1 | //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// This file implements classes for searching and analyzing source code clones. |
10 | /// |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/Analysis/CloneDetection.h" |
14 | #include "clang/AST/Attr.h" |
15 | #include "clang/AST/DataCollection.h" |
16 | #include "clang/Basic/SourceManager.h" |
17 | #include "llvm/Support/MD5.h" |
18 | #include "llvm/Support/Path.h" |
19 | |
20 | using namespace clang; |
21 | |
22 | StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D, |
23 | unsigned StartIndex, unsigned EndIndex) |
24 | : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) { |
25 | assert(Stmt && "Stmt must not be a nullptr"); |
26 | assert(StartIndex < EndIndex && "Given array should not be empty"); |
27 | assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt"); |
28 | } |
29 | |
30 | StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D) |
31 | : S(Stmt), D(D), StartIndex(0), EndIndex(0) {} |
32 | |
33 | StmtSequence::StmtSequence() |
34 | : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {} |
35 | |
36 | bool StmtSequence::contains(const StmtSequence &Other) const { |
37 | // If both sequences reside in different declarations, they can never contain |
38 | // each other. |
39 | if (D != Other.D) |
40 | return false; |
41 | |
42 | const SourceManager &SM = getASTContext().getSourceManager(); |
43 | |
44 | // Otherwise check if the start and end locations of the current sequence |
45 | // surround the other sequence. |
46 | bool StartIsInBounds = |
47 | SM.isBeforeInTranslationUnit(LHS: getBeginLoc(), RHS: Other.getBeginLoc()) || |
48 | getBeginLoc() == Other.getBeginLoc(); |
49 | if (!StartIsInBounds) |
50 | return false; |
51 | |
52 | bool EndIsInBounds = |
53 | SM.isBeforeInTranslationUnit(LHS: Other.getEndLoc(), RHS: getEndLoc()) || |
54 | Other.getEndLoc() == getEndLoc(); |
55 | return EndIsInBounds; |
56 | } |
57 | |
58 | StmtSequence::iterator StmtSequence::begin() const { |
59 | if (!holdsSequence()) { |
60 | return &S; |
61 | } |
62 | auto CS = cast<CompoundStmt>(Val: S); |
63 | return CS->body_begin() + StartIndex; |
64 | } |
65 | |
66 | StmtSequence::iterator StmtSequence::end() const { |
67 | if (!holdsSequence()) { |
68 | return reinterpret_cast<StmtSequence::iterator>(&S) + 1; |
69 | } |
70 | auto CS = cast<CompoundStmt>(Val: S); |
71 | return CS->body_begin() + EndIndex; |
72 | } |
73 | |
74 | ASTContext &StmtSequence::getASTContext() const { |
75 | assert(D); |
76 | return D->getASTContext(); |
77 | } |
78 | |
79 | SourceLocation StmtSequence::getBeginLoc() const { |
80 | return front()->getBeginLoc(); |
81 | } |
82 | |
83 | SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); } |
84 | |
85 | SourceRange StmtSequence::getSourceRange() const { |
86 | return SourceRange(getBeginLoc(), getEndLoc()); |
87 | } |
88 | |
89 | void CloneDetector::analyzeCodeBody(const Decl *D) { |
90 | assert(D); |
91 | assert(D->hasBody()); |
92 | |
93 | Sequences.push_back(Elt: StmtSequence(D->getBody(), D)); |
94 | } |
95 | |
96 | /// Returns true if and only if \p Stmt contains at least one other |
97 | /// sequence in the \p Group. |
98 | static bool containsAnyInGroup(StmtSequence &Seq, |
99 | CloneDetector::CloneGroup &Group) { |
100 | for (StmtSequence &GroupSeq : Group) { |
101 | if (Seq.contains(Other: GroupSeq)) |
102 | return true; |
103 | } |
104 | return false; |
105 | } |
106 | |
107 | /// Returns true if and only if all sequences in \p OtherGroup are |
108 | /// contained by a sequence in \p Group. |
109 | static bool containsGroup(CloneDetector::CloneGroup &Group, |
110 | CloneDetector::CloneGroup &OtherGroup) { |
