1//===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the C++ Decl subclasses, other than those for templates
11/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_DECLCXX_H
16#define LLVM_CLANG_AST_DECLCXX_H
17
18#include "clang/AST/ASTUnresolvedSet.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclarationName.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/LambdaCapture.h"
25#include "clang/AST/NestedNameSpecifier.h"
26#include "clang/AST/Redeclarable.h"
27#include "clang/AST/Stmt.h"
28#include "clang/AST/Type.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/UnresolvedSet.h"
31#include "clang/Basic/LLVM.h"
32#include "clang/Basic/Lambda.h"
33#include "clang/Basic/LangOptions.h"
34#include "clang/Basic/OperatorKinds.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/Specifiers.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/STLExtras.h"
42#include "llvm/ADT/TinyPtrVector.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/TrailingObjects.h"
48#include <cassert>
49#include <cstddef>
50#include <iterator>
51#include <memory>
52#include <vector>
53
54namespace clang {
55
56class ASTContext;
57class ClassTemplateDecl;
58class ConstructorUsingShadowDecl;
59class CXXBasePath;
60class CXXBasePaths;
61class CXXConstructorDecl;
62class CXXDestructorDecl;
63class CXXFinalOverriderMap;
64class CXXIndirectPrimaryBaseSet;
65class CXXMethodDecl;
66class DecompositionDecl;
67class FriendDecl;
68class FunctionTemplateDecl;
69class IdentifierInfo;
70class MemberSpecializationInfo;
71class BaseUsingDecl;
72class TemplateDecl;
73class TemplateParameterList;
74class UsingDecl;
75
76/// Represents an access specifier followed by colon ':'.
77///
78/// An objects of this class represents sugar for the syntactic occurrence
79/// of an access specifier followed by a colon in the list of member
80/// specifiers of a C++ class definition.
81///
82/// Note that they do not represent other uses of access specifiers,
83/// such as those occurring in a list of base specifiers.
84/// Also note that this class has nothing to do with so-called
85/// "access declarations" (C++98 11.3 [class.access.dcl]).
86class AccessSpecDecl : public Decl {
87 /// The location of the ':'.
88 SourceLocation ColonLoc;
89
90 AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
91 SourceLocation ASLoc, SourceLocation ColonLoc)
92 : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
93 setAccess(AS);
94 }
95
96 AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
97
98 virtual void anchor();
99
100public:
101 /// The location of the access specifier.
102 SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
103
104 /// Sets the location of the access specifier.
105 void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
106
107 /// The location of the colon following the access specifier.
108 SourceLocation getColonLoc() const { return ColonLoc; }
109
110 /// Sets the location of the colon.
111 void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
112
113 SourceRange getSourceRange() const override LLVM_READONLY {
114 return SourceRange(getAccessSpecifierLoc(), getColonLoc());
115 }
116
117 static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
118 DeclContext *DC, SourceLocation ASLoc,
119 SourceLocation ColonLoc) {
120 return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
121 }
122
123 static AccessSpecDecl *CreateDeserialized(ASTContext &C, DeclID ID);
124
125 // Implement isa/cast/dyncast/etc.
126 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
127 static bool classofKind(Kind K) { return K == AccessSpec; }
128};
129
130/// Represents a base class of a C++ class.
131///
132/// Each CXXBaseSpecifier represents a single, direct base class (or
133/// struct) of a C++ class (or struct). It specifies the type of that
134/// base class, whether it is a virtual or non-virtual base, and what
135/// level of access (public, protected, private) is used for the
136/// derivation. For example:
137///
138/// \code
139/// class A { };
140/// class B { };
141/// class C : public virtual A, protected B { };
142/// \endcode
143///
144/// In this code, C will have two CXXBaseSpecifiers, one for "public
145/// virtual A" and the other for "protected B".
146class CXXBaseSpecifier {
147 /// The source code range that covers the full base
148 /// specifier, including the "virtual" (if present) and access
149 /// specifier (if present).
150 SourceRange Range;
151
152 /// The source location of the ellipsis, if this is a pack
153 /// expansion.
154 SourceLocation EllipsisLoc;
155
156 /// Whether this is a virtual base class or not.
157 LLVM_PREFERRED_TYPE(bool)
158 unsigned Virtual : 1;
159
160 /// Whether this is the base of a class (true) or of a struct (false).
161 ///
162 /// This determines the mapping from the access specifier as written in the
163 /// source code to the access specifier used for semantic analysis.
164 LLVM_PREFERRED_TYPE(bool)
165 unsigned BaseOfClass : 1;
166
167 /// Access specifier as written in the source code (may be AS_none).
168 ///
169 /// The actual type of data stored here is an AccessSpecifier, but we use
170 /// "unsigned" here to work around Microsoft ABI.
171 LLVM_PREFERRED_TYPE(AccessSpecifier)
172 unsigned Access : 2;
173
174 /// Whether the class contains a using declaration
175 /// to inherit the named class's constructors.
176 LLVM_PREFERRED_TYPE(bool)
177 unsigned InheritConstructors : 1;
178
179 /// The type of the base class.
180 ///
181 /// This will be a class or struct (or a typedef of such). The source code
182 /// range does not include the \c virtual or the access specifier.
183 TypeSourceInfo *BaseTypeInfo;
184
185public:
186 CXXBaseSpecifier() = default;
187 CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
188 TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
189 : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
190 Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
191
192 /// Retrieves the source range that contains the entire base specifier.
193 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
194 SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
195 SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
196
197 /// Get the location at which the base class type was written.
198 SourceLocation getBaseTypeLoc() const LLVM_READONLY {
199 return BaseTypeInfo->getTypeLoc().getBeginLoc();
200 }
201
202 /// Determines whether the base class is a virtual base class (or not).
203 bool isVirtual() const { return Virtual; }
204
205 /// Determine whether this base class is a base of a class declared
206 /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
207 bool isBaseOfClass() const { return BaseOfClass; }
208
209 /// Determine whether this base specifier is a pack expansion.
210 bool isPackExpansion() const { return EllipsisLoc.isValid(); }
211
212 /// Determine whether this base class's constructors get inherited.
213 bool getInheritConstructors() const { return InheritConstructors; }
214
215 /// Set that this base class's constructors should be inherited.
216 void setInheritConstructors(bool Inherit = true) {
217 InheritConstructors = Inherit;
218 }
219
220 /// For a pack expansion, determine the location of the ellipsis.
221 SourceLocation getEllipsisLoc() const {
222 return EllipsisLoc;
223 }
224
225 /// Returns the access specifier for this base specifier.
226 ///
227 /// This is the actual base specifier as used for semantic analysis, so
228 /// the result can never be AS_none. To retrieve the access specifier as
229 /// written in the source code, use getAccessSpecifierAsWritten().
230 AccessSpecifier getAccessSpecifier() const {
231 if ((AccessSpecifier)Access == AS_none)
232 return BaseOfClass? AS_private : AS_public;
233 else
234 return (AccessSpecifier)Access;
235 }
236
237 /// Retrieves the access specifier as written in the source code
238 /// (which may mean that no access specifier was explicitly written).
239 ///
240 /// Use getAccessSpecifier() to retrieve the access specifier for use in
241 /// semantic analysis.
242 AccessSpecifier getAccessSpecifierAsWritten() const {
243 return (AccessSpecifier)Access;
244 }
245
246 /// Retrieves the type of the base class.
247 ///
248 /// This type will always be an unqualified class type.
249 QualType getType() const {
250 return BaseTypeInfo->getType().getUnqualifiedType();
251 }
252
253 /// Retrieves the type and source location of the base class.
254 TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
255};
256
257/// Represents a C++ struct/union/class.
258class CXXRecordDecl : public RecordDecl {
259 friend class ASTDeclReader;
260 friend class ASTDeclWriter;
261 friend class ASTNodeImporter;
262 friend class ASTReader;
263 friend class ASTRecordWriter;
264 friend class ASTWriter;
265 friend class DeclContext;
266 friend class LambdaExpr;
267 friend class ODRDiagsEmitter;
268
269 friend void FunctionDecl::setIsPureVirtual(bool);
270 friend void TagDecl::startDefinition();
271
272 /// Values used in DefinitionData fields to represent special members.
273 enum SpecialMemberFlags {
274 SMF_DefaultConstructor = 0x1,
275 SMF_CopyConstructor = 0x2,
276 SMF_MoveConstructor = 0x4,
277 SMF_CopyAssignment = 0x8,
278 SMF_MoveAssignment = 0x10,
279 SMF_Destructor = 0x20,
280 SMF_All = 0x3f
281 };
282
283public:
284 enum LambdaDependencyKind {
285 LDK_Unknown = 0,
286 LDK_AlwaysDependent,
287 LDK_NeverDependent,
288 };
289
290private:
291 struct DefinitionData {
292 #define FIELD(Name, Width, Merge) \
293 unsigned Name : Width;
294 #include "CXXRecordDeclDefinitionBits.def"
295
296 /// Whether this class describes a C++ lambda.
297 LLVM_PREFERRED_TYPE(bool)
298 unsigned IsLambda : 1;
299
300 /// Whether we are currently parsing base specifiers.
301 LLVM_PREFERRED_TYPE(bool)
302 unsigned IsParsingBaseSpecifiers : 1;
303
304 /// True when visible conversion functions are already computed
305 /// and are available.
306 LLVM_PREFERRED_TYPE(bool)
307 unsigned ComputedVisibleConversions : 1;
308
309 LLVM_PREFERRED_TYPE(bool)
310 unsigned HasODRHash : 1;
311
312 /// A hash of parts of the class to help in ODR checking.
313 unsigned ODRHash = 0;
314
315 /// The number of base class specifiers in Bases.
316 unsigned NumBases = 0;
317
318 /// The number of virtual base class specifiers in VBases.
319 unsigned NumVBases = 0;
320
321 /// Base classes of this class.
322 ///
323 /// FIXME: This is wasted space for a union.
324 LazyCXXBaseSpecifiersPtr Bases;
325
326 /// direct and indirect virtual base classes of this class.
327 LazyCXXBaseSpecifiersPtr VBases;
328
329 /// The conversion functions of this C++ class (but not its
330 /// inherited conversion functions).
331 ///
332 /// Each of the entries in this overload set is a CXXConversionDecl.
333 LazyASTUnresolvedSet Conversions;
334
335 /// The conversion functions of this C++ class and all those
336 /// inherited conversion functions that are visible in this class.
337 ///
338 /// Each of the entries in this overload set is a CXXConversionDecl or a
339 /// FunctionTemplateDecl.
340 LazyASTUnresolvedSet VisibleConversions;
341
342 /// The declaration which defines this record.
343 CXXRecordDecl *Definition;
344
345 /// The first friend declaration in this class, or null if there
346 /// aren't any.
347 ///
348 /// This is actually currently stored in reverse order.
349 LazyDeclPtr FirstFriend;
350
351 DefinitionData(CXXRecordDecl *D);
352
353 /// Retrieve the set of direct base classes.
354 CXXBaseSpecifier *getBases() const {
355 if (!Bases.isOffset())
356 return Bases.get(Source: nullptr);
357 return getBasesSlowCase();
358 }
359
360 /// Retrieve the set of virtual base classes.
361 CXXBaseSpecifier *getVBases() const {
362 if (!VBases.isOffset())
363 return VBases.get(Source: nullptr);
364 return getVBasesSlowCase();
365 }
366
367 ArrayRef<CXXBaseSpecifier> bases() const {
368 return llvm::ArrayRef(getBases(), NumBases);
369 }
370
371 ArrayRef<CXXBaseSpecifier> vbases() const {
372 return llvm::ArrayRef(getVBases(), NumVBases);
373 }
374
375 private:
376 CXXBaseSpecifier *getBasesSlowCase() const;
377 CXXBaseSpecifier *getVBasesSlowCase() const;
378 };
379
380 struct DefinitionData *DefinitionData;
381
382 /// Describes a C++ closure type (generated by a lambda expression).
383 struct LambdaDefinitionData : public DefinitionData {
384 using Capture = LambdaCapture;
385
386 /// Whether this lambda is known to be dependent, even if its
387 /// context isn't dependent.
388 ///
389 /// A lambda with a non-dependent context can be dependent if it occurs
390 /// within the default argument of a function template, because the
391 /// lambda will have been created with the enclosing context as its
392 /// declaration context, rather than function. This is an unfortunate
393 /// artifact of having to parse the default arguments before.
394 LLVM_PREFERRED_TYPE(LambdaDependencyKind)
395 unsigned DependencyKind : 2;
396
397 /// Whether this lambda is a generic lambda.
398 LLVM_PREFERRED_TYPE(bool)
399 unsigned IsGenericLambda : 1;
400
401 /// The Default Capture.
402 LLVM_PREFERRED_TYPE(LambdaCaptureDefault)
403 unsigned CaptureDefault : 2;
404
405 /// The number of captures in this lambda is limited 2^NumCaptures.
406 unsigned NumCaptures : 15;
407
408 /// The number of explicit captures in this lambda.
409 unsigned NumExplicitCaptures : 12;
410
411 /// Has known `internal` linkage.
412 LLVM_PREFERRED_TYPE(bool)
413 unsigned HasKnownInternalLinkage : 1;
414
415 /// The number used to indicate this lambda expression for name
416 /// mangling in the Itanium C++ ABI.
417 unsigned ManglingNumber : 31;
418
419 /// The index of this lambda within its context declaration. This is not in
420 /// general the same as the mangling number.
421 unsigned IndexInContext;
422
423 /// The declaration that provides context for this lambda, if the
424 /// actual DeclContext does not suffice. This is used for lambdas that
425 /// occur within default arguments of function parameters within the class
426 /// or within a data member initializer.
427 LazyDeclPtr ContextDecl;
428
429 /// The lists of captures, both explicit and implicit, for this
430 /// lambda. One list is provided for each merged copy of the lambda.
431 /// The first list corresponds to the canonical definition.
432 /// The destructor is registered by AddCaptureList when necessary.
433 llvm::TinyPtrVector<Capture*> Captures;
434
435 /// The type of the call method.
436 TypeSourceInfo *MethodTyInfo;
437
438 LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, unsigned DK,
439 bool IsGeneric, LambdaCaptureDefault CaptureDefault)
440 : DefinitionData(D), DependencyKind(DK), IsGenericLambda(IsGeneric),
441 CaptureDefault(CaptureDefault), NumCaptures(0),
442 NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
443 IndexInContext(0), MethodTyInfo(Info) {
444 IsLambda = true;
445
446 // C++1z [expr.prim.lambda]p4:
447 // This class type is not an aggregate type.
448 Aggregate = false;
449 PlainOldData = false;
450 }
451
452 // Add a list of captures.
453 void AddCaptureList(ASTContext &Ctx, Capture *CaptureList);
454 };
455
456 struct DefinitionData *dataPtr() const {
457 // Complete the redecl chain (if necessary).
458 getMostRecentDecl();
459 return DefinitionData;
460 }
461
462 struct DefinitionData &data() const {
463 auto *DD = dataPtr();
464 assert(DD && "queried property of class with no definition");
465 return *DD;
466 }
467
468 struct LambdaDefinitionData &getLambdaData() const {
469 // No update required: a merged definition cannot change any lambda
470 // properties.
471 auto *DD = DefinitionData;
472 assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
473 return static_cast<LambdaDefinitionData&>(*DD);
474 }
475
476 /// The template or declaration that this declaration
477 /// describes or was instantiated from, respectively.
478 ///
479 /// For non-templates, this value will be null. For record
480 /// declarations that describe a class template, this will be a
481 /// pointer to a ClassTemplateDecl. For member
482 /// classes of class template specializations, this will be the
483 /// MemberSpecializationInfo referring to the member class that was
484 /// instantiated or specialized.
485 llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
486 TemplateOrInstantiation;
487
488 /// Called from setBases and addedMember to notify the class that a
489 /// direct or virtual base class or a member of class type has been added.
490 void addedClassSubobject(CXXRecordDecl *Base);
491
492 /// Notify the class that member has been added.
493 ///
494 /// This routine helps maintain information about the class based on which
495 /// members have been added. It will be invoked by DeclContext::addDecl()
496 /// whenever a member is added to this record.
497 void addedMember(Decl *D);
498
499 void markedVirtualFunctionPure();
500
501 /// Get the head of our list of friend declarations, possibly
502 /// deserializing the friends from an external AST source.
503 FriendDecl *getFirstFriend() const;
504
505 /// Determine whether this class has an empty base class subobject of type X
506 /// or of one of the types that might be at offset 0 within X (per the C++
507 /// "standard layout" rules).
508 bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
509 const CXXRecordDecl *X);
510
511protected:
512 CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
513 SourceLocation StartLoc, SourceLocation IdLoc,
514 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
515
516public:
517 /// Iterator that traverses the base classes of a class.
518 using base_class_iterator = CXXBaseSpecifier *;
519
520 /// Iterator that traverses the base classes of a class.
521 using base_class_const_iterator = const CXXBaseSpecifier *;
522
523 CXXRecordDecl *getCanonicalDecl() override {
524 return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
525 }
526
527 const CXXRecordDecl *getCanonicalDecl() const {
528 return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
529 }
530
531 CXXRecordDecl *getPreviousDecl() {
532 return cast_or_null<CXXRecordDecl>(
533 static_cast<RecordDecl *>(this)->getPreviousDecl());
534 }
535
536 const CXXRecordDecl *getPreviousDecl() const {
537 return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
538 }
539
540 CXXRecordDecl *getMostRecentDecl() {
541 return cast<CXXRecordDecl>(
542 static_cast<RecordDecl *>(this)->getMostRecentDecl());
543 }
544
545 const CXXRecordDecl *getMostRecentDecl() const {
546 return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
547 }
548
549 CXXRecordDecl *getMostRecentNonInjectedDecl() {
550 CXXRecordDecl *Recent =
551 static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
552 while (Recent->isInjectedClassName()) {
553 // FIXME: Does injected class name need to be in the redeclarations chain?
