1 | //===- SemaHLSL.cpp - Semantic Analysis for HLSL constructs ---------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // This implements Semantic Analysis for HLSL constructs. |
9 | //===----------------------------------------------------------------------===// |
10 | |
11 | #include "clang/Sema/SemaHLSL.h" |
12 | #include "clang/AST/ASTConsumer.h" |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/Attr.h" |
15 | #include "clang/AST/Attrs.inc" |
16 | #include "clang/AST/Decl.h" |
17 | #include "clang/AST/DeclBase.h" |
18 | #include "clang/AST/DeclCXX.h" |
19 | #include "clang/AST/DeclarationName.h" |
20 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
21 | #include "clang/AST/Expr.h" |
22 | #include "clang/AST/Type.h" |
23 | #include "clang/AST/TypeLoc.h" |
24 | #include "clang/Basic/Builtins.h" |
25 | #include "clang/Basic/DiagnosticSema.h" |
26 | #include "clang/Basic/IdentifierTable.h" |
27 | #include "clang/Basic/LLVM.h" |
28 | #include "clang/Basic/SourceLocation.h" |
29 | #include "clang/Basic/Specifiers.h" |
30 | #include "clang/Basic/TargetInfo.h" |
31 | #include "clang/Sema/Initialization.h" |
32 | #include "clang/Sema/Lookup.h" |
33 | #include "clang/Sema/ParsedAttr.h" |
34 | #include "clang/Sema/Sema.h" |
35 | #include "clang/Sema/Template.h" |
36 | #include "llvm/ADT/ArrayRef.h" |
37 | #include "llvm/ADT/STLExtras.h" |
38 | #include "llvm/ADT/SmallVector.h" |
39 | #include "llvm/ADT/StringExtras.h" |
40 | #include "llvm/ADT/StringRef.h" |
41 | #include "llvm/ADT/Twine.h" |
42 | #include "llvm/Support/Casting.h" |
43 | #include "llvm/Support/DXILABI.h" |
44 | #include "llvm/Support/ErrorHandling.h" |
45 | #include "llvm/TargetParser/Triple.h" |
46 | #include <cstddef> |
47 | #include <iterator> |
48 | #include <utility> |
49 | |
50 | using namespace clang; |
51 | using RegisterType = HLSLResourceBindingAttr::RegisterType; |
52 | |
53 | static CXXRecordDecl *createHostLayoutStruct(Sema &S, |
54 | CXXRecordDecl *StructDecl); |
55 | |
56 | static RegisterType getRegisterType(ResourceClass RC) { |
57 | switch (RC) { |
58 | case ResourceClass::SRV: |
59 | return RegisterType::SRV; |
60 | case ResourceClass::UAV: |
61 | return RegisterType::UAV; |
62 | case ResourceClass::CBuffer: |
63 | return RegisterType::CBuffer; |
64 | case ResourceClass::Sampler: |
65 | return RegisterType::Sampler; |
66 | } |
67 | llvm_unreachable("unexpected ResourceClass value"); |
68 | } |
69 | |
70 | // Converts the first letter of string Slot to RegisterType. |
71 | // Returns false if the letter does not correspond to a valid register type. |
72 | static bool convertToRegisterType(StringRef Slot, RegisterType *RT) { |
73 | assert(RT != nullptr); |
74 | switch (Slot[0]) { |
75 | case 't': |
76 | case 'T': |
77 | *RT = RegisterType::SRV; |
78 | return true; |
79 | case 'u': |
80 | case 'U': |
81 | *RT = RegisterType::UAV; |
82 | return true; |
83 | case 'b': |
84 | case 'B': |
85 | *RT = RegisterType::CBuffer; |
86 | return true; |
87 | case 's': |
88 | case 'S': |
89 | *RT = RegisterType::Sampler; |
90 | return true; |
91 | case 'c': |
92 | case 'C': |
93 | *RT = RegisterType::C; |
94 | return true; |
95 | case 'i': |
96 | case 'I': |
97 | *RT = RegisterType::I; |
98 | return true; |
99 | default: |
100 | return false; |
101 | } |
102 | } |
103 | |
104 | static ResourceClass getResourceClass(RegisterType RT) { |
105 | switch (RT) { |
106 | case RegisterType::SRV: |
