1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Testsuite for eBPF verifier
4 *
5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6 * Copyright (c) 2017 Facebook
7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8 */
9
10#include <endian.h>
11#include <asm/types.h>
12#include <linux/types.h>
13#include <stdint.h>
14#include <stdio.h>
15#include <stdlib.h>
16#include <unistd.h>
17#include <errno.h>
18#include <string.h>
19#include <stddef.h>
20#include <stdbool.h>
21#include <sched.h>
22#include <limits.h>
23#include <assert.h>
24
25#include <linux/unistd.h>
26#include <linux/filter.h>
27#include <linux/bpf_perf_event.h>
28#include <linux/bpf.h>
29#include <linux/if_ether.h>
30#include <linux/btf.h>
31
32#include <bpf/btf.h>
33#include <bpf/bpf.h>
34#include <bpf/libbpf.h>
35
36#include "autoconf_helper.h"
37#include "unpriv_helpers.h"
38#include "cap_helpers.h"
39#include "bpf_rand.h"
40#include "bpf_util.h"
41#include "test_btf.h"
42#include "../../../include/linux/filter.h"
43#include "testing_helpers.h"
44
45#ifndef ENOTSUPP
46#define ENOTSUPP 524
47#endif
48
49#define MAX_INSNS BPF_MAXINSNS
50#define MAX_EXPECTED_INSNS 32
51#define MAX_UNEXPECTED_INSNS 32
52#define MAX_TEST_INSNS 1000000
53#define MAX_FIXUPS 8
54#define MAX_NR_MAPS 23
55#define MAX_TEST_RUNS 8
56#define POINTER_VALUE 0xcafe4all
57#define TEST_DATA_LEN 64
58#define MAX_FUNC_INFOS 8
59#define MAX_BTF_STRINGS 256
60#define MAX_BTF_TYPES 256
61
62#define INSN_OFF_MASK ((__s16)0xFFFF)
63#define INSN_IMM_MASK ((__s32)0xFFFFFFFF)
64#define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
65
66#define DEFAULT_LIBBPF_LOG_LEVEL 4
67
68#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
69#define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
70#define F_NEEDS_JIT_ENABLED (1 << 2)
71
72/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
73#define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \
74 1ULL << CAP_PERFMON | \
75 1ULL << CAP_BPF)
76#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
77static bool unpriv_disabled = false;
78static bool jit_disabled;
79static int skips;
80static bool verbose = false;
81static int verif_log_level = 0;
82
83struct kfunc_btf_id_pair {
84 const char *kfunc;
85 int insn_idx;
86};
87
88struct bpf_test {
89 const char *descr;
90 struct bpf_insn insns[MAX_INSNS];
91 struct bpf_insn *fill_insns;
92 /* If specified, test engine looks for this sequence of
93 * instructions in the BPF program after loading. Allows to
94 * test rewrites applied by verifier. Use values
95 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
96 * fields if content does not matter. The test case fails if
97 * specified instructions are not found.
98 *
99 * The sequence could be split into sub-sequences by adding
100 * SKIP_INSNS instruction at the end of each sub-sequence. In
101 * such case sub-sequences are searched for one after another.
102 */
103 struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
104 /* If specified, test engine applies same pattern matching
105 * logic as for `expected_insns`. If the specified pattern is
106 * matched test case is marked as failed.
107 */
108 struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
109 int fixup_map_hash_8b[MAX_FIXUPS];
110 int fixup_map_hash_48b[MAX_FIXUPS];
111 int fixup_map_hash_16b[MAX_FIXUPS];
112 int fixup_map_array_48b[MAX_FIXUPS];
113 int fixup_map_sockmap[MAX_FIXUPS];
114 int fixup_map_sockhash[MAX_FIXUPS];
115 int fixup_map_xskmap[MAX_FIXUPS];
116 int fixup_map_stacktrace[MAX_FIXUPS];
117 int fixup_prog1[MAX_FIXUPS];
118 int fixup_prog2[MAX_FIXUPS];
119 int fixup_map_in_map[MAX_FIXUPS];
120 int fixup_cgroup_storage[MAX_FIXUPS];
121 int fixup_percpu_cgroup_storage[MAX_FIXUPS];
122 int fixup_map_spin_lock[MAX_FIXUPS];
123 int fixup_map_array_ro[MAX_FIXUPS];
124 int fixup_map_array_wo[MAX_FIXUPS];
125 int fixup_map_array_small[MAX_FIXUPS];
126 int fixup_sk_storage_map[MAX_FIXUPS];
127 int fixup_map_event_output[MAX_FIXUPS];
128 int fixup_map_reuseport_array[MAX_FIXUPS];
129 int fixup_map_ringbuf[MAX_FIXUPS];
130 int fixup_map_timer[MAX_FIXUPS];
131 int fixup_map_kptr[MAX_FIXUPS];
132 struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
133 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
134 * Can be a tab-separated sequence of expected strings. An empty string
135 * means no log verification.
136 */
137 const char *errstr;
138 const char *errstr_unpriv;
139 uint32_t insn_processed;
140 int prog_len;
141 enum {
142 UNDEF,
143 ACCEPT,
144 REJECT,
145 VERBOSE_ACCEPT,
146 } result, result_unpriv;
147 enum bpf_prog_type prog_type;
148 uint8_t flags;
149 void (*fill_helper)(struct bpf_test *self);
150 int runs;
151#define bpf_testdata_struct_t \
152 struct { \
153 uint32_t retval, retval_unpriv; \
154 union { \
155 __u8 data[TEST_DATA_LEN]; \
156 __u64 data64[TEST_DATA_LEN / 8]; \
157 }; \
158 }
159 union {
160 bpf_testdata_struct_t;
161 bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
162 };
163 enum bpf_attach_type expected_attach_type;
164 const char *kfunc;
165 struct bpf_func_info func_info[MAX_FUNC_INFOS];
166 int func_info_cnt;
167 char btf_strings[MAX_BTF_STRINGS];
168 /* A set of BTF types to load when specified,
169 * use macro definitions from test_btf.h,
170 * must end with BTF_END_RAW
171 */
172 __u32 btf_types[MAX_BTF_TYPES];
173};
174
175/* Note we want this to be 64 bit aligned so that the end of our array is
176 * actually the end of the structure.
177 */
178#define MAX_ENTRIES 11
179
180struct test_val {
181 unsigned int index;
182 int foo[MAX_ENTRIES];
183};
184
185struct other_val {
186 long long foo;
187 long long bar;
188};
189
190static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
191{
192 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
193#define PUSH_CNT 51
194 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
195 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
196 struct bpf_insn *insn = self->fill_insns;
197 int i = 0, j, k = 0;
198
199 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
200loop:
201 for (j = 0; j < PUSH_CNT; j++) {
202 insn[i++] = BPF_LD_ABS(BPF_B, 0);
203 /* jump to error label */
204 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
205 i++;
206 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
207 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
208 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
209 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
210 BPF_FUNC_skb_vlan_push);
211 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
212 i++;
213 }
214
215 for (j = 0; j < PUSH_CNT; j++) {
216 insn[i++] = BPF_LD_ABS(BPF_B, 0);
217 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
218 i++;
219 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
220 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
221 BPF_FUNC_skb_vlan_pop);
222 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
223 i++;
224 }
225 if (++k < 5)
226 goto loop;
227
228 for (; i < len - 3; i++)
229 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
230 insn[len - 3] = BPF_JMP_A(1);
231 /* error label */
232 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
233 insn[len - 1] = BPF_EXIT_INSN();
234 self->prog_len = len;
235}
236
237static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
238{
239 struct bpf_insn *insn = self->fill_insns;
240 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
241 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
242 * to extend the error value of the inlined ld_abs sequence which then
243 * contains 7 insns. so, set the dividend to 7 so the testcase could
244 * work on all arches.
