| 1 | //===----------------------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Emit OpenACC clause nodes as CIR code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include <type_traits> |
| 14 | |
| 15 | #include "CIRGenFunction.h" |
| 16 | |
| 17 | #include "clang/AST/ExprCXX.h" |
| 18 | |
| 19 | #include "mlir/Dialect/Arith/IR/Arith.h" |
| 20 | #include "mlir/Dialect/OpenACC/OpenACC.h" |
| 21 | #include "llvm/ADT/TypeSwitch.h" |
| 22 | |
| 23 | using namespace clang; |
| 24 | using namespace clang::CIRGen; |
| 25 | |
| 26 | namespace { |
| 27 | // Simple type-trait to see if the first template arg is one of the list, so we |
| 28 | // can tell whether to `if-constexpr` a bunch of stuff. |
| 29 | template <typename ToTest, typename T, typename... Tys> |
| 30 | constexpr bool isOneOfTypes = |
| 31 | std::is_same_v<ToTest, T> || isOneOfTypes<ToTest, Tys...>; |
| 32 | template <typename ToTest, typename T> |
| 33 | constexpr bool isOneOfTypes<ToTest, T> = std::is_same_v<ToTest, T>; |
| 34 | |
| 35 | // Holds information for emitting clauses for a combined construct. We |
| 36 | // instantiate the clause emitter with this type so that it can use |
| 37 | // if-constexpr to specially handle these. |
| 38 | template <typename CompOpTy> struct CombinedConstructClauseInfo { |
| 39 | using ComputeOpTy = CompOpTy; |
| 40 | ComputeOpTy computeOp; |
| 41 | mlir::acc::LoopOp loopOp; |
| 42 | }; |
| 43 | template <typename ToTest> constexpr bool isCombinedType = false; |
| 44 | template <typename T> |
| 45 | constexpr bool isCombinedType<CombinedConstructClauseInfo<T>> = true; |
| 46 | |
| 47 | template <typename OpTy> |
| 48 | class OpenACCClauseCIREmitter final |
| 49 | : public OpenACCClauseVisitor<OpenACCClauseCIREmitter<OpTy>> { |
| 50 | // Necessary for combined constructs. |
| 51 | template <typename FriendOpTy> friend class OpenACCClauseCIREmitter; |
| 52 | |
| 53 | OpTy &operation; |
| 54 | CIRGen::CIRGenFunction &cgf; |
| 55 | CIRGen::CIRGenBuilderTy &builder; |
| 56 | |
| 57 | // This is necessary since a few of the clauses emit differently based on the |
| 58 | // directive kind they are attached to. |
| 59 | OpenACCDirectiveKind dirKind; |
| 60 | // TODO(cir): This source location should be able to go away once the NYI |
| 61 | // diagnostics are gone. |
| 62 | SourceLocation dirLoc; |
| 63 | |
| 64 | llvm::SmallVector<mlir::acc::DeviceType> lastDeviceTypeValues; |
| 65 | // Keep track of the async-clause so that we can shortcut updating the data |
| 66 | // operands async clauses. |
| 67 | bool hasAsyncClause = false; |
| 68 | // Keep track of the data operands so that we can update their async clauses. |
| 69 | llvm::SmallVector<mlir::Operation *> dataOperands; |
| 70 | |
| 71 | void clauseNotImplemented(const OpenACCClause &c) { |
| 72 | cgf.cgm.errorNYI(loc: c.getSourceRange(), feature: "OpenACC Clause" , name: c.getClauseKind()); |
| 73 | } |
| 74 | |
| 75 | void setLastDeviceTypeClause(const OpenACCDeviceTypeClause &clause) { |
| 76 | lastDeviceTypeValues.clear(); |
| 77 | |
| 78 | llvm::for_each(clause.getArchitectures(), |
| 79 | [this](const DeviceTypeArgument &arg) { |
| 80 | lastDeviceTypeValues.push_back( |
| 81 | decodeDeviceType(arg.getIdentifierInfo())); |
| 82 | }); |
| 83 | } |
| 84 | |
| 85 | mlir::Value emitIntExpr(const Expr *intExpr) { |
| 86 | mlir::Value expr = cgf.emitScalarExpr(intExpr); |
| 87 | mlir::Location exprLoc = cgf.cgm.getLoc(intExpr->getBeginLoc()); |
| 88 | |
| 89 | mlir::IntegerType targetType = mlir::IntegerType::get( |
| 90 | &cgf.getMLIRContext(), cgf.getContext().getIntWidth(intExpr->getType()), |
| 91 | intExpr->getType()->isSignedIntegerOrEnumerationType() |
| 92 | ? mlir::IntegerType::SignednessSemantics::Signed |
| 93 | : mlir::IntegerType::SignednessSemantics::Unsigned); |
| 94 | |
| 95 | auto conversionOp = builder.create<mlir::UnrealizedConversionCastOp>( |
| 96 | exprLoc, targetType, expr); |
| 97 | return conversionOp.getResult(0); |
| 98 | } |
| 99 | |
| 100 | // 'condition' as an OpenACC grammar production is used for 'if' and (some |
| 101 | // variants of) 'self'. It needs to be emitted as a signless-1-bit value, so |
| 102 | // this function emits the expression, then sets the unrealized conversion |
| 103 | // cast correctly, and returns the completed value. |
| 104 | mlir::Value createCondition(const Expr *condExpr) { |
| 105 | mlir::Value condition = cgf.evaluateExprAsBool(condExpr); |
| 106 | mlir::Location exprLoc = cgf.cgm.getLoc(condExpr->getBeginLoc()); |
| 107 | mlir::IntegerType targetType = mlir::IntegerType::get( |
| 108 | &cgf.getMLIRContext(), /*width=*/1, |
| 109 | mlir::IntegerType::SignednessSemantics::Signless); |
| 110 | auto conversionOp = builder.create<mlir::UnrealizedConversionCastOp>( |
| 111 | exprLoc, targetType, condition); |
| 112 | return conversionOp.getResult(0); |
| 113 | } |
| 114 | |
| 115 | mlir::Value createConstantInt(mlir::Location loc, unsigned width, |
| 116 | int64_t value) { |
| 117 | mlir::IntegerType ty = mlir::IntegerType::get( |
| 118 | &cgf.getMLIRContext(), width, |
| 119 | mlir::IntegerType::SignednessSemantics::Signless); |
| 120 | auto constOp = builder.create<mlir::arith::ConstantOp>( |
| 121 | loc, builder.getIntegerAttr(ty, value)); |
| 122 | |
| 123 | return constOp.getResult(); |
| 124 | } |
| 125 | |
| 126 | mlir::Value createConstantInt(SourceLocation loc, unsigned width, |
| 127 | int64_t value) { |