554 assert(Recent->getPreviousDecl());
555 Recent = Recent->getPreviousDecl();
556 }
557 return Recent;
558 }
559
560 const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
561 return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
562 }
563
564 CXXRecordDecl *getDefinition() const {
565 // We only need an update if we don't already know which
566 // declaration is the definition.
567 auto *DD = DefinitionData ? DefinitionData : dataPtr();
568 return DD ? DD->Definition : nullptr;
569 }
570
571 bool hasDefinition() const { return DefinitionData || dataPtr(); }
572
573 static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
574 SourceLocation StartLoc, SourceLocation IdLoc,
575 IdentifierInfo *Id,
576 CXXRecordDecl *PrevDecl = nullptr,
577 bool DelayTypeCreation = false);
578 static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
579 TypeSourceInfo *Info, SourceLocation Loc,
580 unsigned DependencyKind, bool IsGeneric,
581 LambdaCaptureDefault CaptureDefault);
582 static CXXRecordDecl *CreateDeserialized(const ASTContext &C, DeclID ID);
583
584 bool isDynamicClass() const {
585 return data().Polymorphic || data().NumVBases != 0;
586 }
587
588 /// @returns true if class is dynamic or might be dynamic because the
589 /// definition is incomplete of dependent.
590 bool mayBeDynamicClass() const {
591 return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
592 }
593
594 /// @returns true if class is non dynamic or might be non dynamic because the
595 /// definition is incomplete of dependent.
596 bool mayBeNonDynamicClass() const {
597 return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
598 }
599
600 void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
601
602 bool isParsingBaseSpecifiers() const {
603 return data().IsParsingBaseSpecifiers;
604 }
605
606 unsigned getODRHash() const;
607
608 /// Sets the base classes of this struct or class.
609 void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
610
611 /// Retrieves the number of base classes of this class.
612 unsigned getNumBases() const { return data().NumBases; }
613
614 using base_class_range = llvm::iterator_range<base_class_iterator>;
615 using base_class_const_range =
616 llvm::iterator_range<base_class_const_iterator>;
617
618 base_class_range bases() {
619 return base_class_range(bases_begin(), bases_end());
620 }
621 base_class_const_range bases() const {
622 return base_class_const_range(bases_begin(), bases_end());
623 }
624
625 base_class_iterator bases_begin() { return data().getBases(); }
626 base_class_const_iterator bases_begin() const { return data().getBases(); }
627 base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
628 base_class_const_iterator bases_end() const {
629 return bases_begin() + data().NumBases;
630 }
631
632 /// Retrieves the number of virtual base classes of this class.
633 unsigned getNumVBases() const { return data().NumVBases; }
634
635 base_class_range vbases() {
636 return base_class_range(vbases_begin(), vbases_end());
637 }
638 base_class_const_range vbases() const {
639 return base_class_const_range(vbases_begin(), vbases_end());
640 }
641
642 base_class_iterator vbases_begin() { return data().getVBases(); }
643 base_class_const_iterator vbases_begin() const { return data().getVBases(); }
644 base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
645 base_class_const_iterator vbases_end() const {
646 return vbases_begin() + data().NumVBases;
647 }
648
649 /// Determine whether this class has any dependent base classes which
650 /// are not the current instantiation.
651 bool hasAnyDependentBases() const;
652
653 /// Iterator access to method members. The method iterator visits
654 /// all method members of the class, including non-instance methods,
655 /// special methods, etc.
656 using method_iterator = specific_decl_iterator<CXXMethodDecl>;
657 using method_range =
658 llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
659
660 method_range methods() const {
661 return method_range(method_begin(), method_end());
662 }
663
664 /// Method begin iterator. Iterates in the order the methods
665 /// were declared.
666 method_iterator method_begin() const {
667 return method_iterator(decls_begin());
668 }
669
670 /// Method past-the-end iterator.
671 method_iterator method_end() const {
672 return method_iterator(decls_end());
673 }
674
675 /// Iterator access to constructor members.
676 using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
677 using ctor_range =
678 llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
679
680 ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
681
682 ctor_iterator ctor_begin() const {
683 return ctor_iterator(decls_begin());
684 }
685
686 ctor_iterator ctor_end() const {
687 return ctor_iterator(decls_end());
688 }
689
690 /// An iterator over friend declarations. All of these are defined
691 /// in DeclFriend.h.
692 class friend_iterator;
693 using friend_range = llvm::iterator_range<friend_iterator>;
694
695 friend_range friends() const;
696 friend_iterator friend_begin() const;
697 friend_iterator friend_end() const;
698 void pushFriendDecl(FriendDecl *FD);
699
700 /// Determines whether this record has any friends.
701 bool hasFriends() const {
702 return data().FirstFriend.isValid();
703 }
704
705 /// \c true if a defaulted copy constructor for this class would be
706 /// deleted.
707 bool defaultedCopyConstructorIsDeleted() const {
708 assert((!needsOverloadResolutionForCopyConstructor() ||
709 (data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
710 "this property has not yet been computed by Sema");
711 return data().DefaultedCopyConstructorIsDeleted;
712 }
713
714 /// \c true if a defaulted move constructor for this class would be
715 /// deleted.
716 bool defaultedMoveConstructorIsDeleted() const {
717 assert((!needsOverloadResolutionForMoveConstructor() ||
718 (data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
719 "this property has not yet been computed by Sema");
720 return data().DefaultedMoveConstructorIsDeleted;
721 }
722
723 /// \c true if a defaulted destructor for this class would be deleted.
724 bool defaultedDestructorIsDeleted() const {
725 assert((!needsOverloadResolutionForDestructor() ||
726 (data().DeclaredSpecialMembers & SMF_Destructor)) &&
727 "this property has not yet been computed by Sema");
728 return data().DefaultedDestructorIsDeleted;
729 }
730
731 /// \c true if we know for sure that this class has a single,
732 /// accessible, unambiguous copy constructor that is not deleted.
733 bool hasSimpleCopyConstructor() const {
734 return !hasUserDeclaredCopyConstructor() &&
735 !data().DefaultedCopyConstructorIsDeleted;
736 }
737
738 /// \c true if we know for sure that this class has a single,
739 /// accessible, unambiguous move constructor that is not deleted.
740 bool hasSimpleMoveConstructor() const {
741 return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
742 !data().DefaultedMoveConstructorIsDeleted;
743 }
744
745 /// \c true if we know for sure that this class has a single,
746 /// accessible, unambiguous copy assignment operator that is not deleted.
747 bool hasSimpleCopyAssignment() const {
748 return !hasUserDeclaredCopyAssignment() &&
749 !data().DefaultedCopyAssignmentIsDeleted;
750 }
751
752 /// \c true if we know for sure that this class has a single,
753 /// accessible, unambiguous move assignment operator that is not deleted.
754 bool hasSimpleMoveAssignment() const {
755 return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
756 !data().DefaultedMoveAssignmentIsDeleted;
757 }
758
759 /// \c true if we know for sure that this class has an accessible
760 /// destructor that is not deleted.
761 bool hasSimpleDestructor() const {
762 return !hasUserDeclaredDestructor() &&
763 !data().DefaultedDestructorIsDeleted;
764 }
765
766 /// Determine whether this class has any default constructors.
767 bool hasDefaultConstructor() const {
768 return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
769 needsImplicitDefaultConstructor();
770 }
771
772 /// Determine if we need to declare a default constructor for
773 /// this class.
774 ///
775 /// This value is used for lazy creation of default constructors.
776 bool needsImplicitDefaultConstructor() const {
777 return (!data().UserDeclaredConstructor &&
778 !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
779 (!isLambda() || lambdaIsDefaultConstructibleAndAssignable())) ||
780 // FIXME: Proposed fix to core wording issue: if a class inherits
781 // a default constructor and doesn't explicitly declare one, one
782 // is declared implicitly.
783 (data().HasInheritedDefaultConstructor &&
784 !(data().DeclaredSpecialMembers & SMF_DefaultConstructor));
785 }
786
787 /// Determine whether this class has any user-declared constructors.
788 ///
789 /// When true, a default constructor will not be implicitly declared.
790 bool hasUserDeclaredConstructor() const {
791 return data().UserDeclaredConstructor;
792 }
793
794 /// Whether this class has a user-provided default constructor
795 /// per C++11.
796 bool hasUserProvidedDefaultConstructor() const {
797 return data().UserProvidedDefaultConstructor;
798 }
799
800 /// Determine whether this class has a user-declared copy constructor.
801 ///
802 /// When false, a copy constructor will be implicitly declared.
803 bool hasUserDeclaredCopyConstructor() const {
804 return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
805 }
806
807 /// Determine whether this class needs an implicit copy
808 /// constructor to be lazily declared.
809 bool needsImplicitCopyConstructor() const {
810 return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
811 }
812
813 /// Determine whether we need to eagerly declare a defaulted copy
814 /// constructor for this class.
815 bool needsOverloadResolutionForCopyConstructor() const {
816 // C++17 [class.copy.ctor]p6:
817 // If the class definition declares a move constructor or move assignment
818 // operator, the implicitly declared copy constructor is defined as
819 // deleted.
820 // In MSVC mode, sometimes a declared move assignment does not delete an
821 // implicit copy constructor, so defer this choice to Sema.
822 if (data().UserDeclaredSpecialMembers &
823 (SMF_MoveConstructor | SMF_MoveAssignment))
824 return true;
825 return data().NeedOverloadResolutionForCopyConstructor;
826 }
827
828 /// Determine whether an implicit copy constructor for this type
829 /// would have a parameter with a const-qualified reference type.
830 bool implicitCopyConstructorHasConstParam() const {
831 return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
832 (isAbstract() ||
833 data().ImplicitCopyConstructorCanHaveConstParamForVBase);
834 }
835
836 /// Determine whether this class has a copy constructor with
837 /// a parameter type which is a reference to a const-qualified type.
838 bool hasCopyConstructorWithConstParam() const {
839 return data().HasDeclaredCopyConstructorWithConstParam ||
840 (needsImplicitCopyConstructor() &&
841 implicitCopyConstructorHasConstParam());
842 }
843
844 /// Whether this class has a user-declared move constructor or
845 /// assignment operator.
846 ///
847 /// When false, a move constructor and assignment operator may be
848 /// implicitly declared.
849 bool hasUserDeclaredMoveOperation() const {
850 return data().UserDeclaredSpecialMembers &
851 (SMF_MoveConstructor | SMF_MoveAssignment);
852 }
853
854 /// Determine whether this class has had a move constructor
855 /// declared by the user.
856 bool hasUserDeclaredMoveConstructor() const {
857 return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
858 }
859
860 /// Determine whether this class has a move constructor.
861 bool hasMoveConstructor() const {
862 return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
863 needsImplicitMoveConstructor();
864 }
865
866 /// Set that we attempted to declare an implicit copy
867 /// constructor, but overload resolution failed so we deleted it.
868 void setImplicitCopyConstructorIsDeleted() {
869 assert((data().DefaultedCopyConstructorIsDeleted ||
870 needsOverloadResolutionForCopyConstructor()) &&
871 "Copy constructor should not be deleted");
872 data().DefaultedCopyConstructorIsDeleted = true;
873 }
874
875 /// Set that we attempted to declare an implicit move
876 /// constructor, but overload resolution failed so we deleted it.
877 void setImplicitMoveConstructorIsDeleted() {
878 assert((data().DefaultedMoveConstructorIsDeleted ||
879 needsOverloadResolutionForMoveConstructor()) &&
880 "move constructor should not be deleted");
881 data().DefaultedMoveConstructorIsDeleted = true;
882 }
883
884 /// Set that we attempted to declare an implicit destructor,
885 /// but overload resolution failed so we deleted it.
886 void setImplicitDestructorIsDeleted() {
887 assert((data().DefaultedDestructorIsDeleted ||
888 needsOverloadResolutionForDestructor()) &&
889 "destructor should not be deleted");
890 data().DefaultedDestructorIsDeleted = true;
891 }
892
893 /// Determine whether this class should get an implicit move
894 /// constructor or if any existing special member function inhibits this.
895 bool needsImplicitMoveConstructor() const {
896 return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
897 !hasUserDeclaredCopyConstructor() &&
898 !hasUserDeclaredCopyAssignment() &&
899 !hasUserDeclaredMoveAssignment() &&
900 !hasUserDeclaredDestructor();
901 }
902
903 /// Determine whether we need to eagerly declare a defaulted move
904 /// constructor for this class.
905 bool needsOverloadResolutionForMoveConstructor() const {
906 return data().NeedOverloadResolutionForMoveConstructor;
907 }
908
909 /// Determine whether this class has a user-declared copy assignment
910 /// operator.
911 ///
912 /// When false, a copy assignment operator will be implicitly declared.
913 bool hasUserDeclaredCopyAssignment() const {
914 return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
915 }
916
917 /// Set that we attempted to declare an implicit copy assignment
918 /// operator, but overload resolution failed so we deleted it.
919 void setImplicitCopyAssignmentIsDeleted() {
920 assert((data().DefaultedCopyAssignmentIsDeleted ||
921 needsOverloadResolutionForCopyAssignment()) &&
922 "copy assignment should not be deleted");
923 data().DefaultedCopyAssignmentIsDeleted = true;
924 }
925
926 /// Determine whether this class needs an implicit copy
927 /// assignment operator to be lazily declared.
928 bool needsImplicitCopyAssignment() const {
929 return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
930 }
931
932 /// Determine whether we need to eagerly declare a defaulted copy
933 /// assignment operator for this class.
934 bool needsOverloadResolutionForCopyAssignment() const {
935 // C++20 [class.copy.assign]p2:
936 // If the class definition declares a move constructor or move assignment
937 // operator, the implicitly declared copy assignment operator is defined
938 // as deleted.
939 // In MSVC mode, sometimes a declared move constructor does not delete an
940 // implicit copy assignment, so defer this choice to Sema.
941 if (data().UserDeclaredSpecialMembers &
942 (SMF_MoveConstructor | SMF_MoveAssignment))
943 return true;
944 return data().NeedOverloadResolutionForCopyAssignment;
945 }
946
947 /// Determine whether an implicit copy assignment operator for this
948 /// type would have a parameter with a const-qualified reference type.
949 bool implicitCopyAssignmentHasConstParam() const {
950 return data().ImplicitCopyAssignmentHasConstParam;
951 }
952
953 /// Determine whether this class has a copy assignment operator with
954 /// a parameter type which is a reference to a const-qualified type or is not
955 /// a reference.
956 bool hasCopyAssignmentWithConstParam() const {
957 return data().HasDeclaredCopyAssignmentWithConstParam ||
958 (needsImplicitCopyAssignment() &&
959 implicitCopyAssignmentHasConstParam());
960 }
961
962 /// Determine whether this class has had a move assignment
963 /// declared by the user.
964 bool hasUserDeclaredMoveAssignment() const {
965 return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
966 }
967
968 /// Determine whether this class has a move assignment operator.
969 bool hasMoveAssignment() const {
970 return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
971 needsImplicitMoveAssignment();
972 }
973
974 /// Set that we attempted to declare an implicit move assignment
975 /// operator, but overload resolution failed so we deleted it.
976 void setImplicitMoveAssignmentIsDeleted() {
977 assert((data().DefaultedMoveAssignmentIsDeleted ||
978 needsOverloadResolutionForMoveAssignment()) &&
979 "move assignment should not be deleted");
980 data().DefaultedMoveAssignmentIsDeleted = true;
981 }
982
983 /// Determine whether this class should get an implicit move
984 /// assignment operator or if any existing special member function inhibits
985 /// this.
986 bool needsImplicitMoveAssignment() const {
987 return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
988 !hasUserDeclaredCopyConstructor() &&
989 !hasUserDeclaredCopyAssignment() &&
990 !hasUserDeclaredMoveConstructor() &&
991 !hasUserDeclaredDestructor() &&
992 (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
993 }
994
995 /// Determine whether we need to eagerly declare a move assignment
996 /// operator for this class.
997 bool needsOverloadResolutionForMoveAssignment() const {
998 return data().NeedOverloadResolutionForMoveAssignment;
999 }
1000
1001 /// Determine whether this class has a user-declared destructor.
1002 ///
1003 /// When false, a destructor will be implicitly declared.
1004 bool hasUserDeclaredDestructor() const {
1005 return data().UserDeclaredSpecialMembers & SMF_Destructor;
1006 }
1007
1008 /// Determine whether this class needs an implicit destructor to
1009 /// be lazily declared.
1010 bool needsImplicitDestructor() const {
1011 return !(data().DeclaredSpecialMembers & SMF_Destructor);
1012 }
1013
1014 /// Determine whether we need to eagerly declare a destructor for this
1015 /// class.
1016 bool needsOverloadResolutionForDestructor() const {
1017 return data().NeedOverloadResolutionForDestructor;
1018 }
1019
1020 /// Determine whether this class describes a lambda function object.
1021 bool isLambda() const {
1022 // An update record can't turn a non-lambda into a lambda.
1023 auto *DD = DefinitionData;
1024 return DD && DD->IsLambda;
1025 }
1026
1027 /// Determine whether this class describes a generic
1028 /// lambda function object (i.e. function call operator is
1029 /// a template).
1030 bool isGenericLambda() const;
1031
1032 /// Determine whether this lambda should have an implicit default constructor
1033 /// and copy and move assignment operators.
1034 bool lambdaIsDefaultConstructibleAndAssignable() const;
1035
1036 /// Retrieve the lambda call operator of the closure type
1037 /// if this is a closure type.
1038 CXXMethodDecl *getLambdaCallOperator() const;
1039
1040 /// Retrieve the dependent lambda call operator of the closure type
1041 /// if this is a templated closure type.
1042 FunctionTemplateDecl *getDependentLambdaCallOperator() const;
1043
1044 /// Retrieve the lambda static invoker, the address of which
1045 /// is returned by the conversion operator, and the body of which
1046 /// is forwarded to the lambda call operator. The version that does not
1047 /// take a calling convention uses the 'default' calling convention for free
1048 /// functions if the Lambda's calling convention was not modified via
1049 /// attribute. Otherwise, it will return the calling convention specified for
1050 /// the lambda.
