1 | //===--- TargetInfo.cpp - Information about Target machine ----------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the TargetInfo interface. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/Basic/TargetInfo.h" |
14 | #include "clang/Basic/AddressSpaces.h" |
15 | #include "clang/Basic/CharInfo.h" |
16 | #include "clang/Basic/Diagnostic.h" |
17 | #include "clang/Basic/DiagnosticFrontend.h" |
18 | #include "clang/Basic/LangOptions.h" |
19 | #include "llvm/ADT/APFloat.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/Support/ErrorHandling.h" |
22 | #include "llvm/TargetParser/TargetParser.h" |
23 | #include <cstdlib> |
24 | using namespace clang; |
25 | |
26 | static const LangASMap DefaultAddrSpaceMap = {0}; |
27 | // The fake address space map must have a distinct entry for each |
28 | // language-specific address space. |
29 | static const LangASMap FakeAddrSpaceMap = { |
30 | 0, // Default |
31 | 1, // opencl_global |
32 | 3, // opencl_local |
33 | 2, // opencl_constant |
34 | 0, // opencl_private |
35 | 4, // opencl_generic |
36 | 5, // opencl_global_device |
37 | 6, // opencl_global_host |
38 | 7, // cuda_device |
39 | 8, // cuda_constant |
40 | 9, // cuda_shared |
41 | 1, // sycl_global |
42 | 5, // sycl_global_device |
43 | 6, // sycl_global_host |
44 | 3, // sycl_local |
45 | 0, // sycl_private |
46 | 10, // ptr32_sptr |
47 | 11, // ptr32_uptr |
48 | 12, // ptr64 |
49 | 13, // hlsl_groupshared |
50 | 14, // hlsl_constant |
51 | 15, // hlsl_private |
52 | 16, // hlsl_device |
53 | 17, // hlsl_input |
54 | 20, // wasm_funcref |
55 | }; |
56 | |
57 | // TargetInfo Constructor. |
58 | TargetInfo::TargetInfo(const llvm::Triple &T) : Triple(T) { |
59 | // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or |
60 | // SPARC. These should be overridden by concrete targets as needed. |
61 | BigEndian = !T.isLittleEndian(); |
62 | TLSSupported = true; |
63 | VLASupported = true; |
64 | NoAsmVariants = false; |
65 | HasLegalHalfType = false; |
66 | HalfArgsAndReturns = false; |
67 | HasFloat128 = false; |
68 | HasIbm128 = false; |
69 | HasFloat16 = false; |
70 | HasBFloat16 = false; |
71 | HasFullBFloat16 = false; |
72 | HasLongDouble = true; |
73 | HasFPReturn = true; |
74 | HasStrictFP = false; |
75 | PointerWidth = PointerAlign = 32; |
76 | BoolWidth = BoolAlign = 8; |
77 | ShortWidth = ShortAlign = 16; |
78 | IntWidth = IntAlign = 32; |
79 | LongWidth = LongAlign = 32; |
80 | LongLongWidth = LongLongAlign = 64; |
81 | Int128Align = 128; |
82 | |
83 | // Fixed point default bit widths |
84 | ShortAccumWidth = ShortAccumAlign = 16; |
85 | AccumWidth = AccumAlign = 32; |
86 | LongAccumWidth = LongAccumAlign = 64; |
87 | ShortFractWidth = ShortFractAlign = 8; |
88 | FractWidth = FractAlign = 16; |
89 | LongFractWidth = LongFractAlign = 32; |
90 | |
91 | // Fixed point default integral and fractional bit sizes |
92 | // We give the _Accum 1 fewer fractional bits than their corresponding _Fract |
93 | // types by default to have the same number of fractional bits between _Accum |
94 | // and _Fract types. |
95 | PaddingOnUnsignedFixedPoint = false; |
96 | ShortAccumScale = 7; |
97 | AccumScale = 15; |
98 | LongAccumScale = 31; |
99 | |
100 | SuitableAlign = 64; |
101 | DefaultAlignForAttributeAligned = 128; |
102 | MinGlobalAlign = 0; |
103 | // From the glibc documentation, on GNU systems, malloc guarantees 16-byte |
104 | // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See |
105 | // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. |
106 | // This alignment guarantee also applies to Windows and Android. On Darwin |
107 | // and OpenBSD, the alignment is 16 bytes on both 64-bit and 32-bit systems. |
108 | if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid() || |
109 | T.isOHOSFamily()) |
110 | NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; |
111 | else if (T.isOSDarwin() || T.isOSOpenBSD()) |
112 | NewAlign = 128; |
113 | else |
114 | NewAlign = 0; // Infer from basic type alignment. |
115 | HalfWidth = 16; |
116 | HalfAlign = 16; |
117 | FloatWidth = 32; |
118 | FloatAlign = 32; |
119 | DoubleWidth = 64; |
120 | DoubleAlign = 64; |
121 | LongDoubleWidth = 64; |
122 | LongDoubleAlign = 64; |
123 | Float128Align = 128; |
124 | Ibm128Align = 128; |
125 | LargeArrayMinWidth = 0; |
126 | LargeArrayAlign = 0; |
127 | MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; |
128 | MaxVectorAlign = 0; |
129 | MaxTLSAlign = 0; |
130 | SizeType = UnsignedLong; |
131 | PtrDiffType = SignedLong; |
132 | IntMaxType = SignedLongLong; |
133 | IntPtrType = SignedLong; |
134 | WCharType = SignedInt; |
135 | WIntType = SignedInt; |
136 | Char16Type = UnsignedShort; |
137 | Char32Type = UnsignedInt; |
138 | Int64Type = SignedLongLong; |
139 | Int16Type = SignedShort; |
140 | SigAtomicType = SignedInt; |
141 | ProcessIDType = SignedInt; |
142 | UseSignedCharForObjCBool = true; |
