALIGNMENT_BYTES & (ZSTD_CWKSP_ALIGNMENT_BYTES - 1)) == 0); /* power of 2 */
291 RETURN_ERROR_IF(!ZSTD_cwksp_reserve_internal_buffer_space(ws, bytesToAlign),
292 memory_allocation, "aligned phase - alignment initial allocation failed!");
293 }
294 { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
295 void* const alloc = ws->objectEnd;
296 size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(ptr: alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
297 void* const objectEnd = (BYTE*)alloc + bytesToAlign;
298 DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
299 RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
300 "table phase - alignment initial allocation failed!");
301 ws->objectEnd = objectEnd;
302 ws->tableEnd = objectEnd; /* table area starts being empty */
303 if (ws->tableValidEnd < ws->tableEnd) {
304 ws->tableValidEnd = ws->tableEnd;
305 } } }
306 ws->phase = phase;
307 ZSTD_cwksp_assert_internal_consistency(ws);
308 }
309 return 0;
310}
311
312/*
313 * Returns whether this object/buffer/etc was allocated in this workspace.
314 */
315MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
316{
317 return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd);
318}
319
320/*
321 * Internal function. Do not use directly.
322 */
323MEM_STATIC void*
324ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
325{
326 void* alloc;
327 if (ZSTD_isError(code: ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
328 return NULL;
329 }
330
331
332 alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
333
334
335 return alloc;
336}
337
338/*
339 * Reserves and returns unaligned memory.
340 */
341MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
342{
343 return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, phase: ZSTD_cwksp_alloc_buffers);
344}
345
346/*
347 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
348 */
349MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
350{
351 void* ptr = ZSTD_cwksp_reserve_internal(ws, bytes: ZSTD_cwksp_align(size: bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
352 phase: ZSTD_cwksp_alloc_aligned);
353 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
354 return ptr;
355}
356
357/*
358 * Aligned on 64 bytes. These buffers have the special property that
359 * their values remain constrained, allowing us to re-use them without
360 * memset()-ing them.
361 */
362MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
363{
364 const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned;
365 void* alloc;
366 void* end;
367 void* top;
368
369 if (ZSTD_isError(code: ZSTD_cwksp_internal_advance_phase(ws, phase))) {
370 return NULL;
371 }
372 alloc = ws->tableEnd;
373 end = (BYTE *)alloc + bytes;
374 top = ws->allocStart;
375
376 DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
377 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
378 assert((bytes & (sizeof(U32)-1)) == 0);
379 ZSTD_cwksp_assert_internal_consistency(ws);
380 assert(end <= top);
381 if (end > top) {
382 DEBUGLOG(4, "cwksp: table alloc failed!");
383 ws->allocFailed = 1;
384 return NULL;
385 }
386 ws->tableEnd = end;
387
388
389 assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
390 assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
391 return alloc;
392}
393
394/*
395 * Aligned on sizeof(void*).
396 * Note : should happen only once, at workspace first initialization
397 */
398MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
399{
400 size_t const roundedBytes = ZSTD_cwksp_align(size: bytes, align: sizeof(void*));
401 void* alloc = ws->objectEnd;
402 void* end = (BYTE*)alloc + roundedBytes;
403
404
405 DEBUGLOG(4,
406 "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
407 alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
408 assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
409 assert(bytes % ZSTD_ALIGNOF(void*) == 0);
410 ZSTD_cwksp_assert_internal_consistency(ws);
411 /* we must be in the first phase, no advance is possible */
412 if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
413 DEBUGLOG(3, "cwksp: object alloc failed!");
414 ws->allocFailed = 1;
415 return NULL;
416 }
417 ws->objectEnd = end;
418 ws->tableEnd = end;
419 ws->tableValidEnd = end;
420
421
422 return alloc;
423}
424
425MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
426{
427 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
428
429
430 assert(ws->tableValidEnd >= ws->objectEnd);
431 assert(ws->tableValidEnd <= ws->allocStart);
432 ws->tableValidEnd = ws->objectEnd;
433 ZSTD_cwksp_assert_internal_consistency(ws);
434}
435
436MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
437 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
438 assert(ws->tableValidEnd >= ws->objectEnd);
439 assert(ws->tableValidEnd <= ws->allocStart);
440 if (ws->tableValidEnd < ws->tableEnd) {
441 ws->tableValidEnd = ws->tableEnd;
442 }
443 ZSTD_cwksp_assert_internal_consistency(ws);
444}
445
446/*
447 * Zero the part of the allocated tables not already marked clean.