1051 CXXMethodDecl *getLambdaStaticInvoker() const;
1052 CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const;
1053
1054 /// Retrieve the generic lambda's template parameter list.
1055 /// Returns null if the class does not represent a lambda or a generic
1056 /// lambda.
1057 TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1058
1059 /// Retrieve the lambda template parameters that were specified explicitly.
1060 ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
1061
1062 LambdaCaptureDefault getLambdaCaptureDefault() const {
1063 assert(isLambda());
1064 return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1065 }
1066
1067 bool isCapturelessLambda() const {
1068 if (!isLambda())
1069 return false;
1070 return getLambdaCaptureDefault() == LCD_None && capture_size() == 0;
1071 }
1072
1073 /// Set the captures for this lambda closure type.
1074 void setCaptures(ASTContext &Context, ArrayRef<LambdaCapture> Captures);
1075
1076 /// For a closure type, retrieve the mapping from captured
1077 /// variables and \c this to the non-static data members that store the
1078 /// values or references of the captures.
1079 ///
1080 /// \param Captures Will be populated with the mapping from captured
1081 /// variables to the corresponding fields.
1082 ///
1083 /// \param ThisCapture Will be set to the field declaration for the
1084 /// \c this capture.
1085 ///
1086 /// \note No entries will be added for init-captures, as they do not capture
1087 /// variables.
1088 ///
1089 /// \note If multiple versions of the lambda are merged together, they may
1090 /// have different variable declarations corresponding to the same capture.
1091 /// In that case, all of those variable declarations will be added to the
1092 /// Captures list, so it may have more than one variable listed per field.
1093 void
1094 getCaptureFields(llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1095 FieldDecl *&ThisCapture) const;
1096
1097 using capture_const_iterator = const LambdaCapture *;
1098 using capture_const_range = llvm::iterator_range<capture_const_iterator>;
1099
1100 capture_const_range captures() const {
1101 return capture_const_range(captures_begin(), captures_end());
1102 }
1103
1104 capture_const_iterator captures_begin() const {
1105 if (!isLambda()) return nullptr;
1106 LambdaDefinitionData &LambdaData = getLambdaData();
1107 return LambdaData.Captures.empty() ? nullptr : LambdaData.Captures.front();
1108 }
1109
1110 capture_const_iterator captures_end() const {
1111 return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1112 : nullptr;
1113 }
1114
1115 unsigned capture_size() const { return getLambdaData().NumCaptures; }
1116
1117 const LambdaCapture *getCapture(unsigned I) const {
1118 assert(isLambda() && I < capture_size() && "invalid index for capture");
1119 return captures_begin() + I;
1120 }
1121
1122 using conversion_iterator = UnresolvedSetIterator;
1123
1124 conversion_iterator conversion_begin() const {
1125 return data().Conversions.get(C&: getASTContext()).begin();
1126 }
1127
1128 conversion_iterator conversion_end() const {
1129 return data().Conversions.get(C&: getASTContext()).end();
1130 }
1131
1132 /// Removes a conversion function from this class. The conversion
1133 /// function must currently be a member of this class. Furthermore,
1134 /// this class must currently be in the process of being defined.
1135 void removeConversion(const NamedDecl *Old);
1136
1137 /// Get all conversion functions visible in current class,
1138 /// including conversion function templates.
1139 llvm::iterator_range<conversion_iterator>
1140 getVisibleConversionFunctions() const;
1141
1142 /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1143 /// which is a class with no user-declared constructors, no private
1144 /// or protected non-static data members, no base classes, and no virtual
1145 /// functions (C++ [dcl.init.aggr]p1).
1146 bool isAggregate() const { return data().Aggregate; }
1147
1148 /// Whether this class has any in-class initializers
1149 /// for non-static data members (including those in anonymous unions or
1150 /// structs).
1151 bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1152
1153 /// Whether this class or any of its subobjects has any members of
1154 /// reference type which would make value-initialization ill-formed.
1155 ///
1156 /// Per C++03 [dcl.init]p5:
1157 /// - if T is a non-union class type without a user-declared constructor,
1158 /// then every non-static data member and base-class component of T is
1159 /// value-initialized [...] A program that calls for [...]
1160 /// value-initialization of an entity of reference type is ill-formed.
1161 bool hasUninitializedReferenceMember() const {
1162 return !isUnion() && !hasUserDeclaredConstructor() &&
1163 data().HasUninitializedReferenceMember;
1164 }
1165
1166 /// Whether this class is a POD-type (C++ [class]p4)
1167 ///
1168 /// For purposes of this function a class is POD if it is an aggregate
1169 /// that has no non-static non-POD data members, no reference data
1170 /// members, no user-defined copy assignment operator and no
1171 /// user-defined destructor.
1172 ///
1173 /// Note that this is the C++ TR1 definition of POD.
1174 bool isPOD() const { return data().PlainOldData; }
1175
1176 /// True if this class is C-like, without C++-specific features, e.g.
1177 /// it contains only public fields, no bases, tag kind is not 'class', etc.
1178 bool isCLike() const;
1179
1180 /// Determine whether this is an empty class in the sense of
1181 /// (C++11 [meta.unary.prop]).
1182 ///
1183 /// The CXXRecordDecl is a class type, but not a union type,
1184 /// with no non-static data members other than bit-fields of length 0,
1185 /// no virtual member functions, no virtual base classes,
1186 /// and no base class B for which is_empty<B>::value is false.
1187 ///
1188 /// \note This does NOT include a check for union-ness.
1189 bool isEmpty() const { return data().Empty; }
1190 /// Marks this record as empty. This is used by DWARFASTParserClang
1191 /// when parsing records with empty fields having [[no_unique_address]]
1192 /// attribute
1193 void markEmpty() { data().Empty = true; }
1194
1195 void setInitMethod(bool Val) { data().HasInitMethod = Val; }
1196 bool hasInitMethod() const { return data().HasInitMethod; }
1197
1198 bool hasPrivateFields() const {
1199 return data().HasPrivateFields;
1200 }
1201
1202 bool hasProtectedFields() const {
1203 return data().HasProtectedFields;
1204 }
1205
1206 /// Determine whether this class has direct non-static data members.
1207 bool hasDirectFields() const {
1208 auto &D = data();
1209 return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
1210 }
1211
1212 /// Whether this class is polymorphic (C++ [class.virtual]),
1213 /// which means that the class contains or inherits a virtual function.
1214 bool isPolymorphic() const { return data().Polymorphic; }
1215
1216 /// Determine whether this class has a pure virtual function.
1217 ///
1218 /// The class is abstract per (C++ [class.abstract]p2) if it declares
1219 /// a pure virtual function or inherits a pure virtual function that is
1220 /// not overridden.
1221 bool isAbstract() const { return data().Abstract; }
1222
1223 /// Determine whether this class is standard-layout per
1224 /// C++ [class]p7.
1225 bool isStandardLayout() const { return data().IsStandardLayout; }
1226
1227 /// Determine whether this class was standard-layout per
1228 /// C++11 [class]p7, specifically using the C++11 rules without any DRs.
1229 bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
1230
1231 /// Determine whether this class, or any of its class subobjects,
1232 /// contains a mutable field.
1233 bool hasMutableFields() const { return data().HasMutableFields; }
1234
1235 /// Determine whether this class has any variant members.
1236 bool hasVariantMembers() const { return data().HasVariantMembers; }
1237
1238 /// Determine whether this class has a trivial default constructor
1239 /// (C++11 [class.ctor]p5).
1240 bool hasTrivialDefaultConstructor() const {
1241 return hasDefaultConstructor() &&
1242 (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1243 }
1244
1245 /// Determine whether this class has a non-trivial default constructor
1246 /// (C++11 [class.ctor]p5).
1247 bool hasNonTrivialDefaultConstructor() const {
1248 return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1249 (needsImplicitDefaultConstructor() &&
1250 !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1251 }
1252
1253 /// Determine whether this class has at least one constexpr constructor
1254 /// other than the copy or move constructors.
1255 bool hasConstexprNonCopyMoveConstructor() const {
1256 return data().HasConstexprNonCopyMoveConstructor ||
1257 (needsImplicitDefaultConstructor() &&
1258 defaultedDefaultConstructorIsConstexpr());
1259 }
1260
1261 /// Determine whether a defaulted default constructor for this class
1262 /// would be constexpr.
1263 bool defaultedDefaultConstructorIsConstexpr() const {
1264 return data().DefaultedDefaultConstructorIsConstexpr &&
1265 (!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
1266 getLangOpts().CPlusPlus20);
1267 }
1268
1269 /// Determine whether this class has a constexpr default constructor.
1270 bool hasConstexprDefaultConstructor() const {
1271 return data().HasConstexprDefaultConstructor ||
1272 (needsImplicitDefaultConstructor() &&
1273 defaultedDefaultConstructorIsConstexpr());
1274 }
1275
1276 /// Determine whether this class has a trivial copy constructor
1277 /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1278 bool hasTrivialCopyConstructor() const {
1279 return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1280 }
1281
1282 bool hasTrivialCopyConstructorForCall() const {
1283 return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
1284 }
1285
1286 /// Determine whether this class has a non-trivial copy constructor
1287 /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1288 bool hasNonTrivialCopyConstructor() const {
1289 return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1290 !hasTrivialCopyConstructor();
1291 }
1292
1293 bool hasNonTrivialCopyConstructorForCall() const {
1294 return (data().DeclaredNonTrivialSpecialMembersForCall &
1295 SMF_CopyConstructor) ||
1296 !hasTrivialCopyConstructorForCall();
1297 }
1298
1299 /// Determine whether this class has a trivial move constructor
1300 /// (C++11 [class.copy]p12)
1301 bool hasTrivialMoveConstructor() const {
1302 return hasMoveConstructor() &&
1303 (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1304 }
1305
1306 bool hasTrivialMoveConstructorForCall() const {
1307 return hasMoveConstructor() &&
1308 (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
1309 }
1310
1311 /// Determine whether this class has a non-trivial move constructor
1312 /// (C++11 [class.copy]p12)
1313 bool hasNonTrivialMoveConstructor() const {
1314 return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1315 (needsImplicitMoveConstructor() &&
1316 !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1317 }
1318
1319 bool hasNonTrivialMoveConstructorForCall() const {
1320 return (data().DeclaredNonTrivialSpecialMembersForCall &
1321 SMF_MoveConstructor) ||
1322 (needsImplicitMoveConstructor() &&
1323 !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
1324 }
1325
1326 /// Determine whether this class has a trivial copy assignment operator
1327 /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1328 bool hasTrivialCopyAssignment() const {
1329 return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1330 }
1331
1332 /// Determine whether this class has a non-trivial copy assignment
1333 /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1334 bool hasNonTrivialCopyAssignment() const {
1335 return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1336 !hasTrivialCopyAssignment();
1337 }
1338
1339 /// Determine whether this class has a trivial move assignment operator
1340 /// (C++11 [class.copy]p25)
1341 bool hasTrivialMoveAssignment() const {
1342 return hasMoveAssignment() &&
1343 (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1344 }
1345
1346 /// Determine whether this class has a non-trivial move assignment
1347 /// operator (C++11 [class.copy]p25)
1348 bool hasNonTrivialMoveAssignment() const {
1349 return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1350 (needsImplicitMoveAssignment() &&
1351 !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1352 }
1353
1354 /// Determine whether a defaulted default constructor for this class
1355 /// would be constexpr.
1356 bool defaultedDestructorIsConstexpr() const {
1357 return data().DefaultedDestructorIsConstexpr &&
1358 getLangOpts().CPlusPlus20;
1359 }
1360
1361 /// Determine whether this class has a constexpr destructor.
1362 bool hasConstexprDestructor() const;
1363
1364 /// Determine whether this class has a trivial destructor
1365 /// (C++ [class.dtor]p3)
1366 bool hasTrivialDestructor() const {
1367 return data().HasTrivialSpecialMembers & SMF_Destructor;
1368 }
1369
1370 bool hasTrivialDestructorForCall() const {
1371 return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
1372 }
1373
1374 /// Determine whether this class has a non-trivial destructor
1375 /// (C++ [class.dtor]p3)
1376 bool hasNonTrivialDestructor() const {
1377 return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1378 }
1379
1380 bool hasNonTrivialDestructorForCall() const {
1381 return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
1382 }
1383
1384 void setHasTrivialSpecialMemberForCall() {
1385 data().HasTrivialSpecialMembersForCall =
1386 (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
1387 }
1388
1389 /// Determine whether declaring a const variable with this type is ok
1390 /// per core issue 253.
1391 bool allowConstDefaultInit() const {
1392 return !data().HasUninitializedFields ||
1393 !(data().HasDefaultedDefaultConstructor ||
1394 needsImplicitDefaultConstructor());
1395 }
1396
1397 /// Determine whether this class has a destructor which has no
1398 /// semantic effect.
1399 ///
1400 /// Any such destructor will be trivial, public, defaulted and not deleted,
1401 /// and will call only irrelevant destructors.
1402 bool hasIrrelevantDestructor() const {
1403 return data().HasIrrelevantDestructor;
1404 }
1405
1406 /// Determine whether this class has a non-literal or/ volatile type
1407 /// non-static data member or base class.
1408 bool hasNonLiteralTypeFieldsOrBases() const {
1409 return data().HasNonLiteralTypeFieldsOrBases;
1410 }
1411
1412 /// Determine whether this class has a using-declaration that names
1413 /// a user-declared base class constructor.
1414 bool hasInheritedConstructor() const {
1415 return data().HasInheritedConstructor;
1416 }
1417
1418 /// Determine whether this class has a using-declaration that names
1419 /// a base class assignment operator.
1420 bool hasInheritedAssignment() const {
1421 return data().HasInheritedAssignment;
1422 }
1423
1424 /// Determine whether this class is considered trivially copyable per
1425 /// (C++11 [class]p6).
1426 bool isTriviallyCopyable() const;
1427
1428 /// Determine whether this class is considered trivially copyable per
1429 bool isTriviallyCopyConstructible() const;
1430
1431 /// Determine whether this class is considered trivial.
1432 ///
1433 /// C++11 [class]p6:
1434 /// "A trivial class is a class that has a trivial default constructor and
1435 /// is trivially copyable."
1436 bool isTrivial() const {
1437 return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1438 }
1439
1440 /// Determine whether this class is a literal type.
1441 ///
1442 /// C++20 [basic.types]p10:
1443 /// A class type that has all the following properties:
1444 /// - it has a constexpr destructor
1445 /// - all of its non-static non-variant data members and base classes
1446 /// are of non-volatile literal types, and it:
1447 /// - is a closure type
1448 /// - is an aggregate union type that has either no variant members
1449 /// or at least one variant member of non-volatile literal type
1450 /// - is a non-union aggregate type for which each of its anonymous
1451 /// union members satisfies the above requirements for an aggregate
1452 /// union type, or
1453 /// - has at least one constexpr constructor or constructor template
1454 /// that is not a copy or move constructor.
1455 bool isLiteral() const;
1456
1457 /// Determine whether this is a structural type.
1458 bool isStructural() const {
1459 return isLiteral() && data().StructuralIfLiteral;
1460 }
1461
1462 /// Notify the class that this destructor is now selected.
1463 ///
1464 /// Important properties of the class depend on destructor properties. Since
1465 /// C++20, it is possible to have multiple destructor declarations in a class
1466 /// out of which one will be selected at the end.
1467 /// This is called separately from addedMember because it has to be deferred
1468 /// to the completion of the class.
1469 void addedSelectedDestructor(CXXDestructorDecl *DD);
1470
1471 /// Notify the class that an eligible SMF has been added.
1472 /// This updates triviality and destructor based properties of the class accordingly.
1473 void addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, unsigned SMKind);
1474
1475 /// If this record is an instantiation of a member class,
1476 /// retrieves the member class from which it was instantiated.
1477 ///
1478 /// This routine will return non-null for (non-templated) member
1479 /// classes of class templates. For example, given:
1480 ///
1481 /// \code
1482 /// template<typename T>
1483 /// struct X {
1484 /// struct A { };
1485 /// };
1486 /// \endcode
1487 ///
1488 /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1489 /// whose parent is the class template specialization X<int>. For
1490 /// this declaration, getInstantiatedFromMemberClass() will return
1491 /// the CXXRecordDecl X<T>::A. When a complete definition of
1492 /// X<int>::A is required, it will be instantiated from the
1493 /// declaration returned by getInstantiatedFromMemberClass().
1494 CXXRecordDecl *getInstantiatedFromMemberClass() const;
1495
1496 /// If this class is an instantiation of a member class of a
1497 /// class template specialization, retrieves the member specialization
1498 /// information.
1499 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1500
1501 /// Specify that this record is an instantiation of the
1502 /// member class \p RD.
1503 void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1504 TemplateSpecializationKind TSK);
1505
1506 /// Retrieves the class template that is described by this
1507 /// class declaration.
1508 ///
1509 /// Every class template is represented as a ClassTemplateDecl and a
1510 /// CXXRecordDecl. The former contains template properties (such as
1511 /// the template parameter lists) while the latter contains the
1512 /// actual description of the template's
1513 /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1514 /// CXXRecordDecl that from a ClassTemplateDecl, while
1515 /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1516 /// a CXXRecordDecl.
1517 ClassTemplateDecl *getDescribedClassTemplate() const;
1518
1519 void setDescribedClassTemplate(ClassTemplateDecl *Template);
1520
1521 /// Determine whether this particular class is a specialization or
1522 /// instantiation of a class template or member class of a class template,
1523 /// and how it was instantiated or specialized.
1524 TemplateSpecializationKind getTemplateSpecializationKind() const;
1525
1526 /// Set the kind of specialization or template instantiation this is.
1527 void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1528
1529 /// Retrieve the record declaration from which this record could be
1530 /// instantiated. Returns null if this class is not a template instantiation.
1531 const CXXRecordDecl *getTemplateInstantiationPattern() const;
1532
1533 CXXRecordDecl *getTemplateInstantiationPattern() {
1534 return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
1535 ->getTemplateInstantiationPattern());
1536 }
1537
1538 /// Returns the destructor decl for this class.