107 | return ResourceClass::SRV; |
108 | case RegisterType::UAV: |
109 | return ResourceClass::UAV; |
110 | case RegisterType::CBuffer: |
111 | return ResourceClass::CBuffer; |
112 | case RegisterType::Sampler: |
113 | return ResourceClass::Sampler; |
114 | case RegisterType::C: |
115 | case RegisterType::I: |
116 | // Deliberately falling through to the unreachable below. |
117 | break; |
118 | } |
119 | llvm_unreachable("unexpected RegisterType value"); |
120 | } |
121 | |
122 | DeclBindingInfo *ResourceBindings::addDeclBindingInfo(const VarDecl *VD, |
123 | ResourceClass ResClass) { |
124 | assert(getDeclBindingInfo(VD, ResClass) == nullptr && |
125 | "DeclBindingInfo already added"); |
126 | assert(!hasBindingInfoForDecl(VD) || BindingsList.back().Decl == VD); |
127 | // VarDecl may have multiple entries for different resource classes. |
128 | // DeclToBindingListIndex stores the index of the first binding we saw |
129 | // for this decl. If there are any additional ones then that index |
130 | // shouldn't be updated. |
131 | DeclToBindingListIndex.try_emplace(Key: VD, Args: BindingsList.size()); |
132 | return &BindingsList.emplace_back(Args&: VD, Args&: ResClass); |
133 | } |
134 | |
135 | DeclBindingInfo *ResourceBindings::getDeclBindingInfo(const VarDecl *VD, |
136 | ResourceClass ResClass) { |
137 | auto Entry = DeclToBindingListIndex.find(Val: VD); |
138 | if (Entry != DeclToBindingListIndex.end()) { |
139 | for (unsigned Index = Entry->getSecond(); |
140 | Index < BindingsList.size() && BindingsList[Index].Decl == VD; |
141 | ++Index) { |
142 | if (BindingsList[Index].ResClass == ResClass) |
143 | return &BindingsList[Index]; |
144 | } |
145 | } |
146 | return nullptr; |
147 | } |
148 | |
149 | bool ResourceBindings::hasBindingInfoForDecl(const VarDecl *VD) const { |
150 | return DeclToBindingListIndex.contains(Val: VD); |
151 | } |
152 | |
153 | SemaHLSL::SemaHLSL(Sema &S) : SemaBase(S) {} |
154 | |
155 | Decl *SemaHLSL::ActOnStartBuffer(Scope *BufferScope, bool CBuffer, |
156 | SourceLocation KwLoc, IdentifierInfo *Ident, |
157 | SourceLocation IdentLoc, |
158 | SourceLocation LBrace) { |
159 | // For anonymous namespace, take the location of the left brace. |
160 | DeclContext *LexicalParent = SemaRef.getCurLexicalContext(); |
161 | HLSLBufferDecl *Result = HLSLBufferDecl::Create( |
162 | C&: getASTContext(), LexicalParent, CBuffer, KwLoc, ID: Ident, IDLoc: IdentLoc, LBrace); |
163 | |
164 | // if CBuffer is false, then it's a TBuffer |
165 | auto RC = CBuffer ? llvm::hlsl::ResourceClass::CBuffer |
166 | : llvm::hlsl::ResourceClass::SRV; |
167 | Result->addAttr(HLSLResourceClassAttr::CreateImplicit(getASTContext(), RC)); |
168 | |
169 | SemaRef.PushOnScopeChains(Result, BufferScope); |
170 | SemaRef.PushDeclContext(BufferScope, Result); |
171 | |
172 | return Result; |
173 | } |
174 | |
175 | static unsigned calculateLegacyCbufferFieldAlign(const ASTContext &Context, |
176 | QualType T) { |
177 | // Arrays and Structs are always aligned to new buffer rows |
178 | if (T->isArrayType() || T->isStructureType()) |
179 | return 16; |
180 | |
181 | // Vectors are aligned to the type they contain |
182 | if (const VectorType *VT = T->getAs<VectorType>()) |
183 | return calculateLegacyCbufferFieldAlign(Context, T: VT->getElementType()); |
184 | |
185 | assert(Context.getTypeSize(T) <= 64 && |
186 | "Scalar bit widths larger than 64 not supported"); |
187 | |
188 | // Scalar types are aligned to their byte width |