143 | UseBitFieldTypeAlignment = true; |
144 | UseZeroLengthBitfieldAlignment = false; |
145 | UseLeadingZeroLengthBitfield = true; |
146 | UseExplicitBitFieldAlignment = true; |
147 | ZeroLengthBitfieldBoundary = 0; |
148 | LargestOverSizedBitfieldContainer = 64; |
149 | MaxAlignedAttribute = 0; |
150 | HalfFormat = &llvm::APFloat::IEEEhalf(); |
151 | FloatFormat = &llvm::APFloat::IEEEsingle(); |
152 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
153 | LongDoubleFormat = &llvm::APFloat::IEEEdouble(); |
154 | Float128Format = &llvm::APFloat::IEEEquad(); |
155 | Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); |
156 | MCountName = "mcount"; |
157 | UserLabelPrefix = "_"; |
158 | RegParmMax = 0; |
159 | SSERegParmMax = 0; |
160 | HasAlignMac68kSupport = false; |
161 | HasBuiltinMSVaList = false; |
162 | HasAArch64ACLETypes = false; |
163 | HasRISCVVTypes = false; |
164 | AllowAMDGPUUnsafeFPAtomics = false; |
165 | HasUnalignedAccess = false; |
166 | ARMCDECoprocMask = 0; |
167 | |
168 | // Default to no types using fpret. |
169 | RealTypeUsesObjCFPRetMask = 0; |
170 | |
171 | // Default to not using fp2ret for __Complex long double |
172 | ComplexLongDoubleUsesFP2Ret = false; |
173 | |
174 | // Set the C++ ABI based on the triple. |
175 | TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() |
176 | ? TargetCXXABI::Microsoft |
177 | : TargetCXXABI::GenericItanium); |
178 | |
179 | // Default to an empty address space map. |
180 | AddrSpaceMap = &DefaultAddrSpaceMap; |
181 | UseAddrSpaceMapMangling = false; |
182 | |
183 | // Default to an unknown platform name. |
184 | PlatformName = "unknown"; |
185 | PlatformMinVersion = VersionTuple(); |
186 | |
187 | MaxOpenCLWorkGroupSize = 1024; |
188 | |
189 | MaxBitIntWidth.reset(); |
190 | } |
191 | |
192 | // Out of line virtual dtor for TargetInfo. |
193 | TargetInfo::~TargetInfo() {} |
194 | |
195 | void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { |
196 | DataLayoutString = DL.str(); |
197 | UserLabelPrefix = ULP; |
198 | } |
199 | |
200 | bool |
201 | TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { |
202 | Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; |
203 | return false; |
204 | } |
205 | |
206 | CFBranchLabelSchemeKind TargetInfo::getDefaultCFBranchLabelScheme() const { |
207 | // if this hook is called, the target should override it to return a |
208 | // non-default scheme |
209 | llvm::report_fatal_error(reason: "not implemented"); |
210 | } |
211 | |
212 | bool TargetInfo::checkCFBranchLabelSchemeSupported( |
213 | const CFBranchLabelSchemeKind Scheme, DiagnosticsEngine &Diags) const { |
214 | if (Scheme != CFBranchLabelSchemeKind::Default) |
215 | Diags.Report(diag::err_opt_not_valid_on_target) |
216 | << (Twine("mcf-branch-label-scheme=") + |
217 | getCFBranchLabelSchemeFlagVal(Scheme)) |
218 | .str(); |
219 | return false; |
220 | } |
221 | |
222 | bool |
223 | TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { |
224 | Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; |
225 | return false; |
226 | } |
227 | |
228 | /// getTypeName - Return the user string for the specified integer type enum. |
229 | /// For example, SignedShort -> "short". |
230 | const char *TargetInfo::getTypeName(IntType T) { |
231 | switch (T) { |
232 | default: llvm_unreachable("not an integer!"); |
233 | case SignedChar: return "signed char"; |
234 | case UnsignedChar: return "unsigned char"; |
235 | case SignedShort: return "short"; |
236 | case UnsignedShort: return "unsigned short"; |
237 | case SignedInt: return "int"; |
238 | case UnsignedInt: return "unsigned int"; |
239 | case SignedLong: return "long int"; |
240 | case UnsignedLong: return "long unsigned int"; |
241 | case SignedLongLong: return "long long int"; |
242 | case UnsignedLongLong: return "long long unsigned int"; |
243 | } |
244 | } |
245 | |
246 | /// getTypeConstantSuffix - Return the constant suffix for the specified |
247 | /// integer type enum. For example, SignedLong -> "L". |
248 | const char *TargetInfo::getTypeConstantSuffix(IntType T) const { |
249 | switch (T) { |
250 | default: llvm_unreachable("not an integer!"); |
251 | case SignedChar: |
252 | case SignedShort: |
253 | case SignedInt: return ""; |
254 | case SignedLong: return "L"; |
255 | case SignedLongLong: return "LL"; |
256 | case UnsignedChar: |
257 | if (getCharWidth() < getIntWidth()) |
258 | return ""; |
259 | [[fallthrough]]; |
260 | case UnsignedShort: |
261 | if (getShortWidth() < getIntWidth()) |
262 | return ""; |
263 | [[fallthrough]]; |
264 | case UnsignedInt: return "U"; |
265 | case UnsignedLong: return "UL"; |
266 | case UnsignedLongLong: return "ULL"; |
267 | } |
268 | } |
269 | |
270 | /// getTypeFormatModifier - Return the printf format modifier for the |
271 | /// specified integer type enum. For example, SignedLong -> "l". |
272 | |