1539 CXXDestructorDecl *getDestructor() const;
1540
1541 /// Returns true if the class destructor, or any implicitly invoked
1542 /// destructors are marked noreturn.
1543 bool isAnyDestructorNoReturn() const { return data().IsAnyDestructorNoReturn; }
1544
1545 /// If the class is a local class [class.local], returns
1546 /// the enclosing function declaration.
1547 const FunctionDecl *isLocalClass() const {
1548 if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1549 return RD->isLocalClass();
1550
1551 return dyn_cast<FunctionDecl>(getDeclContext());
1552 }
1553
1554 FunctionDecl *isLocalClass() {
1555 return const_cast<FunctionDecl*>(
1556 const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1557 }
1558
1559 /// Determine whether this dependent class is a current instantiation,
1560 /// when viewed from within the given context.
1561 bool isCurrentInstantiation(const DeclContext *CurContext) const;
1562
1563 /// Determine whether this class is derived from the class \p Base.
1564 ///
1565 /// This routine only determines whether this class is derived from \p Base,
1566 /// but does not account for factors that may make a Derived -> Base class
1567 /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1568 /// base class subobjects.
1569 ///
1570 /// \param Base the base class we are searching for.
1571 ///
1572 /// \returns true if this class is derived from Base, false otherwise.
1573 bool isDerivedFrom(const CXXRecordDecl *Base) const;
1574
1575 /// Determine whether this class is derived from the type \p Base.
1576 ///
1577 /// This routine only determines whether this class is derived from \p Base,
1578 /// but does not account for factors that may make a Derived -> Base class
1579 /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1580 /// base class subobjects.
1581 ///
1582 /// \param Base the base class we are searching for.
1583 ///
1584 /// \param Paths will contain the paths taken from the current class to the
1585 /// given \p Base class.
1586 ///
1587 /// \returns true if this class is derived from \p Base, false otherwise.
1588 ///
1589 /// \todo add a separate parameter to configure IsDerivedFrom, rather than
1590 /// tangling input and output in \p Paths
1591 bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1592
1593 /// Determine whether this class is virtually derived from
1594 /// the class \p Base.
1595 ///
1596 /// This routine only determines whether this class is virtually
1597 /// derived from \p Base, but does not account for factors that may
1598 /// make a Derived -> Base class ill-formed, such as
1599 /// private/protected inheritance or multiple, ambiguous base class
1600 /// subobjects.
1601 ///
1602 /// \param Base the base class we are searching for.
1603 ///
1604 /// \returns true if this class is virtually derived from Base,
1605 /// false otherwise.
1606 bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1607
1608 /// Determine whether this class is provably not derived from
1609 /// the type \p Base.
1610 bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1611
1612 /// Function type used by forallBases() as a callback.
1613 ///
1614 /// \param BaseDefinition the definition of the base class
1615 ///
1616 /// \returns true if this base matched the search criteria
1617 using ForallBasesCallback =
1618 llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
1619
1620 /// Determines if the given callback holds for all the direct
1621 /// or indirect base classes of this type.
1622 ///
1623 /// The class itself does not count as a base class. This routine
1624 /// returns false if the class has non-computable base classes.
1625 ///
1626 /// \param BaseMatches Callback invoked for each (direct or indirect) base
1627 /// class of this type until a call returns false.
1628 bool forallBases(ForallBasesCallback BaseMatches) const;
1629
1630 /// Function type used by lookupInBases() to determine whether a
1631 /// specific base class subobject matches the lookup criteria.
1632 ///
1633 /// \param Specifier the base-class specifier that describes the inheritance
1634 /// from the base class we are trying to match.
1635 ///
1636 /// \param Path the current path, from the most-derived class down to the
1637 /// base named by the \p Specifier.
1638 ///
1639 /// \returns true if this base matched the search criteria, false otherwise.
1640 using BaseMatchesCallback =
1641 llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
1642 CXXBasePath &Path)>;
1643
1644 /// Look for entities within the base classes of this C++ class,
1645 /// transitively searching all base class subobjects.
1646 ///
1647 /// This routine uses the callback function \p BaseMatches to find base
1648 /// classes meeting some search criteria, walking all base class subobjects
1649 /// and populating the given \p Paths structure with the paths through the
1650 /// inheritance hierarchy that resulted in a match. On a successful search,
1651 /// the \p Paths structure can be queried to retrieve the matching paths and
1652 /// to determine if there were any ambiguities.
1653 ///
1654 /// \param BaseMatches callback function used to determine whether a given
1655 /// base matches the user-defined search criteria.
1656 ///
1657 /// \param Paths used to record the paths from this class to its base class
1658 /// subobjects that match the search criteria.
1659 ///
1660 /// \param LookupInDependent can be set to true to extend the search to
1661 /// dependent base classes.
1662 ///
1663 /// \returns true if there exists any path from this class to a base class
1664 /// subobject that matches the search criteria.
1665 bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
1666 bool LookupInDependent = false) const;
1667
1668 /// Base-class lookup callback that determines whether the given
1669 /// base class specifier refers to a specific class declaration.
1670 ///
1671 /// This callback can be used with \c lookupInBases() to determine whether
1672 /// a given derived class has is a base class subobject of a particular type.
1673 /// The base record pointer should refer to the canonical CXXRecordDecl of the
1674 /// base class that we are searching for.
1675 static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1676 CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
1677
1678 /// Base-class lookup callback that determines whether the
1679 /// given base class specifier refers to a specific class
1680 /// declaration and describes virtual derivation.
1681 ///
1682 /// This callback can be used with \c lookupInBases() to determine
1683 /// whether a given derived class has is a virtual base class
1684 /// subobject of a particular type. The base record pointer should
1685 /// refer to the canonical CXXRecordDecl of the base class that we
1686 /// are searching for.
1687 static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1688 CXXBasePath &Path,
1689 const CXXRecordDecl *BaseRecord);
1690
1691 /// Retrieve the final overriders for each virtual member
1692 /// function in the class hierarchy where this class is the
1693 /// most-derived class in the class hierarchy.
1694 void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1695
1696 /// Get the indirect primary bases for this class.
1697 void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1698
1699 /// Determine whether this class has a member with the given name, possibly
1700 /// in a non-dependent base class.
1701 ///
1702 /// No check for ambiguity is performed, so this should never be used when
1703 /// implementing language semantics, but it may be appropriate for warnings,
1704 /// static analysis, or similar.
1705 bool hasMemberName(DeclarationName N) const;
1706
1707 /// Performs an imprecise lookup of a dependent name in this class.
1708 ///
1709 /// This function does not follow strict semantic rules and should be used
1710 /// only when lookup rules can be relaxed, e.g. indexing.
1711 std::vector<const NamedDecl *>
1712 lookupDependentName(DeclarationName Name,
1713 llvm::function_ref<bool(const NamedDecl *ND)> Filter);
1714
1715 /// Renders and displays an inheritance diagram
1716 /// for this C++ class and all of its base classes (transitively) using
1717 /// GraphViz.
1718 void viewInheritance(ASTContext& Context) const;
1719
1720 /// Calculates the access of a decl that is reached
1721 /// along a path.
1722 static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1723 AccessSpecifier DeclAccess) {
1724 assert(DeclAccess != AS_none);
1725 if (DeclAccess == AS_private) return AS_none;
1726 return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1727 }
1728
1729 /// Indicates that the declaration of a defaulted or deleted special
1730 /// member function is now complete.
1731 void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1732
1733 void setTrivialForCallFlags(CXXMethodDecl *MD);
1734
1735 /// Indicates that the definition of this class is now complete.
1736 void completeDefinition() override;
1737
1738 /// Indicates that the definition of this class is now complete,
1739 /// and provides a final overrider map to help determine
1740 ///
1741 /// \param FinalOverriders The final overrider map for this class, which can
1742 /// be provided as an optimization for abstract-class checking. If NULL,
1743 /// final overriders will be computed if they are needed to complete the
1744 /// definition.
1745 void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1746
1747 /// Determine whether this class may end up being abstract, even though
1748 /// it is not yet known to be abstract.
1749 ///
1750 /// \returns true if this class is not known to be abstract but has any
1751 /// base classes that are abstract. In this case, \c completeDefinition()
1752 /// will need to compute final overriders to determine whether the class is
1753 /// actually abstract.
1754 bool mayBeAbstract() const;
1755
1756 /// Determine whether it's impossible for a class to be derived from this
1757 /// class. This is best-effort, and may conservatively return false.
1758 bool isEffectivelyFinal() const;
1759
1760 /// If this is the closure type of a lambda expression, retrieve the
1761 /// number to be used for name mangling in the Itanium C++ ABI.
1762 ///
1763 /// Zero indicates that this closure type has internal linkage, so the
1764 /// mangling number does not matter, while a non-zero value indicates which
1765 /// lambda expression this is in this particular context.
1766 unsigned getLambdaManglingNumber() const {
1767 assert(isLambda() && "Not a lambda closure type!");
1768 return getLambdaData().ManglingNumber;
1769 }
1770
1771 /// The lambda is known to has internal linkage no matter whether it has name
1772 /// mangling number.
1773 bool hasKnownLambdaInternalLinkage() const {
1774 assert(isLambda() && "Not a lambda closure type!");
1775 return getLambdaData().HasKnownInternalLinkage;
1776 }
1777
1778 /// Retrieve the declaration that provides additional context for a
1779 /// lambda, when the normal declaration context is not specific enough.
1780 ///
1781 /// Certain contexts (default arguments of in-class function parameters and
1782 /// the initializers of data members) have separate name mangling rules for
1783 /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1784 /// the declaration in which the lambda occurs, e.g., the function parameter
1785 /// or the non-static data member. Otherwise, it returns NULL to imply that
1786 /// the declaration context suffices.
1787 Decl *getLambdaContextDecl() const;
1788
1789 /// Retrieve the index of this lambda within the context declaration returned
1790 /// by getLambdaContextDecl().
1791 unsigned getLambdaIndexInContext() const {
1792 assert(isLambda() && "Not a lambda closure type!");
1793 return getLambdaData().IndexInContext;
1794 }
1795
1796 /// Information about how a lambda is numbered within its context.
1797 struct LambdaNumbering {
1798 Decl *ContextDecl = nullptr;
1799 unsigned IndexInContext = 0;
1800 unsigned ManglingNumber = 0;
1801 unsigned DeviceManglingNumber = 0;
1802 bool HasKnownInternalLinkage = false;
1803 };
1804
1805 /// Set the mangling numbers and context declaration for a lambda class.
1806 void setLambdaNumbering(LambdaNumbering Numbering);
1807
1808 // Get the mangling numbers and context declaration for a lambda class.
1809 LambdaNumbering getLambdaNumbering() const {
1810 return {.ContextDecl: getLambdaContextDecl(), .IndexInContext: getLambdaIndexInContext(),
1811 .ManglingNumber: getLambdaManglingNumber(), .DeviceManglingNumber: getDeviceLambdaManglingNumber(),
1812 .HasKnownInternalLinkage: hasKnownLambdaInternalLinkage()};
1813 }
1814
1815 /// Retrieve the device side mangling number.
1816 unsigned getDeviceLambdaManglingNumber() const;
1817
1818 /// Returns the inheritance model used for this record.
1819 MSInheritanceModel getMSInheritanceModel() const;
1820
1821 /// Calculate what the inheritance model would be for this class.
1822 MSInheritanceModel calculateInheritanceModel() const;
1823
1824 /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1825 /// member pointer if we can guarantee that zero is not a valid field offset,
1826 /// or if the member pointer has multiple fields. Polymorphic classes have a
1827 /// vfptr at offset zero, so we can use zero for null. If there are multiple
1828 /// fields, we can use zero even if it is a valid field offset because
1829 /// null-ness testing will check the other fields.
1830 bool nullFieldOffsetIsZero() const;
1831
1832 /// Controls when vtordisps will be emitted if this record is used as a
1833 /// virtual base.
1834 MSVtorDispMode getMSVtorDispMode() const;
1835
1836 /// Determine whether this lambda expression was known to be dependent
1837 /// at the time it was created, even if its context does not appear to be
1838 /// dependent.
1839 ///
1840 /// This flag is a workaround for an issue with parsing, where default
1841 /// arguments are parsed before their enclosing function declarations have
1842 /// been created. This means that any lambda expressions within those
1843 /// default arguments will have as their DeclContext the context enclosing
1844 /// the function declaration, which may be non-dependent even when the
1845 /// function declaration itself is dependent. This flag indicates when we
1846 /// know that the lambda is dependent despite that.
1847 bool isDependentLambda() const {
1848 return isLambda() && getLambdaData().DependencyKind == LDK_AlwaysDependent;
1849 }
1850
1851 bool isNeverDependentLambda() const {
1852 return isLambda() && getLambdaData().DependencyKind == LDK_NeverDependent;
1853 }
1854
1855 unsigned getLambdaDependencyKind() const {
1856 if (!isLambda())
1857 return LDK_Unknown;
1858 return getLambdaData().DependencyKind;
1859 }
1860
1861 TypeSourceInfo *getLambdaTypeInfo() const {
1862 return getLambdaData().MethodTyInfo;
1863 }
1864
1865 void setLambdaTypeInfo(TypeSourceInfo *TS) {
1866 assert(DefinitionData && DefinitionData->IsLambda &&
1867 "setting lambda property of non-lambda class");
1868 auto &DL = static_cast<LambdaDefinitionData &>(*DefinitionData);
1869 DL.MethodTyInfo = TS;
1870 }
1871
1872 void setLambdaDependencyKind(unsigned Kind) {
1873 getLambdaData().DependencyKind = Kind;
1874 }
1875
1876 void setLambdaIsGeneric(bool IsGeneric) {
1877 assert(DefinitionData && DefinitionData->IsLambda &&
1878 "setting lambda property of non-lambda class");
1879 auto &DL = static_cast<LambdaDefinitionData &>(*DefinitionData);
1880 DL.IsGenericLambda = IsGeneric;
1881 }
1882
1883 // Determine whether this type is an Interface Like type for
1884 // __interface inheritance purposes.
1885 bool isInterfaceLike() const;
1886
1887 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
1888 static bool classofKind(Kind K) {
1889 return K >= firstCXXRecord && K <= lastCXXRecord;
1890 }
1891 void markAbstract() { data().Abstract = true; }
1892};
1893
1894/// Store information needed for an explicit specifier.
1895/// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
1896class ExplicitSpecifier {
1897 llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
1898 nullptr, ExplicitSpecKind::ResolvedFalse};
1899
1900public:
1901 ExplicitSpecifier() = default;
1902 ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
1903 : ExplicitSpec(Expression, Kind) {}
1904 ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
1905 const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
1906 Expr *getExpr() { return ExplicitSpec.getPointer(); }
1907
1908 /// Determine if the declaration had an explicit specifier of any kind.
1909 bool isSpecified() const {
1910 return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
1911 ExplicitSpec.getPointer();
1912 }
1913
1914 /// Check for equivalence of explicit specifiers.
1915 /// \return true if the explicit specifier are equivalent, false otherwise.
1916 bool isEquivalent(const ExplicitSpecifier Other) const;
1917 /// Determine whether this specifier is known to correspond to an explicit
1918 /// declaration. Returns false if the specifier is absent or has an
1919 /// expression that is value-dependent or evaluates to false.
1920 bool isExplicit() const {
1921 return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
1922 }
1923 /// Determine if the explicit specifier is invalid.
1924 /// This state occurs after a substitution failures.
1925 bool isInvalid() const {
1926 return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
1927 !ExplicitSpec.getPointer();
1928 }
1929 void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
1930 void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
1931 // Retrieve the explicit specifier in the given declaration, if any.
1932 static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
1933 static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
1934 return getFromDecl(Function: const_cast<FunctionDecl *>(Function));
1935 }
1936 static ExplicitSpecifier Invalid() {
1937 return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
1938 }
1939};
1940
1941/// Represents a C++ deduction guide declaration.
1942///
1943/// \code
1944/// template<typename T> struct A { A(); A(T); };
1945/// A() -> A<int>;
1946/// \endcode
1947///
1948/// In this example, there will be an explicit deduction guide from the
1949/// second line, and implicit deduction guide templates synthesized from
1950/// the constructors of \c A.
1951class CXXDeductionGuideDecl : public FunctionDecl {
1952 void anchor() override;
1953
1954private:
1955 CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1956 ExplicitSpecifier ES,
1957 const DeclarationNameInfo &NameInfo, QualType T,
1958 TypeSourceInfo *TInfo, SourceLocation EndLocation,
1959 CXXConstructorDecl *Ctor, DeductionCandidate Kind)
1960 : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
1961 SC_None, false, false, ConstexprSpecKind::Unspecified),
1962 Ctor(Ctor), ExplicitSpec(ES) {
1963 if (EndLocation.isValid())
1964 setRangeEnd(EndLocation);
1965 setDeductionCandidateKind(Kind);
1966 }
1967
1968 CXXConstructorDecl *Ctor;
1969 ExplicitSpecifier ExplicitSpec;
1970 void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
1971
1972public:
1973 friend class ASTDeclReader;
1974 friend class ASTDeclWriter;
1975
1976 static CXXDeductionGuideDecl *
1977 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1978 ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1979 TypeSourceInfo *TInfo, SourceLocation EndLocation,
1980 CXXConstructorDecl *Ctor = nullptr,
1981 DeductionCandidate Kind = DeductionCandidate::Normal);
1982
1983 static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, DeclID ID);
1984
1985 ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
1986 const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
1987
1988 /// Return true if the declaration is already resolved to be explicit.
1989 bool isExplicit() const { return ExplicitSpec.isExplicit(); }
1990
1991 /// Get the template for which this guide performs deduction.
1992 TemplateDecl *getDeducedTemplate() const {
1993 return getDeclName().getCXXDeductionGuideTemplate();
1994 }
1995
1996 /// Get the constructor from which this deduction guide was generated, if
1997 /// this is an implicit deduction guide.