245 */
246 unsigned int len = (1 << 15) / 7;
247 int i = 0;
248
249 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
250 insn[i++] = BPF_LD_ABS(BPF_B, 0);
251 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
252 i++;
253 while (i < len - 1)
254 insn[i++] = BPF_LD_ABS(BPF_B, 1);
255 insn[i] = BPF_EXIT_INSN();
256 self->prog_len = i + 1;
257}
258
259static void bpf_fill_rand_ld_dw(struct bpf_test *self)
260{
261 struct bpf_insn *insn = self->fill_insns;
262 uint64_t res = 0;
263 int i = 0;
264
265 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
266 while (i < self->retval) {
267 uint64_t val = bpf_semi_rand_get();
268 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
269
270 res ^= val;
271 insn[i++] = tmp[0];
272 insn[i++] = tmp[1];
273 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
274 }
275 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
276 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
277 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
278 insn[i] = BPF_EXIT_INSN();
279 self->prog_len = i + 1;
280 res ^= (res >> 32);
281 self->retval = (uint32_t)res;
282}
283
284#define MAX_JMP_SEQ 8192
285
286/* test the sequence of 8k jumps */
287static void bpf_fill_scale1(struct bpf_test *self)
288{
289 struct bpf_insn *insn = self->fill_insns;
290 int i = 0, k = 0;
291
292 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
293 /* test to check that the long sequence of jumps is acceptable */
294 while (k++ < MAX_JMP_SEQ) {
295 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
296 BPF_FUNC_get_prandom_u32);
297 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
298 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
299 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
300 -8 * (k % 64 + 1));
301 }
302 /* is_state_visited() doesn't allocate state for pruning for every jump.
303 * Hence multiply jmps by 4 to accommodate that heuristic
304 */
305 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
306 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
307 insn[i] = BPF_EXIT_INSN();
308 self->prog_len = i + 1;
309 self->retval = 42;
310}
311
312/* test the sequence of 8k jumps in inner most function (function depth 8)*/
313static void bpf_fill_scale2(struct bpf_test *self)
314{
315 struct bpf_insn *insn = self->fill_insns;
316 int i = 0, k = 0;
317
318#define FUNC_NEST 7
319 for (k = 0; k < FUNC_NEST; k++) {
320 insn[i++] = BPF_CALL_REL(1);
321 insn[i++] = BPF_EXIT_INSN();
322 }
323 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
324 /* test to check that the long sequence of jumps is acceptable */
325 k = 0;
326 while (k++ < MAX_JMP_SEQ) {
327 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
328 BPF_FUNC_get_prandom_u32);
329 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
330 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
331 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
332 -8 * (k % (64 - 4 * FUNC_NEST) + 1));
333 }
334 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
335 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
336 insn[i] = BPF_EXIT_INSN();
337 self->prog_len = i + 1;
338 self->retval = 42;
339}
340
341static void bpf_fill_scale(struct bpf_test *self)
342{
343 switch (self->retval) {
344 case 1:
345 return bpf_fill_scale1(self);
346 case 2:
347 return bpf_fill_scale2(self);
348 default:
349 self->prog_len = 0;
350 break;
351 }
352}
353
354static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
355{
356 unsigned int len = 259, hlen = 128;
357 int i;
358
359 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
360 for (i = 1; i <= hlen; i++) {
361 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
362 insn[i + hlen] = BPF_JMP_A(hlen - i);
363 }
364 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
365 insn[len - 1] = BPF_EXIT_INSN();
366
367 return len;
368}
369
370static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
371{
372 unsigned int len = 4100, jmp_off = 2048;
373 int i, j;
374
375 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
376 for (i = 1; i <= jmp_off; i++) {
377 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
378 }
379 insn[i++] = BPF_JMP_A(jmp_off);
380 for (; i <= jmp_off * 2 + 1; i+=16) {
381 for (j = 0; j < 16; j++) {
382 insn[i + j] = BPF_JMP_A(16 - j - 1);
383 }
384 }
385
386 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
387 insn[len - 1] = BPF_EXIT_INSN();
388
389 return len;
390}
391
392static void bpf_fill_torturous_jumps(struct bpf_test *self)
393{
394 struct bpf_insn *insn = self->fill_insns;
395 int i = 0;
396
397 switch (self->retval) {
398 case 1:
399 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
400 return;
401 case 2:
402 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
403 return;
404 case 3:
405 /* main */
406 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
407 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
408 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
409 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
410 insn[i++] = BPF_EXIT_INSN();
411
412 /* subprog 1 */
413 i += bpf_fill_torturous_jumps_insn_1(insn: insn + i);
414
415 /* subprog 2 */
416 i += bpf_fill_torturous_jumps_insn_2(insn: insn + i);
417
418 self->prog_len = i;
419 return;
420 default:
421 self->prog_len = 0;
422 break;
423 }
424}
425
426static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
427{
428 struct bpf_insn *insn = self->fill_insns;
429 /* This test was added to catch a specific use after free
430 * error, which happened upon BPF program reallocation.
431 * Reallocation is handled by core.c:bpf_prog_realloc, which
432 * reuses old memory if page boundary is not crossed. The
433 * value of `len` is chosen to cross this boundary on bpf_loop
434 * patching.
435 */
436 const int len = getpagesize() - 25;
437 int callback_load_idx;
438 int callback_idx;
439 int i = 0;
440
441 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
442 callback_load_idx = i;
443 insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
444 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
445 777 /* filled below */);
446 insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
447 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
448 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
449 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
450
451 while (i < len - 3)
452 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
453 insn[i++] = BPF_EXIT_INSN();
454
455 callback_idx = i;
456 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
457 insn[i++] = BPF_EXIT_INSN();
458
459 insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
460 self->func_info[1].insn_off = callback_idx;
461 self->prog_len = i;
462 assert(i == len);
463}
464
465/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
466#define BPF_SK_LOOKUP(func) \
467 /* struct bpf_sock_tuple tuple = {} */ \
468 BPF_MOV64_IMM(BPF_REG_2, 0), \
469 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \
470 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \
471 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \
472 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \
473 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \
474 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \
475 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \
476 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \
477 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \
478 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \
479 BPF_MOV64_IMM(BPF_REG_4, 0), \
480 BPF_MOV64_IMM(BPF_REG_5, 0), \
481 BPF_EMIT_CALL(BPF_FUNC_ ## func)
482
483/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
484 * value into 0 and does necessary preparation for direct packet access
485 * through r2. The allowed access range is 8 bytes.
486 */
487#define BPF_DIRECT_PKT_R2 \
488 BPF_MOV64_IMM(BPF_REG_0, 0), \
489 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
490 offsetof(struct __sk_buff, data)), \
491 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
492 offsetof(struct __sk_buff, data_end)), \
493 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \
494 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \
495 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \
496 BPF_EXIT_INSN()
497
498/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
499 * positive u32, and zero-extend it into 64-bit.
500 */
501#define BPF_RAND_UEXT_R7 \
502 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
503 BPF_FUNC_get_prandom_u32), \
504 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
505 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \
506 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
507
508/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
509 * negative u32, and sign-extend it into 64-bit.