273 | const char *TargetInfo::getTypeFormatModifier(IntType T) { |
274 | switch (T) { |
275 | default: llvm_unreachable("not an integer!"); |
276 | case SignedChar: |
277 | case UnsignedChar: return "hh"; |
278 | case SignedShort: |
279 | case UnsignedShort: return "h"; |
280 | case SignedInt: |
281 | case UnsignedInt: return ""; |
282 | case SignedLong: |
283 | case UnsignedLong: return "l"; |
284 | case SignedLongLong: |
285 | case UnsignedLongLong: return "ll"; |
286 | } |
287 | } |
288 | |
289 | /// getTypeWidth - Return the width (in bits) of the specified integer type |
290 | /// enum. For example, SignedInt -> getIntWidth(). |
291 | unsigned TargetInfo::getTypeWidth(IntType T) const { |
292 | switch (T) { |
293 | default: llvm_unreachable("not an integer!"); |
294 | case SignedChar: |
295 | case UnsignedChar: return getCharWidth(); |
296 | case SignedShort: |
297 | case UnsignedShort: return getShortWidth(); |
298 | case SignedInt: |
299 | case UnsignedInt: return getIntWidth(); |
300 | case SignedLong: |
301 | case UnsignedLong: return getLongWidth(); |
302 | case SignedLongLong: |
303 | case UnsignedLongLong: return getLongLongWidth(); |
304 | }; |
305 | } |
306 | |
307 | TargetInfo::IntType TargetInfo::getIntTypeByWidth( |
308 | unsigned BitWidth, bool IsSigned) const { |
309 | if (getCharWidth() == BitWidth) |
310 | return IsSigned ? SignedChar : UnsignedChar; |
311 | if (getShortWidth() == BitWidth) |
312 | return IsSigned ? SignedShort : UnsignedShort; |
313 | if (getIntWidth() == BitWidth) |
314 | return IsSigned ? SignedInt : UnsignedInt; |
315 | if (getLongWidth() == BitWidth) |
316 | return IsSigned ? SignedLong : UnsignedLong; |
317 | if (getLongLongWidth() == BitWidth) |
318 | return IsSigned ? SignedLongLong : UnsignedLongLong; |
319 | return NoInt; |
320 | } |
321 | |
322 | TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, |
323 | bool IsSigned) const { |
324 | if (getCharWidth() >= BitWidth) |
325 | return IsSigned ? SignedChar : UnsignedChar; |
326 | if (getShortWidth() >= BitWidth) |
327 | return IsSigned ? SignedShort : UnsignedShort; |
328 | if (getIntWidth() >= BitWidth) |
329 | return IsSigned ? SignedInt : UnsignedInt; |
330 | if (getLongWidth() >= BitWidth) |
331 | return IsSigned ? SignedLong : UnsignedLong; |
332 | if (getLongLongWidth() >= BitWidth) |
333 | return IsSigned ? SignedLongLong : UnsignedLongLong; |
334 | return NoInt; |
335 | } |
336 | |
337 | FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth, |
338 | FloatModeKind ExplicitType) const { |
339 | if (getHalfWidth() == BitWidth) |
340 | return FloatModeKind::Half; |
341 | if (getFloatWidth() == BitWidth) |
342 | return FloatModeKind::Float; |
343 | if (getDoubleWidth() == BitWidth) |
344 | return FloatModeKind::Double; |
345 | |
346 | switch (BitWidth) { |
347 | case 96: |
348 | if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) |
349 | return FloatModeKind::LongDouble; |
350 | break; |
351 | case 128: |
352 | // The caller explicitly asked for an IEEE compliant type but we still |
353 | // have to check if the target supports it. |
354 | if (ExplicitType == FloatModeKind::Float128) |
355 | return hasFloat128Type() ? FloatModeKind::Float128 |
356 | : FloatModeKind::NoFloat; |
357 | if (ExplicitType == FloatModeKind::Ibm128) |
358 | return hasIbm128Type() ? FloatModeKind::Ibm128 |
359 | : FloatModeKind::NoFloat; |
360 | if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || |
361 | &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) |
362 | return FloatModeKind::LongDouble; |
363 | if (hasFloat128Type()) |
364 | return FloatModeKind::Float128; |
365 | break; |
366 | } |
367 | |
368 | return FloatModeKind::NoFloat; |
369 | } |
370 | |
371 | /// getTypeAlign - Return the alignment (in bits) of the specified integer type |
372 | /// enum. For example, SignedInt -> getIntAlign(). |
373 | unsigned TargetInfo::getTypeAlign(IntType T) const { |
374 | switch (T) { |
375 | default: llvm_unreachable("not an integer!"); |
376 | case SignedChar: |
377 | case UnsignedChar: return getCharAlign(); |
378 | case SignedShort: |
379 | case UnsignedShort: return getShortAlign(); |
380 | case SignedInt: |
381 | case UnsignedInt: return getIntAlign(); |
382 | case SignedLong: |
383 | case UnsignedLong: return getLongAlign(); |
384 | case SignedLongLong: |
385 | case UnsignedLongLong: return getLongLongAlign(); |
386 | }; |
387 | } |
388 | |
389 | /// isTypeSigned - Return whether an integer types is signed. Returns true if |
390 | /// the type is signed; false otherwise. |
391 | bool TargetInfo::isTypeSigned(IntType T) { |
392 | switch (T) { |
393 | default: llvm_unreachable("not an integer!"); |
394 | case SignedChar: |
395 | case SignedShort: |
396 | case SignedInt: |
397 | case SignedLong: |
398 | case SignedLongLong: |
399 | return true; |
400 | case UnsignedChar: |
401 | case UnsignedShort: |
402 | case UnsignedInt: |