1998 CXXConstructorDecl *getCorrespondingConstructor() const { return Ctor; }
1999
2000 void setDeductionCandidateKind(DeductionCandidate K) {
2001 FunctionDeclBits.DeductionCandidateKind = static_cast<unsigned char>(K);
2002 }
2003
2004 DeductionCandidate getDeductionCandidateKind() const {
2005 return static_cast<DeductionCandidate>(
2006 FunctionDeclBits.DeductionCandidateKind);
2007 }
2008
2009 // Implement isa/cast/dyncast/etc.
2010 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
2011 static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
2012};
2013
2014/// \brief Represents the body of a requires-expression.
2015///
2016/// This decl exists merely to serve as the DeclContext for the local
2017/// parameters of the requires expression as well as other declarations inside
2018/// it.
2019///
2020/// \code
2021/// template<typename T> requires requires (T t) { {t++} -> regular; }
2022/// \endcode
2023///
2024/// In this example, a RequiresExpr object will be generated for the expression,
2025/// and a RequiresExprBodyDecl will be created to hold the parameter t and the
2026/// template argument list imposed by the compound requirement.
2027class RequiresExprBodyDecl : public Decl, public DeclContext {
2028 RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
2029 : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
2030
2031public:
2032 friend class ASTDeclReader;
2033 friend class ASTDeclWriter;
2034
2035 static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
2036 SourceLocation StartLoc);
2037
2038 static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, DeclID ID);
2039
2040 // Implement isa/cast/dyncast/etc.
2041 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
2042 static bool classofKind(Kind K) { return K == RequiresExprBody; }
2043
2044 static DeclContext *castToDeclContext(const RequiresExprBodyDecl *D) {
2045 return static_cast<DeclContext *>(const_cast<RequiresExprBodyDecl *>(D));
2046 }
2047
2048 static RequiresExprBodyDecl *castFromDeclContext(const DeclContext *DC) {
2049 return static_cast<RequiresExprBodyDecl *>(const_cast<DeclContext *>(DC));
2050 }
2051};
2052
2053/// Represents a static or instance method of a struct/union/class.
2054///
2055/// In the terminology of the C++ Standard, these are the (static and
2056/// non-static) member functions, whether virtual or not.
2057class CXXMethodDecl : public FunctionDecl {
2058 void anchor() override;
2059
2060protected:
2061 CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
2062 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
2063 QualType T, TypeSourceInfo *TInfo, StorageClass SC,
2064 bool UsesFPIntrin, bool isInline,
2065 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2066 Expr *TrailingRequiresClause = nullptr)
2067 : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2068 isInline, ConstexprKind, TrailingRequiresClause) {
2069 if (EndLocation.isValid())
2070 setRangeEnd(EndLocation);
2071 }
2072
2073public:
2074 static CXXMethodDecl *
2075 Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2076 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2077 StorageClass SC, bool UsesFPIntrin, bool isInline,
2078 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2079 Expr *TrailingRequiresClause = nullptr);
2080
2081 static CXXMethodDecl *CreateDeserialized(ASTContext &C, DeclID ID);
2082
2083 bool isStatic() const;
2084 bool isInstance() const { return !isStatic(); }
2085
2086 /// [C++2b][dcl.fct]/p7
2087 /// An explicit object member function is a non-static
2088 /// member function with an explicit object parameter. e.g.,
2089 /// void func(this SomeType);
2090 bool isExplicitObjectMemberFunction() const;
2091
2092 /// [C++2b][dcl.fct]/p7
2093 /// An implicit object member function is a non-static
2094 /// member function without an explicit object parameter.
2095 bool isImplicitObjectMemberFunction() const;
2096
2097 /// Returns true if the given operator is implicitly static in a record
2098 /// context.
2099 static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
2100 // [class.free]p1:
2101 // Any allocation function for a class T is a static member
2102 // (even if not explicitly declared static).
2103 // [class.free]p6 Any deallocation function for a class X is a static member
2104 // (even if not explicitly declared static).
2105 return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
2106 OOK == OO_Array_Delete;
2107 }
2108
2109 bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
2110 bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
2111
2112 bool isVirtual() const {
2113 CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2114
2115 // Member function is virtual if it is marked explicitly so, or if it is
2116 // declared in __interface -- then it is automatically pure virtual.
2117 if (CD->isVirtualAsWritten() || CD->isPureVirtual())
2118 return true;
2119
2120 return CD->size_overridden_methods() != 0;
2121 }
2122
2123 /// If it's possible to devirtualize a call to this method, return the called
2124 /// function. Otherwise, return null.
2125
2126 /// \param Base The object on which this virtual function is called.
2127 /// \param IsAppleKext True if we are compiling for Apple kext.
2128 CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
2129
2130 const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
2131 bool IsAppleKext) const {
2132 return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
2133 Base, IsAppleKext);
2134 }
2135
2136 /// Determine whether this is a usual deallocation function (C++
2137 /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
2138 /// delete[] operator with a particular signature. Populates \p PreventedBy
2139 /// with the declarations of the functions of the same kind if they were the
2140 /// reason for this function returning false. This is used by
2141 /// Sema::isUsualDeallocationFunction to reconsider the answer based on the
2142 /// context.
2143 bool isUsualDeallocationFunction(
2144 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
2145
2146 /// Determine whether this is a copy-assignment operator, regardless
2147 /// of whether it was declared implicitly or explicitly.
2148 bool isCopyAssignmentOperator() const;
2149
2150 /// Determine whether this is a move assignment operator.
2151 bool isMoveAssignmentOperator() const;
2152
2153 CXXMethodDecl *getCanonicalDecl() override {
2154 return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
2155 }
2156 const CXXMethodDecl *getCanonicalDecl() const {
2157 return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2158 }
2159
2160 CXXMethodDecl *getMostRecentDecl() {
2161 return cast<CXXMethodDecl>(
2162 static_cast<FunctionDecl *>(this)->getMostRecentDecl());
2163 }
2164 const CXXMethodDecl *getMostRecentDecl() const {
2165 return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
2166 }
2167
2168 void addOverriddenMethod(const CXXMethodDecl *MD);
2169
2170 using method_iterator = const CXXMethodDecl *const *;
2171
2172 method_iterator begin_overridden_methods() const;
2173 method_iterator end_overridden_methods() const;
2174 unsigned size_overridden_methods() const;
2175
2176 using overridden_method_range = llvm::iterator_range<
2177 llvm::TinyPtrVector<const CXXMethodDecl *>::const_iterator>;
2178
2179 overridden_method_range overridden_methods() const;
2180
2181 /// Return the parent of this method declaration, which
2182 /// is the class in which this method is defined.
2183 const CXXRecordDecl *getParent() const {
2184 return cast<CXXRecordDecl>(FunctionDecl::getParent());
2185 }
2186
2187 /// Return the parent of this method declaration, which
2188 /// is the class in which this method is defined.
2189 CXXRecordDecl *getParent() {
2190 return const_cast<CXXRecordDecl *>(
2191 cast<CXXRecordDecl>(FunctionDecl::getParent()));
2192 }
2193
2194 /// Return the type of the \c this pointer.
2195 ///
2196 /// Should only be called for instance (i.e., non-static) methods. Note
2197 /// that for the call operator of a lambda closure type, this returns the
2198 /// desugared 'this' type (a pointer to the closure type), not the captured
2199 /// 'this' type.
2200 QualType getThisType() const;
2201
2202 /// Return the type of the object pointed by \c this.
2203 ///
2204 /// See getThisType() for usage restriction.
2205
2206 QualType getFunctionObjectParameterReferenceType() const;
2207 QualType getFunctionObjectParameterType() const {
2208 return getFunctionObjectParameterReferenceType().getNonReferenceType();
2209 }
2210
2211 unsigned getNumExplicitParams() const {
2212 return getNumParams() - (isExplicitObjectMemberFunction() ? 1 : 0);
2213 }
2214
2215 static QualType getThisType(const FunctionProtoType *FPT,
2216 const CXXRecordDecl *Decl);
2217
2218 Qualifiers getMethodQualifiers() const {
2219 return getType()->castAs<FunctionProtoType>()->getMethodQuals();
2220 }
2221
2222 /// Retrieve the ref-qualifier associated with this method.
2223 ///
2224 /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
2225 /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
2226 /// @code
2227 /// struct X {
2228 /// void f() &;
2229 /// void g() &&;
2230 /// void h();
2231 /// };
2232 /// @endcode
2233 RefQualifierKind getRefQualifier() const {
2234 return getType()->castAs<FunctionProtoType>()->getRefQualifier();
2235 }
2236
2237 bool hasInlineBody() const;
2238
2239 /// Determine whether this is a lambda closure type's static member
2240 /// function that is used for the result of the lambda's conversion to
2241 /// function pointer (for a lambda with no captures).
2242 ///
2243 /// The function itself, if used, will have a placeholder body that will be
2244 /// supplied by IR generation to either forward to the function call operator
2245 /// or clone the function call operator.
2246 bool isLambdaStaticInvoker() const;
2247
2248 /// Find the method in \p RD that corresponds to this one.
2249 ///
2250 /// Find if \p RD or one of the classes it inherits from override this method.
2251 /// If so, return it. \p RD is assumed to be a subclass of the class defining
2252 /// this method (or be the class itself), unless \p MayBeBase is set to true.
2253 CXXMethodDecl *
2254 getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2255 bool MayBeBase = false);
2256
2257 const CXXMethodDecl *
2258 getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2259 bool MayBeBase = false) const {
2260 return const_cast<CXXMethodDecl *>(this)
2261 ->getCorrespondingMethodInClass(RD, MayBeBase);
2262 }
2263
2264 /// Find if \p RD declares a function that overrides this function, and if so,
2265 /// return it. Does not search base classes.
2266 CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2267 bool MayBeBase = false);
2268 const CXXMethodDecl *
2269 getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2270 bool MayBeBase = false) const {
2271 return const_cast<CXXMethodDecl *>(this)
2272 ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
2273 }
2274
2275 // Implement isa/cast/dyncast/etc.
2276 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
2277 static bool classofKind(Kind K) {
2278 return K >= firstCXXMethod && K <= lastCXXMethod;
2279 }
2280};
2281
2282/// Represents a C++ base or member initializer.
2283///
2284/// This is part of a constructor initializer that
2285/// initializes one non-static member variable or one base class. For
2286/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
2287/// initializers:
2288///
2289/// \code
2290/// class A { };
2291/// class B : public A {
2292/// float f;
2293/// public:
2294/// B(A& a) : A(a), f(3.14159) { }
2295/// };
2296/// \endcode
2297class CXXCtorInitializer final {
2298 /// Either the base class name/delegating constructor type (stored as
2299 /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
2300 /// (IndirectFieldDecl*) being initialized.
2301 llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
2302 Initializee;
2303
2304 /// The argument used to initialize the base or member, which may
2305 /// end up constructing an object (when multiple arguments are involved).
2306 Stmt *Init;
2307
2308 /// The source location for the field name or, for a base initializer
2309 /// pack expansion, the location of the ellipsis.
2310 ///
2311 /// In the case of a delegating
2312 /// constructor, it will still include the type's source location as the
2313 /// Initializee points to the CXXConstructorDecl (to allow loop detection).
2314 SourceLocation MemberOrEllipsisLocation;
2315
2316 /// Location of the left paren of the ctor-initializer.
2317 SourceLocation LParenLoc;
2318
2319 /// Location of the right paren of the ctor-initializer.
2320 SourceLocation RParenLoc;
2321
2322 /// If the initializee is a type, whether that type makes this
2323 /// a delegating initialization.
2324 LLVM_PREFERRED_TYPE(bool)
2325 unsigned IsDelegating : 1;
2326
2327 /// If the initializer is a base initializer, this keeps track
2328 /// of whether the base is virtual or not.
2329 LLVM_PREFERRED_TYPE(bool)
2330 unsigned IsVirtual : 1;
2331
2332 /// Whether or not the initializer is explicitly written
2333 /// in the sources.
2334 LLVM_PREFERRED_TYPE(bool)
2335 unsigned IsWritten : 1;
2336
2337 /// If IsWritten is true, then this number keeps track of the textual order
2338 /// of this initializer in the original sources, counting from 0.
2339 unsigned SourceOrder : 13;
2340
2341public:
2342 /// Creates a new base-class initializer.
2343 explicit
2344 CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
2345 SourceLocation L, Expr *Init, SourceLocation R,
2346 SourceLocation EllipsisLoc);
2347
2348 /// Creates a new member initializer.
2349 explicit
2350 CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2351 SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2352 SourceLocation R);
2353
2354 /// Creates a new anonymous field initializer.
2355 explicit
2356 CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
2357 SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2358 SourceLocation R);
2359
2360 /// Creates a new delegating initializer.
2361 explicit
2362 CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
2363 SourceLocation L, Expr *Init, SourceLocation R);
2364
2365 /// \return Unique reproducible object identifier.
2366 int64_t getID(const ASTContext &Context) const;
2367
2368 /// Determine whether this initializer is initializing a base class.
2369 bool isBaseInitializer() const {
2370 return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
2371 }
2372
2373 /// Determine whether this initializer is initializing a non-static
2374 /// data member.
2375 bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
2376
2377 bool isAnyMemberInitializer() const {
2378 return isMemberInitializer() || isIndirectMemberInitializer();
2379 }
2380
2381 bool isIndirectMemberInitializer() const {
2382 return Initializee.is<IndirectFieldDecl*>();
2383 }
2384
2385 /// Determine whether this initializer is an implicit initializer
2386 /// generated for a field with an initializer defined on the member
2387 /// declaration.
2388 ///
2389 /// In-class member initializers (also known as "non-static data member
2390 /// initializations", NSDMIs) were introduced in C++11.
2391 bool isInClassMemberInitializer() const {
2392 return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
2393 }
2394
2395 /// Determine whether this initializer is creating a delegating
2396 /// constructor.
2397 bool isDelegatingInitializer() const {
2398 return Initializee.is<TypeSourceInfo*>() && IsDelegating;
2399 }
2400
2401 /// Determine whether this initializer is a pack expansion.
2402 bool isPackExpansion() const {
2403 return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
2404 }
2405
2406 // For a pack expansion, returns the location of the ellipsis.
2407 SourceLocation getEllipsisLoc() const {
2408 if (!isPackExpansion())
2409 return {};
2410 return MemberOrEllipsisLocation;
2411 }
2412
2413 /// If this is a base class initializer, returns the type of the
2414 /// base class with location information. Otherwise, returns an NULL
2415 /// type location.
2416 TypeLoc getBaseClassLoc() const;
2417
2418 /// If this is a base class initializer, returns the type of the base class.
2419 /// Otherwise, returns null.
2420 const Type *getBaseClass() const;
2421
2422 /// Returns whether the base is virtual or not.
2423 bool isBaseVirtual() const {
2424 assert(isBaseInitializer() && "Must call this on base initializer!");
2425
2426 return IsVirtual;
2427 }
2428
2429 /// Returns the declarator information for a base class or delegating
2430 /// initializer.
2431 TypeSourceInfo *getTypeSourceInfo() const {
2432 return Initializee.dyn_cast<TypeSourceInfo *>();
2433 }
2434
2435 /// If this is a member initializer, returns the declaration of the
2436 /// non-static data member being initialized. Otherwise, returns null.
2437 FieldDecl *getMember() const {
2438 if (isMemberInitializer())
2439 return Initializee.get<FieldDecl*>();
2440 return nullptr;
2441 }
2442
2443 FieldDecl *getAnyMember() const {
2444 if (isMemberInitializer())
2445 return Initializee.get<FieldDecl*>();
2446 if (isIndirectMemberInitializer())
2447 return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2448 return nullptr;
2449 }
2450
2451 IndirectFieldDecl *getIndirectMember() const {
2452 if (isIndirectMemberInitializer())
2453 return Initializee.get<IndirectFieldDecl*>();
2454 return nullptr;
2455 }
2456
2457 SourceLocation getMemberLocation() const {
2458 return MemberOrEllipsisLocation;
2459 }
2460
2461 /// Determine the source location of the initializer.
2462 SourceLocation getSourceLocation() const;
2463
2464 /// Determine the source range covering the entire initializer.
2465 SourceRange getSourceRange() const LLVM_READONLY;
2466
2467 /// Determine whether this initializer is explicitly written
2468 /// in the source code.
2469 bool isWritten() const { return IsWritten; }
2470
2471 /// Return the source position of the initializer, counting from 0.
2472 /// If the initializer was implicit, -1 is returned.
2473 int getSourceOrder() const {
2474 return IsWritten ? static_cast<int>(SourceOrder) : -1;
2475 }
2476
2477 /// Set the source order of this initializer.
2478 ///
2479 /// This can only be called once for each initializer; it cannot be called
2480 /// on an initializer having a positive number of (implicit) array indices.
2481 ///
2482 /// This assumes that the initializer was written in the source code, and
2483 /// ensures that isWritten() returns true.
2484 void setSourceOrder(int Pos) {
2485 assert(!IsWritten &&
2486 "setSourceOrder() used on implicit initializer");
2487 assert(SourceOrder == 0 &&
2488 "calling twice setSourceOrder() on the same initializer");
2489 assert(Pos >= 0 &&
2490 "setSourceOrder() used to make an initializer implicit");
2491 IsWritten = true;
2492 SourceOrder = static_cast<unsigned>(Pos);
2493 }
2494
2495 SourceLocation getLParenLoc() const { return LParenLoc; }
2496 SourceLocation getRParenLoc() const { return RParenLoc; }
2497
2498 /// Get the initializer.
2499 Expr *getInit() const { return static_cast<Expr *>(Init); }
2500};
2501
2502/// Description of a constructor that was inherited from a base class.
2503class InheritedConstructor {
2504 ConstructorUsingShadowDecl *Shadow = nullptr;
2505 CXXConstructorDecl *BaseCtor = nullptr;
2506
2507public:
2508 InheritedConstructor() = default;
2509 InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
2510 CXXConstructorDecl *BaseCtor)
2511 : Shadow(Shadow), BaseCtor(BaseCtor) {}
2512
2513 explicit operator bool() const { return Shadow; }
2514
2515 ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
2516 CXXConstructorDecl *getConstructor() const { return BaseCtor; }
2517};
2518
2519/// Represents a C++ constructor within a class.