510 */
511#define BPF_RAND_SEXT_R7 \
512 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
513 BPF_FUNC_get_prandom_u32), \
514 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
515 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \
516 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \
517 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
518
519static struct bpf_test tests[] = {
520#define FILL_ARRAY
521#include <verifier/tests.h>
522#undef FILL_ARRAY
523};
524
525static int probe_filter_length(const struct bpf_insn *fp)
526{
527 int len;
528
529 for (len = MAX_INSNS - 1; len > 0; --len)
530 if (fp[len].code != 0 || fp[len].imm != 0)
531 break;
532 return len + 1;
533}
534
535static bool skip_unsupported_map(enum bpf_map_type map_type)
536{
537 if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
538 printf("SKIP (unsupported map type %d)\n", map_type);
539 skips++;
540 return true;
541 }
542 return false;
543}
544
545static int __create_map(uint32_t type, uint32_t size_key,
546 uint32_t size_value, uint32_t max_elem,
547 uint32_t extra_flags)
548{
549 LIBBPF_OPTS(bpf_map_create_opts, opts);
550 int fd;
551
552 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
553 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
554 if (fd < 0) {
555 if (skip_unsupported_map(map_type: type))
556 return -1;
557 printf("Failed to create hash map '%s'!\n", strerror(errno));
558 }
559
560 return fd;
561}
562
563static int create_map(uint32_t type, uint32_t size_key,
564 uint32_t size_value, uint32_t max_elem)
565{
566 return __create_map(type, size_key, size_value, max_elem, extra_flags: 0);
567}
568
569static void update_map(int fd, int index)
570{
571 struct test_val value = {
572 .index = (6 + 1) * sizeof(int),
573 .foo[6] = 0xabcdef12,
574 };
575
576 assert(!bpf_map_update_elem(fd, &index, &value, 0));
577}
578
579static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
580{
581 struct bpf_insn prog[] = {
582 BPF_MOV64_IMM(BPF_REG_0, ret),
583 BPF_EXIT_INSN(),
584 };
585
586 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
587}
588
589static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
590 int idx, int ret)
591{
592 struct bpf_insn prog[] = {
593 BPF_MOV64_IMM(BPF_REG_3, idx),
594 BPF_LD_MAP_FD(BPF_REG_2, mfd),
595 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
596 BPF_FUNC_tail_call),
597 BPF_MOV64_IMM(BPF_REG_0, ret),
598 BPF_EXIT_INSN(),
599 };
600
601 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
602}
603
604static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
605 int p1key, int p2key, int p3key)
606{
607 int mfd, p1fd, p2fd, p3fd;
608
609 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
610 sizeof(int), max_elem, NULL);
611 if (mfd < 0) {
612 if (skip_unsupported_map(map_type: BPF_MAP_TYPE_PROG_ARRAY))
613 return -1;
614 printf("Failed to create prog array '%s'!\n", strerror(errno));
615 return -1;
616 }
617
618 p1fd = create_prog_dummy_simple(prog_type, ret: 42);
619 p2fd = create_prog_dummy_loop(prog_type, mfd, idx: p2key, ret: 41);
620 p3fd = create_prog_dummy_simple(prog_type, ret: 24);
621 if (p1fd < 0 || p2fd < 0 || p3fd < 0)
622 goto err;
623 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
624 goto err;
625 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
626 goto err;
627 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
628err:
629 close(mfd);
630 mfd = -1;
631 }
632 close(p3fd);
633 close(p2fd);
634 close(p1fd);
635 return mfd;
636}
637
638static int create_map_in_map(void)
639{
640 LIBBPF_OPTS(bpf_map_create_opts, opts);
641 int inner_map_fd, outer_map_fd;
642
643 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
644 sizeof(int), 1, NULL);
645 if (inner_map_fd < 0) {
646 if (skip_unsupported_map(map_type: BPF_MAP_TYPE_ARRAY))
647 return -1;
648 printf("Failed to create array '%s'!\n", strerror(errno));
649 return inner_map_fd;
650 }
651
652 opts.inner_map_fd = inner_map_fd;
653 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
654 sizeof(int), sizeof(int), 1, &opts);
655 if (outer_map_fd < 0) {
656 if (skip_unsupported_map(map_type: BPF_MAP_TYPE_ARRAY_OF_MAPS))
657 return -1;
658 printf("Failed to create array of maps '%s'!\n",
659 strerror(errno));
660 }
661
662 close(inner_map_fd);
663
664 return outer_map_fd;
665}
666
667static int create_cgroup_storage(bool percpu)
668{
669 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
670 BPF_MAP_TYPE_CGROUP_STORAGE;
671 int fd;
672
673 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
674 TEST_DATA_LEN, 0, NULL);
675 if (fd < 0) {
676 if (skip_unsupported_map(map_type: type))
677 return -1;
678 printf("Failed to create cgroup storage '%s'!\n",
679 strerror(errno));
680 }
681
682 return fd;
683}
684
685/* struct bpf_spin_lock {
686 * int val;
687 * };
688 * struct val {
689 * int cnt;
690 * struct bpf_spin_lock l;
691 * };
692 * struct bpf_timer {
693 * __u64 :64;
694 * __u64 :64;
695 * } __attribute__((aligned(8)));
696 * struct timer {
697 * struct bpf_timer t;
698 * };
699 * struct btf_ptr {
700 * struct prog_test_ref_kfunc __kptr_untrusted *ptr;
701 * struct prog_test_ref_kfunc __kptr *ptr;
702 * struct prog_test_member __kptr *ptr;
703 * }
704 */
705static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
706 "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
707 "\0prog_test_member";
708static __u32 btf_raw_types[] = {
709 /* int */
710 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
711 /* struct bpf_spin_lock */ /* [2] */
712 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
713 BTF_MEMBER_ENC(15, 1, 0), /* int val; */
714 /* struct val */ /* [3] */
715 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
716 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
717 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
718 /* struct bpf_timer */ /* [4] */
719 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
720 /* struct timer */ /* [5] */
721 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
722 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
723 /* struct prog_test_ref_kfunc */ /* [6] */
724 BTF_STRUCT_ENC(51, 0, 0),
725 BTF_STRUCT_ENC(95, 0, 0), /* [7] */
726 /* type tag "kptr_untrusted" */
727 BTF_TYPE_TAG_ENC(80, 6), /* [8] */
728 /* type tag "kptr" */
729 BTF_TYPE_TAG_ENC(75, 6), /* [9] */
730 BTF_TYPE_TAG_ENC(75, 7), /* [10] */
731 BTF_PTR_ENC(8), /* [11] */
732 BTF_PTR_ENC(9), /* [12] */
733 BTF_PTR_ENC(10), /* [13] */
734 /* struct btf_ptr */ /* [14] */
735 BTF_STRUCT_ENC(43, 3, 24),