| 128 | return createConstantInt(cgf.cgm.getLoc(loc), width, value); |
| 129 | } |
| 130 | |
| 131 | mlir::acc::DeviceType decodeDeviceType(const IdentifierInfo *ii) { |
| 132 | // '*' case leaves no identifier-info, just a nullptr. |
| 133 | if (!ii) |
| 134 | return mlir::acc::DeviceType::Star; |
| 135 | return llvm::StringSwitch<mlir::acc::DeviceType>(ii->getName()) |
| 136 | .CaseLower("default" , mlir::acc::DeviceType::Default) |
| 137 | .CaseLower("host" , mlir::acc::DeviceType::Host) |
| 138 | .CaseLower("multicore" , mlir::acc::DeviceType::Multicore) |
| 139 | .CasesLower("nvidia" , "acc_device_nvidia" , |
| 140 | mlir::acc::DeviceType::Nvidia) |
| 141 | .CaseLower("radeon" , mlir::acc::DeviceType::Radeon); |
| 142 | } |
| 143 | |
| 144 | mlir::acc::GangArgType decodeGangType(OpenACCGangKind gk) { |
| 145 | switch (gk) { |
| 146 | case OpenACCGangKind::Num: |
| 147 | return mlir::acc::GangArgType::Num; |
| 148 | case OpenACCGangKind::Dim: |
| 149 | return mlir::acc::GangArgType::Dim; |
| 150 | case OpenACCGangKind::Static: |
| 151 | return mlir::acc::GangArgType::Static; |
| 152 | } |
| 153 | llvm_unreachable("unknown gang kind" ); |
| 154 | } |
| 155 | |
| 156 | template <typename U = void, |
| 157 | typename = std::enable_if_t<isCombinedType<OpTy>, U>> |
| 158 | void applyToLoopOp(const OpenACCClause &c) { |
| 159 | mlir::OpBuilder::InsertionGuard guardCase(builder); |
| 160 | builder.setInsertionPoint(operation.loopOp); |
| 161 | OpenACCClauseCIREmitter<mlir::acc::LoopOp> loopEmitter{ |
| 162 | operation.loopOp, cgf, builder, dirKind, dirLoc}; |
| 163 | loopEmitter.lastDeviceTypeValues = lastDeviceTypeValues; |
| 164 | loopEmitter.Visit(&c); |
| 165 | } |
| 166 | |
| 167 | template <typename U = void, |
| 168 | typename = std::enable_if_t<isCombinedType<OpTy>, U>> |
| 169 | void applyToComputeOp(const OpenACCClause &c) { |
| 170 | mlir::OpBuilder::InsertionGuard guardCase(builder); |
| 171 | builder.setInsertionPoint(operation.computeOp); |
| 172 | OpenACCClauseCIREmitter<typename OpTy::ComputeOpTy> computeEmitter{ |
| 173 | operation.computeOp, cgf, builder, dirKind, dirLoc}; |
| 174 | |
| 175 | computeEmitter.lastDeviceTypeValues = lastDeviceTypeValues; |
| 176 | |
| 177 | // Async handler uses the first data operand to figure out where to insert |
| 178 | // its information if it is present. This ensures that the new handler will |
| 179 | // correctly set the insertion point for async. |
| 180 | if (!dataOperands.empty()) |
| 181 | computeEmitter.dataOperands.push_back(dataOperands.front()); |
| 182 | computeEmitter.Visit(&c); |
| 183 | |
| 184 | // Make sure all of the new data operands are kept track of here. The |
| 185 | // combined constructs always apply 'async' to only the compute component, |
| 186 | // so we need to collect these. |
| 187 | dataOperands.append(computeEmitter.dataOperands); |
| 188 | } |
| 189 | |
| 190 | struct DataOperandInfo { |
| 191 | mlir::Location beginLoc; |
| 192 | mlir::Value varValue; |
| 193 | std::string name; |
| 194 | llvm::SmallVector<mlir::Value> bounds; |
| 195 | }; |
| 196 | |
| 197 | mlir::Value createBound(mlir::Location boundLoc, mlir::Value lowerBound, |
| 198 | mlir::Value upperBound, mlir::Value extent) { |
| 199 | // Arrays always have a start-idx of 0. |
| 200 | mlir::Value startIdx = createConstantInt(boundLoc, 64, 0); |
| 201 | // Stride is always 1 in C/C++. |
| 202 | mlir::Value stride = createConstantInt(boundLoc, 64, 1); |
| 203 | |
| 204 | auto bound = builder.create<mlir::acc::DataBoundsOp>(boundLoc, lowerBound, |
| 205 | upperBound); |
| 206 | bound.getStartIdxMutable().assign(startIdx); |
| 207 | if (extent) |
| 208 | bound.getExtentMutable().assign(extent); |
| 209 | bound.getStrideMutable().assign(stride); |
| 210 | |
| 211 | return bound; |
| 212 | } |
| 213 | |
| 214 | // A helper function that gets the information from an operand to a data |
| 215 | // clause, so that it can be used to emit the data operations. |
| 216 | DataOperandInfo getDataOperandInfo(OpenACCDirectiveKind dk, const Expr *e) { |
| 217 | // TODO: OpenACC: Cache was different enough as to need a separate |
| 218 | // `ActOnCacheVar`, so we are going to need to do some investigations here |
| 219 | // when it comes to implement this for cache. |
| 220 | if (dk == OpenACCDirectiveKind::Cache) { |
| 221 | cgf.cgm.errorNYI(e->getSourceRange(), |
| 222 | "OpenACC data operand for 'cache' directive" ); |
| 223 | return {cgf.cgm.getLoc(e->getBeginLoc()), {}, {}, {}}; |
| 224 | } |
| 225 | |
| 226 | const Expr *curVarExpr = e->IgnoreParenImpCasts(); |
| 227 | |
| 228 | mlir::Location exprLoc = cgf.cgm.getLoc(curVarExpr->getBeginLoc()); |
| 229 | llvm::SmallVector<mlir::Value> bounds; |
| 230 | |
| 231 | std::string exprString; |
| 232 | llvm::raw_string_ostream os(exprString); |
| 233 | e->printPretty(os, nullptr, cgf.getContext().getPrintingPolicy()); |
| 234 | |
| 235 | // Assemble the list of bounds. |
| 236 | while (isa<ArraySectionExpr, ArraySubscriptExpr>(Val: curVarExpr)) { |
| 237 | mlir::Location boundLoc = cgf.cgm.getLoc(curVarExpr->getBeginLoc()); |
| 238 | mlir::Value lowerBound; |
| 239 | mlir::Value upperBound; |
| 240 | mlir::Value extent; |
| 241 | |
| 242 | if (const auto *section = dyn_cast<ArraySectionExpr>(Val: curVarExpr)) { |
| 243 | if (const Expr *lb = section->getLowerBound()) |
| 244 | lowerBound = emitIntExpr(lb); |
| 245 | else |
| 246 | lowerBound = createConstantInt(boundLoc, 64, 0); |