403 | case UnsignedLong: |
404 | case UnsignedLongLong: |
405 | return false; |
406 | }; |
407 | } |
408 | |
409 | /// adjust - Set forced language options. |
410 | /// Apply changes to the target information with respect to certain |
411 | /// language options which change the target configuration and adjust |
412 | /// the language based on the target options where applicable. |
413 | void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { |
414 | if (Opts.NoBitFieldTypeAlign) |
415 | UseBitFieldTypeAlignment = false; |
416 | |
417 | switch (Opts.WCharSize) { |
418 | default: llvm_unreachable("invalid wchar_t width"); |
419 | case 0: break; |
420 | case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; |
421 | case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; |
422 | case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; |
423 | } |
424 | |
425 | if (Opts.AlignDouble) { |
426 | DoubleAlign = LongLongAlign = 64; |
427 | LongDoubleAlign = 64; |
428 | } |
429 | |
430 | // HLSL explicitly defines the sizes and formats of some data types, and we |
431 | // need to conform to those regardless of what architecture you are targeting. |
432 | if (Opts.HLSL) { |
433 | BoolWidth = BoolAlign = 32; |
434 | LongWidth = LongAlign = 64; |
435 | if (!Opts.NativeHalfType) { |
436 | HalfFormat = &llvm::APFloat::IEEEsingle(); |
437 | HalfWidth = HalfAlign = 32; |
438 | } |
439 | } |
440 | |
441 | if (Opts.OpenCL) { |
442 | // OpenCL C requires specific widths for types, irrespective of |
443 | // what these normally are for the target. |
444 | // We also define long long and long double here, although the |
445 | // OpenCL standard only mentions these as "reserved". |
446 | ShortWidth = ShortAlign = 16; |
447 | IntWidth = IntAlign = 32; |
448 | LongWidth = LongAlign = 64; |
449 | LongLongWidth = LongLongAlign = 128; |
450 | HalfWidth = HalfAlign = 16; |
451 | FloatWidth = FloatAlign = 32; |
452 | |
453 | // Embedded 32-bit targets (OpenCL EP) might have double C type |
454 | // defined as float. Let's not override this as it might lead |
455 | // to generating illegal code that uses 64bit doubles. |
456 | if (DoubleWidth != FloatWidth) { |
457 | DoubleWidth = DoubleAlign = 64; |
458 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
459 | } |
460 | LongDoubleWidth = LongDoubleAlign = 128; |
461 | |
462 | unsigned MaxPointerWidth = getMaxPointerWidth(); |
463 | assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); |
464 | bool Is32BitArch = MaxPointerWidth == 32; |
465 | SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; |
466 | PtrDiffType = Is32BitArch ? SignedInt : SignedLong; |
467 | IntPtrType = Is32BitArch ? SignedInt : SignedLong; |
468 | |
469 | IntMaxType = SignedLongLong; |
470 | Int64Type = SignedLong; |
471 | |
472 | HalfFormat = &llvm::APFloat::IEEEhalf(); |
473 | FloatFormat = &llvm::APFloat::IEEEsingle(); |
474 | LongDoubleFormat = &llvm::APFloat::IEEEquad(); |
475 | |
476 | // OpenCL C v3.0 s6.7.5 - The generic address space requires support for |
477 | // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space |
478 | // feature |
479 | // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 |
480 | // or later and __opencl_c_pipes feature |
481 | // FIXME: These language options are also defined in setLangDefaults() |
482 | // for OpenCL C 2.0 but with no access to target capabilities. Target |
483 | // should be immutable once created and thus these language options need |
484 | // to be defined only once. |
485 | if (Opts.getOpenCLCompatibleVersion() == 300) { |
486 | const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); |
487 | Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( |
488 | Features: OpenCLFeaturesMap, Name: "__opencl_c_generic_address_space"); |
489 | Opts.OpenCLPipes = |
490 | hasFeatureEnabled(Features: OpenCLFeaturesMap, Name: "__opencl_c_pipes"); |
491 | Opts.Blocks = |
492 | hasFeatureEnabled(Features: OpenCLFeaturesMap, Name: "__opencl_c_device_enqueue"); |
493 | } |
494 | } |
495 | |
496 | if (Opts.DoubleSize) { |
497 | if (Opts.DoubleSize == 32) { |
498 | DoubleWidth = 32; |
499 | LongDoubleWidth = 32; |
500 | DoubleFormat = &llvm::APFloat::IEEEsingle(); |
501 | LongDoubleFormat = &llvm::APFloat::IEEEsingle(); |
502 | } else if (Opts.DoubleSize == 64) { |
503 | DoubleWidth = 64; |
504 | LongDoubleWidth = 64; |
505 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
506 | LongDoubleFormat = &llvm::APFloat::IEEEdouble(); |
507 | } |
508 | } |
509 | |
510 | if (Opts.LongDoubleSize) { |
511 | if (Opts.LongDoubleSize == DoubleWidth) { |
512 | LongDoubleWidth = DoubleWidth; |
513 | LongDoubleAlign = DoubleAlign; |
514 | LongDoubleFormat = DoubleFormat; |
515 | } else if (Opts.LongDoubleSize == 128) { |
516 | LongDoubleWidth = LongDoubleAlign = 128; |
517 | LongDoubleFormat = &llvm::APFloat::IEEEquad(); |
518 | } else if (Opts.LongDoubleSize == 80) { |