189 | return Context.getTypeSize(T) / 8; |
190 | } |
191 | |
192 | // Calculate the size of a legacy cbuffer type in bytes based on |
193 | // https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-packing-rules |
194 | static unsigned calculateLegacyCbufferSize(const ASTContext &Context, |
195 | QualType T) { |
196 | constexpr unsigned CBufferAlign = 16; |
197 | if (const RecordType *RT = T->getAs<RecordType>()) { |
198 | unsigned Size = 0; |
199 | const RecordDecl *RD = RT->getDecl(); |
200 | for (const FieldDecl *Field : RD->fields()) { |
201 | QualType Ty = Field->getType(); |
202 | unsigned FieldSize = calculateLegacyCbufferSize(Context, T: Ty); |
203 | unsigned FieldAlign = calculateLegacyCbufferFieldAlign(Context, T: Ty); |
204 | |
205 | // If the field crosses the row boundary after alignment it drops to the |
206 | // next row |
207 | unsigned AlignSize = llvm::alignTo(Value: Size, Align: FieldAlign); |
208 | if ((AlignSize % CBufferAlign) + FieldSize > CBufferAlign) { |
209 | FieldAlign = CBufferAlign; |
210 | } |
211 | |
212 | Size = llvm::alignTo(Value: Size, Align: FieldAlign); |
213 | Size += FieldSize; |
214 | } |
215 | return Size; |
216 | } |
217 | |
218 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { |
219 | unsigned ElementCount = AT->getSize().getZExtValue(); |
220 | if (ElementCount == 0) |
221 | return 0; |
222 | |
223 | unsigned ElementSize = |
224 | calculateLegacyCbufferSize(Context, AT->getElementType()); |
225 | unsigned AlignedElementSize = llvm::alignTo(Value: ElementSize, Align: CBufferAlign); |
226 | return AlignedElementSize * (ElementCount - 1) + ElementSize; |
227 | } |
228 | |
229 | if (const VectorType *VT = T->getAs<VectorType>()) { |
230 | unsigned ElementCount = VT->getNumElements(); |
231 | unsigned ElementSize = |
232 | calculateLegacyCbufferSize(Context, T: VT->getElementType()); |
233 | return ElementSize * ElementCount; |
234 | } |
235 | |
236 | return Context.getTypeSize(T) / 8; |
237 | } |
238 | |
239 | // Validate packoffset: |
240 | // - if packoffset it used it must be set on all declarations inside the buffer |
241 | // - packoffset ranges must not overlap |
242 | static void validatePackoffset(Sema &S, HLSLBufferDecl *BufDecl) { |
243 | llvm::SmallVector<std::pair<VarDecl *, HLSLPackOffsetAttr *>> PackOffsetVec; |
244 | |
245 | // Make sure the packoffset annotations are either on all declarations |
246 | // or on none. |
247 | bool HasPackOffset = false; |
248 | bool HasNonPackOffset = false; |
249 | for (auto *Field : BufDecl->buffer_decls()) { |
250 | VarDecl *Var = dyn_cast<VarDecl>(Val: Field); |
251 | if (!Var) |
252 | continue; |
253 | if (Field->hasAttr<HLSLPackOffsetAttr>()) { |
254 | PackOffsetVec.emplace_back(Var, Field->getAttr<HLSLPackOffsetAttr>()); |
255 | HasPackOffset = true; |
256 | } else { |
257 | HasNonPackOffset = true; |
258 | } |
259 | } |
260 | |
261 | if (!HasPackOffset) |
262 | return; |
263 | |
264 | if (HasNonPackOffset) |
265 | S.Diag(BufDecl->getLocation(), diag::warn_hlsl_packoffset_mix); |
266 | |
267 | // Make sure there is no overlap in packoffset - sort PackOffsetVec by offset |
268 | // and compare adjacent values. |
269 | bool IsValid = true; |
270 | ASTContext &Context = S.getASTContext(); |
271 | std::sort(PackOffsetVec.begin(), PackOffsetVec.end(), |
272 | [](const std::pair<VarDecl *, HLSLPackOffsetAttr *> &LHS, |
273 | const std::pair<VarDecl *, HLSLPackOffsetAttr *> &RHS) { |