448 */
449MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
450 DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
451 assert(ws->tableValidEnd >= ws->objectEnd);
452 assert(ws->tableValidEnd <= ws->allocStart);
453 if (ws->tableValidEnd < ws->tableEnd) {
454 ZSTD_memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd);
455 }
456 ZSTD_cwksp_mark_tables_clean(ws);
457}
458
459/*
460 * Invalidates table allocations.
461 * All other allocations remain valid.
462 */
463MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
464 DEBUGLOG(4, "cwksp: clearing tables!");
465
466
467 ws->tableEnd = ws->objectEnd;
468 ZSTD_cwksp_assert_internal_consistency(ws);
469}
470
471/*
472 * Invalidates all buffer, aligned, and table allocations.
473 * Object allocations remain valid.
474 */
475MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
476 DEBUGLOG(4, "cwksp: clearing!");
477
478
479
480 ws->tableEnd = ws->objectEnd;
481 ws->allocStart = ws->workspaceEnd;
482 ws->allocFailed = 0;
483 if (ws->phase > ZSTD_cwksp_alloc_buffers) {
484 ws->phase = ZSTD_cwksp_alloc_buffers;
485 }
486 ZSTD_cwksp_assert_internal_consistency(ws);
487}
488
489/*
490 * The provided workspace takes ownership of the buffer [start, start+size).
491 * Any existing values in the workspace are ignored (the previously managed
492 * buffer, if present, must be separately freed).
493 */
494MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
495 DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
496 assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
497 ws->workspace = start;
498 ws->workspaceEnd = (BYTE*)start + size;
499 ws->objectEnd = ws->workspace;
500 ws->tableValidEnd = ws->objectEnd;
501 ws->phase = ZSTD_cwksp_alloc_objects;
502 ws->isStatic = isStatic;
503 ZSTD_cwksp_clear(ws);
504 ws->workspaceOversizedDuration = 0;
505 ZSTD_cwksp_assert_internal_consistency(ws);
506}
507
508MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
509 void* workspace = ZSTD_customMalloc(size, customMem);
510 DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
511 RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
512 ZSTD_cwksp_init(ws, start: workspace, size, isStatic: ZSTD_cwksp_dynamic_alloc);
513 return 0;
514}
515
516MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
517 void *ptr = ws->workspace;
518 DEBUGLOG(4, "cwksp: freeing workspace");
519 ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
520 ZSTD_customFree(ptr, customMem);
521}
522
523/*
524 * Moves the management of a workspace from one cwksp to another. The src cwksp
525 * is left in an invalid state (src must be re-init()'ed before it's used again).
526 */
527MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
528 *dst = *src;
529 ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
530}
531
532MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
533 return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
534}
535
536MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
537 return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
538 + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
539}
540
541MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
542 return ws->allocFailed;
543}
544
545/*-*************************************
546* Functions Checking Free Space
547***************************************/
548
549/* ZSTD_alignmentSpaceWithinBounds() :
550 * Returns if the estimated space needed for a wksp is within an acceptable limit of the
551 * actual amount of space used.
552 */
553MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp* const ws,
554 size_t const estimatedSpace, int resizedWorkspace) {
555 if (resizedWorkspace) {
556 /* Resized/newly allocated wksp should have exact bounds */
557 return ZSTD_cwksp_used(ws) == estimatedSpace;
558 } else {
559 /* Due to alignment, when reusing a workspace, we can actually consume 63 fewer or more bytes
560 * than estimatedSpace. See the comments in zstd_cwksp.h for details.
561 */
562 return (ZSTD_cwksp_used(ws) >= estimatedSpace - 63) && (ZSTD_cwksp_used(ws) <= estimatedSpace + 63);
563 }
564}
565
566
567MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
568 return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
569}
570
571MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
572 return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
573}
574
575MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
576 return ZSTD_cwksp_check_available(
577 ws, additionalNeededSpace: additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
578}
579
580MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
581 return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
582 && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
583}
584
585MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
586 ZSTD_cwksp* ws, size_t additionalNeededSpace) {
587 if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
588 ws->workspaceOversizedDuration++;
589 } else {
590 ws->workspaceOversizedDuration = 0;
591 }
592}
593
594
595#endif /* ZSTD_CWKSP_H */
596

source code of linux/lib/zstd/compress/zstd_cwksp.h