519 | LongDoubleFormat = &llvm::APFloat::x87DoubleExtended(); |
520 | if (getTriple().isWindowsMSVCEnvironment()) { |
521 | LongDoubleWidth = 128; |
522 | LongDoubleAlign = 128; |
523 | } else { // Linux |
524 | if (getTriple().getArch() == llvm::Triple::x86) { |
525 | LongDoubleWidth = 96; |
526 | LongDoubleAlign = 32; |
527 | } else { |
528 | LongDoubleWidth = 128; |
529 | LongDoubleAlign = 128; |
530 | } |
531 | } |
532 | } |
533 | } |
534 | |
535 | if (Opts.NewAlignOverride) |
536 | NewAlign = Opts.NewAlignOverride * getCharWidth(); |
537 | |
538 | // Each unsigned fixed point type has the same number of fractional bits as |
539 | // its corresponding signed type. |
540 | PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; |
541 | CheckFixedPointBits(); |
542 | |
543 | if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { |
544 | Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; |
545 | Opts.ProtectParens = false; |
546 | } |
547 | |
548 | if (Opts.MaxBitIntWidth) |
549 | MaxBitIntWidth = static_cast<unsigned>(Opts.MaxBitIntWidth); |
550 | |
551 | if (Opts.FakeAddressSpaceMap) |
552 | AddrSpaceMap = &FakeAddrSpaceMap; |
553 | } |
554 | |
555 | bool TargetInfo::initFeatureMap( |
556 | llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, |
557 | const std::vector<std::string> &FeatureVec) const { |
558 | for (const auto &F : FeatureVec) { |
559 | StringRef Name = F; |
560 | if (Name.empty()) |
561 | continue; |
562 | // Apply the feature via the target. |
563 | if (Name[0] != '+' && Name[0] != '-') |
564 | Diags.Report(diag::warn_fe_backend_invalid_feature_flag) << Name; |
565 | else |
566 | setFeatureEnabled(Features, Name: Name.substr(Start: 1), Enabled: Name[0] == '+'); |
567 | } |
568 | return true; |
569 | } |
570 | |
571 | ParsedTargetAttr TargetInfo::parseTargetAttr(StringRef Features) const { |
572 | ParsedTargetAttr Ret; |
573 | if (Features == "default") |
574 | return Ret; |
575 | SmallVector<StringRef, 1> AttrFeatures; |
576 | Features.split(A&: AttrFeatures, Separator: ","); |
577 | |
578 | // Grab the various features and prepend a "+" to turn on the feature to |
579 | // the backend and add them to our existing set of features. |
580 | for (auto &Feature : AttrFeatures) { |
581 | // Go ahead and trim whitespace rather than either erroring or |
582 | // accepting it weirdly. |
583 | Feature = Feature.trim(); |
584 | |
585 | // TODO: Support the fpmath option. It will require checking |
586 | // overall feature validity for the function with the rest of the |
587 | // attributes on the function. |
588 | if (Feature.starts_with(Prefix: "fpmath=")) |
589 | continue; |
590 | |
591 | if (Feature.starts_with(Prefix: "branch-protection=")) { |
592 | Ret.BranchProtection = Feature.split(Separator: '=').second.trim(); |
593 | continue; |
594 | } |
595 | |
596 | // While we're here iterating check for a different target cpu. |
597 | if (Feature.starts_with(Prefix: "arch=")) { |
598 | if (!Ret.CPU.empty()) |
599 | Ret.Duplicate = "arch="; |
600 | else |
601 | Ret.CPU = Feature.split(Separator: "=").second.trim(); |
602 | } else if (Feature.starts_with(Prefix: "tune=")) { |
603 | if (!Ret.Tune.empty()) |
604 | Ret.Duplicate = "tune="; |
605 | else |
606 | Ret.Tune = Feature.split(Separator: "=").second.trim(); |
607 | } else if (Feature.starts_with(Prefix: "no-")) |
608 | Ret.Features.push_back(x: "-"+ Feature.split(Separator: "-").second.str()); |
609 | else |
610 | Ret.Features.push_back(x: "+"+ Feature.str()); |
611 | } |
612 | return Ret; |
613 | } |
614 | |
615 | TargetInfo::CallingConvKind |
616 | TargetInfo::getCallingConvKind(bool ClangABICompat4) const { |
617 | if (getCXXABI() != TargetCXXABI::Microsoft && |
618 | (ClangABICompat4 || getTriple().isPS4())) |
619 | return CCK_ClangABI4OrPS4; |
620 | return CCK_Default; |
621 | } |
622 | |
623 | bool TargetInfo::areDefaultedSMFStillPOD(const LangOptions &LangOpts) const { |
624 | return LangOpts.getClangABICompat() > LangOptions::ClangABI::Ver15; |
625 | } |
626 | |
627 | LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { |
628 | switch (TK) { |
629 | case OCLTK_Image: |
630 | case OCLTK_Pipe: |
631 | return LangAS::opencl_global; |
632 | |
633 | case OCLTK_Sampler: |
634 | return LangAS::opencl_constant; |
635 | |
636 | default: |
637 | return LangAS::Default; |
638 | } |
639 | } |
640 | |
641 | //===----------------------------------------------------------------------===// |
642 | |
643 | |
644 | static StringRef removeGCCRegisterPrefix(StringRef Name) { |
645 | if (Name[0] == '%' || Name[0] == '#') |
646 | Name = Name.substr(Start: 1); |
647 | |
648 | return Name; |
649 | } |
650 | |
651 | /// isValidClobber - Returns whether the passed in string is |
652 | /// a valid clobber in an inline asm statement. This is used by |
653 | /// Sema. |
654 | bool TargetInfo::isValidClobber(StringRef Name) const { |