111 | // We have less sequences in the current group than we have in the other, |
112 | // so we will never fulfill the requirement for returning true. This is only |
113 | // possible because we know that a sequence in Group can contain at most |
114 | // one sequence in OtherGroup. |
115 | if (Group.size() < OtherGroup.size()) |
116 | return false; |
117 | |
118 | for (StmtSequence &Stmt : Group) { |
119 | if (!containsAnyInGroup(Seq&: Stmt, Group&: OtherGroup)) |
120 | return false; |
121 | } |
122 | return true; |
123 | } |
124 | |
125 | void OnlyLargestCloneConstraint::constrain( |
126 | std::vector<CloneDetector::CloneGroup> &Result) { |
127 | std::vector<unsigned> IndexesToRemove; |
128 | |
129 | // Compare every group in the result with the rest. If one groups contains |
130 | // another group, we only need to return the bigger group. |
131 | // Note: This doesn't scale well, so if possible avoid calling any heavy |
132 | // function from this loop to minimize the performance impact. |
133 | for (unsigned i = 0; i < Result.size(); ++i) { |
134 | for (unsigned j = 0; j < Result.size(); ++j) { |
135 | // Don't compare a group with itself. |
136 | if (i == j) |
137 | continue; |
138 | |
139 | if (containsGroup(Group&: Result[j], OtherGroup&: Result[i])) { |
140 | IndexesToRemove.push_back(x: i); |
141 | break; |
142 | } |
143 | } |
144 | } |
145 | |
146 | // Erasing a list of indexes from the vector should be done with decreasing |
147 | // indexes. As IndexesToRemove is constructed with increasing values, we just |
148 | // reverse iterate over it to get the desired order. |
149 | for (unsigned I : llvm::reverse(C&: IndexesToRemove)) |
150 | Result.erase(position: Result.begin() + I); |
151 | } |
152 | |
153 | bool FilenamePatternConstraint::isAutoGenerated( |
154 | const CloneDetector::CloneGroup &Group) { |
155 | if (IgnoredFilesPattern.empty() || Group.empty() || |
156 | !IgnoredFilesRegex->isValid()) |
157 | return false; |
158 | |
159 | for (const StmtSequence &S : Group) { |
160 | const SourceManager &SM = S.getASTContext().getSourceManager(); |
161 | StringRef Filename = llvm::sys::path::filename( |
162 | path: SM.getFilename(SpellingLoc: S.getContainingDecl()->getLocation())); |
163 | if (IgnoredFilesRegex->match(String: Filename)) |
164 | return true; |
165 | } |
166 | |
167 | return false; |
168 | } |
169 | |
170 | /// This class defines what a type II code clone is: If it collects for two |
171 | /// statements the same data, then those two statements are considered to be |
172 | /// clones of each other. |
173 | /// |
174 | /// All collected data is forwarded to the given data consumer of the type T. |
175 | /// The data consumer class needs to provide a member method with the signature: |
176 | /// update(StringRef Str) |
177 | namespace { |
178 | template <class T> |
179 | class CloneTypeIIStmtDataCollector |
180 | : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> { |
181 | ASTContext &Context; |
182 | /// The data sink to which all data is forwarded. |
183 | T &DataConsumer; |
184 | |
185 | template <class Ty> void addData(const Ty &Data) { |
186 | data_collection::addDataToConsumer(DataConsumer, Data); |
187 | } |
188 | |
189 | public: |
190 | CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context, |
191 | T &DataConsumer) |
192 | : Context(Context), DataConsumer(DataConsumer) { |
193 | this->Visit(S); |
194 | } |
195 | |
196 | // Define a visit method for each class to collect data and subsequently visit |
197 | // all parent classes. This uses a template so that custom visit methods by us |
198 | // take precedence. |