274 | return LHS.second->getOffsetInBytes() < |
275 | RHS.second->getOffsetInBytes(); |
276 | }); |
277 | for (unsigned i = 0; i < PackOffsetVec.size() - 1; i++) { |
278 | VarDecl *Var = PackOffsetVec[i].first; |
279 | HLSLPackOffsetAttr *Attr = PackOffsetVec[i].second; |
280 | unsigned Size = calculateLegacyCbufferSize(Context, Var->getType()); |
281 | unsigned Begin = Attr->getOffsetInBytes(); |
282 | unsigned End = Begin + Size; |
283 | unsigned NextBegin = PackOffsetVec[i + 1].second->getOffsetInBytes(); |
284 | if (End > NextBegin) { |
285 | VarDecl *NextVar = PackOffsetVec[i + 1].first; |
286 | S.Diag(NextVar->getLocation(), diag::err_hlsl_packoffset_overlap) |
287 | << NextVar << Var; |
288 | IsValid = false; |
289 | } |
290 | } |
291 | BufDecl->setHasValidPackoffset(IsValid); |
292 | } |
293 | |
294 | // Returns true if the array has a zero size = if any of the dimensions is 0 |
295 | static bool isZeroSizedArray(const ConstantArrayType *CAT) { |
296 | while (CAT && !CAT->isZeroSize()) |
297 | CAT = dyn_cast<ConstantArrayType>( |
298 | CAT->getElementType()->getUnqualifiedDesugaredType()); |
299 | return CAT != nullptr; |
300 | } |
301 | |
302 | // Returns true if the record type is an HLSL resource class or an array of |
303 | // resource classes |
304 | static bool isResourceRecordTypeOrArrayOf(const Type *Ty) { |
305 | while (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: Ty)) |
306 | Ty = CAT->getArrayElementTypeNoTypeQual(); |
307 | return HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty) != nullptr; |
308 | } |
309 | |
310 | static bool isResourceRecordTypeOrArrayOf(VarDecl *VD) { |
311 | return isResourceRecordTypeOrArrayOf(VD->getType().getTypePtr()); |
312 | } |
313 | |
314 | // Returns true if the type is a leaf element type that is not valid to be |
315 | // included in HLSL Buffer, such as a resource class, empty struct, zero-sized |
316 | // array, or a builtin intangible type. Returns false it is a valid leaf element |
317 | // type or if it is a record type that needs to be inspected further. |
318 | static bool isInvalidConstantBufferLeafElementType(const Type *Ty) { |
319 | Ty = Ty->getUnqualifiedDesugaredType(); |
320 | if (isResourceRecordTypeOrArrayOf(Ty)) |
321 | return true; |
322 | if (Ty->isRecordType()) |
323 | return Ty->getAsCXXRecordDecl()->isEmpty(); |
324 | if (Ty->isConstantArrayType() && |
325 | isZeroSizedArray(CAT: cast<ConstantArrayType>(Val: Ty))) |
326 | return true; |
327 | if (Ty->isHLSLBuiltinIntangibleType() || Ty->isHLSLAttributedResourceType()) |
328 | return true; |
329 | return false; |
330 | } |
331 | |
332 | // Returns true if the struct contains at least one element that prevents it |
333 | // from being included inside HLSL Buffer as is, such as an intangible type, |
334 | // empty struct, or zero-sized array. If it does, a new implicit layout struct |
335 | // needs to be created for HLSL Buffer use that will exclude these unwanted |
336 | // declarations (see createHostLayoutStruct function). |
337 | static bool requiresImplicitBufferLayoutStructure(const CXXRecordDecl *RD) { |
338 | if (RD->getTypeForDecl()->isHLSLIntangibleType() || RD->isEmpty()) |
339 | return true; |
340 | // check fields |
341 | for (const FieldDecl *Field : RD->fields()) { |
342 | QualType Ty = Field->getType(); |
343 | if (isInvalidConstantBufferLeafElementType(Ty.getTypePtr())) |
344 | return true; |