| 247 | |
| 248 | if (const Expr *len = section->getLength()) { |
| 249 | extent = emitIntExpr(len); |
| 250 | } else { |
| 251 | QualType baseTy = ArraySectionExpr::getBaseOriginalType( |
| 252 | Base: section->getBase()->IgnoreParenImpCasts()); |
| 253 | // We know this is the case as implicit lengths are only allowed for |
| 254 | // array types with a constant size, or a dependent size. AND since |
| 255 | // we are codegen we know we're not dependent. |
| 256 | auto *arrayTy = cgf.getContext().getAsConstantArrayType(T: baseTy); |
| 257 | // Rather than trying to calculate the extent based on the |
| 258 | // lower-bound, we can just emit this as an upper bound. |
| 259 | upperBound = |
| 260 | createConstantInt(boundLoc, 64, arrayTy->getLimitedSize() - 1); |
| 261 | } |
| 262 | |
| 263 | curVarExpr = section->getBase()->IgnoreParenImpCasts(); |
| 264 | } else { |
| 265 | const auto *subscript = cast<ArraySubscriptExpr>(Val: curVarExpr); |
| 266 | |
| 267 | lowerBound = emitIntExpr(subscript->getIdx()); |
| 268 | // Length of an array index is always 1. |
| 269 | extent = createConstantInt(boundLoc, 64, 1); |
| 270 | curVarExpr = subscript->getBase()->IgnoreParenImpCasts(); |
| 271 | } |
| 272 | |
| 273 | bounds.push_back(createBound(boundLoc, lowerBound, upperBound, extent)); |
| 274 | } |
| 275 | |
| 276 | if (const auto *memExpr = dyn_cast<MemberExpr>(Val: curVarExpr)) |
| 277 | return {exprLoc, cgf.emitMemberExpr(e: memExpr).getPointer(), exprString, |
| 278 | std::move(bounds)}; |
| 279 | |
| 280 | // Sema has made sure that only 4 types of things can get here, array |
| 281 | // subscript, array section, member expr, or DRE to a var decl (or the |
| 282 | // former 3 wrapping a var-decl), so we should be able to assume this is |
| 283 | // right. |
| 284 | const auto *dre = cast<DeclRefExpr>(Val: curVarExpr); |
| 285 | return {exprLoc, cgf.emitDeclRefLValue(e: dre).getPointer(), exprString, |
| 286 | std::move(bounds)}; |
| 287 | } |
| 288 | |
| 289 | template <typename BeforeOpTy, typename AfterOpTy> |
| 290 | void addDataOperand(const Expr *varOperand, mlir::acc::DataClause dataClause, |
| 291 | bool structured, bool implicit) { |
| 292 | DataOperandInfo opInfo = getDataOperandInfo(dk: dirKind, e: varOperand); |
| 293 | |
| 294 | // TODO: OpenACC: we should comprehend the 'modifier-list' here for the data |
| 295 | // operand. At the moment, we don't have a uniform way to assign these |
| 296 | // properly, and the dialect cannot represent anything other than 'readonly' |
| 297 | // and 'zero' on copyin/copyout/create, so for now, we skip it. |
| 298 | |
| 299 | auto beforeOp = |
| 300 | builder.create<BeforeOpTy>(opInfo.beginLoc, opInfo.varValue, structured, |
| 301 | implicit, opInfo.name, opInfo.bounds); |
| 302 | operation.getDataClauseOperandsMutable().append(beforeOp.getResult()); |
| 303 | |
| 304 | AfterOpTy afterOp; |
| 305 | { |
| 306 | mlir::OpBuilder::InsertionGuard guardCase(builder); |
| 307 | builder.setInsertionPointAfter(operation); |
| 308 | |
| 309 | if constexpr (std::is_same_v<AfterOpTy, mlir::acc::DeleteOp> || |
| 310 | std::is_same_v<AfterOpTy, mlir::acc::DetachOp>) { |
| 311 | // Detach/Delete ops don't have the variable reference here, so they |
| 312 | // take 1 fewer argument to their build function. |
| 313 | afterOp = builder.create<AfterOpTy>( |
| 314 | opInfo.beginLoc, beforeOp.getResult(), structured, implicit, |
| 315 | opInfo.name, opInfo.bounds); |
| 316 | } else { |
| 317 | afterOp = builder.create<AfterOpTy>( |
| 318 | opInfo.beginLoc, beforeOp.getResult(), opInfo.varValue, structured, |
| 319 | implicit, opInfo.name, opInfo.bounds); |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | // Set the 'rest' of the info for both operations. |
| 324 | beforeOp.setDataClause(dataClause); |
| 325 | afterOp.setDataClause(dataClause); |
| 326 | |
| 327 | // Make sure we record these, so 'async' values can be updated later. |
| 328 | dataOperands.push_back(beforeOp.getOperation()); |
| 329 | dataOperands.push_back(afterOp.getOperation()); |
| 330 | } |
| 331 | |
| 332 | template <typename BeforeOpTy> |
| 333 | void addDataOperand(const Expr *varOperand, mlir::acc::DataClause dataClause, |
| 334 | bool structured, bool implicit) { |
| 335 | DataOperandInfo opInfo = getDataOperandInfo(dk: dirKind, e: varOperand); |
| 336 | auto beforeOp = |
| 337 | builder.create<BeforeOpTy>(opInfo.beginLoc, opInfo.varValue, structured, |
| 338 | implicit, opInfo.name, opInfo.bounds); |
| 339 | operation.getDataClauseOperandsMutable().append(beforeOp.getResult()); |
| 340 | |
| 341 | // Set the 'rest' of the info for the operation. |
| 342 | beforeOp.setDataClause(dataClause); |
| 343 | // Make sure we record these, so 'async' values can be updated later. |
| 344 | dataOperands.push_back(beforeOp.getOperation()); |
| 345 | } |
| 346 | |
| 347 | // Helper function that covers for the fact that we don't have this function |
| 348 | // on all operation types. |
| 349 | mlir::ArrayAttr getAsyncOnlyAttr() { |
| 350 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 351 | mlir::acc::KernelsOp, mlir::acc::DataOp>) |
| 352 | return operation.getAsyncOnlyAttr(); |
| 353 | else if constexpr (isCombinedType<OpTy>) |
| 354 | return operation.computeOp.getAsyncOnlyAttr(); |
| 355 | |
| 356 | // Note: 'wait' has async as well, but it cannot have data clauses, so we |
| 357 | // don't have to handle them here. |
| 358 | |
