| 1 | //===---------- ExprSequence.cpp - clang-tidy -----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ExprSequence.h" |
| 10 | #include "clang/AST/ParentMapContext.h" |
| 11 | #include "llvm/ADT/SmallVector.h" |
| 12 | #include <optional> |
| 13 | |
| 14 | namespace clang::tidy::utils { |
| 15 | |
| 16 | // Returns the Stmt nodes that are parents of 'S', skipping any potential |
| 17 | // intermediate non-Stmt nodes. |
| 18 | // |
| 19 | // In almost all cases, this function returns a single parent or no parents at |
| 20 | // all. |
| 21 | // |
| 22 | // The case that a Stmt has multiple parents is rare but does actually occur in |
| 23 | // the parts of the AST that we're interested in. Specifically, InitListExpr |
| 24 | // nodes cause ASTContext::getParent() to return multiple parents for certain |
| 25 | // nodes in their subtree because RecursiveASTVisitor visits both the syntactic |
| 26 | // and semantic forms of InitListExpr, and the parent-child relationships are |
| 27 | // different between the two forms. |
| 28 | static SmallVector<const Stmt *, 1> getParentStmts(const Stmt *S, |
| 29 | ASTContext *Context) { |
| 30 | SmallVector<const Stmt *, 1> Result; |
| 31 | |
| 32 | TraversalKindScope RAII(*Context, TK_AsIs); |
| 33 | DynTypedNodeList Parents = Context->getParents(Node: *S); |
| 34 | |
| 35 | SmallVector<DynTypedNode, 1> NodesToProcess(Parents.begin(), Parents.end()); |
| 36 | |
| 37 | while (!NodesToProcess.empty()) { |
| 38 | DynTypedNode Node = NodesToProcess.back(); |
| 39 | NodesToProcess.pop_back(); |
| 40 | |
| 41 | if (const auto *S = Node.get<Stmt>()) { |
| 42 | Result.push_back(Elt: S); |
| 43 | } else { |
| 44 | Parents = Context->getParents(Node); |
| 45 | NodesToProcess.append(in_start: Parents.begin(), in_end: Parents.end()); |
| 46 | } |
| 47 | } |
| 48 | |
| 49 | return Result; |
| 50 | } |
| 51 | |
| 52 | namespace { |
| 53 | |
| 54 | bool isDescendantOrEqual(const Stmt *Descendant, const Stmt *Ancestor, |
| 55 | ASTContext *Context) { |
| 56 | if (Descendant == Ancestor) |
| 57 | return true; |
| 58 | return llvm::any_of(Range: getParentStmts(S: Descendant, Context), |
| 59 | P: [Ancestor, Context](const Stmt *Parent) { |
| 60 | return isDescendantOrEqual(Descendant: Parent, Ancestor, Context); |
| 61 | }); |
| 62 | } |
| 63 | |
| 64 | bool isDescendantOfArgs(const Stmt *Descendant, const CallExpr *Call, |
| 65 | ASTContext *Context) { |
| 66 | return llvm::any_of(Range: Call->arguments(), |
| 67 | P: [Descendant, Context](const Expr *Arg) { |
| 68 | return isDescendantOrEqual(Descendant, Arg, Context); |
| 69 | }); |
| 70 | } |
| 71 | |
| 72 | llvm::SmallVector<const InitListExpr *> |
| 73 | getAllInitListForms(const InitListExpr *InitList) { |
| 74 | llvm::SmallVector<const InitListExpr *> Result = {InitList}; |
| 75 | if (const InitListExpr *AltForm = InitList->getSyntacticForm()) |
| 76 | Result.push_back(Elt: AltForm); |
| 77 | if (const InitListExpr *AltForm = InitList->getSemanticForm()) |
| 78 | Result.push_back(Elt: AltForm); |
| 79 | return Result; |
| 80 | } |
| 81 | |
| 82 | } // namespace |
| 83 | |
| 84 | ExprSequence::ExprSequence(const CFG *TheCFG, const Stmt *Root, |
| 85 | ASTContext *TheContext) |
| 86 | : Context(TheContext), Root(Root) { |
| 87 | SyntheticStmtSourceMap.insert_range(R: TheCFG->synthetic_stmts()); |
| 88 | } |
| 89 | |
| 90 | bool ExprSequence::inSequence(const Stmt *Before, const Stmt *After) const { |
| 91 | Before = resolveSyntheticStmt(S: Before); |
| 92 | After = resolveSyntheticStmt(S: After); |
| 93 | |
| 94 | // If 'After' is in the subtree of the siblings that follow 'Before' in the |
| 95 | // chain of successors, we know that 'After' is sequenced after 'Before'. |
| 96 | for (const Stmt *Successor = getSequenceSuccessor(S: Before); Successor; |
| 97 | Successor = getSequenceSuccessor(S: Successor)) { |
| 98 | if (isDescendantOrEqual(Descendant: After, Ancestor: Successor, Context)) |
| 99 | return true; |
| 100 | } |
| 101 | |
| 102 | SmallVector<const Stmt *, 1> BeforeParents = getParentStmts(S: Before, Context); |
| 103 | |
| 104 | // Since C++17, the callee of a call expression is guaranteed to be sequenced |
| 105 | // before all of the arguments. |