736 BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
737 BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
738 BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
739};
740
741static char bpf_vlog[UINT_MAX >> 8];
742
743static int load_btf_spec(__u32 *types, int types_len,
744 const char *strings, int strings_len)
745{
746 struct btf_header hdr = {
747 .magic = BTF_MAGIC,
748 .version = BTF_VERSION,
749 .hdr_len = sizeof(struct btf_header),
750 .type_len = types_len,
751 .str_off = types_len,
752 .str_len = strings_len,
753 };
754 void *ptr, *raw_btf;
755 int btf_fd;
756 LIBBPF_OPTS(bpf_btf_load_opts, opts,
757 .log_buf = bpf_vlog,
758 .log_size = sizeof(bpf_vlog),
759 .log_level = (verbose
760 ? verif_log_level
761 : DEFAULT_LIBBPF_LOG_LEVEL),
762 );
763
764 raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
765
766 ptr = raw_btf;
767 memcpy(ptr, &hdr, sizeof(hdr));
768 ptr += sizeof(hdr);
769 memcpy(ptr, types, hdr.type_len);
770 ptr += hdr.type_len;
771 memcpy(ptr, strings, hdr.str_len);
772 ptr += hdr.str_len;
773
774 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
775 if (btf_fd < 0)
776 printf("Failed to load BTF spec: '%s'\n", strerror(errno));
777
778 free(raw_btf);
779
780 return btf_fd < 0 ? -1 : btf_fd;
781}
782
783static int load_btf(void)
784{
785 return load_btf_spec(types: btf_raw_types, types_len: sizeof(btf_raw_types),
786 strings: btf_str_sec, strings_len: sizeof(btf_str_sec));
787}
788
789static int load_btf_for_test(struct bpf_test *test)
790{
791 int types_num = 0;
792
793 while (types_num < MAX_BTF_TYPES &&
794 test->btf_types[types_num] != BTF_END_RAW)
795 ++types_num;
796
797 int types_len = types_num * sizeof(test->btf_types[0]);
798
799 return load_btf_spec(types: test->btf_types, types_len,
800 strings: test->btf_strings, strings_len: sizeof(test->btf_strings));
801}
802
803static int create_map_spin_lock(void)
804{
805 LIBBPF_OPTS(bpf_map_create_opts, opts,
806 .btf_key_type_id = 1,
807 .btf_value_type_id = 3,
808 );
809 int fd, btf_fd;
810
811 btf_fd = load_btf();
812 if (btf_fd < 0)
813 return -1;
814 opts.btf_fd = btf_fd;
815 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
816 if (fd < 0)
817 printf("Failed to create map with spin_lock\n");
818 return fd;
819}
820
821static int create_sk_storage_map(void)
822{
823 LIBBPF_OPTS(bpf_map_create_opts, opts,
824 .map_flags = BPF_F_NO_PREALLOC,
825 .btf_key_type_id = 1,
826 .btf_value_type_id = 3,
827 );
828 int fd, btf_fd;
829
830 btf_fd = load_btf();
831 if (btf_fd < 0)
832 return -1;
833 opts.btf_fd = btf_fd;
834 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
835 close(opts.btf_fd);
836 if (fd < 0)
837 printf("Failed to create sk_storage_map\n");
838 return fd;
839}
840
841static int create_map_timer(void)
842{
843 LIBBPF_OPTS(bpf_map_create_opts, opts,
844 .btf_key_type_id = 1,
845 .btf_value_type_id = 5,
846 );
847 int fd, btf_fd;
848
849 btf_fd = load_btf();
850 if (btf_fd < 0)
851 return -1;
852
853 opts.btf_fd = btf_fd;
854 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
855 if (fd < 0)
856 printf("Failed to create map with timer\n");
857 return fd;
858}
859
860static int create_map_kptr(void)
861{
862 LIBBPF_OPTS(bpf_map_create_opts, opts,
863 .btf_key_type_id = 1,
864 .btf_value_type_id = 14,
865 );
866 int fd, btf_fd;
867
868 btf_fd = load_btf();
869 if (btf_fd < 0)
870 return -1;
871
872 opts.btf_fd = btf_fd;
873 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
874 if (fd < 0)
875 printf("Failed to create map with btf_id pointer\n");
876 return fd;
877}
878
879static void set_root(bool set)
880{
881 __u64 caps;
882
883 if (set) {
884 if (cap_enable_effective(caps: 1ULL << CAP_SYS_ADMIN, old_caps: &caps))
885 perror("cap_disable_effective(CAP_SYS_ADMIN)");
886 } else {
887 if (cap_disable_effective(caps: 1ULL << CAP_SYS_ADMIN, old_caps: &caps))
888 perror("cap_disable_effective(CAP_SYS_ADMIN)");
889 }
890}
891
892static __u64 ptr_to_u64(const void *ptr)
893{
894 return (uintptr_t) ptr;
895}
896
897static struct btf *btf__load_testmod_btf(struct btf *vmlinux)
898{
899 struct bpf_btf_info info;
900 __u32 len = sizeof(info);
901 struct btf *btf = NULL;
902 char name[64];
903 __u32 id = 0;
904 int err, fd;
905
906 /* Iterate all loaded BTF objects and find bpf_testmod,
907 * we need SYS_ADMIN cap for that.
908 */
909 set_root(true);
910
911 while (true) {
912 err = bpf_btf_get_next_id(id, &id);
913 if (err) {
914 if (errno == ENOENT)
915 break;
916 perror("bpf_btf_get_next_id failed");
917 break;
918 }
919
920 fd = bpf_btf_get_fd_by_id(id);
921 if (fd < 0) {
922 if (errno == ENOENT)
923 continue;
924 perror("bpf_btf_get_fd_by_id failed");
925 break;
926 }
927
928 memset(&info, 0, sizeof(info));
929 info.name_len = sizeof(name);
930 info.name = ptr_to_u64(ptr: name);
931 len = sizeof(info);
932
933 err = bpf_obj_get_info_by_fd(fd, &info, &len);
934 if (err) {
935 close(fd);
936 perror("bpf_obj_get_info_by_fd failed");
937 break;
938 }
939
940 if (strcmp("bpf_testmod", name)) {
941 close(fd);
942 continue;
943 }
944
945 btf = btf__load_from_kernel_by_id_split(id, vmlinux);
946 if (!btf) {
947 close(fd);
948 break;
949 }
950
951 /* We need the fd to stay open so it can be used in fd_array.
952 * The final cleanup call to btf__free will free btf object
953 * and close the file descriptor.
954 */
955 btf__set_fd(btf, fd);
956 break;
957 }
958
959 set_root(false);
960 return btf;
961}
962
963static struct btf *testmod_btf;
964static struct btf *vmlinux_btf;
965
966static void kfuncs_cleanup(void)
967{
968 btf__free(testmod_btf);
969 btf__free(vmlinux_btf);
970}
971
972static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array,
973 struct kfunc_btf_id_pair *fixup_kfunc_btf_id)
974{
975 /* Patch in kfunc BTF IDs */
976 while (fixup_kfunc_btf_id->kfunc) {
977 int btf_id = 0;
978
979 /* try to find kfunc in kernel BTF */
980 vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf();
981 if (vmlinux_btf) {
982 btf_id = btf__find_by_name_kind(vmlinux_btf,
983 fixup_kfunc_btf_id->kfunc,
984 BTF_KIND_FUNC);
985 btf_id = btf_id < 0 ? 0 : btf_id;
986 }
987
988 /* kfunc not found in kernel BTF, try bpf_testmod BTF */
989 if (!btf_id) {
990 testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux: vmlinux_btf);
991 if (testmod_btf) {
992 btf_id = btf__find_by_name_kind(testmod_btf,
993 fixup_kfunc_btf_id->kfunc,
994 BTF_KIND_FUNC);
995 btf_id = btf_id < 0 ? 0 : btf_id;
996 if (btf_id) {
997 /* We put bpf_testmod module fd into fd_array
998 * and its index 1 into instruction 'off'.