345 | if (Ty->isRecordType() && |
346 | requiresImplicitBufferLayoutStructure(Ty->getAsCXXRecordDecl())) |
347 | return true; |
348 | } |
349 | // check bases |
350 | for (const CXXBaseSpecifier &Base : RD->bases()) |
351 | if (requiresImplicitBufferLayoutStructure( |
352 | RD: Base.getType()->getAsCXXRecordDecl())) |
353 | return true; |
354 | return false; |
355 | } |
356 | |
357 | static CXXRecordDecl *findRecordDeclInContext(IdentifierInfo *II, |
358 | DeclContext *DC) { |
359 | CXXRecordDecl *RD = nullptr; |
360 | for (NamedDecl *Decl : |
361 | DC->getNonTransparentContext()->lookup(Name: DeclarationName(II))) { |
362 | if (CXXRecordDecl *FoundRD = dyn_cast<CXXRecordDecl>(Val: Decl)) { |
363 | assert(RD == nullptr && |
364 | "there should be at most 1 record by a given name in a scope"); |
365 | RD = FoundRD; |
366 | } |
367 | } |
368 | return RD; |
369 | } |
370 | |
371 | // Creates a name for buffer layout struct using the provide name base. |
372 | // If the name must be unique (not previously defined), a suffix is added |
373 | // until a unique name is found. |
374 | static IdentifierInfo *getHostLayoutStructName(Sema &S, NamedDecl *BaseDecl, |
375 | bool MustBeUnique) { |
376 | ASTContext &AST = S.getASTContext(); |
377 | |
378 | IdentifierInfo *NameBaseII = BaseDecl->getIdentifier(); |
379 | llvm::SmallString<64> Name("__cblayout_"); |
380 | if (NameBaseII) { |
381 | Name.append(RHS: NameBaseII->getName()); |
382 | } else { |
383 | // anonymous struct |
384 | Name.append(RHS: "anon"); |
385 | MustBeUnique = true; |
386 | } |
387 | |
388 | size_t NameLength = Name.size(); |
389 | IdentifierInfo *II = &AST.Idents.get(Name, TokenCode: tok::TokenKind::identifier); |
390 | if (!MustBeUnique) |
391 | return II; |
392 | |
393 | unsigned suffix = 0; |
394 | while (true) { |
395 | if (suffix != 0) { |
396 | Name.append(RHS: "_"); |
397 | Name.append(RHS: llvm::Twine(suffix).str()); |
398 | II = &AST.Idents.get(Name, TokenCode: tok::TokenKind::identifier); |
399 | } |
400 | if (!findRecordDeclInContext(II, BaseDecl->getDeclContext())) |
401 | return II; |
402 | // declaration with that name already exists - increment suffix and try |
403 | // again until unique name is found |
404 | suffix++; |
405 | Name.truncate(N: NameLength); |
406 | }; |
407 | } |
408 | |
409 | // Creates a field declaration of given name and type for HLSL buffer layout |
410 | // struct. Returns nullptr if the type cannot be use in HLSL Buffer layout. |
411 | static FieldDecl *createFieldForHostLayoutStruct(Sema &S, const Type *Ty, |
412 | IdentifierInfo *II, |
413 | CXXRecordDecl *LayoutStruct) { |
414 | if (isInvalidConstantBufferLeafElementType(Ty)) |
415 | return nullptr; |
416 | |
417 | if (Ty->isRecordType()) { |
418 | CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
419 | if (requiresImplicitBufferLayoutStructure(RD)) { |
420 | RD = createHostLayoutStruct(S, StructDecl: RD); |
421 | if (!RD) |
422 | return nullptr; |
423 | Ty = RD->getTypeForDecl(); |
424 | } |
425 | } |
426 | |
427 | QualType QT = QualType(Ty, 0); |
428 | ASTContext &AST = S.getASTContext(); |
429 | TypeSourceInfo *TSI = AST.getTrivialTypeSourceInfo(T: QT, Loc: SourceLocation()); |
430 | auto *Field = FieldDecl::Create(AST, LayoutStruct, SourceLocation(), |
431 | SourceLocation(), II, QT, TSI, nullptr, false, |
432 | InClassInitStyle::ICIS_NoInit); |
433 | Field->setAccess(AccessSpecifier::AS_public); |
434 | return Field; |
435 | } |