199 | #define DEF_ADD_DATA(CLASS, CODE) \ |
200 | template <class = void> void Visit##CLASS(const CLASS *S) { \ |
201 | CODE; \ |
202 | ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ |
203 | } |
204 | |
205 | #include "clang/AST/StmtDataCollectors.inc" |
206 | |
207 | // Type II clones ignore variable names and literals, so let's skip them. |
208 | #define SKIP(CLASS) \ |
209 | void Visit##CLASS(const CLASS *S) { \ |
210 | ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \ |
211 | } |
212 | SKIP(DeclRefExpr) |
213 | SKIP(MemberExpr) |
214 | SKIP(IntegerLiteral) |
215 | SKIP(FloatingLiteral) |
216 | SKIP(StringLiteral) |
217 | SKIP(CXXBoolLiteralExpr) |
218 | SKIP(CharacterLiteral) |
219 | #undef SKIP |
220 | }; |
221 | } // end anonymous namespace |
222 | |
223 | static size_t createHash(llvm::MD5 &Hash) { |
224 | size_t HashCode; |
225 | |
226 | // Create the final hash code for the current Stmt. |
227 | llvm::MD5::MD5Result HashResult; |
228 | Hash.final(Result&: HashResult); |
229 | |
230 | // Copy as much as possible of the generated hash code to the Stmt's hash |
231 | // code. |
232 | std::memcpy(dest: &HashCode, src: &HashResult, |
233 | n: std::min(a: sizeof(HashCode), b: sizeof(HashResult))); |
234 | |
235 | return HashCode; |
236 | } |
237 | |
238 | /// Generates and saves a hash code for the given Stmt. |
239 | /// \param S The given Stmt. |
240 | /// \param D The Decl containing S. |
241 | /// \param StmtsByHash Output parameter that will contain the hash codes for |
242 | /// each StmtSequence in the given Stmt. |
243 | /// \return The hash code of the given Stmt. |
244 | /// |
245 | /// If the given Stmt is a CompoundStmt, this method will also generate |
246 | /// hashes for all possible StmtSequences in the children of this Stmt. |
247 | static size_t |
248 | saveHash(const Stmt *S, const Decl *D, |
249 | std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) { |
250 | llvm::MD5 Hash; |
251 | ASTContext &Context = D->getASTContext(); |
252 | |
253 | CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash); |
254 | |
255 | auto CS = dyn_cast<CompoundStmt>(Val: S); |
256 | SmallVector<size_t, 8> ChildHashes; |
257 | |
258 | for (const Stmt *Child : S->children()) { |
259 | if (Child == nullptr) { |
260 | ChildHashes.push_back(Elt: 0); |
261 | continue; |
262 | } |
263 | size_t ChildHash = saveHash(S: Child, D, StmtsByHash); |
264 | Hash.update( |
265 | Str: StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); |
266 | ChildHashes.push_back(Elt: ChildHash); |
267 | } |
268 | |
269 | if (CS) { |
270 | // If we're in a CompoundStmt, we hash all possible combinations of child |
271 | // statements to find clones in those subsequences. |
272 | // We first go through every possible starting position of a subsequence. |
273 | for (unsigned Pos = 0; Pos < CS->size(); ++Pos) { |
274 | // Then we try all possible lengths this subsequence could have and |
275 | // reuse the same hash object to make sure we only hash every child |
276 | // hash exactly once. |
277 | llvm::MD5 Hash; |
278 | for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) { |
279 | // Grab the current child hash and put it into our hash. We do |
280 | // -1 on the index because we start counting the length at 1. |
281 | size_t ChildHash = ChildHashes[Pos + Length - 1]; |
282 | Hash.update( |
283 | Str: StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash))); |
284 | // If we have at least two elements in our subsequence, we can start |
285 | // saving it. |
286 | if (Length > 1) { |
287 | llvm::MD5 SubHash = Hash; |
288 | StmtsByHash.push_back(x: std::make_pair( |