999 */
1000 *fd_array = btf__fd(testmod_btf);
1001 prog[fixup_kfunc_btf_id->insn_idx].off = 1;
1002 }
1003 }
1004 }
1005
1006 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1007 fixup_kfunc_btf_id++;
1008 }
1009}
1010
1011static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
1012 struct bpf_insn *prog, int *map_fds, int *fd_array)
1013{
1014 int *fixup_map_hash_8b = test->fixup_map_hash_8b;
1015 int *fixup_map_hash_48b = test->fixup_map_hash_48b;
1016 int *fixup_map_hash_16b = test->fixup_map_hash_16b;
1017 int *fixup_map_array_48b = test->fixup_map_array_48b;
1018 int *fixup_map_sockmap = test->fixup_map_sockmap;
1019 int *fixup_map_sockhash = test->fixup_map_sockhash;
1020 int *fixup_map_xskmap = test->fixup_map_xskmap;
1021 int *fixup_map_stacktrace = test->fixup_map_stacktrace;
1022 int *fixup_prog1 = test->fixup_prog1;
1023 int *fixup_prog2 = test->fixup_prog2;
1024 int *fixup_map_in_map = test->fixup_map_in_map;
1025 int *fixup_cgroup_storage = test->fixup_cgroup_storage;
1026 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
1027 int *fixup_map_spin_lock = test->fixup_map_spin_lock;
1028 int *fixup_map_array_ro = test->fixup_map_array_ro;
1029 int *fixup_map_array_wo = test->fixup_map_array_wo;
1030 int *fixup_map_array_small = test->fixup_map_array_small;
1031 int *fixup_sk_storage_map = test->fixup_sk_storage_map;
1032 int *fixup_map_event_output = test->fixup_map_event_output;
1033 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
1034 int *fixup_map_ringbuf = test->fixup_map_ringbuf;
1035 int *fixup_map_timer = test->fixup_map_timer;
1036 int *fixup_map_kptr = test->fixup_map_kptr;
1037
1038 if (test->fill_helper) {
1039 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
1040 test->fill_helper(test);
1041 }
1042
1043 /* Allocating HTs with 1 elem is fine here, since we only test
1044 * for verifier and not do a runtime lookup, so the only thing
1045 * that really matters is value size in this case.
1046 */
1047 if (*fixup_map_hash_8b) {
1048 map_fds[0] = create_map(type: BPF_MAP_TYPE_HASH, size_key: sizeof(long long),
1049 size_value: sizeof(long long), max_elem: 1);
1050 do {
1051 prog[*fixup_map_hash_8b].imm = map_fds[0];
1052 fixup_map_hash_8b++;
1053 } while (*fixup_map_hash_8b);
1054 }
1055
1056 if (*fixup_map_hash_48b) {
1057 map_fds[1] = create_map(type: BPF_MAP_TYPE_HASH, size_key: sizeof(long long),
1058 size_value: sizeof(struct test_val), max_elem: 1);
1059 do {
1060 prog[*fixup_map_hash_48b].imm = map_fds[1];
1061 fixup_map_hash_48b++;
1062 } while (*fixup_map_hash_48b);
1063 }
1064
1065 if (*fixup_map_hash_16b) {
1066 map_fds[2] = create_map(type: BPF_MAP_TYPE_HASH, size_key: sizeof(long long),
1067 size_value: sizeof(struct other_val), max_elem: 1);
1068 do {
1069 prog[*fixup_map_hash_16b].imm = map_fds[2];
1070 fixup_map_hash_16b++;
1071 } while (*fixup_map_hash_16b);
1072 }
1073
1074 if (*fixup_map_array_48b) {
1075 map_fds[3] = create_map(type: BPF_MAP_TYPE_ARRAY, size_key: sizeof(int),
1076 size_value: sizeof(struct test_val), max_elem: 1);
1077 update_map(fd: map_fds[3], index: 0);
1078 do {
1079 prog[*fixup_map_array_48b].imm = map_fds[3];
1080 fixup_map_array_48b++;
1081 } while (*fixup_map_array_48b);
1082 }
1083
1084 if (*fixup_prog1) {
1085 map_fds[4] = create_prog_array(prog_type, max_elem: 4, p1key: 0, p2key: 1, p3key: 2);
1086 do {
1087 prog[*fixup_prog1].imm = map_fds[4];
1088 fixup_prog1++;
1089 } while (*fixup_prog1);
1090 }
1091
1092 if (*fixup_prog2) {
1093 map_fds[5] = create_prog_array(prog_type, max_elem: 8, p1key: 7, p2key: 1, p3key: 2);
1094 do {
1095 prog[*fixup_prog2].imm = map_fds[5];
1096 fixup_prog2++;
1097 } while (*fixup_prog2);
1098 }
1099
1100 if (*fixup_map_in_map) {
1101 map_fds[6] = create_map_in_map();
1102 do {
1103 prog[*fixup_map_in_map].imm = map_fds[6];
1104 fixup_map_in_map++;
1105 } while (*fixup_map_in_map);
1106 }
1107
1108 if (*fixup_cgroup_storage) {
1109 map_fds[7] = create_cgroup_storage(percpu: false);
1110 do {
1111 prog[*fixup_cgroup_storage].imm = map_fds[7];
1112 fixup_cgroup_storage++;
1113 } while (*fixup_cgroup_storage);
1114 }
1115
1116 if (*fixup_percpu_cgroup_storage) {
1117 map_fds[8] = create_cgroup_storage(percpu: true);
1118 do {
1119 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
1120 fixup_percpu_cgroup_storage++;
1121 } while (*fixup_percpu_cgroup_storage);
1122 }
1123 if (*fixup_map_sockmap) {
1124 map_fds[9] = create_map(type: BPF_MAP_TYPE_SOCKMAP, size_key: sizeof(int),
1125 size_value: sizeof(int), max_elem: 1);
1126 do {
1127 prog[*fixup_map_sockmap].imm = map_fds[9];
1128 fixup_map_sockmap++;
1129 } while (*fixup_map_sockmap);
1130 }
1131 if (*fixup_map_sockhash) {
1132 map_fds[10] = create_map(type: BPF_MAP_TYPE_SOCKHASH, size_key: sizeof(int),
1133 size_value: sizeof(int), max_elem: 1);
1134 do {
1135 prog[*fixup_map_sockhash].imm = map_fds[10];
1136 fixup_map_sockhash++;
1137 } while (*fixup_map_sockhash);
1138 }
1139 if (*fixup_map_xskmap) {
1140 map_fds[11] = create_map(type: BPF_MAP_TYPE_XSKMAP, size_key: sizeof(int),
1141 size_value: sizeof(int), max_elem: 1);
1142 do {
1143 prog[*fixup_map_xskmap].imm = map_fds[11];
1144 fixup_map_xskmap++;
1145 } while (*fixup_map_xskmap);
1146 }
1147 if (*fixup_map_stacktrace) {
1148 map_fds[12] = create_map(type: BPF_MAP_TYPE_STACK_TRACE, size_key: sizeof(u32),
1149 size_value: sizeof(u64), max_elem: 1);
1150 do {
1151 prog[*fixup_map_stacktrace].imm = map_fds[12];
1152 fixup_map_stacktrace++;
1153 } while (*fixup_map_stacktrace);
1154 }
1155 if (*fixup_map_spin_lock) {
1156 map_fds[13] = create_map_spin_lock();
1157 do {
1158 prog[*fixup_map_spin_lock].imm = map_fds[13];
1159 fixup_map_spin_lock++;
1160 } while (*fixup_map_spin_lock);
1161 }
1162 if (*fixup_map_array_ro) {
1163 map_fds[14] = __create_map(type: BPF_MAP_TYPE_ARRAY, size_key: sizeof(int),
1164 size_value: sizeof(struct test_val), max_elem: 1,
1165 extra_flags: BPF_F_RDONLY_PROG);
1166 update_map(fd: map_fds[14], index: 0);
1167 do {
1168 prog[*fixup_map_array_ro].imm = map_fds[14];
1169 fixup_map_array_ro++;
1170 } while (*fixup_map_array_ro);
1171 }
1172 if (*fixup_map_array_wo) {
1173 map_fds[15] = __create_map(type: BPF_MAP_TYPE_ARRAY, size_key: sizeof(int),
1174 size_value: sizeof(struct test_val), max_elem: 1,
1175 extra_flags: BPF_F_WRONLY_PROG);
1176 update_map(fd: map_fds[15], index: 0);
1177 do {
1178 prog[*fixup_map_array_wo].imm = map_fds[15];