655 | return (isValidGCCRegisterName(Name) || Name == "memory"|| Name == "cc"|| |
656 | Name == "unwind"); |
657 | } |
658 | |
659 | /// isValidGCCRegisterName - Returns whether the passed in string |
660 | /// is a valid register name according to GCC. This is used by Sema for |
661 | /// inline asm statements. |
662 | bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { |
663 | if (Name.empty()) |
664 | return false; |
665 | |
666 | // Get rid of any register prefix. |
667 | Name = removeGCCRegisterPrefix(Name); |
668 | if (Name.empty()) |
669 | return false; |
670 | |
671 | ArrayRef<const char *> Names = getGCCRegNames(); |
672 | |
673 | // If we have a number it maps to an entry in the register name array. |
674 | if (isDigit(c: Name[0])) { |
675 | unsigned n; |
676 | if (!Name.getAsInteger(Radix: 0, Result&: n)) |
677 | return n < Names.size(); |
678 | } |
679 | |
680 | // Check register names. |
681 | if (llvm::is_contained(Range&: Names, Element: Name)) |
682 | return true; |
683 | |
684 | // Check any additional names that we have. |
685 | for (const AddlRegName &ARN : getGCCAddlRegNames()) |
686 | for (const char *AN : ARN.Names) { |
687 | if (!AN) |
688 | break; |
689 | // Make sure the register that the additional name is for is within |
690 | // the bounds of the register names from above. |
691 | if (AN == Name && ARN.RegNum < Names.size()) |
692 | return true; |
693 | } |
694 | |
695 | // Now check aliases. |
696 | for (const GCCRegAlias &GRA : getGCCRegAliases()) |
697 | for (const char *A : GRA.Aliases) { |
698 | if (!A) |
699 | break; |
700 | if (A == Name) |
701 | return true; |
702 | } |
703 | |
704 | return false; |
705 | } |
706 | |
707 | StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, |
708 | bool ReturnCanonical) const { |
709 | assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); |
710 | |
711 | // Get rid of any register prefix. |
712 | Name = removeGCCRegisterPrefix(Name); |
713 | |
714 | ArrayRef<const char *> Names = getGCCRegNames(); |
715 | |
716 | // First, check if we have a number. |
717 | if (isDigit(c: Name[0])) { |
718 | unsigned n; |
719 | if (!Name.getAsInteger(Radix: 0, Result&: n)) { |
720 | assert(n < Names.size() && "Out of bounds register number!"); |
721 | return Names[n]; |
722 | } |
723 | } |
724 | |
725 | // Check any additional names that we have. |
726 | for (const AddlRegName &ARN : getGCCAddlRegNames()) |
727 | for (const char *AN : ARN.Names) { |
728 | if (!AN) |
729 | break; |
730 | // Make sure the register that the additional name is for is within |
731 | // the bounds of the register names from above. |
732 | if (AN == Name && ARN.RegNum < Names.size()) |
733 | return ReturnCanonical ? Names[ARN.RegNum] : Name; |
734 | } |
735 | |
736 | // Now check aliases. |
737 | for (const GCCRegAlias &RA : getGCCRegAliases()) |
738 | for (const char *A : RA.Aliases) { |
739 | if (!A) |
740 | break; |
741 | if (A == Name) |
742 | return RA.Register; |
743 | } |
744 | |
745 | return Name; |
746 | } |
747 | |
748 | bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { |
749 | const char *Name = Info.getConstraintStr().c_str(); |
750 | // An output constraint must start with '=' or '+' |
751 | if (*Name != '=' && *Name != '+') |
752 | return false; |
753 | |
754 | if (*Name == '+') |
755 | Info.setIsReadWrite(); |
756 | |
757 | Name++; |
758 | while (*Name) { |
759 | switch (*Name) { |
760 | default: |
761 | if (!validateAsmConstraint(Name, info&: Info)) { |
762 | // FIXME: We temporarily return false |
763 | // so we can add more constraints as we hit it. |
764 | // Eventually, an unknown constraint should just be treated as 'g'. |
765 | return false; |
766 | } |
767 | break; |
768 | case '&': // early clobber. |
769 | Info.setEarlyClobber(); |
770 | break; |
771 | case '%': // commutative. |
772 | // FIXME: Check that there is a another register after this one. |
773 | break; |
774 | case 'r': // general register. |
775 | Info.setAllowsRegister(); |
776 | break; |
777 | case 'm': // memory operand. |
778 | case 'o': // offsetable memory operand. |
779 | case 'V': // non-offsetable memory operand. |
780 | case '<': // autodecrement memory operand. |
781 | case '>': // autoincrement memory operand. |
782 | Info.setAllowsMemory(); |
783 | break; |
784 | case 'g': // general register, memory operand or immediate integer. |
785 | case 'X': // any operand. |
786 | Info.setAllowsRegister(); |
787 | Info.setAllowsMemory(); |
788 | break; |
789 | case ',': // multiple alternative constraint. Pass it. |
790 | // Handle additional optional '=' or '+' modifiers. |
791 | if (Name[1] == '=' || Name[1] == '+') |
792 | Name++; |
793 | break; |
794 | case '#': // Ignore as constraint. |
795 | while (Name[1] && Name[1] != ',') |
796 | Name++; |
797 | break; |
798 | case '?': // Disparage slightly code. |
799 | case '!': // Disparage severely. |