436 | |
437 | // Creates host layout struct for a struct included in HLSL Buffer. |
438 | // The layout struct will include only fields that are allowed in HLSL buffer. |
439 | // These fields will be filtered out: |
440 | // - resource classes |
441 | // - empty structs |
442 | // - zero-sized arrays |
443 | // Returns nullptr if the resulting layout struct would be empty. |
444 | static CXXRecordDecl *createHostLayoutStruct(Sema &S, |
445 | CXXRecordDecl *StructDecl) { |
446 | assert(requiresImplicitBufferLayoutStructure(StructDecl) && |
447 | "struct is already HLSL buffer compatible"); |
448 | |
449 | ASTContext &AST = S.getASTContext(); |
450 | DeclContext *DC = StructDecl->getDeclContext(); |
451 | IdentifierInfo *II = getHostLayoutStructName(S, StructDecl, false); |
452 | |
453 | // reuse existing if the layout struct if it already exists |
454 | if (CXXRecordDecl *RD = findRecordDeclInContext(II, DC)) |
455 | return RD; |
456 | |
457 | CXXRecordDecl *LS = |
458 | CXXRecordDecl::Create(C: AST, TK: TagDecl::TagKind::Struct, DC, StartLoc: SourceLocation(), |
459 | IdLoc: SourceLocation(), Id: II); |
460 | LS->setImplicit(true); |
461 | LS->addAttr(PackedAttr::CreateImplicit(AST)); |
462 | LS->startDefinition(); |
463 | |
464 | // copy base struct, create HLSL Buffer compatible version if needed |
465 | if (unsigned NumBases = StructDecl->getNumBases()) { |
466 | assert(NumBases == 1 && "HLSL supports only one base type"); |
467 | (void)NumBases; |
468 | CXXBaseSpecifier Base = *StructDecl->bases_begin(); |
469 | CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); |
470 | if (requiresImplicitBufferLayoutStructure(RD: BaseDecl)) { |
471 | BaseDecl = createHostLayoutStruct(S, StructDecl: BaseDecl); |
472 | if (BaseDecl) { |
473 | TypeSourceInfo *TSI = AST.getTrivialTypeSourceInfo( |
474 | T: QualType(BaseDecl->getTypeForDecl(), 0)); |
475 | Base = CXXBaseSpecifier(SourceRange(), false, StructDecl->isClass(), |
476 | AS_none, TSI, SourceLocation()); |
477 | } |
478 | } |
479 | if (BaseDecl) { |
480 | const CXXBaseSpecifier *BasesArray[1] = {&Base}; |
481 | LS->setBases(Bases: BasesArray, NumBases: 1); |
482 | } |
483 | } |
484 | |
485 | // filter struct fields |
486 | for (const FieldDecl *FD : StructDecl->fields()) { |
487 | const Type *Ty = FD->getType()->getUnqualifiedDesugaredType(); |
488 | if (FieldDecl *NewFD = |
489 | createFieldForHostLayoutStruct(S, Ty, FD->getIdentifier(), LS)) |
490 | LS->addDecl(NewFD); |
491 | } |
492 | LS->completeDefinition(); |
493 | |
494 | if (LS->field_empty() && LS->getNumBases() == 0) |
495 | return nullptr; |
496 | |
497 | DC->addDecl(LS); |
498 | return LS; |
499 | } |
500 | |
501 | // Creates host layout struct for HLSL Buffer. The struct will include only |
502 | // fields of types that are allowed in HLSL buffer and it will filter out: |
503 | // - static or groupshared variable declarations |
504 | // - resource classes |
505 | // - empty structs |
506 | // - zero-sized arrays |
507 | // - non-variable declarations |
508 | // The layout struct will be added to the HLSLBufferDecl declarations. |
509 | void createHostLayoutStructForBuffer(Sema &S, HLSLBufferDecl *BufDecl) { |
510 | ASTContext &AST = S.getASTContext(); |
511 | IdentifierInfo *II = getHostLayoutStructName(S, BufDecl, true); |
512 | |
513 | CXXRecordDecl *LS = |
514 | CXXRecordDecl::Create(AST, TagDecl::TagKind::Struct, BufDecl, |
515 | SourceLocation(), SourceLocation(), II); |