| 359 | llvm_unreachable("getting asyncOnly when clause not valid on operation?" ); |
| 360 | } |
| 361 | |
| 362 | // Helper function that covers for the fact that we don't have this function |
| 363 | // on all operation types. |
| 364 | mlir::ArrayAttr getAsyncOperandsDeviceTypeAttr() { |
| 365 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 366 | mlir::acc::KernelsOp, mlir::acc::DataOp>) |
| 367 | return operation.getAsyncOperandsDeviceTypeAttr(); |
| 368 | else if constexpr (isCombinedType<OpTy>) |
| 369 | return operation.computeOp.getAsyncOperandsDeviceTypeAttr(); |
| 370 | |
| 371 | // Note: 'wait' has async as well, but it cannot have data clauses, so we |
| 372 | // don't have to handle them here. |
| 373 | |
| 374 | llvm_unreachable( |
| 375 | "getting asyncOperandsDeviceType when clause not valid on operation?" ); |
| 376 | } |
| 377 | |
| 378 | // Helper function that covers for the fact that we don't have this function |
| 379 | // on all operation types. |
| 380 | mlir::OperandRange getAsyncOperands() { |
| 381 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 382 | mlir::acc::KernelsOp, mlir::acc::DataOp>) |
| 383 | return operation.getAsyncOperands(); |
| 384 | else if constexpr (isCombinedType<OpTy>) |
| 385 | return operation.computeOp.getAsyncOperands(); |
| 386 | |
| 387 | // Note: 'wait' has async as well, but it cannot have data clauses, so we |
| 388 | // don't have to handle them here. |
| 389 | |
| 390 | llvm_unreachable( |
| 391 | "getting asyncOperandsDeviceType when clause not valid on operation?" ); |
| 392 | } |
| 393 | |
| 394 | // The 'data' clauses all require that we add the 'async' values from the |
| 395 | // operation to them. We've collected the data operands along the way, so use |
| 396 | // that list to get the current 'async' values. |
| 397 | void updateDataOperandAsyncValues() { |
| 398 | if (!hasAsyncClause || dataOperands.empty()) |
| 399 | return; |
| 400 | |
| 401 | for (mlir::Operation *dataOp : dataOperands) { |
| 402 | llvm::TypeSwitch<mlir::Operation *, void>(dataOp) |
| 403 | .Case<ACC_DATA_ENTRY_OPS, ACC_DATA_EXIT_OPS>([&](auto op) { |
| 404 | op.setAsyncOnlyAttr(getAsyncOnlyAttr()); |
| 405 | op.setAsyncOperandsDeviceTypeAttr(getAsyncOperandsDeviceTypeAttr()); |
| 406 | op.getAsyncOperandsMutable().assign(getAsyncOperands()); |
| 407 | }) |
| 408 | .Default([&](mlir::Operation *) { |
| 409 | llvm_unreachable("Not a data operation?" ); |
| 410 | }); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | public: |
| 415 | OpenACCClauseCIREmitter(OpTy &operation, CIRGen::CIRGenFunction &cgf, |
| 416 | CIRGen::CIRGenBuilderTy &builder, |
| 417 | OpenACCDirectiveKind dirKind, SourceLocation dirLoc) |
| 418 | : operation(operation), cgf(cgf), builder(builder), dirKind(dirKind), |
| 419 | dirLoc(dirLoc) {} |
| 420 | |
| 421 | void VisitClause(const OpenACCClause &clause) { |
| 422 | clauseNotImplemented(c: clause); |
| 423 | } |
| 424 | |
| 425 | // The entry point for the CIR emitter. All users should use this rather than |
| 426 | // 'visitClauseList', as this also handles the things that have to happen |
| 427 | // 'after' the clauses are all visited. |
| 428 | void emitClauses(ArrayRef<const OpenACCClause *> clauses) { |
| 429 | this->VisitClauseList(clauses); |
| 430 | updateDataOperandAsyncValues(); |
| 431 | } |
| 432 | |
| 433 | void VisitDefaultClause(const OpenACCDefaultClause &clause) { |
| 434 | // This type-trait checks if 'op'(the first arg) is one of the mlir::acc |
| 435 | // operations listed in the rest of the arguments. |
| 436 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 437 | mlir::acc::KernelsOp, mlir::acc::DataOp>) { |
| 438 | switch (clause.getDefaultClauseKind()) { |
| 439 | case OpenACCDefaultClauseKind::None: |
| 440 | operation.setDefaultAttr(mlir::acc::ClauseDefaultValue::None); |
| 441 | break; |
| 442 | case OpenACCDefaultClauseKind::Present: |
| 443 | operation.setDefaultAttr(mlir::acc::ClauseDefaultValue::Present); |
| 444 | break; |
| 445 | case OpenACCDefaultClauseKind::Invalid: |
| 446 | break; |
| 447 | } |
| 448 | } else if constexpr (isCombinedType<OpTy>) { |
| 449 | applyToComputeOp(clause); |
| 450 | } else { |
| 451 | llvm_unreachable("Unknown construct kind in VisitDefaultClause" ); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | void VisitDeviceTypeClause(const OpenACCDeviceTypeClause &clause) { |
| 456 | setLastDeviceTypeClause(clause); |
| 457 | |
| 458 | if constexpr (isOneOfTypes<OpTy, mlir::acc::InitOp, |
| 459 | mlir::acc::ShutdownOp>) { |
| 460 | llvm::for_each( |
| 461 | clause.getArchitectures(), [this](const DeviceTypeArgument &arg) { |
| 462 | operation.addDeviceType(builder.getContext(), |
| 463 | decodeDeviceType(arg.getIdentifierInfo())); |
| 464 | }); |
| 465 | } else if constexpr (isOneOfTypes<OpTy, mlir::acc::SetOp>) { |
| 466 | assert(!operation.getDeviceTypeAttr() && "already have device-type?" ); |
| 467 | assert(clause.getArchitectures().size() <= 1); |
| 468 | |
| 469 | if (!clause.getArchitectures().empty()) |
| 470 | operation.setDeviceType( |
| 471 | decodeDeviceType(clause.getArchitectures()[0].getIdentifierInfo())); |
| 472 | } else if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, |
| 473 | mlir::acc::SerialOp, mlir::acc::KernelsOp, |
| 474 | mlir::acc::DataOp, mlir::acc::LoopOp>) { |
| 475 | // Nothing to do here, these constructs don't have any IR for these, as |