| 106 | // We handle this as a special case rather than using the general |
| 107 | // `getSequenceSuccessor` logic above because the callee expression doesn't |
| 108 | // have an unambiguous successor; the order in which arguments are evaluated |
| 109 | // is indeterminate. |
| 110 | for (const Stmt *Parent : BeforeParents) { |
| 111 | // Special case: If the callee is a `MemberExpr` with a `DeclRefExpr` as its |
| 112 | // base, we consider it to be sequenced _after_ the arguments. This is |
| 113 | // because the variable referenced in the base will only actually be |
| 114 | // accessed when the call happens, i.e. once all of the arguments have been |
| 115 | // evaluated. This has no basis in the C++ standard, but it reflects actual |
| 116 | // behavior that is relevant to a use-after-move scenario: |
| 117 | // |
| 118 | // ``` |
| 119 | // a.bar(consumeA(std::move(a)); |
| 120 | // ``` |
| 121 | // |
| 122 | // In this example, we end up accessing `a` after it has been moved from, |
| 123 | // even though nominally the callee `a.bar` is evaluated before the argument |
| 124 | // `consumeA(std::move(a))`. Note that this is not specific to C++17, so |
| 125 | // we implement this logic unconditionally. |
| 126 | if (const auto *Call = dyn_cast<CXXMemberCallExpr>(Val: Parent)) { |
| 127 | if (is_contained(Call->arguments(), Before) && |
| 128 | isa<DeclRefExpr>( |
| 129 | Val: Call->getImplicitObjectArgument()->IgnoreParenImpCasts()) && |
| 130 | isDescendantOrEqual(After, Call->getImplicitObjectArgument(), |
| 131 | Context)) |
| 132 | return true; |
| 133 | |
| 134 | // We need this additional early exit so that we don't fall through to the |
| 135 | // more general logic below. |
| 136 | if (const auto *Member = dyn_cast<MemberExpr>(Val: Before); |
| 137 | Member && Call->getCallee() == Member && |
| 138 | isa<DeclRefExpr>(Val: Member->getBase()->IgnoreParenImpCasts()) && |
| 139 | isDescendantOfArgs(After, Call, Context)) |
| 140 | return false; |
| 141 | } |
| 142 | |
| 143 | if (!Context->getLangOpts().CPlusPlus17) |
| 144 | continue; |
| 145 | |
| 146 | if (const auto *Call = dyn_cast<CallExpr>(Val: Parent); |
| 147 | Call && Call->getCallee() == Before && |
| 148 | isDescendantOfArgs(Descendant: After, Call, Context)) |
| 149 | return true; |
| 150 | } |
| 151 | |
| 152 | // If 'After' is a parent of 'Before' or is sequenced after one of these |
| 153 | // parents, we know that it is sequenced after 'Before'. |
| 154 | for (const Stmt *Parent : BeforeParents) { |
| 155 | if (Parent == After || inSequence(Before: Parent, After)) |
| 156 | return true; |
| 157 | } |
| 158 | |
| 159 | return false; |
| 160 | } |
| 161 | |
| 162 | bool ExprSequence::potentiallyAfter(const Stmt *After, |
| 163 | const Stmt *Before) const { |
| 164 | return !inSequence(Before: After, After: Before); |
| 165 | } |
| 166 | |
| 167 | const Stmt *ExprSequence::getSequenceSuccessor(const Stmt *S) const { |
| 168 | for (const Stmt *Parent : getParentStmts(S, Context)) { |
| 169 | // If a statement has multiple parents, make sure we're using the parent |
| 170 | // that lies within the sub-tree under Root. |
| 171 | if (!isDescendantOrEqual(Descendant: Parent, Ancestor: Root, Context)) |
| 172 | continue; |
| 173 | |
| 174 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: Parent)) { |
| 175 | // Comma operator: Right-hand side is sequenced after the left-hand side. |
| 176 | if (BO->getLHS() == S && BO->getOpcode() == BO_Comma) |
| 177 | return BO->getRHS(); |
| 178 | } else if (const auto *InitList = dyn_cast<InitListExpr>(Val: Parent)) { |
| 179 | // Initializer list: Each initializer clause is sequenced after the |
| 180 | // clauses that precede it. |
| 181 | for (const InitListExpr *Form : getAllInitListForms(InitList)) { |
| 182 | for (unsigned I = 1; I < Form->getNumInits(); ++I) { |
| 183 | if (Form->getInit(Init: I - 1) == S) { |
| 184 | return Form->getInit(Init: I); |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | } else if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(Val: Parent)) { |
| 189 | // Constructor arguments are sequenced if the constructor call is written |
| 190 | // as list-initialization. |