1179 fixup_map_array_wo++;
1180 } while (*fixup_map_array_wo);
1181 }
1182 if (*fixup_map_array_small) {
1183 map_fds[16] = __create_map(type: BPF_MAP_TYPE_ARRAY, size_key: sizeof(int),
1184 size_value: 1, max_elem: 1, extra_flags: 0);
1185 update_map(fd: map_fds[16], index: 0);
1186 do {
1187 prog[*fixup_map_array_small].imm = map_fds[16];
1188 fixup_map_array_small++;
1189 } while (*fixup_map_array_small);
1190 }
1191 if (*fixup_sk_storage_map) {
1192 map_fds[17] = create_sk_storage_map();
1193 do {
1194 prog[*fixup_sk_storage_map].imm = map_fds[17];
1195 fixup_sk_storage_map++;
1196 } while (*fixup_sk_storage_map);
1197 }
1198 if (*fixup_map_event_output) {
1199 map_fds[18] = __create_map(type: BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1200 size_key: sizeof(int), size_value: sizeof(int), max_elem: 1, extra_flags: 0);
1201 do {
1202 prog[*fixup_map_event_output].imm = map_fds[18];
1203 fixup_map_event_output++;
1204 } while (*fixup_map_event_output);
1205 }
1206 if (*fixup_map_reuseport_array) {
1207 map_fds[19] = __create_map(type: BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1208 size_key: sizeof(u32), size_value: sizeof(u64), max_elem: 1, extra_flags: 0);
1209 do {
1210 prog[*fixup_map_reuseport_array].imm = map_fds[19];
1211 fixup_map_reuseport_array++;
1212 } while (*fixup_map_reuseport_array);
1213 }
1214 if (*fixup_map_ringbuf) {
1215 map_fds[20] = create_map(type: BPF_MAP_TYPE_RINGBUF, size_key: 0,
1216 size_value: 0, max_elem: getpagesize());
1217 do {
1218 prog[*fixup_map_ringbuf].imm = map_fds[20];
1219 fixup_map_ringbuf++;
1220 } while (*fixup_map_ringbuf);
1221 }
1222 if (*fixup_map_timer) {
1223 map_fds[21] = create_map_timer();
1224 do {
1225 prog[*fixup_map_timer].imm = map_fds[21];
1226 fixup_map_timer++;
1227 } while (*fixup_map_timer);
1228 }
1229 if (*fixup_map_kptr) {
1230 map_fds[22] = create_map_kptr();
1231 do {
1232 prog[*fixup_map_kptr].imm = map_fds[22];
1233 fixup_map_kptr++;
1234 } while (*fixup_map_kptr);
1235 }
1236
1237 fixup_prog_kfuncs(prog, fd_array, fixup_kfunc_btf_id: test->fixup_kfunc_btf_id);
1238}
1239
1240struct libcap {
1241 struct __user_cap_header_struct hdr;
1242 struct __user_cap_data_struct data[2];
1243};
1244
1245static int set_admin(bool admin)
1246{
1247 int err;
1248
1249 if (admin) {
1250 err = cap_enable_effective(ADMIN_CAPS, NULL);
1251 if (err)
1252 perror("cap_enable_effective(ADMIN_CAPS)");
1253 } else {
1254 err = cap_disable_effective(ADMIN_CAPS, NULL);
1255 if (err)
1256 perror("cap_disable_effective(ADMIN_CAPS)");
1257 }
1258
1259 return err;
1260}
1261
1262static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1263 void *data, size_t size_data)
1264{
1265 __u8 tmp[TEST_DATA_LEN << 2];
1266 __u32 size_tmp = sizeof(tmp);
1267 int err, saved_errno;
1268 LIBBPF_OPTS(bpf_test_run_opts, topts,
1269 .data_in = data,
1270 .data_size_in = size_data,
1271 .data_out = tmp,
1272 .data_size_out = size_tmp,
1273 .repeat = 1,
1274 );
1275
1276 if (unpriv)
1277 set_admin(true);
1278 err = bpf_prog_test_run_opts(fd_prog, &topts);
1279 saved_errno = errno;
1280
1281 if (unpriv)
1282 set_admin(false);
1283
1284 if (err) {
1285 switch (saved_errno) {
1286 case ENOTSUPP:
1287 printf("Did not run the program (not supported) ");
1288 return 0;
1289 case EPERM:
1290 if (unpriv) {
1291 printf("Did not run the program (no permission) ");
1292 return 0;
1293 }
1294 /* fallthrough; */
1295 default:
1296 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1297 strerror(saved_errno));
1298 return err;
1299 }
1300 }
1301
1302 if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1303 printf("FAIL retval %d != %d ", topts.retval, expected_val);
1304 return 1;
1305 }
1306
1307 return 0;
1308}
1309
1310/* Returns true if every part of exp (tab-separated) appears in log, in order.
1311 *
1312 * If exp is an empty string, returns true.
1313 */
1314static bool cmp_str_seq(const char *log, const char *exp)
1315{
1316 char needle[200];
1317 const char *p, *q;
1318 int len;
1319
1320 do {
1321 if (!strlen(exp))
1322 break;
1323 p = strchr(exp, '\t');
1324 if (!p)
1325 p = exp + strlen(exp);
1326
1327 len = p - exp;
1328 if (len >= sizeof(needle) || !len) {
1329 printf("FAIL\nTestcase bug\n");
1330 return false;
1331 }
1332 strncpy(p: needle, q: exp, size: len);
1333 needle[len] = 0;
1334 q = strstr(log, needle);
1335 if (!q) {
1336 printf("FAIL\nUnexpected verifier log!\n"
1337 "EXP: %s\nRES:\n", needle);
1338 return false;
1339 }
1340 log = q + len;
1341 exp = p + 1;
1342 } while (*p);
1343 return true;
1344}
1345
1346static bool is_null_insn(struct bpf_insn *insn)
1347{
1348 struct bpf_insn null_insn = {};
1349
1350 return memcmp(p: insn, q: &null_insn, size: sizeof(null_insn)) == 0;
1351}
1352
1353static bool is_skip_insn(struct bpf_insn *insn)
1354{
1355 struct bpf_insn skip_insn = SKIP_INSNS();
1356
1357 return memcmp(p: insn, q: &skip_insn, size: sizeof(skip_insn)) == 0;
1358}
1359
1360static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1361{
1362 int i;
1363
1364 for (i = 0; i < max_len; ++i) {
1365 if (is_null_insn(insn: &seq[i]))
1366 return i;
1367 }
1368 return max_len;
1369}
1370
1371static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1372{
1373 struct bpf_insn orig_masked;
1374
1375 memcpy(&orig_masked, orig, sizeof(orig_masked));
1376 if (masked->imm == INSN_IMM_MASK)
1377 orig_masked.imm = INSN_IMM_MASK;
1378 if (masked->off == INSN_OFF_MASK)
1379 orig_masked.off = INSN_OFF_MASK;
1380
1381 return memcmp(p: &orig_masked, q: masked, size: sizeof(orig_masked)) == 0;
1382}
1383
1384static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1385 int seq_len, int subseq_len)
1386{
1387 int i, j;
1388
1389 if (subseq_len > seq_len)
1390 return -1;
1391
1392 for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1393 bool found = true;
1394
1395 for (j = 0; j < subseq_len; ++j) {
1396 if (!compare_masked_insn(orig: &seq[i + j], masked: &subseq[j])) {
1397 found = false;
1398 break;
1399 }
1400 }
1401 if (found)
1402 return i;
1403 }
1404
1405 return -1;
1406}
1407
1408static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1409{
1410 int i;
1411
1412 for (i = 0; i < len; ++i)
1413 if (is_skip_insn(insn: &seq[i]))
1414 return i;
1415
1416 return -1;
1417}
1418
1419/* Return true if all sub-sequences in `subseqs` could be found in
1420 * `seq` one after another. Sub-sequences are separated by a single
1421 * nil instruction.