| 476 | // they just modify the other clauses IR. So setting of |
| 477 | // `lastDeviceTypeValues` (done above) is all we need. |
| 478 | } else if constexpr (isCombinedType<OpTy>) { |
| 479 | // Nothing to do here either, combined constructs are just going to use |
| 480 | // 'lastDeviceTypeValues' to set the value for the child visitor. |
| 481 | } else { |
| 482 | // TODO: When we've implemented this for everything, switch this to an |
| 483 | // unreachable. update, data, routine constructs remain. |
| 484 | return clauseNotImplemented(c: clause); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | void VisitNumWorkersClause(const OpenACCNumWorkersClause &clause) { |
| 489 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, |
| 490 | mlir::acc::KernelsOp>) { |
| 491 | operation.addNumWorkersOperand(builder.getContext(), |
| 492 | emitIntExpr(clause.getIntExpr()), |
| 493 | lastDeviceTypeValues); |
| 494 | } else if constexpr (isCombinedType<OpTy>) { |
| 495 | applyToComputeOp(clause); |
| 496 | } else { |
| 497 | llvm_unreachable("Unknown construct kind in VisitNumGangsClause" ); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | void VisitVectorLengthClause(const OpenACCVectorLengthClause &clause) { |
| 502 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, |
| 503 | mlir::acc::KernelsOp>) { |
| 504 | operation.addVectorLengthOperand(builder.getContext(), |
| 505 | emitIntExpr(clause.getIntExpr()), |
| 506 | lastDeviceTypeValues); |
| 507 | } else if constexpr (isCombinedType<OpTy>) { |
| 508 | applyToComputeOp(clause); |
| 509 | } else { |
| 510 | llvm_unreachable("Unknown construct kind in VisitVectorLengthClause" ); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | void VisitAsyncClause(const OpenACCAsyncClause &clause) { |
| 515 | hasAsyncClause = true; |
| 516 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 517 | mlir::acc::KernelsOp, mlir::acc::DataOp>) { |
| 518 | if (!clause.hasIntExpr()) |
| 519 | operation.addAsyncOnly(builder.getContext(), lastDeviceTypeValues); |
| 520 | else { |
| 521 | |
| 522 | mlir::Value intExpr; |
| 523 | { |
| 524 | // Async int exprs can be referenced by the data operands, which means |
| 525 | // that the int-exprs have to appear before them. IF there is a data |
| 526 | // operand already, set the insertion point to 'before' it. |
| 527 | mlir::OpBuilder::InsertionGuard guardCase(builder); |
| 528 | if (!dataOperands.empty()) |
| 529 | builder.setInsertionPoint(dataOperands.front()); |
| 530 | intExpr = emitIntExpr(clause.getIntExpr()); |
| 531 | } |
| 532 | operation.addAsyncOperand(builder.getContext(), intExpr, |
| 533 | lastDeviceTypeValues); |
| 534 | } |
| 535 | } else if constexpr (isOneOfTypes<OpTy, mlir::acc::WaitOp>) { |
| 536 | // Wait doesn't have a device_type, so its handling here is slightly |
| 537 | // different. |
| 538 | if (!clause.hasIntExpr()) |
| 539 | operation.setAsync(true); |
| 540 | else |
| 541 | operation.getAsyncOperandMutable().append( |
| 542 | emitIntExpr(clause.getIntExpr())); |
| 543 | } else if constexpr (isCombinedType<OpTy>) { |
| 544 | applyToComputeOp(clause); |
| 545 | } else { |
| 546 | // TODO: When we've implemented this for everything, switch this to an |
| 547 | // unreachable. Combined constructs remain. Data, enter data, exit data, |
| 548 | // update constructs remain. |
| 549 | return clauseNotImplemented(c: clause); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | void VisitSelfClause(const OpenACCSelfClause &clause) { |
| 554 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 555 | mlir::acc::KernelsOp>) { |
| 556 | if (clause.isEmptySelfClause()) { |
| 557 | operation.setSelfAttr(true); |
| 558 | } else if (clause.isConditionExprClause()) { |
| 559 | assert(clause.hasConditionExpr()); |
| 560 | operation.getSelfCondMutable().append( |
| 561 | createCondition(clause.getConditionExpr())); |
| 562 | } else { |
| 563 | llvm_unreachable("var-list version of self shouldn't get here" ); |
| 564 | } |
| 565 | } else if constexpr (isCombinedType<OpTy>) { |
| 566 | applyToComputeOp(clause); |
| 567 | } else { |
| 568 | // TODO: When we've implemented this for everything, switch this to an |
| 569 | // unreachable. update construct remains. |
| 570 | return clauseNotImplemented(c: clause); |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | void VisitIfClause(const OpenACCIfClause &clause) { |
| 575 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 576 | mlir::acc::KernelsOp, mlir::acc::InitOp, |
| 577 | mlir::acc::ShutdownOp, mlir::acc::SetOp, |
| 578 | mlir::acc::DataOp, mlir::acc::WaitOp, |
| 579 | mlir::acc::HostDataOp>) { |
| 580 | operation.getIfCondMutable().append( |
| 581 | createCondition(clause.getConditionExpr())); |
| 582 | } else if constexpr (isCombinedType<OpTy>) { |
| 583 | applyToComputeOp(clause); |
| 584 | } else { |
| 585 | // 'if' applies to most of the constructs, but hold off on lowering them |
| 586 | // until we can write tests/know what we're doing with codegen to make |
| 587 | // sure we get it right. |
| 588 | // TODO: When we've implemented this for everything, switch this to an |
| 589 | // unreachable. Enter data, exit data, host_data, update constructs |
| 590 | // remain. |
| 591 | return clauseNotImplemented(c: clause); |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | void VisitIfPresentClause(const OpenACCIfPresentClause &clause) { |
| 596 | if constexpr (isOneOfTypes<OpTy, mlir::acc::HostDataOp>) { |
