1 | //===--- Threading.h - Abstractions for multithreading -----------*- C++-*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_CLANG_TOOLS_EXTRA_CLANGD_SUPPORT_THREADING_H |
10 | #define |
11 | |
12 | #include "support/Context.h" |
13 | #include "llvm/ADT/FunctionExtras.h" |
14 | #include "llvm/ADT/Twine.h" |
15 | #include <atomic> |
16 | #include <cassert> |
17 | #include <condition_variable> |
18 | #include <future> |
19 | #include <memory> |
20 | #include <mutex> |
21 | #include <optional> |
22 | #include <thread> |
23 | #include <vector> |
24 | |
25 | namespace clang { |
26 | namespace clangd { |
27 | |
28 | /// Limits the number of threads that can acquire the lock at the same time. |
29 | class Semaphore { |
30 | public: |
31 | Semaphore(std::size_t MaxLocks); |
32 | |
33 | bool try_lock(); |
34 | void lock(); |
35 | void unlock(); |
36 | |
37 | private: |
38 | std::mutex Mutex; |
39 | std::condition_variable SlotsChanged; |
40 | std::size_t FreeSlots; |
41 | }; |
42 | |
43 | /// A point in time we can wait for. |
44 | /// Can be zero (don't wait) or infinity (wait forever). |
45 | /// (Not time_point::max(), because many std::chrono implementations overflow). |
46 | class Deadline { |
47 | public: |
48 | Deadline(std::chrono::steady_clock::time_point Time) |
49 | : Type(Finite), Time(Time) {} |
50 | static Deadline zero() { return Deadline(Zero); } |
51 | static Deadline infinity() { return Deadline(Infinite); } |
52 | |
53 | std::chrono::steady_clock::time_point time() const { |
54 | assert(Type == Finite); |
55 | return Time; |
56 | } |
57 | bool expired() const { |
58 | return (Type == Zero) || |
59 | (Type == Finite && Time < std::chrono::steady_clock::now()); |
60 | } |
61 | bool operator==(const Deadline &Other) const { |
62 | return (Type == Other.Type) && (Type != Finite || Time == Other.Time); |
63 | } |
64 | |
65 | private: |
66 | enum Type { Zero, Infinite, Finite }; |
67 | |
68 | Deadline(enum Type Type) : Type(Type) {} |
69 | enum Type Type; |
70 | std::chrono::steady_clock::time_point Time; |
71 | }; |
72 | |
73 | /// Makes a deadline from a timeout in seconds. std::nullopt means wait forever. |
74 | Deadline timeoutSeconds(std::optional<double> Seconds); |
75 | /// Wait once on CV for the specified duration. |
76 | void wait(std::unique_lock<std::mutex> &Lock, std::condition_variable &CV, |
77 | Deadline D); |
78 | /// Waits on a condition variable until F() is true or D expires. |
79 | template <typename Func> |
80 | [[nodiscard]] bool wait(std::unique_lock<std::mutex> &Lock, |
81 | std::condition_variable &CV, Deadline D, Func F) { |
82 | while (!F()) { |
83 | if (D.expired()) |
84 | return false; |
85 | wait(Lock, CV, D); |
86 | } |
87 | return true; |
88 | } |
89 | |
90 | /// A threadsafe flag that is initially clear. |
91 | class Notification { |
92 | public: |
93 | // Sets the flag. No-op if already set. |
94 | void notify(); |
95 | // Blocks until flag is set. |
96 | void wait() const { (void)wait(D: Deadline::infinity()); } |
97 | [[nodiscard]] bool wait(Deadline D) const; |
98 | |
99 | private: |
100 | bool Notified = false; |
101 | mutable std::condition_variable CV; |
102 | mutable std::mutex Mu; |
103 | }; |
104 | |
105 | /// Runs tasks on separate (detached) threads and wait for all tasks to finish. |
106 | /// Objects that need to spawn threads can own an AsyncTaskRunner to ensure they |
107 | /// all complete on destruction. |
108 | class AsyncTaskRunner { |
109 | public: |
110 | /// Destructor waits for all pending tasks to finish. |
111 | ~AsyncTaskRunner(); |
112 | |
113 | void wait() const { (void)wait(D: Deadline::infinity()); } |
114 | [[nodiscard]] bool wait(Deadline D) const; |
115 | // The name is used for tracing and debugging (e.g. to name a spawned thread). |
116 | void runAsync(const llvm::Twine &Name, llvm::unique_function<void()> Action); |
117 | |
118 | private: |
119 | mutable std::mutex Mutex; |
120 | mutable std::condition_variable TasksReachedZero; |
121 | std::size_t InFlightTasks = 0; |
122 | }; |
123 | |
124 | /// Runs \p Action asynchronously with a new std::thread. The context will be |
125 | /// propagated. |
126 | template <typename T> |
127 | std::future<T> runAsync(llvm::unique_function<T()> Action) { |
128 | return std::async( |
129 | std::launch::async, |
130 | [](llvm::unique_function<T()> &&Action, Context Ctx) { |
131 | WithContext WithCtx(std::move(Ctx)); |
132 | return Action(); |
133 | }, |
134 | std::move(Action), Context::current().clone()); |
135 | } |
136 | |
137 | /// Memoize is a cache to store and reuse computation results based on a key. |
138 | /// |
139 | /// Memoize<DenseMap<int, bool>> PrimeCache; |
140 | /// for (int I : RepetitiveNumbers) |
141 | /// if (PrimeCache.get(I, [&] { return expensiveIsPrime(I); })) |
142 | /// llvm::errs() << "Prime: " << I << "\n"; |
143 | /// |
144 | /// The computation will only be run once for each key. |
145 | /// This class is threadsafe. Concurrent calls for the same key may run the |
146 | /// computation multiple times, but each call will return the same result. |
147 | template <typename Container> class Memoize { |
148 | mutable Container Cache; |
149 | std::unique_ptr<std::mutex> Mu; |
150 | |
151 | public: |
152 | Memoize() : Mu(std::make_unique<std::mutex>()) {} |
153 | |
154 | template <typename T, typename Func> |
155 | typename Container::mapped_type get(T &&Key, Func Compute) const { |
156 | { |
157 | std::lock_guard<std::mutex> Lock(*Mu); |
158 | auto It = Cache.find(Key); |
159 | if (It != Cache.end()) |
160 | return It->second; |
161 | } |
162 | // Don't hold the mutex while computing. |
163 | auto V = Compute(); |
164 | { |
165 | std::lock_guard<std::mutex> Lock(*Mu); |
166 | auto R = Cache.try_emplace(std::forward<T>(Key), V); |
167 | // Insert into cache may fail if we raced with another thread. |
168 | if (!R.second) |
169 | return R.first->second; // Canonical value, from other thread. |
170 | } |
171 | return V; |
172 | } |
173 | }; |
174 | |
175 | /// Used to guard an operation that should run at most every N seconds. |
176 | /// |
177 | /// Usage: |
178 | /// mutable PeriodicThrottler ShouldLog(std::chrono::seconds(1)); |
179 | /// void calledFrequently() { |
180 | /// if (ShouldLog()) |
181 | /// log("this is not spammy"); |
182 | /// } |
183 | /// |
184 | /// This class is threadsafe. If multiple threads are involved, then the guarded |
185 | /// operation still needs to be threadsafe! |
186 | class PeriodicThrottler { |
187 | using Stopwatch = std::chrono::steady_clock; |
188 | using Rep = Stopwatch::duration::rep; |
189 | |
190 | Rep Period; |
191 | std::atomic<Rep> Next; |
192 | |
193 | public: |
194 | /// If Period is zero, the throttler will return true every time. |
195 | PeriodicThrottler(Stopwatch::duration Period, Stopwatch::duration Delay = {}) |
196 | : Period(Period.count()), |
197 | Next((Stopwatch::now() + Delay).time_since_epoch().count()) {} |
198 | |
199 | /// Returns whether the operation should run at this time. |
200 | /// operator() is safe to call concurrently. |
201 | bool operator()(); |
202 | }; |
203 | |
204 | } // namespace clangd |
205 | } // namespace clang |
206 | #endif |
207 | |