1422 */
1423static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1424 int seq_len, int max_subseqs_len)
1425{
1426 int subseqs_len = null_terminated_insn_len(seq: subseqs, max_len: max_subseqs_len);
1427
1428 while (subseqs_len > 0) {
1429 int skip_idx = find_skip_insn_marker(seq: subseqs, len: subseqs_len);
1430 int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1431 int subseq_idx = find_insn_subseq(seq, subseq: subseqs,
1432 seq_len, subseq_len: cur_subseq_len);
1433
1434 if (subseq_idx < 0)
1435 return false;
1436 seq += subseq_idx + cur_subseq_len;
1437 seq_len -= subseq_idx + cur_subseq_len;
1438 subseqs += cur_subseq_len + 1;
1439 subseqs_len -= cur_subseq_len + 1;
1440 }
1441
1442 return true;
1443}
1444
1445static void print_insn(struct bpf_insn *buf, int cnt)
1446{
1447 int i;
1448
1449 printf(" addr op d s off imm\n");
1450 for (i = 0; i < cnt; ++i) {
1451 struct bpf_insn *insn = &buf[i];
1452
1453 if (is_null_insn(insn))
1454 break;
1455
1456 if (is_skip_insn(insn))
1457 printf(" ...\n");
1458 else
1459 printf(" %04x: %02x %1x %x %04hx %08x\n",
1460 i, insn->code, insn->dst_reg,
1461 insn->src_reg, insn->off, insn->imm);
1462 }
1463}
1464
1465static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1466{
1467 struct bpf_insn *buf;
1468 unsigned int cnt;
1469 bool result = true;
1470 bool check_expected = !is_null_insn(insn: test->expected_insns);
1471 bool check_unexpected = !is_null_insn(insn: test->unexpected_insns);
1472
1473 if (!check_expected && !check_unexpected)
1474 goto out;
1475
1476 if (get_xlated_program(fd_prog, buf: &buf, cnt: &cnt)) {
1477 printf("FAIL: can't get xlated program\n");
1478 result = false;
1479 goto out;
1480 }
1481
1482 if (check_expected &&
1483 !find_all_insn_subseqs(seq: buf, subseqs: test->expected_insns,
1484 seq_len: cnt, MAX_EXPECTED_INSNS)) {
1485 printf("FAIL: can't find expected subsequence of instructions\n");
1486 result = false;
1487 if (verbose) {
1488 printf("Program:\n");
1489 print_insn(buf, cnt);
1490 printf("Expected subsequence:\n");
1491 print_insn(buf: test->expected_insns, MAX_EXPECTED_INSNS);
1492 }
1493 }
1494
1495 if (check_unexpected &&
1496 find_all_insn_subseqs(seq: buf, subseqs: test->unexpected_insns,
1497 seq_len: cnt, MAX_UNEXPECTED_INSNS)) {
1498 printf("FAIL: found unexpected subsequence of instructions\n");
1499 result = false;
1500 if (verbose) {
1501 printf("Program:\n");
1502 print_insn(buf, cnt);
1503 printf("Un-expected subsequence:\n");
1504 print_insn(buf: test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1505 }
1506 }
1507
1508 free(buf);
1509 out:
1510 return result;
1511}
1512
1513static void do_test_single(struct bpf_test *test, bool unpriv,
1514 int *passes, int *errors)
1515{
1516 int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1517 int prog_len, prog_type = test->prog_type;
1518 struct bpf_insn *prog = test->insns;
1519 LIBBPF_OPTS(bpf_prog_load_opts, opts);
1520 int run_errs, run_successes;
1521 int map_fds[MAX_NR_MAPS];
1522 const char *expected_err;
1523 int fd_array[2] = { -1, -1 };
1524 int saved_errno;
1525 int fixup_skips;
1526 __u32 pflags;
1527 int i, err;
1528
1529 if ((test->flags & F_NEEDS_JIT_ENABLED) && jit_disabled) {
1530 printf("SKIP (requires BPF JIT)\n");
1531 skips++;
1532 sched_yield();
1533 return;
1534 }
1535
1536 fd_prog = -1;
1537 for (i = 0; i < MAX_NR_MAPS; i++)
1538 map_fds[i] = -1;
1539 btf_fd = -1;
1540
1541 if (!prog_type)
1542 prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1543 fixup_skips = skips;
1544 do_test_fixup(test, prog_type, prog, map_fds, fd_array: &fd_array[1]);
1545 if (test->fill_insns) {
1546 prog = test->fill_insns;
1547 prog_len = test->prog_len;
1548 } else {
1549 prog_len = probe_filter_length(fp: prog);
1550 }
1551 /* If there were some map skips during fixup due to missing bpf
1552 * features, skip this test.
1553 */
1554 if (fixup_skips != skips)
1555 return;
1556
1557 pflags = testing_prog_flags();
1558 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1559 pflags |= BPF_F_STRICT_ALIGNMENT;
1560 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1561 pflags |= BPF_F_ANY_ALIGNMENT;
1562 if (test->flags & ~3)
1563 pflags |= test->flags;
1564
1565 expected_ret = unpriv && test->result_unpriv != UNDEF ?
1566 test->result_unpriv : test->result;
1567 expected_err = unpriv && test->errstr_unpriv ?