800 | case '*': // Ignore for choosing register preferences. |
801 | case 'i': // Ignore i,n,E,F as output constraints (match from the other |
802 | // chars) |
803 | case 'n': |
804 | case 'E': |
805 | case 'F': |
806 | break; // Pass them. |
807 | } |
808 | |
809 | Name++; |
810 | } |
811 | |
812 | // Early clobber with a read-write constraint which doesn't permit registers |
813 | // is invalid. |
814 | if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) |
815 | return false; |
816 | |
817 | // If a constraint allows neither memory nor register operands it contains |
818 | // only modifiers. Reject it. |
819 | return Info.allowsMemory() || Info.allowsRegister(); |
820 | } |
821 | |
822 | bool TargetInfo::resolveSymbolicName(const char *&Name, |
823 | ArrayRef<ConstraintInfo> OutputConstraints, |
824 | unsigned &Index) const { |
825 | assert(*Name == '[' && "Symbolic name did not start with '['"); |
826 | Name++; |
827 | const char *Start = Name; |
828 | while (*Name && *Name != ']') |
829 | Name++; |
830 | |
831 | if (!*Name) { |
832 | // Missing ']' |
833 | return false; |
834 | } |
835 | |
836 | std::string SymbolicName(Start, Name - Start); |
837 | |
838 | for (Index = 0; Index != OutputConstraints.size(); ++Index) |
839 | if (SymbolicName == OutputConstraints[Index].getName()) |
840 | return true; |
841 | |
842 | return false; |
843 | } |
844 | |
845 | bool TargetInfo::validateInputConstraint( |
846 | MutableArrayRef<ConstraintInfo> OutputConstraints, |
847 | ConstraintInfo &Info) const { |
848 | const char *Name = Info.ConstraintStr.c_str(); |
849 | |
850 | if (!*Name) |
851 | return false; |
852 | |
853 | while (*Name) { |
854 | switch (*Name) { |
855 | default: |
856 | // Check if we have a matching constraint |
857 | if (*Name >= '0' && *Name <= '9') { |
858 | const char *DigitStart = Name; |
859 | while (Name[1] >= '0' && Name[1] <= '9') |
860 | Name++; |
861 | const char *DigitEnd = Name; |
862 | unsigned i; |
863 | if (StringRef(DigitStart, DigitEnd - DigitStart + 1) |
864 | .getAsInteger(Radix: 10, Result&: i)) |
865 | return false; |
866 | |
867 | // Check if matching constraint is out of bounds. |
868 | if (i >= OutputConstraints.size()) return false; |
869 | |
870 | // A number must refer to an output only operand. |
871 | if (OutputConstraints[i].isReadWrite()) |
872 | return false; |
873 | |
874 | // If the constraint is already tied, it must be tied to the |
875 | // same operand referenced to by the number. |
876 | if (Info.hasTiedOperand() && Info.getTiedOperand() != i) |
877 | return false; |
878 | |
879 | // The constraint should have the same info as the respective |
880 | // output constraint. |
881 | Info.setTiedOperand(N: i, Output&: OutputConstraints[i]); |
882 | } else if (!validateAsmConstraint(Name, info&: Info)) { |
883 | // FIXME: This error return is in place temporarily so we can |
884 | // add more constraints as we hit it. Eventually, an unknown |
885 | // constraint should just be treated as 'g'. |
886 | return false; |
887 | } |
888 | break; |
889 | case '[': { |
890 | unsigned Index = 0; |
891 | if (!resolveSymbolicName(Name, OutputConstraints, Index)) |
892 | return false; |
893 | |
894 | // If the constraint is already tied, it must be tied to the |
895 | // same operand referenced to by the number. |
896 | if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) |
897 | return false; |
898 | |
899 | // A number must refer to an output only operand. |
900 | if (OutputConstraints[Index].isReadWrite()) |
901 | return false; |
902 | |
903 | Info.setTiedOperand(N: Index, Output&: OutputConstraints[Index]); |
904 | break; |
905 | } |
906 | case '%': // commutative |
907 | // FIXME: Fail if % is used with the last operand. |
908 | break; |
909 | case 'i': // immediate integer. |
910 | break; |
911 | case 'n': // immediate integer with a known value. |
912 | Info.setRequiresImmediate(); |
913 | break; |
914 | case 'I': // Various constant constraints with target-specific meanings. |
915 | case 'J': |
916 | case 'K': |
917 | case 'L': |
918 | case 'M': |
919 | case 'N': |
920 | case 'O': |
921 | case 'P': |
922 | if (!validateAsmConstraint(Name, info&: Info)) |
923 | return false; |
924 | break; |
925 | case 'r': // general register. |
926 | Info.setAllowsRegister(); |
927 | break; |
928 | case 'm': // memory operand. |
929 | case 'o': // offsettable memory operand. |
930 | case 'V': // non-offsettable memory operand. |
931 | case '<': // autodecrement memory operand. |
932 | case '>': // autoincrement memory operand. |
933 | Info.setAllowsMemory(); |
934 | break; |
935 | case 'g': // general register, memory operand or immediate integer. |
936 | case 'X': // any operand. |
937 | Info.setAllowsRegister(); |
938 | Info.setAllowsMemory(); |
939 | break; |
940 | case 'E': // immediate floating point. |
941 | case 'F': // immediate floating point. |
942 | case 'p': // address operand. |