289 | x: createHash(Hash&: SubHash), y: StmtSequence(CS, D, Pos, Pos + Length))); |
290 | } |
291 | } |
292 | } |
293 | } |
294 | |
295 | size_t HashCode = createHash(Hash); |
296 | StmtsByHash.push_back(x: std::make_pair(x&: HashCode, y: StmtSequence(S, D))); |
297 | return HashCode; |
298 | } |
299 | |
300 | namespace { |
301 | /// Wrapper around FoldingSetNodeID that it can be used as the template |
302 | /// argument of the StmtDataCollector. |
303 | class FoldingSetNodeIDWrapper { |
304 | |
305 | llvm::FoldingSetNodeID &FS; |
306 | |
307 | public: |
308 | FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {} |
309 | |
310 | void update(StringRef Str) { FS.AddString(String: Str); } |
311 | }; |
312 | } // end anonymous namespace |
313 | |
314 | /// Writes the relevant data from all statements and child statements |
315 | /// in the given StmtSequence into the given FoldingSetNodeID. |
316 | static void CollectStmtSequenceData(const StmtSequence &Sequence, |
317 | FoldingSetNodeIDWrapper &OutputData) { |
318 | for (const Stmt *S : Sequence) { |
319 | CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>( |
320 | S, Sequence.getASTContext(), OutputData); |
321 | |
322 | for (const Stmt *Child : S->children()) { |
323 | if (!Child) |
324 | continue; |
325 | |
326 | CollectStmtSequenceData(Sequence: StmtSequence(Child, Sequence.getContainingDecl()), |
327 | OutputData); |
328 | } |
329 | } |
330 | } |
331 | |
332 | /// Returns true if both sequences are clones of each other. |
333 | static bool areSequencesClones(const StmtSequence &LHS, |
334 | const StmtSequence &RHS) { |
335 | // We collect the data from all statements in the sequence as we did before |
336 | // when generating a hash value for each sequence. But this time we don't |
337 | // hash the collected data and compare the whole data set instead. This |
338 | // prevents any false-positives due to hash code collisions. |
339 | llvm::FoldingSetNodeID DataLHS, DataRHS; |
340 | FoldingSetNodeIDWrapper LHSWrapper(DataLHS); |
341 | FoldingSetNodeIDWrapper RHSWrapper(DataRHS); |
342 | |
343 | CollectStmtSequenceData(Sequence: LHS, OutputData&: LHSWrapper); |
344 | CollectStmtSequenceData(Sequence: RHS, OutputData&: RHSWrapper); |
345 | |
346 | return DataLHS == DataRHS; |
347 | } |
348 | |
349 | void RecursiveCloneTypeIIHashConstraint::constrain( |
350 | std::vector<CloneDetector::CloneGroup> &Sequences) { |
351 | // FIXME: Maybe we can do this in-place and don't need this additional vector. |
352 | std::vector<CloneDetector::CloneGroup> Result; |
353 | |
354 | for (CloneDetector::CloneGroup &Group : Sequences) { |
355 | // We assume in the following code that the Group is non-empty, so we |
356 | // skip all empty groups. |
357 | if (Group.empty()) |
358 | continue; |
359 | |
360 | std::vector<std::pair<size_t, StmtSequence>> StmtsByHash; |
361 | |
362 | // Generate hash codes for all children of S and save them in StmtsByHash. |
363 | for (const StmtSequence &S : Group) { |
364 | saveHash(S: S.front(), D: S.getContainingDecl(), StmtsByHash); |
365 | } |
366 | |
367 | // Sort hash_codes in StmtsByHash. |
368 | llvm::stable_sort(Range&: StmtsByHash, C: llvm::less_first()); |
369 | |
370 | // Check for each StmtSequence if its successor has the same hash value. |
371 | // We don't check the last StmtSequence as it has no successor. |
372 | // Note: The 'size - 1 ' in the condition is safe because we check for an |
373 | // empty Group vector at the beginning of this function. |
374 | for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) { |
375 | const auto Current = StmtsByHash[i]; |
376 | |
377 | // It's likely that we just found a sequence of StmtSequences that |