516 | LS->addAttr(PackedAttr::CreateImplicit(AST)); |
517 | LS->setImplicit(true); |
518 | LS->startDefinition(); |
519 | |
520 | for (Decl *D : BufDecl->buffer_decls()) { |
521 | VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
522 | if (!VD || VD->getStorageClass() == SC_Static || |
523 | VD->getType().getAddressSpace() == LangAS::hlsl_groupshared) |
524 | continue; |
525 | const Type *Ty = VD->getType()->getUnqualifiedDesugaredType(); |
526 | if (FieldDecl *FD = |
527 | createFieldForHostLayoutStruct(S, Ty, VD->getIdentifier(), LS)) { |
528 | // add the field decl to the layout struct |
529 | LS->addDecl(FD); |
530 | // update address space of the original decl to hlsl_constant |
531 | QualType NewTy = |
532 | AST.getAddrSpaceQualType(T: VD->getType(), AddressSpace: LangAS::hlsl_constant); |
533 | VD->setType(NewTy); |
534 | } |
535 | } |
536 | LS->completeDefinition(); |
537 | BufDecl->addLayoutStruct(LS); |
538 | } |
539 | |
540 | static void addImplicitBindingAttrToBuffer(Sema &S, HLSLBufferDecl *BufDecl, |
541 | uint32_t ImplicitBindingOrderID) { |
542 | RegisterType RT = |
543 | BufDecl->isCBuffer() ? RegisterType::CBuffer : RegisterType::SRV; |
544 | auto *Attr = |
545 | HLSLResourceBindingAttr::CreateImplicit(S.getASTContext(), "", "0", {}); |
546 | std::optional<unsigned> RegSlot; |
547 | Attr->setBinding(RT, RegSlot, 0); |
548 | Attr->setImplicitBindingOrderID(ImplicitBindingOrderID); |
549 | BufDecl->addAttr(A: Attr); |
550 | } |
551 | |
552 | // Handle end of cbuffer/tbuffer declaration |
553 | void SemaHLSL::ActOnFinishBuffer(Decl *Dcl, SourceLocation RBrace) { |
554 | auto *BufDecl = cast<HLSLBufferDecl>(Val: Dcl); |
555 | BufDecl->setRBraceLoc(RBrace); |
556 | |
557 | validatePackoffset(S&: SemaRef, BufDecl); |
558 | |
559 | // create buffer layout struct |
560 | createHostLayoutStructForBuffer(S&: SemaRef, BufDecl); |
561 | |
562 | HLSLResourceBindingAttr *RBA = Dcl->getAttr<HLSLResourceBindingAttr>(); |
563 | if (!RBA || !RBA->hasRegisterSlot()) { |
564 | SemaRef.Diag(Dcl->getLocation(), diag::warn_hlsl_implicit_binding); |
565 | // Use HLSLResourceBindingAttr to transfer implicit binding order_ID |
566 | // to codegen. If it does not exist, create an implicit attribute. |
567 | uint32_t OrderID = getNextImplicitBindingOrderID(); |
568 | if (RBA) |
569 | RBA->setImplicitBindingOrderID(OrderID); |
570 | else |
571 | addImplicitBindingAttrToBuffer(S&: SemaRef, BufDecl, ImplicitBindingOrderID: OrderID); |
572 | } |
573 | |
574 | SemaRef.PopDeclContext(); |
575 | } |
576 | |
577 | HLSLNumThreadsAttr *SemaHLSL::mergeNumThreadsAttr(Decl *D, |
578 | const AttributeCommonInfo &AL, |
579 | int X, int Y, int Z) { |
580 | if (HLSLNumThreadsAttr *NT = D->getAttr<HLSLNumThreadsAttr>()) { |
581 | if (NT->getX() != X || NT->getY() != Y || NT->getZ() != Z) { |
582 | Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL; |
583 | Diag(AL.getLoc(), diag::note_conflicting_attribute); |
584 | } |
585 | return nullptr; |
586 | } |
587 | return ::new (getASTContext()) |
588 | HLSLNumThreadsAttr(getASTContext(), AL, X, Y, Z); |
589 | } |
590 | |
591 | HLSLWaveSizeAttr *SemaHLSL::mergeWaveSizeAttr(Decl *D, |
592 | const AttributeCommonInfo &AL, |
593 | int Min, int Max, int Preferred, |
594 | int SpelledArgsCount) { |
595 | if (HLSLWaveSizeAttr *WS = D->getAttr<HLSLWaveSizeAttr>()) { |
596 | if (WS->getMin() != Min || WS->getMax() != Max || |
597 | WS->getPreferred() != