1 | //===- ExprClassification.cpp - Expression AST Node Implementation --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements Expr::classify. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/Expr.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/DeclCXX.h" |
16 | #include "clang/AST/DeclObjC.h" |
17 | #include "clang/AST/DeclTemplate.h" |
18 | #include "clang/AST/ExprCXX.h" |
19 | #include "clang/AST/ExprObjC.h" |
20 | #include "llvm/Support/ErrorHandling.h" |
21 | |
22 | using namespace clang; |
23 | |
24 | using Cl = Expr::Classification; |
25 | |
26 | static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E); |
27 | static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D); |
28 | static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T); |
29 | static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E); |
30 | static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E); |
31 | static Cl::Kinds ClassifyConditional(ASTContext &Ctx, |
32 | const Expr *trueExpr, |
33 | const Expr *falseExpr); |
34 | static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, |
35 | Cl::Kinds Kind, SourceLocation &Loc); |
36 | |
37 | Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const { |
38 | assert(!TR->isReferenceType() && "Expressions can't have reference type." ); |
39 | |
40 | Cl::Kinds kind = ClassifyInternal(Ctx, E: this); |
41 | // C99 6.3.2.1: An lvalue is an expression with an object type or an |
42 | // incomplete type other than void. |
43 | if (!Ctx.getLangOpts().CPlusPlus) { |
44 | // Thus, no functions. |
45 | if (TR->isFunctionType() || TR == Ctx.OverloadTy) |
46 | kind = Cl::CL_Function; |
47 | // No void either, but qualified void is OK because it is "other than void". |
48 | // Void "lvalues" are classified as addressable void values, which are void |
49 | // expressions whose address can be taken. |
50 | else if (TR->isVoidType() && !TR.hasQualifiers()) |
51 | kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void); |
52 | } |
53 | |
54 | // Enable this assertion for testing. |
55 | switch (kind) { |
56 | case Cl::CL_LValue: |
57 | assert(isLValue()); |
58 | break; |
59 | case Cl::CL_XValue: |
60 | assert(isXValue()); |
61 | break; |
62 | case Cl::CL_Function: |
63 | case Cl::CL_Void: |
64 | case Cl::CL_AddressableVoid: |
65 | case Cl::CL_DuplicateVectorComponents: |
66 | case Cl::CL_MemberFunction: |
67 | case Cl::CL_SubObjCPropertySetting: |
68 | case Cl::CL_ClassTemporary: |
69 | case Cl::CL_ArrayTemporary: |
70 | case Cl::CL_ObjCMessageRValue: |
71 | case Cl::CL_PRValue: |
72 | assert(isPRValue()); |
73 | break; |
74 | } |
75 | |
76 | Cl::ModifiableType modifiable = Cl::CM_Untested; |
77 | if (Loc) |
78 | modifiable = IsModifiable(Ctx, E: this, Kind: kind, Loc&: *Loc); |
79 | return Classification(kind, modifiable); |
80 | } |
81 | |
82 | /// Classify an expression which creates a temporary, based on its type. |
83 | static Cl::Kinds ClassifyTemporary(QualType T) { |
84 | if (T->isRecordType()) |
85 | return Cl::CL_ClassTemporary; |
86 | if (T->isArrayType()) |
87 | return Cl::CL_ArrayTemporary; |
88 | |
89 | // No special classification: these don't behave differently from normal |
90 | // prvalues. |
91 | return Cl::CL_PRValue; |
92 | } |
93 | |
94 | static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang, |
95 | const Expr *E, |
96 | ExprValueKind Kind) { |
97 | switch (Kind) { |
98 | case VK_PRValue: |
99 | return Lang.CPlusPlus ? ClassifyTemporary(T: E->getType()) : Cl::CL_PRValue; |
100 | case VK_LValue: |
101 | return Cl::CL_LValue; |
102 | case VK_XValue: |
103 | return Cl::CL_XValue; |
104 | } |
105 | llvm_unreachable("Invalid value category of implicit cast." ); |
106 | } |
107 | |
108 | static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) { |
109 | // This function takes the first stab at classifying expressions. |
110 | const LangOptions &Lang = Ctx.getLangOpts(); |
111 | |
112 | switch (E->getStmtClass()) { |
113 | case Stmt::NoStmtClass: |
114 | #define ABSTRACT_STMT(Kind) |
115 | #define STMT(Kind, Base) case Expr::Kind##Class: |
116 | #define EXPR(Kind, Base) |
117 | #include "clang/AST/StmtNodes.inc" |
118 | llvm_unreachable("cannot classify a statement" ); |
119 | |
120 | // First come the expressions that are always lvalues, unconditionally. |
121 | case Expr::ObjCIsaExprClass: |
122 | // Property references are lvalues |
123 | case Expr::ObjCSubscriptRefExprClass: |
124 | case Expr::ObjCPropertyRefExprClass: |
125 | // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of... |
126 | case Expr::CXXTypeidExprClass: |
127 | case Expr::CXXUuidofExprClass: |
128 | // Unresolved lookups and uncorrected typos get classified as lvalues. |
129 | // FIXME: Is this wise? Should they get their own kind? |
130 | case Expr::UnresolvedLookupExprClass: |
131 | case Expr::UnresolvedMemberExprClass: |
132 | case Expr::TypoExprClass: |
133 | case Expr::DependentCoawaitExprClass: |
134 | case Expr::CXXDependentScopeMemberExprClass: |
135 | case Expr::DependentScopeDeclRefExprClass: |
136 | // ObjC instance variables are lvalues |
137 | // FIXME: ObjC++0x might have different rules |
138 | case Expr::ObjCIvarRefExprClass: |
139 | case Expr::FunctionParmPackExprClass: |
140 | case Expr::MSPropertyRefExprClass: |
141 | case Expr::MSPropertySubscriptExprClass: |
142 | case Expr::ArraySectionExprClass: |
143 | case Expr::OMPArrayShapingExprClass: |
144 | case Expr::OMPIteratorExprClass: |
145 | case Expr::HLSLOutArgExprClass: |
146 | return Cl::CL_LValue; |
147 | |
148 | // C++ [expr.prim.general]p1: A string literal is an lvalue. |
149 | case Expr::StringLiteralClass: |
150 | // @encode is equivalent to its string |
151 | case Expr::ObjCEncodeExprClass: |
152 | // Except we special case them as prvalues when they are used to |
153 | // initialize a char array. |
154 | return E->isLValue() ? Cl::CL_LValue : Cl::CL_PRValue; |
155 | |
156 | // __func__ and friends are too. |
157 | // The char array initialization special case also applies |
158 | // when they are transparent. |
159 | case Expr::PredefinedExprClass: { |
160 | auto *PE = cast<PredefinedExpr>(E); |
161 | const StringLiteral *SL = PE->getFunctionName(); |
162 | if (PE->isTransparent()) |
163 | return SL ? ClassifyInternal(Ctx, SL) : Cl::CL_LValue; |
164 | assert(!SL || SL->isLValue()); |
165 | return Cl::CL_LValue; |
166 | } |
167 | |
168 | // C99 6.5.2.5p5 says that compound literals are lvalues. |
169 | // In C++, they're prvalue temporaries, except for file-scope arrays. |
170 | case Expr::CompoundLiteralExprClass: |
171 | return !E->isLValue() ? ClassifyTemporary(T: E->getType()) : Cl::CL_LValue; |
172 | |
173 | // Expressions that are prvalues. |
174 | case Expr::CXXBoolLiteralExprClass: |
175 | case Expr::CXXPseudoDestructorExprClass: |
176 | case Expr::UnaryExprOrTypeTraitExprClass: |
177 | case Expr::CXXNewExprClass: |
178 | case Expr::CXXNullPtrLiteralExprClass: |
179 | case Expr::ImaginaryLiteralClass: |
180 | case Expr::GNUNullExprClass: |
181 | case Expr::OffsetOfExprClass: |
182 | case Expr::CXXThrowExprClass: |
183 | case Expr::ShuffleVectorExprClass: |
184 | case Expr::ConvertVectorExprClass: |
185 | case Expr::IntegerLiteralClass: |
186 | case Expr::FixedPointLiteralClass: |
187 | case Expr::CharacterLiteralClass: |
188 | case Expr::AddrLabelExprClass: |
189 | case Expr::CXXDeleteExprClass: |
190 | case Expr::ImplicitValueInitExprClass: |
191 | case Expr::BlockExprClass: |
192 | case Expr::FloatingLiteralClass: |
193 | case Expr::CXXNoexceptExprClass: |
194 | case Expr::CXXScalarValueInitExprClass: |
195 | case Expr::TypeTraitExprClass: |
196 | case Expr::ArrayTypeTraitExprClass: |
197 | case Expr::ExpressionTraitExprClass: |
198 | case Expr::ObjCSelectorExprClass: |
199 | case Expr::ObjCProtocolExprClass: |
200 | case Expr::ObjCStringLiteralClass: |
201 | case Expr::ObjCBoxedExprClass: |
202 | case Expr::ObjCArrayLiteralClass: |
203 | case Expr::ObjCDictionaryLiteralClass: |
204 | case Expr::ObjCBoolLiteralExprClass: |
205 | case Expr::ObjCAvailabilityCheckExprClass: |
206 | case Expr::ParenListExprClass: |
207 | case Expr::SizeOfPackExprClass: |
208 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
209 | case Expr::AsTypeExprClass: |
210 | case Expr::ObjCIndirectCopyRestoreExprClass: |
211 | case Expr::AtomicExprClass: |
212 | case Expr::CXXFoldExprClass: |
213 | case Expr::ArrayInitLoopExprClass: |
214 | case Expr::ArrayInitIndexExprClass: |
215 | case Expr::NoInitExprClass: |
216 | case Expr::DesignatedInitUpdateExprClass: |
217 | case Expr::SourceLocExprClass: |
218 | case Expr::ConceptSpecializationExprClass: |
219 | case Expr::RequiresExprClass: |
220 | return Cl::CL_PRValue; |
221 | |
222 | case Expr::EmbedExprClass: |
223 | // Nominally, this just goes through as a PRValue until we actually expand |
224 | // it and check it. |
225 | return Cl::CL_PRValue; |
226 | |
227 | // Make HLSL this reference-like |
228 | case Expr::CXXThisExprClass: |
229 | return Lang.HLSL ? Cl::CL_LValue : Cl::CL_PRValue; |
230 | |
231 | case Expr::ConstantExprClass: |
232 | return ClassifyInternal(Ctx, cast<ConstantExpr>(E)->getSubExpr()); |
233 | |
234 | // Next come the complicated cases. |
235 | case Expr::SubstNonTypeTemplateParmExprClass: |
236 | return ClassifyInternal(Ctx, |
237 | cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); |
238 | |
239 | case Expr::PackIndexingExprClass: { |
240 | // A pack-index-expression always expands to an id-expression. |
241 | // Consider it as an LValue expression. |
242 | if (cast<PackIndexingExpr>(E)->isInstantiationDependent()) |
243 | return Cl::CL_LValue; |
244 | return ClassifyInternal(Ctx, cast<PackIndexingExpr>(E)->getSelectedExpr()); |
245 | } |
246 | |
247 | // C, C++98 [expr.sub]p1: The result is an lvalue of type "T". |
248 | // C++11 (DR1213): in the case of an array operand, the result is an lvalue |
249 | // if that operand is an lvalue and an xvalue otherwise. |
250 | // Subscripting vector types is more like member access. |
251 | case Expr::ArraySubscriptExprClass: |
252 | if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType()) |
253 | return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase()); |
254 | if (Lang.CPlusPlus11) { |
255 | // Step over the array-to-pointer decay if present, but not over the |
256 | // temporary materialization. |
257 | auto *Base = cast<ArraySubscriptExpr>(E)->getBase()->IgnoreImpCasts(); |
258 | if (Base->getType()->isArrayType()) |
259 | return ClassifyInternal(Ctx, Base); |
260 | } |
261 | return Cl::CL_LValue; |
262 | |
263 | // Subscripting matrix types behaves like member accesses. |
264 | case Expr::MatrixSubscriptExprClass: |
265 | return ClassifyInternal(Ctx, cast<MatrixSubscriptExpr>(E)->getBase()); |
266 | |
267 | // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a |
268 | // function or variable and a prvalue otherwise. |
269 | case Expr::DeclRefExprClass: |
270 | if (E->getType() == Ctx.UnknownAnyTy) |
271 | return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl()) |
272 | ? Cl::CL_PRValue : Cl::CL_LValue; |
273 | return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl()); |
274 | |
275 | // Member access is complex. |
276 | case Expr::MemberExprClass: |
277 | return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E)); |
278 | |
279 | case Expr::UnaryOperatorClass: |
280 | switch (cast<UnaryOperator>(E)->getOpcode()) { |
281 | // C++ [expr.unary.op]p1: The unary * operator performs indirection: |
282 | // [...] the result is an lvalue referring to the object or function |
283 | // to which the expression points. |
284 | case UO_Deref: |
285 | return Cl::CL_LValue; |
286 | |
287 | // GNU extensions, simply look through them. |
288 | case UO_Extension: |
289 | return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr()); |
290 | |
291 | // Treat _Real and _Imag basically as if they were member |
292 | // expressions: l-value only if the operand is a true l-value. |
293 | case UO_Real: |
294 | case UO_Imag: { |
295 | const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); |
296 | Cl::Kinds K = ClassifyInternal(Ctx, E: Op); |
297 | if (K != Cl::CL_LValue) return K; |
298 | |
299 | if (isa<ObjCPropertyRefExpr>(Op)) |
300 | return Cl::CL_SubObjCPropertySetting; |
301 | return Cl::CL_LValue; |
302 | } |
303 | |
304 | // C++ [expr.pre.incr]p1: The result is the updated operand; it is an |
305 | // lvalue, [...] |
306 | // Not so in C. |
307 | case UO_PreInc: |
308 | case UO_PreDec: |
309 | return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue; |
310 | |
311 | default: |
312 | return Cl::CL_PRValue; |
313 | } |
314 | |
315 | case Expr::RecoveryExprClass: |
316 | case Expr::OpaqueValueExprClass: |
317 | return ClassifyExprValueKind(Lang, E, Kind: E->getValueKind()); |
318 | |
319 | // Pseudo-object expressions can produce l-values with reference magic. |
320 | case Expr::PseudoObjectExprClass: |
321 | return ClassifyExprValueKind(Lang, E, |
322 | cast<PseudoObjectExpr>(E)->getValueKind()); |
323 | |
324 | // Implicit casts are lvalues if they're lvalue casts. Other than that, we |
325 | // only specifically record class temporaries. |
326 | case Expr::ImplicitCastExprClass: |
327 | return ClassifyExprValueKind(Lang, E, Kind: E->getValueKind()); |
328 | |
329 | // C++ [expr.prim.general]p4: The presence of parentheses does not affect |
330 | // whether the expression is an lvalue. |
331 | case Expr::ParenExprClass: |
332 | return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr()); |
333 | |
334 | // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator, |
335 | // or a void expression if its result expression is, respectively, an |
336 | // lvalue, a function designator, or a void expression. |
337 | case Expr::GenericSelectionExprClass: |
338 | if (cast<GenericSelectionExpr>(E)->isResultDependent()) |
339 | return Cl::CL_PRValue; |
340 | return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr()); |
341 | |
342 | case Expr::BinaryOperatorClass: |
343 | case Expr::CompoundAssignOperatorClass: |
344 | // C doesn't have any binary expressions that are lvalues. |
345 | if (Lang.CPlusPlus) |
346 | return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E)); |
347 | return Cl::CL_PRValue; |
348 | |
349 | case Expr::CallExprClass: |
350 | case Expr::CXXOperatorCallExprClass: |
351 | case Expr::CXXMemberCallExprClass: |
352 | case Expr::UserDefinedLiteralClass: |
353 | case Expr::CUDAKernelCallExprClass: |
354 | return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType(Ctx)); |
355 | |
356 | case Expr::CXXRewrittenBinaryOperatorClass: |
357 | return ClassifyInternal( |
358 | Ctx, cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); |
359 | |
360 | // __builtin_choose_expr is equivalent to the chosen expression. |
361 | case Expr::ChooseExprClass: |
362 | return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr()); |
363 | |
364 | // Extended vector element access is an lvalue unless there are duplicates |
365 | // in the shuffle expression. |
366 | case Expr::ExtVectorElementExprClass: |
367 | if (cast<ExtVectorElementExpr>(E)->containsDuplicateElements()) |
368 | return Cl::CL_DuplicateVectorComponents; |
369 | if (cast<ExtVectorElementExpr>(E)->isArrow()) |
370 | return Cl::CL_LValue; |
371 | return ClassifyInternal(Ctx, cast<ExtVectorElementExpr>(E)->getBase()); |
372 | |
373 | // Simply look at the actual default argument. |
374 | case Expr::CXXDefaultArgExprClass: |
375 | return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr()); |
376 | |
377 | // Same idea for default initializers. |
378 | case Expr::CXXDefaultInitExprClass: |
379 | return ClassifyInternal(Ctx, cast<CXXDefaultInitExpr>(E)->getExpr()); |
380 | |
381 | // Same idea for temporary binding. |
382 | case Expr::CXXBindTemporaryExprClass: |
383 | return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr()); |
384 | |
385 | // And the cleanups guard. |
386 | case Expr::ExprWithCleanupsClass: |
387 | return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr()); |
388 | |
389 | // Casts depend completely on the target type. All casts work the same. |
390 | case Expr::CStyleCastExprClass: |
391 | case Expr::CXXFunctionalCastExprClass: |
392 | case Expr::CXXStaticCastExprClass: |
393 | case Expr::CXXDynamicCastExprClass: |
394 | case Expr::CXXReinterpretCastExprClass: |
395 | case Expr::CXXConstCastExprClass: |
396 | case Expr::CXXAddrspaceCastExprClass: |
397 | case Expr::ObjCBridgedCastExprClass: |
398 | case Expr::BuiltinBitCastExprClass: |
399 | // Only in C++ can casts be interesting at all. |
400 | if (!Lang.CPlusPlus) return Cl::CL_PRValue; |
401 | return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten()); |
402 | |
403 | case Expr::CXXUnresolvedConstructExprClass: |
404 | return ClassifyUnnamed(Ctx, |
405 | cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten()); |
406 | |
407 | case Expr::BinaryConditionalOperatorClass: { |
408 | if (!Lang.CPlusPlus) return Cl::CL_PRValue; |
409 | const auto *co = cast<BinaryConditionalOperator>(E); |
410 | return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr()); |
411 | } |
412 | |
413 | case Expr::ConditionalOperatorClass: { |
414 | // Once again, only C++ is interesting. |
415 | if (!Lang.CPlusPlus) return Cl::CL_PRValue; |
416 | const auto *co = cast<ConditionalOperator>(E); |
417 | return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr()); |
418 | } |
419 | |
420 | // ObjC message sends are effectively function calls, if the target function |
421 | // is known. |
422 | case Expr::ObjCMessageExprClass: |
423 | if (const ObjCMethodDecl *Method = |
424 | cast<ObjCMessageExpr>(E)->getMethodDecl()) { |
425 | Cl::Kinds kind = ClassifyUnnamed(Ctx, T: Method->getReturnType()); |
426 | return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind; |
427 | } |
428 | return Cl::CL_PRValue; |
429 | |
430 | // Some C++ expressions are always class temporaries. |
431 | case Expr::CXXConstructExprClass: |
432 | case Expr::CXXInheritedCtorInitExprClass: |
433 | case Expr::CXXTemporaryObjectExprClass: |
434 | case Expr::LambdaExprClass: |
435 | case Expr::CXXStdInitializerListExprClass: |
436 | return Cl::CL_ClassTemporary; |
437 | |
438 | case Expr::VAArgExprClass: |
439 | return ClassifyUnnamed(Ctx, T: E->getType()); |
440 | |
441 | case Expr::DesignatedInitExprClass: |
442 | return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit()); |
443 | |
444 | case Expr::StmtExprClass: { |
445 | const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt(); |
446 | if (const auto *LastExpr = dyn_cast_or_null<Expr>(S->body_back())) |
447 | return ClassifyUnnamed(Ctx, LastExpr->getType()); |
448 | return Cl::CL_PRValue; |
449 | } |
450 | |
451 | case Expr::PackExpansionExprClass: |
452 | return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern()); |
453 | |
454 | case Expr::MaterializeTemporaryExprClass: |
455 | return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference() |
456 | ? Cl::CL_LValue |
457 | : Cl::CL_XValue; |
458 | |
459 | case Expr::InitListExprClass: |
460 | // An init list can be an lvalue if it is bound to a reference and |
461 | // contains only one element. In that case, we look at that element |
462 | // for an exact classification. Init list creation takes care of the |
463 | // value kind for us, so we only need to fine-tune. |
464 | if (E->isPRValue()) |
465 | return ClassifyExprValueKind(Lang, E, Kind: E->getValueKind()); |
466 | assert(cast<InitListExpr>(E)->getNumInits() == 1 && |
467 | "Only 1-element init lists can be glvalues." ); |
468 | return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0)); |
469 | |
470 | case Expr::CoawaitExprClass: |
471 | case Expr::CoyieldExprClass: |
472 | return ClassifyInternal(Ctx, cast<CoroutineSuspendExpr>(E)->getResumeExpr()); |
473 | case Expr::SYCLUniqueStableNameExprClass: |
474 | case Expr::OpenACCAsteriskSizeExprClass: |
475 | return Cl::CL_PRValue; |
476 | break; |
477 | |
478 | case Expr::CXXParenListInitExprClass: |
479 | if (isa<ArrayType>(E->getType())) |
480 | return Cl::CL_ArrayTemporary; |
481 | return Cl::CL_ClassTemporary; |
482 | } |
483 | |
484 | llvm_unreachable("unhandled expression kind in classification" ); |
485 | } |
486 | |
487 | /// ClassifyDecl - Return the classification of an expression referencing the |
488 | /// given declaration. |
489 | static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) { |
490 | // C++ [expr.prim.id.unqual]p3: The result is an lvalue if the entity is a |
491 | // function, variable, or data member, or a template parameter object and a |
492 | // prvalue otherwise. |
493 | // In C, functions are not lvalues. |
494 | // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an |
495 | // lvalue unless it's a reference type or a class type (C++ [temp.param]p8), |
496 | // so we need to special-case this. |
497 | |
498 | if (const auto *M = dyn_cast<CXXMethodDecl>(Val: D)) { |
499 | if (M->isImplicitObjectMemberFunction()) |
500 | return Cl::CL_MemberFunction; |
501 | if (M->isStatic()) |
502 | return Cl::CL_LValue; |
503 | return Cl::CL_PRValue; |
504 | } |
505 | |
506 | bool islvalue; |
507 | if (const auto *NTTParm = dyn_cast<NonTypeTemplateParmDecl>(Val: D)) |
508 | islvalue = NTTParm->getType()->isReferenceType() || |
509 | NTTParm->getType()->isRecordType(); |
510 | else |
511 | islvalue = |
512 | isa<VarDecl, FieldDecl, IndirectFieldDecl, BindingDecl, MSGuidDecl, |
513 | UnnamedGlobalConstantDecl, TemplateParamObjectDecl>(Val: D) || |
514 | (Ctx.getLangOpts().CPlusPlus && |
515 | (isa<FunctionDecl, MSPropertyDecl, FunctionTemplateDecl>(Val: D))); |
516 | |
517 | return islvalue ? Cl::CL_LValue : Cl::CL_PRValue; |
518 | } |
519 | |
520 | /// ClassifyUnnamed - Return the classification of an expression yielding an |
521 | /// unnamed value of the given type. This applies in particular to function |
522 | /// calls and casts. |
523 | static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) { |
524 | // In C, function calls are always rvalues. |
525 | if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue; |
526 | |
527 | // C++ [expr.call]p10: A function call is an lvalue if the result type is an |
528 | // lvalue reference type or an rvalue reference to function type, an xvalue |
529 | // if the result type is an rvalue reference to object type, and a prvalue |
530 | // otherwise. |
531 | if (T->isLValueReferenceType()) |
532 | return Cl::CL_LValue; |
533 | const auto *RV = T->getAs<RValueReferenceType>(); |
534 | if (!RV) // Could still be a class temporary, though. |
535 | return ClassifyTemporary(T); |
536 | |
537 | return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue; |
538 | } |
539 | |
540 | static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) { |
541 | if (E->getType() == Ctx.UnknownAnyTy) |
542 | return (isa<FunctionDecl>(Val: E->getMemberDecl()) |
543 | ? Cl::CL_PRValue : Cl::CL_LValue); |
544 | |
545 | // Handle C first, it's easier. |
546 | if (!Ctx.getLangOpts().CPlusPlus) { |
547 | // C99 6.5.2.3p3 |
548 | // For dot access, the expression is an lvalue if the first part is. For |
549 | // arrow access, it always is an lvalue. |
550 | if (E->isArrow()) |
551 | return Cl::CL_LValue; |
552 | // ObjC property accesses are not lvalues, but get special treatment. |
553 | Expr *Base = E->getBase()->IgnoreParens(); |
554 | if (isa<ObjCPropertyRefExpr>(Val: Base)) |
555 | return Cl::CL_SubObjCPropertySetting; |
556 | return ClassifyInternal(Ctx, E: Base); |
557 | } |
558 | |
559 | NamedDecl *Member = E->getMemberDecl(); |
560 | // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2. |
561 | // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then |
562 | // E1.E2 is an lvalue. |
563 | if (const auto *Value = dyn_cast<ValueDecl>(Member)) |
564 | if (Value->getType()->isReferenceType()) |
565 | return Cl::CL_LValue; |
566 | |
567 | // Otherwise, one of the following rules applies. |
568 | // -- If E2 is a static member [...] then E1.E2 is an lvalue. |
569 | if (isa<VarDecl>(Val: Member) && Member->getDeclContext()->isRecord()) |
570 | return Cl::CL_LValue; |
571 | |
572 | // -- If E2 is a non-static data member [...]. If E1 is an lvalue, then |
573 | // E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue; |
574 | // otherwise, it is a prvalue. |
575 | if (isa<FieldDecl>(Val: Member)) { |
576 | // *E1 is an lvalue |
577 | if (E->isArrow()) |
578 | return Cl::CL_LValue; |
579 | Expr *Base = E->getBase()->IgnoreParenImpCasts(); |
580 | if (isa<ObjCPropertyRefExpr>(Val: Base)) |
581 | return Cl::CL_SubObjCPropertySetting; |
582 | return ClassifyInternal(Ctx, E: E->getBase()); |
583 | } |
584 | |
585 | // -- If E2 is a [...] member function, [...] |
586 | // -- If it refers to a static member function [...], then E1.E2 is an |
587 | // lvalue; [...] |
588 | // -- Otherwise [...] E1.E2 is a prvalue. |
589 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) { |
590 | if (Method->isStatic()) |
591 | return Cl::CL_LValue; |
592 | if (Method->isImplicitObjectMemberFunction()) |
593 | return Cl::CL_MemberFunction; |
594 | return Cl::CL_PRValue; |
595 | } |
596 | |
597 | // -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue. |
598 | // So is everything else we haven't handled yet. |
599 | return Cl::CL_PRValue; |
600 | } |
601 | |
602 | static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) { |
603 | assert(Ctx.getLangOpts().CPlusPlus && |
604 | "This is only relevant for C++." ); |
605 | // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand. |
606 | // Except we override this for writes to ObjC properties. |
607 | if (E->isAssignmentOp()) |
608 | return (E->getLHS()->getObjectKind() == OK_ObjCProperty |
609 | ? Cl::CL_PRValue : Cl::CL_LValue); |
610 | |
611 | // C++ [expr.comma]p1: the result is of the same value category as its right |
612 | // operand, [...]. |
613 | if (E->getOpcode() == BO_Comma) |
614 | return ClassifyInternal(Ctx, E: E->getRHS()); |
615 | |
616 | // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand |
617 | // is a pointer to a data member is of the same value category as its first |
618 | // operand. |
619 | if (E->getOpcode() == BO_PtrMemD) |
620 | return (E->getType()->isFunctionType() || |
621 | E->hasPlaceholderType(BuiltinType::BoundMember)) |
622 | ? Cl::CL_MemberFunction |
623 | : ClassifyInternal(Ctx, E: E->getLHS()); |
624 | |
625 | // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its |
626 | // second operand is a pointer to data member and a prvalue otherwise. |
627 | if (E->getOpcode() == BO_PtrMemI) |
628 | return (E->getType()->isFunctionType() || |
629 | E->hasPlaceholderType(BuiltinType::BoundMember)) |
630 | ? Cl::CL_MemberFunction |
631 | : Cl::CL_LValue; |
632 | |
633 | // All other binary operations are prvalues. |
634 | return Cl::CL_PRValue; |
635 | } |
636 | |
637 | static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True, |
638 | const Expr *False) { |
639 | assert(Ctx.getLangOpts().CPlusPlus && |
640 | "This is only relevant for C++." ); |
641 | |
642 | // C++ [expr.cond]p2 |
643 | // If either the second or the third operand has type (cv) void, |
644 | // one of the following shall hold: |
645 | if (True->getType()->isVoidType() || False->getType()->isVoidType()) { |
646 | // The second or the third operand (but not both) is a (possibly |
647 | // parenthesized) throw-expression; the result is of the [...] value |
648 | // category of the other. |
649 | bool TrueIsThrow = isa<CXXThrowExpr>(Val: True->IgnoreParenImpCasts()); |
650 | bool FalseIsThrow = isa<CXXThrowExpr>(Val: False->IgnoreParenImpCasts()); |
651 | if (const Expr *NonThrow = TrueIsThrow ? (FalseIsThrow ? nullptr : False) |
652 | : (FalseIsThrow ? True : nullptr)) |
653 | return ClassifyInternal(Ctx, E: NonThrow); |
654 | |
655 | // [Otherwise] the result [...] is a prvalue. |
656 | return Cl::CL_PRValue; |
657 | } |
658 | |
659 | // Note that at this point, we have already performed all conversions |
660 | // according to [expr.cond]p3. |
661 | // C++ [expr.cond]p4: If the second and third operands are glvalues of the |
662 | // same value category [...], the result is of that [...] value category. |
663 | // C++ [expr.cond]p5: Otherwise, the result is a prvalue. |
664 | Cl::Kinds LCl = ClassifyInternal(Ctx, E: True), |
665 | RCl = ClassifyInternal(Ctx, E: False); |
666 | return LCl == RCl ? LCl : Cl::CL_PRValue; |
667 | } |
668 | |
669 | static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, |
670 | Cl::Kinds Kind, SourceLocation &Loc) { |
671 | // As a general rule, we only care about lvalues. But there are some rvalues |
672 | // for which we want to generate special results. |
673 | if (Kind == Cl::CL_PRValue) { |
674 | // For the sake of better diagnostics, we want to specifically recognize |
675 | // use of the GCC cast-as-lvalue extension. |
676 | if (const auto *CE = dyn_cast<ExplicitCastExpr>(Val: E->IgnoreParens())) { |
677 | if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) { |
678 | Loc = CE->getExprLoc(); |
679 | return Cl::CM_LValueCast; |
680 | } |
681 | } |
682 | } |
683 | if (Kind != Cl::CL_LValue) |
684 | return Cl::CM_RValue; |
685 | |
686 | // This is the lvalue case. |
687 | // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6) |
688 | if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType()) |
689 | return Cl::CM_Function; |
690 | |
691 | // Assignment to a property in ObjC is an implicit setter access. But a |
692 | // setter might not exist. |
693 | if (const auto *Expr = dyn_cast<ObjCPropertyRefExpr>(Val: E)) { |
694 | if (Expr->isImplicitProperty() && |
695 | Expr->getImplicitPropertySetter() == nullptr) |
696 | return Cl::CM_NoSetterProperty; |
697 | } |
698 | |
699 | CanQualType CT = Ctx.getCanonicalType(T: E->getType()); |
700 | // Const stuff is obviously not modifiable. |
701 | if (CT.isConstQualified()) |
702 | return Cl::CM_ConstQualified; |
703 | if (Ctx.getLangOpts().OpenCL && |
704 | CT.getQualifiers().getAddressSpace() == LangAS::opencl_constant) |
705 | return Cl::CM_ConstAddrSpace; |
706 | |
707 | // Arrays are not modifiable, only their elements are. |
708 | if (CT->isArrayType() && |
709 | !(Ctx.getLangOpts().HLSL && CT->isConstantArrayType())) |
710 | return Cl::CM_ArrayType; |
711 | // Incomplete types are not modifiable. |
712 | if (CT->isIncompleteType()) |
713 | return Cl::CM_IncompleteType; |
714 | |
715 | // Records with any const fields (recursively) are not modifiable. |
716 | if (const RecordType *R = CT->getAs<RecordType>()) |
717 | if (R->hasConstFields()) |
718 | return Cl::CM_ConstQualifiedField; |
719 | |
720 | return Cl::CM_Modifiable; |
721 | } |
722 | |
723 | Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const { |
724 | Classification VC = Classify(Ctx); |
725 | switch (VC.getKind()) { |
726 | case Cl::CL_LValue: return LV_Valid; |
727 | case Cl::CL_XValue: return LV_InvalidExpression; |
728 | case Cl::CL_Function: return LV_NotObjectType; |
729 | case Cl::CL_Void: return LV_InvalidExpression; |
730 | case Cl::CL_AddressableVoid: return LV_IncompleteVoidType; |
731 | case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents; |
732 | case Cl::CL_MemberFunction: return LV_MemberFunction; |
733 | case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting; |
734 | case Cl::CL_ClassTemporary: return LV_ClassTemporary; |
735 | case Cl::CL_ArrayTemporary: return LV_ArrayTemporary; |
736 | case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression; |
737 | case Cl::CL_PRValue: return LV_InvalidExpression; |
738 | } |
739 | llvm_unreachable("Unhandled kind" ); |
740 | } |
741 | |
742 | Expr::isModifiableLvalueResult |
743 | Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { |
744 | SourceLocation dummy; |
745 | Classification VC = ClassifyModifiable(Ctx, Loc&: Loc ? *Loc : dummy); |
746 | switch (VC.getKind()) { |
747 | case Cl::CL_LValue: break; |
748 | case Cl::CL_XValue: return MLV_InvalidExpression; |
749 | case Cl::CL_Function: return MLV_NotObjectType; |
750 | case Cl::CL_Void: return MLV_InvalidExpression; |
751 | case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType; |
752 | case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; |
753 | case Cl::CL_MemberFunction: return MLV_MemberFunction; |
754 | case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; |
755 | case Cl::CL_ClassTemporary: return MLV_ClassTemporary; |
756 | case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary; |
757 | case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression; |
758 | case Cl::CL_PRValue: |
759 | return VC.getModifiable() == Cl::CM_LValueCast ? |
760 | MLV_LValueCast : MLV_InvalidExpression; |
761 | } |
762 | assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind" ); |
763 | switch (VC.getModifiable()) { |
764 | case Cl::CM_Untested: llvm_unreachable("Did not test modifiability" ); |
765 | case Cl::CM_Modifiable: return MLV_Valid; |
766 | case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match" ); |
767 | case Cl::CM_Function: return MLV_NotObjectType; |
768 | case Cl::CM_LValueCast: |
769 | llvm_unreachable("CM_LValueCast and CL_LValue don't match" ); |
770 | case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty; |
771 | case Cl::CM_ConstQualified: return MLV_ConstQualified; |
772 | case Cl::CM_ConstQualifiedField: return MLV_ConstQualifiedField; |
773 | case Cl::CM_ConstAddrSpace: return MLV_ConstAddrSpace; |
774 | case Cl::CM_ArrayType: return MLV_ArrayType; |
775 | case Cl::CM_IncompleteType: return MLV_IncompleteType; |
776 | } |
777 | llvm_unreachable("Unhandled modifiable type" ); |
778 | } |
779 | |