378 | // represent a CloneGroup, so we create a new group and start checking and |
379 | // adding the StmtSequences in this sequence. |
380 | CloneDetector::CloneGroup NewGroup; |
381 | |
382 | size_t PrototypeHash = Current.first; |
383 | |
384 | for (; i < StmtsByHash.size(); ++i) { |
385 | // A different hash value means we have reached the end of the sequence. |
386 | if (PrototypeHash != StmtsByHash[i].first) { |
387 | // The current sequence could be the start of a new CloneGroup. So we |
388 | // decrement i so that we visit it again in the outer loop. |
389 | // Note: i can never be 0 at this point because we are just comparing |
390 | // the hash of the Current StmtSequence with itself in the 'if' above. |
391 | assert(i != 0); |
392 | --i; |
393 | break; |
394 | } |
395 | // Same hash value means we should add the StmtSequence to the current |
396 | // group. |
397 | NewGroup.push_back(Elt: StmtsByHash[i].second); |
398 | } |
399 | |
400 | // We created a new clone group with matching hash codes and move it to |
401 | // the result vector. |
402 | Result.push_back(x: NewGroup); |
403 | } |
404 | } |
405 | // Sequences is the output parameter, so we copy our result into it. |
406 | Sequences = Result; |
407 | } |
408 | |
409 | void RecursiveCloneTypeIIVerifyConstraint::constrain( |
410 | std::vector<CloneDetector::CloneGroup> &Sequences) { |
411 | CloneConstraint::splitCloneGroups( |
412 | CloneGroups&: Sequences, Compare: [](const StmtSequence &A, const StmtSequence &B) { |
413 | return areSequencesClones(LHS: A, RHS: B); |
414 | }); |
415 | } |
416 | |
417 | size_t MinComplexityConstraint::calculateStmtComplexity( |
418 | const StmtSequence &Seq, std::size_t Limit, |
419 | const std::string &ParentMacroStack) { |
420 | if (Seq.empty()) |
421 | return 0; |
422 | |
423 | size_t Complexity = 1; |
424 | |
425 | ASTContext &Context = Seq.getASTContext(); |
426 | |
427 | // Look up what macros expanded into the current statement. |
428 | std::string MacroStack = |
429 | data_collection::getMacroStack(Loc: Seq.getBeginLoc(), Context); |
430 | |
431 | // First, check if ParentMacroStack is not empty which means we are currently |
432 | // dealing with a parent statement which was expanded from a macro. |
433 | // If this parent statement was expanded from the same macros as this |
434 | // statement, we reduce the initial complexity of this statement to zero. |
435 | // This causes that a group of statements that were generated by a single |
436 | // macro expansion will only increase the total complexity by one. |
437 | // Note: This is not the final complexity of this statement as we still |
438 | // add the complexity of the child statements to the complexity value. |
439 | if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) { |
440 | Complexity = 0; |
441 | } |
442 | |
443 | // Iterate over the Stmts in the StmtSequence and add their complexity values |
444 | // to the current complexity value. |
445 | if (Seq.holdsSequence()) { |
446 | for (const Stmt *S : Seq) { |
447 | Complexity += calculateStmtComplexity( |
448 | Seq: StmtSequence(S, Seq.getContainingDecl()), Limit, ParentMacroStack: MacroStack); |
449 | if (Complexity >= Limit) |
450 | return Limit; |
451 | } |
452 | } else { |
453 | for (const Stmt *S : Seq.front()->children()) { |
454 | Complexity += calculateStmtComplexity( |
455 | Seq: StmtSequence(S, Seq.getContainingDecl()), Limit, ParentMacroStack: MacroStack); |
456 | if (Complexity >= Limit) |
457 | return Limit; |
458 | } |
459 | } |
460 | return Complexity; |
461 | } |
462 | |
463 | void MatchingVariablePatternConstraint::constrain( |
464 | std::vector<CloneDetector::CloneGroup> &CloneGroups) { |
465 | CloneConstraint::splitCloneGroups( |
466 | CloneGroups, Compare: [](const StmtSequence &A, const StmtSequence &B) { |
467 | VariablePattern PatternA(A); |
468 | VariablePattern PatternB(B); |
469 | return PatternA.countPatternDifferences(Other: PatternB) == 0; |
470 | }); |
471 | } |
472 | |
473 | void CloneConstraint::splitCloneGroups( |
474 | std::vector<CloneDetector::CloneGroup> &CloneGroups, |
475 | llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)> |
476 | Compare) { |
477 | std::vector<CloneDetector::CloneGroup> Result; |
478 | for (auto &HashGroup : CloneGroups) { |
479 | // Contains all indexes in HashGroup that were already added to a |
480 | // CloneGroup. |
481 | std::vector<char> Indexes; |
482 | Indexes.resize(new_size: HashGroup.size()); |
483 | |
484 | for (unsigned i = 0; i < HashGroup.size(); ++i) { |
485 | // Skip indexes that are already part of a CloneGroup. |
486 | if (Indexes[i]) |
487 | continue; |
488 | |
489 | // Pick the first unhandled StmtSequence and consider it as the |
490 | // beginning |
491 | // of a new CloneGroup for now. |
492 | // We don't add i to Indexes because we never iterate back. |
493 | StmtSequence Prototype = HashGroup[i]; |
494 | CloneDetector::CloneGroup PotentialGroup = {Prototype}; |
495 | ++Indexes[i]; |
496 | |
497 | // Check all following StmtSequences for clones. |
498 | for (unsigned j = i + 1; j < HashGroup.size(); ++j) { |
499 | // Skip indexes that are already part of a CloneGroup. |
500 | if (Indexes[j]) |
501 | continue; |
502 | |
503 | // If a following StmtSequence belongs to our CloneGroup, we add it. |
504 | const StmtSequence &Candidate = HashGroup[j]; |
505 | |
506 | if (!Compare(Prototype, Candidate)) |
507 | continue; |
508 | |
509 | PotentialGroup.push_back(Elt: Candidate); |
510 | // Make sure we never visit this StmtSequence again. |
511 | ++Indexes[j]; |
512 | } |
513 | |
514 | // Otherwise, add it to the result and continue searching for more |
515 | // groups. |
516 | Result.push_back(x: PotentialGroup); |
517 | } |
518 | |
519 | assert(llvm::all_of(Indexes, [](char c) { return c == 1; })); |
520 | } |
521 | CloneGroups = Result; |
522 | } |
523 | |
524 | void VariablePattern::addVariableOccurence(const VarDecl *VarDecl, |
525 | const Stmt *Mention) { |
526 | // First check if we already reference this variable |
527 | for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { |
528 | if (Variables[KindIndex] == VarDecl) { |
529 | // If yes, add a new occurrence that points to the existing entry in |
530 | // the Variables vector. |
531 | Occurences.emplace_back(args&: KindIndex, args&: Mention); |
532 | return; |
533 | } |
534 | } |
535 | // If this variable wasn't already referenced, add it to the list of |
536 | // referenced variables and add a occurrence that points to this new entry. |
537 | Occurences.emplace_back(args: Variables.size(), args&: Mention); |
538 | Variables.push_back(x: VarDecl); |
539 | } |
540 | |
541 | void VariablePattern::addVariables(const Stmt *S) { |
542 | // Sometimes we get a nullptr (such as from IfStmts which often have nullptr |
543 | // children). We skip such statements as they don't reference any |
544 | // variables. |
545 | if (!S) |
546 | return; |
547 | |
548 | // Check if S is a reference to a variable. If yes, add it to the pattern. |
549 | if (auto D = dyn_cast<DeclRefExpr>(Val: S)) { |
550 | if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl())) |
551 | addVariableOccurence(VarDecl: VD, Mention: D); |
552 | } |
553 | |
554 | // Recursively check all children of the given statement. |
555 | for (const Stmt *Child : S->children()) { |