| 191 | if (ConstructExpr->isListInitialization()) { |
| 192 | for (unsigned I = 1; I < ConstructExpr->getNumArgs(); ++I) { |
| 193 | if (ConstructExpr->getArg(Arg: I - 1) == S) { |
| 194 | return ConstructExpr->getArg(Arg: I); |
| 195 | } |
| 196 | } |
| 197 | } |
| 198 | } else if (const auto *Compound = dyn_cast<CompoundStmt>(Val: Parent)) { |
| 199 | // Compound statement: Each sub-statement is sequenced after the |
| 200 | // statements that precede it. |
| 201 | const Stmt *Previous = nullptr; |
| 202 | for (const auto *Child : Compound->body()) { |
| 203 | if (Previous == S) |
| 204 | return Child; |
| 205 | Previous = Child; |
| 206 | } |
| 207 | } else if (const auto *TheDeclStmt = dyn_cast<DeclStmt>(Val: Parent)) { |
| 208 | // Declaration: Every initializer expression is sequenced after the |
| 209 | // initializer expressions that precede it. |
| 210 | const Expr *PreviousInit = nullptr; |
| 211 | for (const Decl *TheDecl : TheDeclStmt->decls()) { |
| 212 | if (const auto *TheVarDecl = dyn_cast<VarDecl>(Val: TheDecl)) { |
| 213 | if (const Expr *Init = TheVarDecl->getInit()) { |
| 214 | if (PreviousInit == S) |
| 215 | return Init; |
| 216 | PreviousInit = Init; |
| 217 | } |
| 218 | } |
| 219 | } |
| 220 | } else if (const auto *ForRange = dyn_cast<CXXForRangeStmt>(Val: Parent)) { |
| 221 | // Range-based for: Loop variable declaration is sequenced before the |
| 222 | // body. (We need this rule because these get placed in the same |
| 223 | // CFGBlock.) |
| 224 | if (S == ForRange->getLoopVarStmt()) |
| 225 | return ForRange->getBody(); |
| 226 | } else if (const auto *TheIfStmt = dyn_cast<IfStmt>(Val: Parent)) { |
| 227 | // If statement: |
| 228 | // - Sequence init statement before variable declaration, if present; |
| 229 | // before condition evaluation, otherwise. |
| 230 | // - Sequence variable declaration (along with the expression used to |
| 231 | // initialize it) before the evaluation of the condition. |
| 232 | if (S == TheIfStmt->getInit()) { |
| 233 | if (TheIfStmt->getConditionVariableDeclStmt() != nullptr) |
| 234 | return TheIfStmt->getConditionVariableDeclStmt(); |
| 235 | return TheIfStmt->getCond(); |
| 236 | } |
| 237 | if (S == TheIfStmt->getConditionVariableDeclStmt()) |
| 238 | return TheIfStmt->getCond(); |
| 239 | } else if (const auto *TheSwitchStmt = dyn_cast<SwitchStmt>(Val: Parent)) { |
| 240 | // Ditto for switch statements. |
| 241 | if (S == TheSwitchStmt->getInit()) { |
| 242 | if (TheSwitchStmt->getConditionVariableDeclStmt() != nullptr) |
| 243 | return TheSwitchStmt->getConditionVariableDeclStmt(); |
| 244 | return TheSwitchStmt->getCond(); |
| 245 | } |
| 246 | if (S == TheSwitchStmt->getConditionVariableDeclStmt()) |
| 247 | return TheSwitchStmt->getCond(); |
| 248 | } else if (const auto *TheWhileStmt = dyn_cast<WhileStmt>(Val: Parent)) { |
| 249 | // While statement: Sequence variable declaration (along with the |
| 250 | // expression used to initialize it) before the evaluation of the |
| 251 | // condition. |
| 252 | if (S == TheWhileStmt->getConditionVariableDeclStmt()) |
| 253 | return TheWhileStmt->getCond(); |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | return nullptr; |
| 258 | } |
| 259 | |
| 260 | const Stmt *ExprSequence::resolveSyntheticStmt(const Stmt *S) const { |
| 261 | if (SyntheticStmtSourceMap.count(Val: S)) |
| 262 | return SyntheticStmtSourceMap.lookup(Val: S); |
| 263 | return S; |
| 264 | } |
| 265 | |
| 266 | StmtToBlockMap::StmtToBlockMap(const CFG *TheCFG, ASTContext *TheContext) |
| 267 | : Context(TheContext) { |
| 268 | for (const auto *B : *TheCFG) { |
| 269 | for (const auto &Elem : *B) { |
| 270 | if (std::optional<CFGStmt> S = Elem.getAs<CFGStmt>()) |
| 271 | Map[S->getStmt()] = B; |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | const CFGBlock *StmtToBlockMap::blockContainingStmt(const Stmt *S) const { |
| 277 | while (!Map.count(Val: S)) { |
| 278 | SmallVector<const Stmt *, 1> Parents = getParentStmts(S, Context); |
| 279 | if (Parents.empty()) |
| 280 | return nullptr; |
| 281 | S = Parents[0]; |
| 282 | } |
| 283 | |
| 284 | return Map.lookup(Val: S); |
| 285 | } |
| 286 | |
| 287 | } // namespace clang::tidy::utils |
| 288 | |