| 597 | operation.setIfPresent(true); |
| 598 | } else if constexpr (isOneOfTypes<OpTy, mlir::acc::UpdateOp>) { |
| 599 | // Last unimplemented one here, so just put it in this way instead. |
| 600 | return clauseNotImplemented(c: clause); |
| 601 | } else { |
| 602 | llvm_unreachable("unknown construct kind in VisitIfPresentClause" ); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | void VisitDeviceNumClause(const OpenACCDeviceNumClause &clause) { |
| 607 | if constexpr (isOneOfTypes<OpTy, mlir::acc::InitOp, mlir::acc::ShutdownOp, |
| 608 | mlir::acc::SetOp>) { |
| 609 | operation.getDeviceNumMutable().append(emitIntExpr(clause.getIntExpr())); |
| 610 | } else { |
| 611 | llvm_unreachable( |
| 612 | "init, shutdown, set, are only valid device_num constructs" ); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | void VisitNumGangsClause(const OpenACCNumGangsClause &clause) { |
| 617 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, |
| 618 | mlir::acc::KernelsOp>) { |
| 619 | llvm::SmallVector<mlir::Value> values; |
| 620 | for (const Expr *E : clause.getIntExprs()) |
| 621 | values.push_back(emitIntExpr(E)); |
| 622 | |
| 623 | operation.addNumGangsOperands(builder.getContext(), values, |
| 624 | lastDeviceTypeValues); |
| 625 | } else if constexpr (isCombinedType<OpTy>) { |
| 626 | applyToComputeOp(clause); |
| 627 | } else { |
| 628 | llvm_unreachable("Unknown construct kind in VisitNumGangsClause" ); |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | void VisitWaitClause(const OpenACCWaitClause &clause) { |
| 633 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 634 | mlir::acc::KernelsOp, mlir::acc::DataOp>) { |
| 635 | if (!clause.hasExprs()) { |
| 636 | operation.addWaitOnly(builder.getContext(), lastDeviceTypeValues); |
| 637 | } else { |
| 638 | llvm::SmallVector<mlir::Value> values; |
| 639 | if (clause.hasDevNumExpr()) |
| 640 | values.push_back(emitIntExpr(clause.getDevNumExpr())); |
| 641 | for (const Expr *E : clause.getQueueIdExprs()) |
| 642 | values.push_back(emitIntExpr(E)); |
| 643 | operation.addWaitOperands(builder.getContext(), clause.hasDevNumExpr(), |
| 644 | values, lastDeviceTypeValues); |
| 645 | } |
| 646 | } else if constexpr (isCombinedType<OpTy>) { |
| 647 | applyToComputeOp(clause); |
| 648 | } else { |
| 649 | // TODO: When we've implemented this for everything, switch this to an |
| 650 | // unreachable. Enter data, exit data, update constructs remain. |
| 651 | return clauseNotImplemented(c: clause); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | void VisitDefaultAsyncClause(const OpenACCDefaultAsyncClause &clause) { |
| 656 | if constexpr (isOneOfTypes<OpTy, mlir::acc::SetOp>) { |
| 657 | operation.getDefaultAsyncMutable().append( |
| 658 | emitIntExpr(clause.getIntExpr())); |
| 659 | } else { |
| 660 | llvm_unreachable("set, is only valid device_num constructs" ); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | void VisitSeqClause(const OpenACCSeqClause &clause) { |
| 665 | if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| 666 | operation.addSeq(builder.getContext(), lastDeviceTypeValues); |
| 667 | } else if constexpr (isCombinedType<OpTy>) { |
| 668 | applyToLoopOp(clause); |
| 669 | } else { |
| 670 | // TODO: When we've implemented this for everything, switch this to an |
| 671 | // unreachable. Routine construct remains. |
| 672 | return clauseNotImplemented(c: clause); |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | void VisitAutoClause(const OpenACCAutoClause &clause) { |
| 677 | if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| 678 | operation.addAuto(builder.getContext(), lastDeviceTypeValues); |
| 679 | } else if constexpr (isCombinedType<OpTy>) { |
| 680 | applyToLoopOp(clause); |
| 681 | } else { |
| 682 | // TODO: When we've implemented this for everything, switch this to an |
| 683 | // unreachable. Routine, construct remains. |
| 684 | return clauseNotImplemented(c: clause); |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | void VisitIndependentClause(const OpenACCIndependentClause &clause) { |
| 689 | if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| 690 | operation.addIndependent(builder.getContext(), lastDeviceTypeValues); |
| 691 | } else if constexpr (isCombinedType<OpTy>) { |
| 692 | applyToLoopOp(clause); |
| 693 | } else { |
| 694 | // TODO: When we've implemented this for everything, switch this to an |
| 695 | // unreachable. Routine construct remains. |
| 696 | return clauseNotImplemented(c: clause); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | void VisitCollapseClause(const OpenACCCollapseClause &clause) { |
| 701 | if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| 702 | llvm::APInt value = |
| 703 | clause.getIntExpr()->EvaluateKnownConstInt(Ctx: cgf.cgm.getASTContext()); |
| 704 | |
| 705 | value = value.sextOrTrunc(width: 64); |
| 706 | operation.setCollapseForDeviceTypes(builder.getContext(), |
| 707 | lastDeviceTypeValues, value); |
| 708 | } else if constexpr (isCombinedType<OpTy>) { |
| 709 | applyToLoopOp(clause); |
| 710 | } else { |
| 711 | llvm_unreachable("Unknown construct kind in VisitCollapseClause" ); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | void VisitTileClause(const OpenACCTileClause &clause) { |
| 716 | if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| 717 | llvm::SmallVector<mlir::Value> values; |
| 718 | |
| 719 | for (const Expr *e : clause.getSizeExprs()) { |