943 | break; |
944 | case ',': // multiple alternative constraint. Ignore comma. |
945 | break; |
946 | case '#': // Ignore as constraint. |
947 | while (Name[1] && Name[1] != ',') |
948 | Name++; |
949 | break; |
950 | case '?': // Disparage slightly code. |
951 | case '!': // Disparage severely. |
952 | case '*': // Ignore for choosing register preferences. |
953 | break; // Pass them. |
954 | } |
955 | |
956 | Name++; |
957 | } |
958 | |
959 | return true; |
960 | } |
961 | |
962 | bool TargetInfo::validatePointerAuthKey(const llvm::APSInt &value) const { |
963 | return false; |
964 | } |
965 | |
966 | void TargetInfo::CheckFixedPointBits() const { |
967 | // Check that the number of fractional and integral bits (and maybe sign) can |
968 | // fit into the bits given for a fixed point type. |
969 | assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); |
970 | assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); |
971 | assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); |
972 | assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= |
973 | ShortAccumWidth); |
974 | assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); |
975 | assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= |
976 | LongAccumWidth); |
977 | |
978 | assert(getShortFractScale() + 1 <= ShortFractWidth); |
979 | assert(getFractScale() + 1 <= FractWidth); |
980 | assert(getLongFractScale() + 1 <= LongFractWidth); |
981 | assert(getUnsignedShortFractScale() <= ShortFractWidth); |
982 | assert(getUnsignedFractScale() <= FractWidth); |
983 | assert(getUnsignedLongFractScale() <= LongFractWidth); |
984 | |
985 | // Each unsigned fract type has either the same number of fractional bits |
986 | // as, or one more fractional bit than, its corresponding signed fract type. |
987 | assert(getShortFractScale() == getUnsignedShortFractScale() || |
988 | getShortFractScale() == getUnsignedShortFractScale() - 1); |
989 | assert(getFractScale() == getUnsignedFractScale() || |
990 | getFractScale() == getUnsignedFractScale() - 1); |
991 | assert(getLongFractScale() == getUnsignedLongFractScale() || |
992 | getLongFractScale() == getUnsignedLongFractScale() - 1); |
993 | |
994 | // When arranged in order of increasing rank (see 6.3.1.3a), the number of |
995 | // fractional bits is nondecreasing for each of the following sets of |
996 | // fixed-point types: |
997 | // - signed fract types |
998 | // - unsigned fract types |
999 | // - signed accum types |
1000 | // - unsigned accum types. |
1001 | assert(getLongFractScale() >= getFractScale() && |
1002 | getFractScale() >= getShortFractScale()); |
1003 | assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && |
1004 | getUnsignedFractScale() >= getUnsignedShortFractScale()); |
1005 | assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); |
1006 | assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && |
1007 | getUnsignedAccumScale() >= getUnsignedShortAccumScale()); |
1008 | |
1009 | // When arranged in order of increasing rank (see 6.3.1.3a), the number of |
1010 | // integral bits is nondecreasing for each of the following sets of |
1011 | // fixed-point types: |
1012 | // - signed accum types |
1013 | // - unsigned accum types |
1014 | assert(getLongAccumIBits() >= getAccumIBits() && |
1015 | getAccumIBits() >= getShortAccumIBits()); |
1016 | assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && |
1017 | getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); |
1018 | |
1019 | // Each signed accum type has at least as many integral bits as its |
1020 | // corresponding unsigned accum type. |
1021 | assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); |
1022 | assert(getAccumIBits() >= getUnsignedAccumIBits()); |
1023 | assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); |
1024 | } |
1025 | |
1026 | void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { |
1027 | auto *Target = static_cast<TransferrableTargetInfo*>(this); |
1028 | auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); |
1029 | *Target = *Src; |
1030 | } |
1031 |
Definitions
- DefaultAddrSpaceMap
- FakeAddrSpaceMap
- TargetInfo
- ~TargetInfo
- resetDataLayout
- checkCFProtectionBranchSupported
- getDefaultCFBranchLabelScheme
- checkCFBranchLabelSchemeSupported
- checkCFProtectionReturnSupported
- getTypeName
- getTypeConstantSuffix
- getTypeFormatModifier
- getTypeWidth
- getIntTypeByWidth
- getLeastIntTypeByWidth
- getRealTypeByWidth
- getTypeAlign
- isTypeSigned
- adjust
- initFeatureMap
- parseTargetAttr
- getCallingConvKind
- areDefaultedSMFStillPOD
- getOpenCLTypeAddrSpace
- removeGCCRegisterPrefix
- isValidClobber
- isValidGCCRegisterName
- getNormalizedGCCRegisterName
- validateOutputConstraint
- resolveSymbolicName
- validateInputConstraint
- validatePointerAuthKey
- CheckFixedPointBits
Learn to use CMake with our Intro Training
Find out more