556 | addVariables(S: Child); |
557 | } |
558 | } |
559 | |
560 | unsigned VariablePattern::countPatternDifferences( |
561 | const VariablePattern &Other, |
562 | VariablePattern::SuspiciousClonePair *FirstMismatch) { |
563 | unsigned NumberOfDifferences = 0; |
564 | |
565 | assert(Other.Occurences.size() == Occurences.size()); |
566 | for (unsigned i = 0; i < Occurences.size(); ++i) { |
567 | auto ThisOccurence = Occurences[i]; |
568 | auto OtherOccurence = Other.Occurences[i]; |
569 | if (ThisOccurence.KindID == OtherOccurence.KindID) |
570 | continue; |
571 | |
572 | ++NumberOfDifferences; |
573 | |
574 | // If FirstMismatch is not a nullptr, we need to store information about |
575 | // the first difference between the two patterns. |
576 | if (FirstMismatch == nullptr) |
577 | continue; |
578 | |
579 | // Only proceed if we just found the first difference as we only store |
580 | // information about the first difference. |
581 | if (NumberOfDifferences != 1) |
582 | continue; |
583 | |
584 | const VarDecl *FirstSuggestion = nullptr; |
585 | // If there is a variable available in the list of referenced variables |
586 | // which wouldn't break the pattern if it is used in place of the |
587 | // current variable, we provide this variable as the suggested fix. |
588 | if (OtherOccurence.KindID < Variables.size()) |
589 | FirstSuggestion = Variables[OtherOccurence.KindID]; |
590 | |
591 | // Store information about the first clone. |
592 | FirstMismatch->FirstCloneInfo = |
593 | VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( |
594 | Variables[ThisOccurence.KindID], ThisOccurence.Mention, |
595 | FirstSuggestion); |
596 | |
597 | // Same as above but with the other clone. We do this for both clones as |
598 | // we don't know which clone is the one containing the unintended |
599 | // pattern error. |
600 | const VarDecl *SecondSuggestion = nullptr; |
601 | if (ThisOccurence.KindID < Other.Variables.size()) |
602 | SecondSuggestion = Other.Variables[ThisOccurence.KindID]; |
603 | |
604 | // Store information about the second clone. |
605 | FirstMismatch->SecondCloneInfo = |
606 | VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo( |
607 | Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention, |
608 | SecondSuggestion); |
609 | |
610 | // SuspiciousClonePair guarantees that the first clone always has a |
611 | // suggested variable associated with it. As we know that one of the two |
612 | // clones in the pair always has suggestion, we swap the two clones |
613 | // in case the first clone has no suggested variable which means that |
614 | // the second clone has a suggested variable and should be first. |
615 | if (!FirstMismatch->FirstCloneInfo.Suggestion) |
616 | std::swap(a&: FirstMismatch->FirstCloneInfo, b&: FirstMismatch->SecondCloneInfo); |
617 | |
618 | // This ensures that we always have at least one suggestion in a pair. |
619 | assert(FirstMismatch->FirstCloneInfo.Suggestion); |
620 | } |
621 | |
622 | return NumberOfDifferences; |
623 | } |
624 |
Definitions
- StmtSequence
- StmtSequence
- StmtSequence
- contains
- begin
- end
- getASTContext
- getBeginLoc
- getEndLoc
- getSourceRange
- analyzeCodeBody
- containsAnyInGroup
- containsGroup
- constrain
- isAutoGenerated
- CloneTypeIIStmtDataCollector
- addData
- CloneTypeIIStmtDataCollector
- createHash
- saveHash
- FoldingSetNodeIDWrapper
- FoldingSetNodeIDWrapper
- update
- CollectStmtSequenceData
- areSequencesClones
- constrain
- constrain
- calculateStmtComplexity
- constrain
- splitCloneGroups
- addVariableOccurence
- addVariables
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more