| 720 | mlir::Location exprLoc = cgf.cgm.getLoc(e->getBeginLoc()); |
| 721 | |
| 722 | // We represent the * as -1. Additionally, this is a constant, so we |
| 723 | // can always just emit it as 64 bits to avoid having to do any more |
| 724 | // work to determine signedness or size. |
| 725 | if (isa<OpenACCAsteriskSizeExpr>(Val: e)) { |
| 726 | values.push_back(createConstantInt(exprLoc, 64, -1)); |
| 727 | } else { |
| 728 | llvm::APInt curValue = |
| 729 | e->EvaluateKnownConstInt(Ctx: cgf.cgm.getASTContext()); |
| 730 | values.push_back(createConstantInt( |
| 731 | exprLoc, 64, curValue.sextOrTrunc(64).getSExtValue())); |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | operation.setTileForDeviceTypes(builder.getContext(), |
| 736 | lastDeviceTypeValues, values); |
| 737 | } else if constexpr (isCombinedType<OpTy>) { |
| 738 | applyToLoopOp(clause); |
| 739 | } else { |
| 740 | llvm_unreachable("Unknown construct kind in VisitTileClause" ); |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | void VisitWorkerClause(const OpenACCWorkerClause &clause) { |
| 745 | if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| 746 | if (clause.hasIntExpr()) |
| 747 | operation.addWorkerNumOperand(builder.getContext(), |
| 748 | emitIntExpr(clause.getIntExpr()), |
| 749 | lastDeviceTypeValues); |
| 750 | else |
| 751 | operation.addEmptyWorker(builder.getContext(), lastDeviceTypeValues); |
| 752 | |
| 753 | } else if constexpr (isCombinedType<OpTy>) { |
| 754 | applyToLoopOp(clause); |
| 755 | } else { |
| 756 | // TODO: When we've implemented this for everything, switch this to an |
| 757 | // unreachable. Combined constructs remain. |
| 758 | return clauseNotImplemented(c: clause); |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | void VisitVectorClause(const OpenACCVectorClause &clause) { |
| 763 | if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| 764 | if (clause.hasIntExpr()) |
| 765 | operation.addVectorOperand(builder.getContext(), |
| 766 | emitIntExpr(clause.getIntExpr()), |
| 767 | lastDeviceTypeValues); |
| 768 | else |
| 769 | operation.addEmptyVector(builder.getContext(), lastDeviceTypeValues); |
| 770 | |
| 771 | } else if constexpr (isCombinedType<OpTy>) { |
| 772 | applyToLoopOp(clause); |
| 773 | } else { |
| 774 | // TODO: When we've implemented this for everything, switch this to an |
| 775 | // unreachable. Combined constructs remain. |
| 776 | return clauseNotImplemented(c: clause); |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | void VisitGangClause(const OpenACCGangClause &clause) { |
| 781 | if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| 782 | if (clause.getNumExprs() == 0) { |
| 783 | operation.addEmptyGang(builder.getContext(), lastDeviceTypeValues); |
| 784 | } else { |
| 785 | llvm::SmallVector<mlir::Value> values; |
| 786 | llvm::SmallVector<mlir::acc::GangArgType> argTypes; |
| 787 | for (unsigned i : llvm::index_range(0u, clause.getNumExprs())) { |
| 788 | auto [kind, expr] = clause.getExpr(I: i); |
| 789 | mlir::Location exprLoc = cgf.cgm.getLoc(expr->getBeginLoc()); |
| 790 | argTypes.push_back(decodeGangType(kind)); |
| 791 | if (kind == OpenACCGangKind::Dim) { |
| 792 | llvm::APInt curValue = |
| 793 | expr->EvaluateKnownConstInt(Ctx: cgf.cgm.getASTContext()); |
| 794 | // The value is 1, 2, or 3, but the type isn't necessarily smaller |
| 795 | // than 64. |
| 796 | curValue = curValue.sextOrTrunc(width: 64); |
| 797 | values.push_back( |
| 798 | createConstantInt(exprLoc, 64, curValue.getSExtValue())); |
| 799 | } else if (isa<OpenACCAsteriskSizeExpr>(Val: expr)) { |
| 800 | values.push_back(createConstantInt(exprLoc, 64, -1)); |
| 801 | } else { |
| 802 | values.push_back(emitIntExpr(expr)); |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | operation.addGangOperands(builder.getContext(), lastDeviceTypeValues, |
| 807 | argTypes, values); |
| 808 | } |
| 809 | } else if constexpr (isCombinedType<OpTy>) { |
| 810 | applyToLoopOp(clause); |
| 811 | } else { |
| 812 | llvm_unreachable("Unknown construct kind in VisitGangClause" ); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | void VisitCopyClause(const OpenACCCopyClause &clause) { |
| 817 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 818 | mlir::acc::KernelsOp>) { |
| 819 | for (auto var : clause.getVarList()) |
| 820 | addDataOperand<mlir::acc::CopyinOp, mlir::acc::CopyoutOp>( |
| 821 | var, mlir::acc::DataClause::acc_copy, /*structured=*/true, |
| 822 | /*implicit=*/false); |
| 823 | } else if constexpr (isCombinedType<OpTy>) { |
| 824 | applyToComputeOp(clause); |
| 825 | } else { |
| 826 | // TODO: When we've implemented this for everything, switch this to an |
| 827 | // unreachable. data, declare, combined constructs remain. |
| 828 | return clauseNotImplemented(c: clause); |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | void VisitUseDeviceClause(const OpenACCUseDeviceClause &clause) { |
| 833 | if constexpr (isOneOfTypes<OpTy, mlir::acc::HostDataOp>) { |
| 834 | for (auto var : clause.getVarList()) |
| 835 | addDataOperand<mlir::acc::UseDeviceOp>( |
| 836 | var, mlir::acc::DataClause::acc_use_device, |
| 837 | /*structured=*/true, /*implicit=*/false); |
| 838 | } else { |
| 839 | llvm_unreachable("Unknown construct kind in VisitUseDeviceClause" ); |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | void VisitDevicePtrClause(const OpenACCDevicePtrClause &clause) { |