1568 test->errstr_unpriv : test->errstr;
1569
1570 opts.expected_attach_type = test->expected_attach_type;
1571 if (verbose)
1572 opts.log_level = verif_log_level | 4; /* force stats */
1573 else if (expected_ret == VERBOSE_ACCEPT)
1574 opts.log_level = 2;
1575 else
1576 opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1577 opts.prog_flags = pflags;
1578 if (fd_array[1] != -1)
1579 opts.fd_array = &fd_array[0];
1580
1581 if ((prog_type == BPF_PROG_TYPE_TRACING ||
1582 prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1583 int attach_btf_id;
1584
1585 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1586 opts.expected_attach_type);
1587 if (attach_btf_id < 0) {
1588 printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1589 test->kfunc);
1590 (*errors)++;
1591 return;
1592 }
1593
1594 opts.attach_btf_id = attach_btf_id;
1595 }
1596
1597 if (test->btf_types[0] != 0) {
1598 btf_fd = load_btf_for_test(test);
1599 if (btf_fd < 0)
1600 goto fail_log;
1601 opts.prog_btf_fd = btf_fd;
1602 }
1603
1604 if (test->func_info_cnt != 0) {
1605 opts.func_info = test->func_info;
1606 opts.func_info_cnt = test->func_info_cnt;
1607 opts.func_info_rec_size = sizeof(test->func_info[0]);
1608 }
1609
1610 opts.log_buf = bpf_vlog;
1611 opts.log_size = sizeof(bpf_vlog);
1612 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1613 saved_errno = errno;
1614
1615 /* BPF_PROG_TYPE_TRACING requires more setup and
1616 * bpf_probe_prog_type won't give correct answer
1617 */
1618 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1619 !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1620 printf("SKIP (unsupported program type %d)\n", prog_type);
1621 skips++;
1622 goto close_fds;
1623 }
1624
1625 if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1626 printf("SKIP (program uses an unsupported feature)\n");
1627 skips++;
1628 goto close_fds;
1629 }
1630
1631 alignment_prevented_execution = 0;
1632
1633 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1634 if (fd_prog < 0) {
1635 printf("FAIL\nFailed to load prog '%s'!\n",
1636 strerror(saved_errno));
1637 goto fail_log;
1638 }
1639#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1640 if (fd_prog >= 0 &&
1641 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1642 alignment_prevented_execution = 1;
1643#endif
1644 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(log: bpf_vlog, exp: expected_err)) {
1645 goto fail_log;
1646 }
1647 } else {
1648 if (fd_prog >= 0) {
1649 printf("FAIL\nUnexpected success to load!\n");
1650 goto fail_log;
1651 }
1652 if (!expected_err || !cmp_str_seq(log: bpf_vlog, exp: expected_err)) {
1653 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1654 expected_err, bpf_vlog);
1655 goto fail_log;
1656 }
1657 }
1658
1659 if (!unpriv && test->insn_processed) {
1660 uint32_t insn_processed;
1661 char *proc;
1662
1663 proc = strstr(bpf_vlog, "processed ");
1664 insn_processed = atoi(proc + 10);
1665 if (test->insn_processed != insn_processed) {
1666 printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1667 insn_processed, test->insn_processed);
1668 goto fail_log;
1669 }
1670 }
1671
1672 if (verbose)
1673 printf(", verifier log:\n%s", bpf_vlog);
1674
1675 if (!check_xlated_program(test, fd_prog))
1676 goto fail_log;
1677
1678 run_errs = 0;
1679 run_successes = 0;
1680 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1681 uint32_t expected_val;
1682 int i;
1683
1684 if (!test->runs)
1685 test->runs = 1;
1686
1687 for (i = 0; i < test->runs; i++) {
1688 if (unpriv && test->retvals[i].retval_unpriv)
1689 expected_val = test->retvals[i].retval_unpriv;
1690 else
1691 expected_val = test->retvals[i].retval;
1692
1693 err = do_prog_test_run(fd_prog, unpriv, expected_val,
1694 data: test->retvals[i].data,
1695 size_data: sizeof(test->retvals[i].data));
1696 if (err) {
1697 printf("(run %d/%d) ", i + 1, test->runs);
1698 run_errs++;
1699 } else {
1700 run_successes++;
1701 }
1702 }
1703 }
1704
1705 if (!run_errs) {
1706 (*passes)++;
1707 if (run_successes > 1)
1708 printf("%d cases ", run_successes);
1709 printf("OK");
1710 if (alignment_prevented_execution)
1711 printf(" (NOTE: not executed due to unknown alignment)");
1712 printf("\n");
1713 } else {
1714 printf("\n");
1715 goto fail_log;
1716 }
1717close_fds:
1718 if (test->fill_insns)
1719 free(test->fill_insns);
1720 close(fd_prog);
1721 close(btf_fd);
1722 for (i = 0; i < MAX_NR_MAPS; i++)
1723 close(map_fds[i]);
1724 sched_yield();
1725 return;
1726fail_log:
1727 (*errors)++;
1728 printf("%s", bpf_vlog);
1729 goto close_fds;
1730}
1731
1732static bool is_admin(void)
1733{
1734 __u64 caps;
1735
1736 /* The test checks for finer cap as CAP_NET_ADMIN,
1737 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1738 * Thus, disable CAP_SYS_ADMIN at the beginning.
1739 */
1740 if (cap_disable_effective(caps: 1ULL << CAP_SYS_ADMIN, old_caps: &caps)) {
1741 perror("cap_disable_effective(CAP_SYS_ADMIN)");
1742 return false;
1743 }
1744
1745 return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1746}
1747
1748static bool test_as_unpriv(struct bpf_test *test)
1749{
1750#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1751 /* Some architectures have strict alignment requirements. In
1752 * that case, the BPF verifier detects if a program has
1753 * unaligned accesses and rejects them. A user can pass
1754 * BPF_F_ANY_ALIGNMENT to a program to override this
1755 * check. That, however, will only work when a privileged user
1756 * loads a program. An unprivileged user loading a program
1757 * with this flag will be rejected prior entering the
1758 * verifier.
1759 */
1760 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1761 return false;
1762#endif
1763 return !test->prog_type ||
1764 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1765 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1766}
1767
1768static int do_test(bool unpriv, unsigned int from, unsigned int to)
1769{
1770 int i, passes = 0, errors = 0;
1771
1772 /* ensure previous instance of the module is unloaded */
1773 unload_bpf_testmod(verbose);
1774
1775 if (load_bpf_testmod(verbose))
1776 return EXIT_FAILURE;
1777
1778 for (i = from; i < to; i++) {
1779 struct bpf_test *test = &tests[i];
1780
1781 /* Program types that are not supported by non-root we
1782 * skip right away.
1783 */
1784 if (test_as_unpriv(test) && unpriv_disabled) {
1785 printf("#%d/u %s SKIP\n", i, test->descr);
1786 skips++;
1787 } else if (test_as_unpriv(test)) {
1788 if (!unpriv)
1789 set_admin(false);
1790 printf("#%d/u %s ", i, test->descr);
1791 do_test_single(test, unpriv: true, passes: &passes, errors: &errors);
1792 if (!unpriv)
1793 set_admin(true);
1794 }
1795
1796 if (unpriv) {
1797 printf("#%d/p %s SKIP\n", i, test->descr);
1798 skips++;
1799 } else {
1800 printf("#%d/p %s ", i, test->descr);
1801 do_test_single(test, unpriv: false, passes: &passes, errors: &errors);
1802 }
1803 }
1804
1805 unload_bpf_testmod(verbose);
1806 kfuncs_cleanup();
1807
1808 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1809 skips, errors);
1810 return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1811}
1812
1813int main(int argc, char **argv)
1814{
1815 unsigned int from = 0, to = ARRAY_SIZE(tests);
1816 bool unpriv = !is_admin();
1817 int arg = 1;
1818
1819 if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1820 arg++;
1821 verbose = true;
1822 verif_log_level = 1;
1823 argc--;
1824 }
1825 if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
1826 arg++;
1827 verbose = true;
1828 verif_log_level = 2;
1829 argc--;
1830 }
1831
1832 if (argc == 3) {
1833 unsigned int l = atoi(argv[arg]);
1834 unsigned int u = atoi(argv[arg + 1]);
1835
1836 if (l < to && u < to) {
1837 from = l;
1838 to = u + 1;
1839 }
1840 } else if (argc == 2) {
1841 unsigned int t = atoi(argv[arg]);
1842
1843 if (t < to) {
1844 from = t;
1845 to = t + 1;
1846 }
1847 }
1848
1849 unpriv_disabled = get_unpriv_disabled();
1850 if (unpriv && unpriv_disabled) {
1851 printf("Cannot run as unprivileged user with sysctl %s.\n",
1852 UNPRIV_SYSCTL);
1853 return EXIT_FAILURE;
1854 }
1855
1856 jit_disabled = !is_jit_enabled();
1857
1858 /* Use libbpf 1.0 API mode */
1859 libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1860
1861 bpf_semi_rand_init();
1862 return do_test(unpriv, from, to);
1863}
1864

source code of linux/tools/testing/selftests/bpf/test_verifier.c