2520///
2521/// For example:
2522///
2523/// \code
2524/// class X {
2525/// public:
2526/// explicit X(int); // represented by a CXXConstructorDecl.
2527/// };
2528/// \endcode
2529class CXXConstructorDecl final
2530 : public CXXMethodDecl,
2531 private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
2532 ExplicitSpecifier> {
2533 // This class stores some data in DeclContext::CXXConstructorDeclBits
2534 // to save some space. Use the provided accessors to access it.
2535
2536 /// \name Support for base and member initializers.
2537 /// \{
2538 /// The arguments used to initialize the base or member.
2539 LazyCXXCtorInitializersPtr CtorInitializers;
2540
2541 CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2542 const DeclarationNameInfo &NameInfo, QualType T,
2543 TypeSourceInfo *TInfo, ExplicitSpecifier ES,
2544 bool UsesFPIntrin, bool isInline,
2545 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2546 InheritedConstructor Inherited,
2547 Expr *TrailingRequiresClause);
2548
2549 void anchor() override;
2550
2551 size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
2552 return CXXConstructorDeclBits.IsInheritingConstructor;
2553 }
2554 size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
2555 return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
2556 }
2557
2558 ExplicitSpecifier getExplicitSpecifierInternal() const {
2559 if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
2560 return *getTrailingObjects<ExplicitSpecifier>();
2561 return ExplicitSpecifier(
2562 nullptr, CXXConstructorDeclBits.IsSimpleExplicit
2563 ? ExplicitSpecKind::ResolvedTrue
2564 : ExplicitSpecKind::ResolvedFalse);
2565 }
2566
2567 enum TrailingAllocKind {
2568 TAKInheritsConstructor = 1,
2569 TAKHasTailExplicit = 1 << 1,
2570 };
2571
2572 uint64_t getTrailingAllocKind() const {
2573 return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
2574 (numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
2575 }
2576
2577public:
2578 friend class ASTDeclReader;
2579 friend class ASTDeclWriter;
2580 friend TrailingObjects;
2581
2582 static CXXConstructorDecl *CreateDeserialized(ASTContext &C, DeclID ID,
2583 uint64_t AllocKind);
2584 static CXXConstructorDecl *
2585 Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2586 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2587 ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2588 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2589 InheritedConstructor Inherited = InheritedConstructor(),
2590 Expr *TrailingRequiresClause = nullptr);
2591
2592 void setExplicitSpecifier(ExplicitSpecifier ES) {
2593 assert((!ES.getExpr() ||
2594 CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
2595 "cannot set this explicit specifier. no trail-allocated space for "
2596 "explicit");
2597 if (ES.getExpr())
2598 *getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
2599 else
2600 CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
2601 }
2602
2603 ExplicitSpecifier getExplicitSpecifier() {
2604 return getCanonicalDecl()->getExplicitSpecifierInternal();
2605 }
2606 const ExplicitSpecifier getExplicitSpecifier() const {
2607 return getCanonicalDecl()->getExplicitSpecifierInternal();
2608 }
2609
2610 /// Return true if the declaration is already resolved to be explicit.
2611 bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2612
2613 /// Iterates through the member/base initializer list.
2614 using init_iterator = CXXCtorInitializer **;
2615
2616 /// Iterates through the member/base initializer list.
2617 using init_const_iterator = CXXCtorInitializer *const *;
2618
2619 using init_range = llvm::iterator_range<init_iterator>;
2620 using init_const_range = llvm::iterator_range<init_const_iterator>;
2621
2622 init_range inits() { return init_range(init_begin(), init_end()); }
2623 init_const_range inits() const {
2624 return init_const_range(init_begin(), init_end());
2625 }
2626
2627 /// Retrieve an iterator to the first initializer.
2628 init_iterator init_begin() {
2629 const auto *ConstThis = this;
2630 return const_cast<init_iterator>(ConstThis->init_begin());
2631 }
2632
2633 /// Retrieve an iterator to the first initializer.
2634 init_const_iterator init_begin() const;
2635
2636 /// Retrieve an iterator past the last initializer.
2637 init_iterator init_end() {
2638 return init_begin() + getNumCtorInitializers();
2639 }
2640
2641 /// Retrieve an iterator past the last initializer.
2642 init_const_iterator init_end() const {
2643 return init_begin() + getNumCtorInitializers();
2644 }
2645
2646 using init_reverse_iterator = std::reverse_iterator<init_iterator>;
2647 using init_const_reverse_iterator =
2648 std::reverse_iterator<init_const_iterator>;
2649
2650 init_reverse_iterator init_rbegin() {
2651 return init_reverse_iterator(init_end());
2652 }
2653 init_const_reverse_iterator init_rbegin() const {
2654 return init_const_reverse_iterator(init_end());
2655 }
2656
2657 init_reverse_iterator init_rend() {
2658 return init_reverse_iterator(init_begin());
2659 }
2660 init_const_reverse_iterator init_rend() const {
2661 return init_const_reverse_iterator(init_begin());
2662 }
2663
2664 /// Determine the number of arguments used to initialize the member
2665 /// or base.
2666 unsigned getNumCtorInitializers() const {
2667 return CXXConstructorDeclBits.NumCtorInitializers;
2668 }
2669
2670 void setNumCtorInitializers(unsigned numCtorInitializers) {
2671 CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
2672 // This assert added because NumCtorInitializers is stored
2673 // in CXXConstructorDeclBits as a bitfield and its width has
2674 // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
2675 assert(CXXConstructorDeclBits.NumCtorInitializers ==
2676 numCtorInitializers && "NumCtorInitializers overflow!");
2677 }
2678
2679 void setCtorInitializers(CXXCtorInitializer **Initializers) {
2680 CtorInitializers = Initializers;
2681 }
2682
2683 /// Determine whether this constructor is a delegating constructor.
2684 bool isDelegatingConstructor() const {
2685 return (getNumCtorInitializers() == 1) &&
2686 init_begin()[0]->isDelegatingInitializer();
2687 }
2688
2689 /// When this constructor delegates to another, retrieve the target.
2690 CXXConstructorDecl *getTargetConstructor() const;
2691
2692 /// Whether this constructor is a default
2693 /// constructor (C++ [class.ctor]p5), which can be used to
2694 /// default-initialize a class of this type.
2695 bool isDefaultConstructor() const;
2696
2697 /// Whether this constructor is a copy constructor (C++ [class.copy]p2,
2698 /// which can be used to copy the class.
2699 ///
2700 /// \p TypeQuals will be set to the qualifiers on the
2701 /// argument type. For example, \p TypeQuals would be set to \c
2702 /// Qualifiers::Const for the following copy constructor:
2703 ///
2704 /// \code
2705 /// class X {
2706 /// public:
2707 /// X(const X&);
2708 /// };
2709 /// \endcode
2710 bool isCopyConstructor(unsigned &TypeQuals) const;
2711
2712 /// Whether this constructor is a copy
2713 /// constructor (C++ [class.copy]p2, which can be used to copy the
2714 /// class.
2715 bool isCopyConstructor() const {
2716 unsigned TypeQuals = 0;
2717 return isCopyConstructor(TypeQuals);
2718 }
2719
2720 /// Determine whether this constructor is a move constructor
2721 /// (C++11 [class.copy]p3), which can be used to move values of the class.
2722 ///
2723 /// \param TypeQuals If this constructor is a move constructor, will be set
2724 /// to the type qualifiers on the referent of the first parameter's type.
2725 bool isMoveConstructor(unsigned &TypeQuals) const;
2726
2727 /// Determine whether this constructor is a move constructor
2728 /// (C++11 [class.copy]p3), which can be used to move values of the class.
2729 bool isMoveConstructor() const {
2730 unsigned TypeQuals = 0;
2731 return isMoveConstructor(TypeQuals);
2732 }
2733
2734 /// Determine whether this is a copy or move constructor.
2735 ///
2736 /// \param TypeQuals Will be set to the type qualifiers on the reference
2737 /// parameter, if in fact this is a copy or move constructor.
2738 bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2739
2740 /// Determine whether this a copy or move constructor.
2741 bool isCopyOrMoveConstructor() const {
2742 unsigned Quals;
2743 return isCopyOrMoveConstructor(TypeQuals&: Quals);
2744 }
2745
2746 /// Whether this constructor is a
2747 /// converting constructor (C++ [class.conv.ctor]), which can be
2748 /// used for user-defined conversions.
2749 bool isConvertingConstructor(bool AllowExplicit) const;
2750
2751 /// Determine whether this is a member template specialization that
2752 /// would copy the object to itself. Such constructors are never used to copy
2753 /// an object.
2754 bool isSpecializationCopyingObject() const;
2755
2756 /// Determine whether this is an implicit constructor synthesized to
2757 /// model a call to a constructor inherited from a base class.
2758 bool isInheritingConstructor() const {
2759 return CXXConstructorDeclBits.IsInheritingConstructor;
2760 }
2761
2762 /// State that this is an implicit constructor synthesized to
2763 /// model a call to a constructor inherited from a base class.
2764 void setInheritingConstructor(bool isIC = true) {
2765 CXXConstructorDeclBits.IsInheritingConstructor = isIC;
2766 }
2767
2768 /// Get the constructor that this inheriting constructor is based on.
2769 InheritedConstructor getInheritedConstructor() const {
2770 return isInheritingConstructor() ?
2771 *getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
2772 }
2773
2774 CXXConstructorDecl *getCanonicalDecl() override {
2775 return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2776 }
2777 const CXXConstructorDecl *getCanonicalDecl() const {
2778 return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
2779 }
2780
2781 // Implement isa/cast/dyncast/etc.
2782 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
2783 static bool classofKind(Kind K) { return K == CXXConstructor; }
2784};
2785
2786/// Represents a C++ destructor within a class.
2787///
2788/// For example:
2789///
2790/// \code
2791/// class X {
2792/// public:
2793/// ~X(); // represented by a CXXDestructorDecl.
2794/// };
2795/// \endcode
2796class CXXDestructorDecl : public CXXMethodDecl {
2797 friend class ASTDeclReader;
2798 friend class ASTDeclWriter;
2799
2800 // FIXME: Don't allocate storage for these except in the first declaration
2801 // of a virtual destructor.
2802 FunctionDecl *OperatorDelete = nullptr;
2803 Expr *OperatorDeleteThisArg = nullptr;
2804
2805 CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2806 const DeclarationNameInfo &NameInfo, QualType T,
2807 TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2808 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2809 Expr *TrailingRequiresClause = nullptr)
2810 : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2811 SC_None, UsesFPIntrin, isInline, ConstexprKind,
2812 SourceLocation(), TrailingRequiresClause) {
2813 setImplicit(isImplicitlyDeclared);
2814 }
2815
2816 void anchor() override;
2817
2818public:
2819 static CXXDestructorDecl *
2820 Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2821 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2822 bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2823 ConstexprSpecKind ConstexprKind,
2824 Expr *TrailingRequiresClause = nullptr);
2825 static CXXDestructorDecl *CreateDeserialized(ASTContext & C, DeclID ID);
2826
2827 void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
2828
2829 const FunctionDecl *getOperatorDelete() const {
2830 return getCanonicalDecl()->OperatorDelete;
2831 }
2832
2833 Expr *getOperatorDeleteThisArg() const {
2834 return getCanonicalDecl()->OperatorDeleteThisArg;
2835 }
2836
2837 CXXDestructorDecl *getCanonicalDecl() override {
2838 return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
2839 }
2840 const CXXDestructorDecl *getCanonicalDecl() const {
2841 return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
2842 }
2843
2844 // Implement isa/cast/dyncast/etc.
2845 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
2846 static bool classofKind(Kind K) { return K == CXXDestructor; }
2847};
2848
2849/// Represents a C++ conversion function within a class.
2850///
2851/// For example:
2852///
2853/// \code
2854/// class X {
2855/// public:
2856/// operator bool();
2857/// };
2858/// \endcode
2859class CXXConversionDecl : public CXXMethodDecl {
2860 CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2861 const DeclarationNameInfo &NameInfo, QualType T,
2862 TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2863 ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2864 SourceLocation EndLocation,
2865 Expr *TrailingRequiresClause = nullptr)
2866 : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2867 SC_None, UsesFPIntrin, isInline, ConstexprKind,
2868 EndLocation, TrailingRequiresClause),
2869 ExplicitSpec(ES) {}
2870 void anchor() override;
2871
2872 ExplicitSpecifier ExplicitSpec;
2873
2874public:
2875 friend class ASTDeclReader;
2876 friend class ASTDeclWriter;
2877
2878 static CXXConversionDecl *
2879 Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2880 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2881 bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2882 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2883 Expr *TrailingRequiresClause = nullptr);
2884 static CXXConversionDecl *CreateDeserialized(ASTContext &C, DeclID ID);
2885
2886 ExplicitSpecifier getExplicitSpecifier() {
2887 return getCanonicalDecl()->ExplicitSpec;
2888 }
2889
2890 const ExplicitSpecifier getExplicitSpecifier() const {
2891 return getCanonicalDecl()->ExplicitSpec;
2892 }
2893
2894 /// Return true if the declaration is already resolved to be explicit.
2895 bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2896 void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
2897
2898 /// Returns the type that this conversion function is converting to.
2899 QualType getConversionType() const {
2900 return getType()->castAs<FunctionType>()->getReturnType();
2901 }
2902
2903 /// Determine whether this conversion function is a conversion from
2904 /// a lambda closure type to a block pointer.
2905 bool isLambdaToBlockPointerConversion() const;
2906
2907 CXXConversionDecl *getCanonicalDecl() override {
2908 return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
2909 }
2910 const CXXConversionDecl *getCanonicalDecl() const {
2911 return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
2912 }
2913
2914 // Implement isa/cast/dyncast/etc.
2915 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
2916 static bool classofKind(Kind K) { return K == CXXConversion; }
2917};
2918
2919/// Represents the language in a linkage specification.
2920///
2921/// The values are part of the serialization ABI for
2922/// ASTs and cannot be changed without altering that ABI.
2923enum class LinkageSpecLanguageIDs { C = 1, CXX = 2 };
2924
2925/// Represents a linkage specification.
2926///
2927/// For example:
2928/// \code
2929/// extern "C" void foo();
2930/// \endcode
2931class LinkageSpecDecl : public Decl, public DeclContext {
2932 virtual void anchor();
2933 // This class stores some data in DeclContext::LinkageSpecDeclBits to save
2934 // some space. Use the provided accessors to access it.
2935
2936 /// The source location for the extern keyword.
2937 SourceLocation ExternLoc;
2938
2939 /// The source location for the right brace (if valid).
2940 SourceLocation RBraceLoc;
2941
2942 LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2943 SourceLocation LangLoc, LinkageSpecLanguageIDs lang,
2944 bool HasBraces);
2945
2946public:
2947 static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2948 SourceLocation ExternLoc,
2949 SourceLocation LangLoc,
2950 LinkageSpecLanguageIDs Lang, bool HasBraces);
2951 static LinkageSpecDecl *CreateDeserialized(ASTContext &C, DeclID ID);
2952
2953 /// Return the language specified by this linkage specification.
2954 LinkageSpecLanguageIDs getLanguage() const {
2955 return static_cast<LinkageSpecLanguageIDs>(LinkageSpecDeclBits.Language);
2956 }
2957
2958 /// Set the language specified by this linkage specification.
2959 void setLanguage(LinkageSpecLanguageIDs L) {
2960 LinkageSpecDeclBits.Language = llvm::to_underlying(E: L);
2961 }
2962
2963 /// Determines whether this linkage specification had braces in
2964 /// its syntactic form.
2965 bool hasBraces() const {
2966 assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
2967 return LinkageSpecDeclBits.HasBraces;
2968 }
2969
2970 SourceLocation getExternLoc() const { return ExternLoc; }
2971 SourceLocation getRBraceLoc() const { return RBraceLoc; }
2972 void setExternLoc(SourceLocation L) { ExternLoc = L; }
2973 void setRBraceLoc(SourceLocation L) {
2974 RBraceLoc = L;
2975 LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
2976 }
2977
2978 SourceLocation getEndLoc() const LLVM_READONLY {
2979 if (hasBraces())
2980 return getRBraceLoc();
2981 // No braces: get the end location of the (only) declaration in context
2982 // (if present).
2983 return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
2984 }
2985
2986 SourceRange getSourceRange() const override LLVM_READONLY {
2987 return SourceRange(ExternLoc, getEndLoc());
2988 }
2989
2990 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
2991 static bool classofKind(Kind K) { return K == LinkageSpec; }
2992
2993 static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2994 return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2995 }
2996
2997 static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2998 return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2999 }
3000};
3001
3002/// Represents C++ using-directive.
3003///
3004/// For example:
3005/// \code
3006/// using namespace std;
3007/// \endcode
3008///
3009/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
3010/// artificial names for all using-directives in order to store
3011/// them in DeclContext effectively.
3012class UsingDirectiveDecl : public NamedDecl {
3013 /// The location of the \c using keyword.
3014 SourceLocation UsingLoc;
3015
3016 /// The location of the \c namespace keyword.
3017 SourceLocation NamespaceLoc;
3018
3019 /// The nested-name-specifier that precedes the namespace.
3020 NestedNameSpecifierLoc QualifierLoc;
3021
3022 /// The namespace nominated by this using-directive.
3023 NamedDecl *NominatedNamespace;
3024
3025 /// Enclosing context containing both using-directive and nominated
3026 /// namespace.
3027 DeclContext *CommonAncestor;
3028
3029 UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
3030 SourceLocation NamespcLoc,
3031 NestedNameSpecifierLoc QualifierLoc,
3032 SourceLocation IdentLoc,
3033 NamedDecl *Nominated,
3034 DeclContext *CommonAncestor)
3035 : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
3036 NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
3037 NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
3038
3039 /// Returns special DeclarationName used by using-directives.
3040 ///
3041 /// This is only used by DeclContext for storing UsingDirectiveDecls in
3042 /// its lookup structure.