| 844 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 845 | mlir::acc::KernelsOp>) { |
| 846 | for (auto var : clause.getVarList()) |
| 847 | addDataOperand<mlir::acc::DevicePtrOp>( |
| 848 | var, mlir::acc::DataClause::acc_deviceptr, /*structured=*/true, |
| 849 | /*implicit=*/false); |
| 850 | } else if constexpr (isCombinedType<OpTy>) { |
| 851 | applyToComputeOp(clause); |
| 852 | } else { |
| 853 | // TODO: When we've implemented this for everything, switch this to an |
| 854 | // unreachable. data, declare remain. |
| 855 | return clauseNotImplemented(c: clause); |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | void VisitNoCreateClause(const OpenACCNoCreateClause &clause) { |
| 860 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 861 | mlir::acc::KernelsOp>) { |
| 862 | for (auto var : clause.getVarList()) |
| 863 | addDataOperand<mlir::acc::NoCreateOp, mlir::acc::DeleteOp>( |
| 864 | var, mlir::acc::DataClause::acc_no_create, /*structured=*/true, |
| 865 | /*implicit=*/false); |
| 866 | } else if constexpr (isCombinedType<OpTy>) { |
| 867 | applyToComputeOp(clause); |
| 868 | } else { |
| 869 | // TODO: When we've implemented this for everything, switch this to an |
| 870 | // unreachable. data remains. |
| 871 | return clauseNotImplemented(c: clause); |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | void VisitPresentClause(const OpenACCPresentClause &clause) { |
| 876 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 877 | mlir::acc::KernelsOp>) { |
| 878 | for (auto var : clause.getVarList()) |
| 879 | addDataOperand<mlir::acc::PresentOp, mlir::acc::DeleteOp>( |
| 880 | var, mlir::acc::DataClause::acc_present, /*structured=*/true, |
| 881 | /*implicit=*/false); |
| 882 | } else if constexpr (isCombinedType<OpTy>) { |
| 883 | applyToComputeOp(clause); |
| 884 | } else { |
| 885 | // TODO: When we've implemented this for everything, switch this to an |
| 886 | // unreachable. data & declare remain. |
| 887 | return clauseNotImplemented(c: clause); |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | void VisitAttachClause(const OpenACCAttachClause &clause) { |
| 892 | if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| 893 | mlir::acc::KernelsOp>) { |
| 894 | for (auto var : clause.getVarList()) |
| 895 | addDataOperand<mlir::acc::AttachOp, mlir::acc::DetachOp>( |
| 896 | var, mlir::acc::DataClause::acc_attach, /*structured=*/true, |
| 897 | /*implicit=*/false); |
| 898 | } else if constexpr (isCombinedType<OpTy>) { |
| 899 | applyToComputeOp(clause); |
| 900 | } else { |
| 901 | // TODO: When we've implemented this for everything, switch this to an |
| 902 | // unreachable. data, enter data remain. |
| 903 | return clauseNotImplemented(c: clause); |
| 904 | } |
| 905 | } |
| 906 | }; |
| 907 | |
| 908 | template <typename OpTy> |
| 909 | auto makeClauseEmitter(OpTy &op, CIRGen::CIRGenFunction &cgf, |
| 910 | CIRGen::CIRGenBuilderTy &builder, |
| 911 | OpenACCDirectiveKind dirKind, SourceLocation dirLoc) { |
| 912 | return OpenACCClauseCIREmitter<OpTy>(op, cgf, builder, dirKind, dirLoc); |
| 913 | } |
| 914 | } // namespace |
| 915 | |
| 916 | template <typename Op> |
| 917 | void CIRGenFunction::emitOpenACCClauses( |
| 918 | Op &op, OpenACCDirectiveKind dirKind, SourceLocation dirLoc, |
| 919 | ArrayRef<const OpenACCClause *> clauses) { |
| 920 | mlir::OpBuilder::InsertionGuard guardCase(builder); |
| 921 | |
| 922 | // Sets insertion point before the 'op', since every new expression needs to |
| 923 | // be before the operation. |
| 924 | builder.setInsertionPoint(op); |
| 925 | makeClauseEmitter(op, *this, builder, dirKind, dirLoc).emitClauses(clauses); |
| 926 | } |
| 927 | |
| 928 | #define EXPL_SPEC(N) \ |
| 929 | template void CIRGenFunction::emitOpenACCClauses<N>( \ |
| 930 | N &, OpenACCDirectiveKind, SourceLocation, \ |
| 931 | ArrayRef<const OpenACCClause *>); |
| 932 | EXPL_SPEC(mlir::acc::ParallelOp) |
| 933 | EXPL_SPEC(mlir::acc::SerialOp) |
| 934 | EXPL_SPEC(mlir::acc::KernelsOp) |
| 935 | EXPL_SPEC(mlir::acc::LoopOp) |
| 936 | EXPL_SPEC(mlir::acc::DataOp) |
| 937 | EXPL_SPEC(mlir::acc::InitOp) |
| 938 | EXPL_SPEC(mlir::acc::ShutdownOp) |
| 939 | EXPL_SPEC(mlir::acc::SetOp) |
| 940 | EXPL_SPEC(mlir::acc::WaitOp) |
| 941 | EXPL_SPEC(mlir::acc::HostDataOp) |
| 942 | #undef EXPL_SPEC |
| 943 | |
| 944 | template <typename ComputeOp, typename LoopOp> |
| 945 | void CIRGenFunction::emitOpenACCClauses( |
| 946 | ComputeOp &op, LoopOp &loopOp, OpenACCDirectiveKind dirKind, |
| 947 | SourceLocation dirLoc, ArrayRef<const OpenACCClause *> clauses) { |
| 948 | static_assert(std::is_same_v<mlir::acc::LoopOp, LoopOp>); |
| 949 | |
| 950 | CombinedConstructClauseInfo<ComputeOp> inf{op, loopOp}; |
| 951 | // We cannot set the insertion point here and do so in the emitter, but make |
| 952 | // sure we reset it with the 'guard' anyway. |
| 953 | mlir::OpBuilder::InsertionGuard guardCase(builder); |
| 954 | makeClauseEmitter(inf, *this, builder, dirKind, dirLoc).emitClauses(clauses); |
| 955 | } |
| 956 | |
| 957 | #define EXPL_SPEC(N) \ |
| 958 | template void CIRGenFunction::emitOpenACCClauses<N, mlir::acc::LoopOp>( \ |
| 959 | N &, mlir::acc::LoopOp &, OpenACCDirectiveKind, SourceLocation, \ |
| 960 | ArrayRef<const OpenACCClause *>); |
| 961 | |
| 962 | EXPL_SPEC(mlir::acc::ParallelOp) |
| 963 | EXPL_SPEC(mlir::acc::SerialOp) |
| 964 | EXPL_SPEC(mlir::acc::KernelsOp) |
| 965 | #undef EXPL_SPEC |
| 966 | |