3043 static DeclarationName getName() {
3044 return DeclarationName::getUsingDirectiveName();
3045 }
3046
3047 void anchor() override;
3048
3049public:
3050 friend class ASTDeclReader;
3051
3052 // Friend for getUsingDirectiveName.
3053 friend class DeclContext;
3054
3055 /// Retrieve the nested-name-specifier that qualifies the
3056 /// name of the namespace, with source-location information.
3057 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3058
3059 /// Retrieve the nested-name-specifier that qualifies the
3060 /// name of the namespace.
3061 NestedNameSpecifier *getQualifier() const {
3062 return QualifierLoc.getNestedNameSpecifier();
3063 }
3064
3065 NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
3066 const NamedDecl *getNominatedNamespaceAsWritten() const {
3067 return NominatedNamespace;
3068 }
3069
3070 /// Returns the namespace nominated by this using-directive.
3071 NamespaceDecl *getNominatedNamespace();
3072
3073 const NamespaceDecl *getNominatedNamespace() const {
3074 return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
3075 }
3076
3077 /// Returns the common ancestor context of this using-directive and
3078 /// its nominated namespace.
3079 DeclContext *getCommonAncestor() { return CommonAncestor; }
3080 const DeclContext *getCommonAncestor() const { return CommonAncestor; }
3081
3082 /// Return the location of the \c using keyword.
3083 SourceLocation getUsingLoc() const { return UsingLoc; }
3084
3085 // FIXME: Could omit 'Key' in name.
3086 /// Returns the location of the \c namespace keyword.
3087 SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
3088
3089 /// Returns the location of this using declaration's identifier.
3090 SourceLocation getIdentLocation() const { return getLocation(); }
3091
3092 static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
3093 SourceLocation UsingLoc,
3094 SourceLocation NamespaceLoc,
3095 NestedNameSpecifierLoc QualifierLoc,
3096 SourceLocation IdentLoc,
3097 NamedDecl *Nominated,
3098 DeclContext *CommonAncestor);
3099 static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, DeclID ID);
3100
3101 SourceRange getSourceRange() const override LLVM_READONLY {
3102 return SourceRange(UsingLoc, getLocation());
3103 }
3104
3105 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3106 static bool classofKind(Kind K) { return K == UsingDirective; }
3107};
3108
3109/// Represents a C++ namespace alias.
3110///
3111/// For example:
3112///
3113/// \code
3114/// namespace Foo = Bar;
3115/// \endcode
3116class NamespaceAliasDecl : public NamedDecl,
3117 public Redeclarable<NamespaceAliasDecl> {
3118 friend class ASTDeclReader;
3119
3120 /// The location of the \c namespace keyword.
3121 SourceLocation NamespaceLoc;
3122
3123 /// The location of the namespace's identifier.
3124 ///
3125 /// This is accessed by TargetNameLoc.
3126 SourceLocation IdentLoc;
3127
3128 /// The nested-name-specifier that precedes the namespace.
3129 NestedNameSpecifierLoc QualifierLoc;
3130
3131 /// The Decl that this alias points to, either a NamespaceDecl or
3132 /// a NamespaceAliasDecl.
3133 NamedDecl *Namespace;
3134
3135 NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
3136 SourceLocation NamespaceLoc, SourceLocation AliasLoc,
3137 IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
3138 SourceLocation IdentLoc, NamedDecl *Namespace)
3139 : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
3140 NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
3141 QualifierLoc(QualifierLoc), Namespace(Namespace) {}
3142
3143 void anchor() override;
3144
3145 using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
3146
3147 NamespaceAliasDecl *getNextRedeclarationImpl() override;
3148 NamespaceAliasDecl *getPreviousDeclImpl() override;
3149 NamespaceAliasDecl *getMostRecentDeclImpl() override;
3150
3151public:
3152 static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
3153 SourceLocation NamespaceLoc,
3154 SourceLocation AliasLoc,
3155 IdentifierInfo *Alias,
3156 NestedNameSpecifierLoc QualifierLoc,
3157 SourceLocation IdentLoc,
3158 NamedDecl *Namespace);
3159
3160 static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, DeclID ID);
3161
3162 using redecl_range = redeclarable_base::redecl_range;
3163 using redecl_iterator = redeclarable_base::redecl_iterator;
3164
3165 using redeclarable_base::redecls_begin;
3166 using redeclarable_base::redecls_end;
3167 using redeclarable_base::redecls;
3168 using redeclarable_base::getPreviousDecl;
3169 using redeclarable_base::getMostRecentDecl;
3170
3171 NamespaceAliasDecl *getCanonicalDecl() override {
3172 return getFirstDecl();
3173 }
3174 const NamespaceAliasDecl *getCanonicalDecl() const {
3175 return getFirstDecl();
3176 }
3177
3178 /// Retrieve the nested-name-specifier that qualifies the
3179 /// name of the namespace, with source-location information.
3180 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3181
3182 /// Retrieve the nested-name-specifier that qualifies the
3183 /// name of the namespace.
3184 NestedNameSpecifier *getQualifier() const {
3185 return QualifierLoc.getNestedNameSpecifier();
3186 }
3187
3188 /// Retrieve the namespace declaration aliased by this directive.
3189 NamespaceDecl *getNamespace() {
3190 if (auto *AD = dyn_cast<NamespaceAliasDecl>(Val: Namespace))
3191 return AD->getNamespace();
3192
3193 return cast<NamespaceDecl>(Val: Namespace);
3194 }
3195
3196 const NamespaceDecl *getNamespace() const {
3197 return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
3198 }
3199
3200 /// Returns the location of the alias name, i.e. 'foo' in
3201 /// "namespace foo = ns::bar;".
3202 SourceLocation getAliasLoc() const { return getLocation(); }
3203
3204 /// Returns the location of the \c namespace keyword.
3205 SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
3206
3207 /// Returns the location of the identifier in the named namespace.
3208 SourceLocation getTargetNameLoc() const { return IdentLoc; }
3209
3210 /// Retrieve the namespace that this alias refers to, which
3211 /// may either be a NamespaceDecl or a NamespaceAliasDecl.
3212 NamedDecl *getAliasedNamespace() const { return Namespace; }
3213
3214 SourceRange getSourceRange() const override LLVM_READONLY {
3215 return SourceRange(NamespaceLoc, IdentLoc);
3216 }
3217
3218 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3219 static bool classofKind(Kind K) { return K == NamespaceAlias; }
3220};
3221
3222/// Implicit declaration of a temporary that was materialized by
3223/// a MaterializeTemporaryExpr and lifetime-extended by a declaration
3224class LifetimeExtendedTemporaryDecl final
3225 : public Decl,
3226 public Mergeable<LifetimeExtendedTemporaryDecl> {
3227 friend class MaterializeTemporaryExpr;
3228 friend class ASTDeclReader;
3229
3230 Stmt *ExprWithTemporary = nullptr;
3231
3232 /// The declaration which lifetime-extended this reference, if any.
3233 /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3234 ValueDecl *ExtendingDecl = nullptr;
3235 unsigned ManglingNumber;
3236
3237 mutable APValue *Value = nullptr;
3238
3239 virtual void anchor();
3240
3241 LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
3242 : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
3243 EDecl->getLocation()),
3244 ExprWithTemporary(Temp), ExtendingDecl(EDecl),
3245 ManglingNumber(Mangling) {}
3246
3247 LifetimeExtendedTemporaryDecl(EmptyShell)
3248 : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
3249
3250public:
3251 static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
3252 unsigned Mangling) {
3253 return new (EDec->getASTContext(), EDec->getDeclContext())
3254 LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
3255 }
3256 static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
3257 DeclID ID) {
3258 return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
3259 }
3260
3261 ValueDecl *getExtendingDecl() { return ExtendingDecl; }
3262 const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3263
3264 /// Retrieve the storage duration for the materialized temporary.
3265 StorageDuration getStorageDuration() const;
3266
3267 /// Retrieve the expression to which the temporary materialization conversion
3268 /// was applied. This isn't necessarily the initializer of the temporary due
3269 /// to the C++98 delayed materialization rules, but
3270 /// skipRValueSubobjectAdjustments can be used to find said initializer within
3271 /// the subexpression.
3272 Expr *getTemporaryExpr() { return cast<Expr>(Val: ExprWithTemporary); }
3273 const Expr *getTemporaryExpr() const { return cast<Expr>(Val: ExprWithTemporary); }
3274
3275 unsigned getManglingNumber() const { return ManglingNumber; }
3276
3277 /// Get the storage for the constant value of a materialized temporary
3278 /// of static storage duration.
3279 APValue *getOrCreateValue(bool MayCreate) const;
3280
3281 APValue *getValue() const { return Value; }
3282
3283 // Iterators
3284 Stmt::child_range childrenExpr() {
3285 return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3286 }
3287
3288 Stmt::const_child_range childrenExpr() const {
3289 return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3290 }
3291
3292 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3293 static bool classofKind(Kind K) {
3294 return K == Decl::LifetimeExtendedTemporary;
3295 }
3296};
3297
3298/// Represents a shadow declaration implicitly introduced into a scope by a
3299/// (resolved) using-declaration or using-enum-declaration to achieve
3300/// the desired lookup semantics.
3301///
3302/// For example:
3303/// \code
3304/// namespace A {
3305/// void foo();
3306/// void foo(int);
3307/// struct foo {};
3308/// enum bar { bar1, bar2 };
3309/// }
3310/// namespace B {
3311/// // add a UsingDecl and three UsingShadowDecls (named foo) to B.
3312/// using A::foo;
3313/// // adds UsingEnumDecl and two UsingShadowDecls (named bar1 and bar2) to B.
3314/// using enum A::bar;
3315/// }
3316/// \endcode
3317class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
3318 friend class BaseUsingDecl;
3319
3320 /// The referenced declaration.
3321 NamedDecl *Underlying = nullptr;
3322
3323 /// The using declaration which introduced this decl or the next using
3324 /// shadow declaration contained in the aforementioned using declaration.
3325 NamedDecl *UsingOrNextShadow = nullptr;
3326
3327 void anchor() override;
3328
3329 using redeclarable_base = Redeclarable<UsingShadowDecl>;
3330
3331 UsingShadowDecl *getNextRedeclarationImpl() override {
3332 return getNextRedeclaration();
3333 }
3334
3335 UsingShadowDecl *getPreviousDeclImpl() override {
3336 return getPreviousDecl();
3337 }
3338
3339 UsingShadowDecl *getMostRecentDeclImpl() override {
3340 return getMostRecentDecl();
3341 }
3342
3343protected:
3344 UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
3345 DeclarationName Name, BaseUsingDecl *Introducer,
3346 NamedDecl *Target);
3347 UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
3348
3349public:
3350 friend class ASTDeclReader;
3351 friend class ASTDeclWriter;
3352
3353 static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3354 SourceLocation Loc, DeclarationName Name,
3355 BaseUsingDecl *Introducer, NamedDecl *Target) {
3356 return new (C, DC)
3357 UsingShadowDecl(UsingShadow, C, DC, Loc, Name, Introducer, Target);
3358 }
3359
3360 static UsingShadowDecl *CreateDeserialized(ASTContext &C, DeclID ID);
3361
3362 using redecl_range = redeclarable_base::redecl_range;
3363 using redecl_iterator = redeclarable_base::redecl_iterator;
3364
3365 using redeclarable_base::redecls_begin;
3366 using redeclarable_base::redecls_end;
3367 using redeclarable_base::redecls;
3368 using redeclarable_base::getPreviousDecl;
3369 using redeclarable_base::getMostRecentDecl;
3370 using redeclarable_base::isFirstDecl;
3371
3372 UsingShadowDecl *getCanonicalDecl() override {
3373 return getFirstDecl();
3374 }
3375 const UsingShadowDecl *getCanonicalDecl() const {
3376 return getFirstDecl();
3377 }
3378
3379 /// Gets the underlying declaration which has been brought into the
3380 /// local scope.
3381 NamedDecl *getTargetDecl() const { return Underlying; }
3382
3383 /// Sets the underlying declaration which has been brought into the
3384 /// local scope.
3385 void setTargetDecl(NamedDecl *ND) {
3386 assert(ND && "Target decl is null!");
3387 Underlying = ND;
3388 // A UsingShadowDecl is never a friend or local extern declaration, even
3389 // if it is a shadow declaration for one.
3390 IdentifierNamespace =
3391 ND->getIdentifierNamespace() &
3392 ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
3393 }
3394
3395 /// Gets the (written or instantiated) using declaration that introduced this
3396 /// declaration.
3397 BaseUsingDecl *getIntroducer() const;
3398
3399 /// The next using shadow declaration contained in the shadow decl
3400 /// chain of the using declaration which introduced this decl.
3401 UsingShadowDecl *getNextUsingShadowDecl() const {
3402 return dyn_cast_or_null<UsingShadowDecl>(Val: UsingOrNextShadow);
3403 }
3404
3405 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3406 static bool classofKind(Kind K) {
3407 return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
3408 }
3409};
3410
3411/// Represents a C++ declaration that introduces decls from somewhere else. It
3412/// provides a set of the shadow decls so introduced.
3413
3414class BaseUsingDecl : public NamedDecl {
3415 /// The first shadow declaration of the shadow decl chain associated
3416 /// with this using declaration.
3417 ///
3418 /// The bool member of the pair is a bool flag a derived type may use
3419 /// (UsingDecl makes use of it).
3420 llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
3421
3422protected:
3423 BaseUsingDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
3424 : NamedDecl(DK, DC, L, N), FirstUsingShadow(nullptr, false) {}
3425
3426private:
3427 void anchor() override;
3428
3429protected:
3430 /// A bool flag for use by a derived type
3431 bool getShadowFlag() const { return FirstUsingShadow.getInt(); }
3432
3433 /// A bool flag a derived type may set
3434 void setShadowFlag(bool V) { FirstUsingShadow.setInt(V); }
3435
3436public:
3437 friend class ASTDeclReader;
3438 friend class ASTDeclWriter;
3439
3440 /// Iterates through the using shadow declarations associated with
3441 /// this using declaration.
3442 class shadow_iterator {
3443 /// The current using shadow declaration.
3444 UsingShadowDecl *Current = nullptr;
3445
3446 public:
3447 using value_type = UsingShadowDecl *;
3448 using reference = UsingShadowDecl *;
3449 using pointer = UsingShadowDecl *;
3450 using iterator_category = std::forward_iterator_tag;
3451 using difference_type = std::ptrdiff_t;
3452
3453 shadow_iterator() = default;
3454 explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
3455
3456 reference operator*() const { return Current; }
3457 pointer operator->() const { return Current; }
3458
3459 shadow_iterator &operator++() {
3460 Current = Current->getNextUsingShadowDecl();
3461 return *this;
3462 }
3463
3464 shadow_iterator operator++(int) {
3465 shadow_iterator tmp(*this);
3466 ++(*this);
3467 return tmp;
3468 }
3469
3470 friend bool operator==(shadow_iterator x, shadow_iterator y) {
3471 return x.Current == y.Current;
3472 }
3473 friend bool operator!=(shadow_iterator x, shadow_iterator y) {
3474 return x.Current != y.Current;
3475 }
3476 };
3477
3478 using shadow_range = llvm::iterator_range<shadow_iterator>;
3479
3480 shadow_range shadows() const {
3481 return shadow_range(shadow_begin(), shadow_end());
3482 }
3483
3484 shadow_iterator shadow_begin() const {
3485 return shadow_iterator(FirstUsingShadow.getPointer());
3486 }
3487
3488 shadow_iterator shadow_end() const { return shadow_iterator(); }
3489
3490 /// Return the number of shadowed declarations associated with this
3491 /// using declaration.
3492 unsigned shadow_size() const {
3493 return std::distance(first: shadow_begin(), last: shadow_end());
3494 }
3495
3496 void addShadowDecl(UsingShadowDecl *S);
3497 void removeShadowDecl(UsingShadowDecl *S);
3498
3499 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3500 static bool classofKind(Kind K) { return K == Using || K == UsingEnum; }
3501};
3502
3503/// Represents a C++ using-declaration.
3504///
3505/// For example:
3506/// \code
3507/// using someNameSpace::someIdentifier;
3508/// \endcode
3509class UsingDecl : public BaseUsingDecl, public Mergeable<UsingDecl> {
3510 /// The source location of the 'using' keyword itself.
3511 SourceLocation UsingLocation;
3512
3513 /// The nested-name-specifier that precedes the name.
3514 NestedNameSpecifierLoc QualifierLoc;
3515
3516 /// Provides source/type location info for the declaration name
3517 /// embedded in the ValueDecl base class.
3518 DeclarationNameLoc DNLoc;
3519
3520 UsingDecl(DeclContext *DC, SourceLocation UL,
3521 NestedNameSpecifierLoc QualifierLoc,
3522 const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
3523 : BaseUsingDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3524 UsingLocation(UL), QualifierLoc(QualifierLoc),
3525 DNLoc(NameInfo.getInfo()) {
3526 setShadowFlag(HasTypenameKeyword);
3527 }
3528
3529 void anchor() override;
3530
3531public:
3532 friend class ASTDeclReader;
3533 friend class ASTDeclWriter;
3534
3535 /// Return the source location of the 'using' keyword.
3536 SourceLocation getUsingLoc() const { return UsingLocation; }
3537
3538 /// Set the source location of the 'using' keyword.
3539 void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3540
3541 /// Retrieve the nested-name-specifier that qualifies the name,
3542 /// with source-location information.
3543 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3544
3545 /// Retrieve the nested-name-specifier that qualifies the name.
3546 NestedNameSpecifier *getQualifier() const {
3547 return QualifierLoc.getNestedNameSpecifier();
3548 }
3549
3550 DeclarationNameInfo getNameInfo() const {
3551 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3552 }
3553
3554 /// Return true if it is a C++03 access declaration (no 'using').
3555 bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3556
3557 /// Return true if the using declaration has 'typename'.
3558 bool hasTypename() const { return getShadowFlag(); }
3559
3560 /// Sets whether the using declaration has 'typename'.
3561 void setTypename(bool TN) { setShadowFlag(TN); }
3562
3563 static UsingDecl *Create(ASTContext &C, DeclContext *DC,
3564 SourceLocation UsingL,
3565 NestedNameSpecifierLoc QualifierLoc,
3566 const DeclarationNameInfo &NameInfo,
3567 bool HasTypenameKeyword);
3568
3569 static UsingDecl *CreateDeserialized(ASTContext &C, DeclID ID);
3570
3571 SourceRange getSourceRange() const override LLVM_READONLY;
3572
3573 /// Retrieves the canonical declaration of this declaration.
3574 UsingDecl *getCanonicalDecl() override {
3575 return cast<UsingDecl>(getFirstDecl());
3576 }
3577 const UsingDecl *getCanonicalDecl() const {
3578 return cast<UsingDecl>(getFirstDecl());
3579 }
3580
3581 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3582 static bool classofKind(Kind K) { return K == Using; }
3583};
3584
3585/// Represents a shadow constructor declaration introduced into a
3586/// class by a C++11 using-declaration that names a constructor.
3587///
3588/// For example:
3589/// \code
3590/// struct Base { Base(int); };
3591/// struct Derived {
3592/// using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
3593/// };
3594/// \endcode
3595class ConstructorUsingShadowDecl final : public UsingShadowDecl {
3596 /// If this constructor using declaration inherted the constructor
3597 /// from an indirect base class, this is the ConstructorUsingShadowDecl
3598 /// in the named direct base class from which the declaration was inherited.
3599 ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
3600
3601 /// If this constructor using declaration inherted the constructor
3602 /// from an indirect base class, this is the ConstructorUsingShadowDecl
3603 /// that will be used to construct the unique direct or virtual base class
3604 /// that receives the constructor arguments.
3605 ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
3606
3607 /// \c true if the constructor ultimately named by this using shadow
3608 /// declaration is within a virtual base class subobject of the class that
3609 /// contains this declaration.
3610 LLVM_PREFERRED_TYPE(bool)
3611 unsigned IsVirtual : 1;
3612
3613 ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
3614 UsingDecl *Using, NamedDecl *Target,
3615 bool TargetInVirtualBase)
3616 : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc,
3617 Using->getDeclName(), Using,
3618 Target->getUnderlyingDecl()),
3619 NominatedBaseClassShadowDecl(
3620 dyn_cast<ConstructorUsingShadowDecl>(Val: Target)),
3621 ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
3622 IsVirtual(TargetInVirtualBase) {
3623 // If we found a constructor that chains to a constructor for a virtual
3624 // base, we should directly call that virtual base constructor instead.
3625 // FIXME: This logic belongs in Sema.
3626 if (NominatedBaseClassShadowDecl &&
3627 NominatedBaseClassShadowDecl->constructsVirtualBase()) {
3628 ConstructedBaseClassShadowDecl =
3629 NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
3630 IsVirtual = true;
3631 }
3632 }
3633
3634 ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
3635 : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
3636
3637 void anchor() override;
3638
3639public:
3640 friend class ASTDeclReader;
3641 friend class ASTDeclWriter;
3642
3643 static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3644 SourceLocation Loc,
3645 UsingDecl *Using, NamedDecl *Target,
3646 bool IsVirtual);
3647 static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
3648 DeclID ID);
3649
3650 /// Override the UsingShadowDecl's getIntroducer, returning the UsingDecl that
3651 /// introduced this.
3652 UsingDecl *getIntroducer() const {
3653 return cast<UsingDecl>(UsingShadowDecl::getIntroducer());
3654 }
3655
3656 /// Returns the parent of this using shadow declaration, which
3657 /// is the class in which this is declared.
3658 //@{
3659 const CXXRecordDecl *getParent() const {
3660 return cast<CXXRecordDecl>(getDeclContext());
3661 }
3662 CXXRecordDecl *getParent() {
3663 return cast<CXXRecordDecl>(getDeclContext());
3664 }
3665 //@}
3666
3667 /// Get the inheriting constructor declaration for the direct base
3668 /// class from which this using shadow declaration was inherited, if there is
3669 /// one. This can be different for each redeclaration of the same shadow decl.
3670 ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
3671 return NominatedBaseClassShadowDecl;
3672 }
3673
3674 /// Get the inheriting constructor declaration for the base class
3675 /// for which we don't have an explicit initializer, if there is one.
3676 ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
3677 return ConstructedBaseClassShadowDecl;
3678 }
3679
3680 /// Get the base class that was named in the using declaration. This
3681 /// can be different for each redeclaration of this same shadow decl.
3682 CXXRecordDecl *getNominatedBaseClass() const;
3683
3684 /// Get the base class whose constructor or constructor shadow
3685 /// declaration is passed the constructor arguments.
3686 CXXRecordDecl *getConstructedBaseClass() const {
3687 return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
3688 ? ConstructedBaseClassShadowDecl
3689 : getTargetDecl())
3690 ->getDeclContext());
3691 }
3692
3693 /// Returns \c true if the constructed base class is a virtual base
3694 /// class subobject of this declaration's class.
3695 bool constructsVirtualBase() const {
3696 return IsVirtual;
3697 }
3698
3699 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3700 static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
3701};
3702
3703/// Represents a C++ using-enum-declaration.
3704///
3705/// For example:
3706/// \code
3707/// using enum SomeEnumTag ;
3708/// \endcode
3709
3710class UsingEnumDecl : public BaseUsingDecl, public Mergeable<UsingEnumDecl> {
3711 /// The source location of the 'using' keyword itself.
3712 SourceLocation UsingLocation;
3713 /// The source location of the 'enum' keyword.
3714 SourceLocation EnumLocation;
3715 /// 'qual::SomeEnum' as an EnumType, possibly with Elaborated/Typedef sugar.
3716 TypeSourceInfo *EnumType;
3717
3718 UsingEnumDecl(DeclContext *DC, DeclarationName DN, SourceLocation UL,
3719 SourceLocation EL, SourceLocation NL, TypeSourceInfo *EnumType)
3720 : BaseUsingDecl(UsingEnum, DC, NL, DN), UsingLocation(UL), EnumLocation(EL),
3721 EnumType(EnumType){}
3722
3723 void anchor() override;
3724
3725public:
3726 friend class ASTDeclReader;
3727 friend class ASTDeclWriter;
3728
3729 /// The source location of the 'using' keyword.
3730 SourceLocation getUsingLoc() const { return UsingLocation; }
3731 void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3732
3733 /// The source location of the 'enum' keyword.
3734 SourceLocation getEnumLoc() const { return EnumLocation; }
3735 void setEnumLoc(SourceLocation L) { EnumLocation = L; }
3736 NestedNameSpecifier *getQualifier() const {
3737 return getQualifierLoc().getNestedNameSpecifier();
3738 }
3739 NestedNameSpecifierLoc getQualifierLoc() const {
3740 if (auto ETL = EnumType->getTypeLoc().getAs<ElaboratedTypeLoc>())
3741 return ETL.getQualifierLoc();
3742 return NestedNameSpecifierLoc();
3743 }
3744 // Returns the "qualifier::Name" part as a TypeLoc.
3745 TypeLoc getEnumTypeLoc() const {
3746 return EnumType->getTypeLoc();
3747 }
3748 TypeSourceInfo *getEnumType() const {
3749 return EnumType;
3750 }
3751 void setEnumType(TypeSourceInfo *TSI) { EnumType = TSI; }
3752
3753public:
3754 EnumDecl *getEnumDecl() const { return cast<EnumDecl>(Val: EnumType->getType()->getAsTagDecl()); }
3755
3756 static UsingEnumDecl *Create(ASTContext &C, DeclContext *DC,
3757 SourceLocation UsingL, SourceLocation EnumL,
3758 SourceLocation NameL, TypeSourceInfo *EnumType);
3759
3760 static UsingEnumDecl *CreateDeserialized(ASTContext &C, DeclID ID);
3761
3762 SourceRange getSourceRange() const override LLVM_READONLY;
3763
3764 /// Retrieves the canonical declaration of this declaration.
3765 UsingEnumDecl *getCanonicalDecl() override {
3766 return cast<UsingEnumDecl>(getFirstDecl());
3767 }
3768 const UsingEnumDecl *getCanonicalDecl() const {
3769 return cast<UsingEnumDecl>(getFirstDecl());
3770 }
3771
3772 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3773 static bool classofKind(Kind K) { return K == UsingEnum; }
3774};
3775
3776/// Represents a pack of using declarations that a single
3777/// using-declarator pack-expanded into.
3778///
3779/// \code
3780/// template<typename ...T> struct X : T... {
3781/// using T::operator()...;
3782/// using T::operator T...;
3783/// };
3784/// \endcode
3785///
3786/// In the second case above, the UsingPackDecl will have the name
3787/// 'operator T' (which contains an unexpanded pack), but the individual
3788/// UsingDecls and UsingShadowDecls will have more reasonable names.
3789class UsingPackDecl final
3790 : public NamedDecl, public Mergeable<UsingPackDecl>,
3791 private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
3792 /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
3793 /// which this waas instantiated.
3794 NamedDecl *InstantiatedFrom;
3795
3796 /// The number of using-declarations created by this pack expansion.
3797 unsigned NumExpansions;
3798
3799 UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
3800 ArrayRef<NamedDecl *> UsingDecls)
3801 : NamedDecl(UsingPack, DC,
3802 InstantiatedFrom ? InstantiatedFrom->getLocation()
3803 : SourceLocation(),
3804 InstantiatedFrom ? InstantiatedFrom->getDeclName()
3805 : DeclarationName()),
3806 InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
3807 std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
3808 getTrailingObjects<NamedDecl *>());
3809 }
3810
3811 void anchor() override;
3812
3813public:
3814 friend class ASTDeclReader;
3815 friend class ASTDeclWriter;
3816 friend TrailingObjects;
3817
3818 /// Get the using declaration from which this was instantiated. This will
3819 /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
3820 /// that is a pack expansion.
3821 NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
3822
3823 /// Get the set of using declarations that this pack expanded into. Note that
3824 /// some of these may still be unresolved.
3825 ArrayRef<NamedDecl *> expansions() const {
3826 return llvm::ArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
3827 }
3828
3829 static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
3830 NamedDecl *InstantiatedFrom,
3831 ArrayRef<NamedDecl *> UsingDecls);
3832
3833 static UsingPackDecl *CreateDeserialized(ASTContext &C, DeclID ID,
3834 unsigned NumExpansions);
3835
3836 SourceRange getSourceRange() const override LLVM_READONLY {
3837 return InstantiatedFrom->getSourceRange();
3838 }
3839
3840 UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
3841 const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
3842
3843 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3844 static bool classofKind(Kind K) { return K == UsingPack; }
3845};
3846
3847/// Represents a dependent using declaration which was not marked with
3848/// \c typename.
3849///
3850/// Unlike non-dependent using declarations, these *only* bring through
3851/// non-types; otherwise they would break two-phase lookup.
3852///
3853/// \code
3854/// template \<class T> class A : public Base<T> {
3855/// using Base<T>::foo;
3856/// };
3857/// \endcode
3858class UnresolvedUsingValueDecl : public ValueDecl,
3859 public Mergeable<UnresolvedUsingValueDecl> {
3860 /// The source location of the 'using' keyword
3861 SourceLocation UsingLocation;
3862
3863 /// If this is a pack expansion, the location of the '...'.
3864 SourceLocation EllipsisLoc;
3865
3866 /// The nested-name-specifier that precedes the name.
3867 NestedNameSpecifierLoc QualifierLoc;
3868
3869 /// Provides source/type location info for the declaration name
3870 /// embedded in the ValueDecl base class.
3871 DeclarationNameLoc DNLoc;
3872
3873 UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
3874 SourceLocation UsingLoc,
3875 NestedNameSpecifierLoc QualifierLoc,
3876 const DeclarationNameInfo &NameInfo,
3877 SourceLocation EllipsisLoc)
3878 : ValueDecl(UnresolvedUsingValue, DC,
3879 NameInfo.getLoc(), NameInfo.getName(), Ty),
3880 UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
3881 QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
3882
3883 void anchor() override;
3884
3885public:
3886 friend class ASTDeclReader;
3887 friend class ASTDeclWriter;
3888
3889 /// Returns the source location of the 'using' keyword.
3890 SourceLocation getUsingLoc() const { return UsingLocation; }
3891
3892 /// Set the source location of the 'using' keyword.
3893 void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3894
3895 /// Return true if it is a C++03 access declaration (no 'using').
3896 bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3897
3898 /// Retrieve the nested-name-specifier that qualifies the name,
3899 /// with source-location information.
3900 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3901
3902 /// Retrieve the nested-name-specifier that qualifies the name.
3903 NestedNameSpecifier *getQualifier() const {
3904 return QualifierLoc.getNestedNameSpecifier();
3905 }
3906
3907 DeclarationNameInfo getNameInfo() const {
3908 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3909 }
3910
3911 /// Determine whether this is a pack expansion.
3912 bool isPackExpansion() const {
3913 return EllipsisLoc.isValid();
3914 }
3915
3916 /// Get the location of the ellipsis if this is a pack expansion.
3917 SourceLocation getEllipsisLoc() const {
3918 return EllipsisLoc;
3919 }
3920
3921 static UnresolvedUsingValueDecl *
3922 Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3923 NestedNameSpecifierLoc QualifierLoc,
3924 const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
3925
3926 static UnresolvedUsingValueDecl *
3927 CreateDeserialized(ASTContext &C, DeclID ID);
3928
3929 SourceRange getSourceRange() const override LLVM_READONLY;
3930
3931 /// Retrieves the canonical declaration of this declaration.
3932 UnresolvedUsingValueDecl *getCanonicalDecl() override {
3933 return getFirstDecl();
3934 }
3935 const UnresolvedUsingValueDecl *getCanonicalDecl() const {
3936 return getFirstDecl();
3937 }
3938
3939 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
3940 static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3941};
3942
3943/// Represents a dependent using declaration which was marked with
3944/// \c typename.
3945///
3946/// \code
3947/// template \<class T> class A : public Base<T> {
3948/// using typename Base<T>::foo;
3949/// };
3950/// \endcode
3951///
3952/// The type associated with an unresolved using typename decl is
3953/// currently always a typename type.
3954class UnresolvedUsingTypenameDecl
3955 : public TypeDecl,
3956 public Mergeable<UnresolvedUsingTypenameDecl> {
3957 friend class ASTDeclReader;
3958
3959 /// The source location of the 'typename' keyword
3960 SourceLocation TypenameLocation;
3961
3962 /// If this is a pack expansion, the location of the '...'.
3963 SourceLocation EllipsisLoc;
3964
3965 /// The nested-name-specifier that precedes the name.
3966 NestedNameSpecifierLoc QualifierLoc;
3967
3968 UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3969 SourceLocation TypenameLoc,
3970 NestedNameSpecifierLoc QualifierLoc,
3971 SourceLocation TargetNameLoc,
3972 IdentifierInfo *TargetName,
3973 SourceLocation EllipsisLoc)
3974 : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3975 UsingLoc),
3976 TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
3977 QualifierLoc(QualifierLoc) {}
3978
3979 void anchor() override;
3980
3981public:
3982 /// Returns the source location of the 'using' keyword.
3983 SourceLocation getUsingLoc() const { return getBeginLoc(); }
3984
3985 /// Returns the source location of the 'typename' keyword.
3986 SourceLocation getTypenameLoc() const { return TypenameLocation; }
3987
3988 /// Retrieve the nested-name-specifier that qualifies the name,
3989 /// with source-location information.
3990 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3991
3992 /// Retrieve the nested-name-specifier that qualifies the name.
3993 NestedNameSpecifier *getQualifier() const {
3994 return QualifierLoc.getNestedNameSpecifier();
3995 }
3996
3997 DeclarationNameInfo getNameInfo() const {
3998 return DeclarationNameInfo(getDeclName(), getLocation());
3999 }
4000
4001 /// Determine whether this is a pack expansion.
4002 bool isPackExpansion() const {
4003 return EllipsisLoc.isValid();
4004 }
4005
4006 /// Get the location of the ellipsis if this is a pack expansion.
4007 SourceLocation getEllipsisLoc() const {
4008 return EllipsisLoc;
4009 }
4010
4011 static UnresolvedUsingTypenameDecl *
4012 Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
4013 SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
4014 SourceLocation TargetNameLoc, DeclarationName TargetName,
4015 SourceLocation EllipsisLoc);
4016
4017 static UnresolvedUsingTypenameDecl *
4018 CreateDeserialized(ASTContext &C, DeclID ID);
4019
4020 /// Retrieves the canonical declaration of this declaration.
4021 UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
4022 return getFirstDecl();
4023 }
4024 const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
4025 return getFirstDecl();
4026 }
4027
4028 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
4029 static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
4030};
4031
4032/// This node is generated when a using-declaration that was annotated with
4033/// __attribute__((using_if_exists)) failed to resolve to a known declaration.
4034/// In that case, Sema builds a UsingShadowDecl whose target is an instance of
4035/// this declaration, adding it to the current scope. Referring to this
4036/// declaration in any way is an error.
4037class UnresolvedUsingIfExistsDecl final : public NamedDecl {
4038 UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc,
4039 DeclarationName Name);
4040
4041 void anchor() override;
4042
4043public:
4044 static UnresolvedUsingIfExistsDecl *Create(ASTContext &Ctx, DeclContext *DC,
4045 SourceLocation Loc,
4046 DeclarationName Name);
4047 static UnresolvedUsingIfExistsDecl *CreateDeserialized(ASTContext &Ctx,
4048 DeclID ID);
4049
4050 static bool classof(const Decl *D) { return classofKind(K: D->getKind()); }
4051 static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingIfExists; }
4052};
4053
4054/// Represents a C++11 static_assert declaration.
4055class StaticAssertDecl : public Decl {
4056 llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
4057 Expr *Message;
4058 SourceLocation RParenLoc;
4059
4060 StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
4061 Expr *AssertExpr, Expr *Message, SourceLocation RParenLoc,
4062 bool Failed)
4063 : Decl(StaticAssert, DC, StaticAssertLoc),
4064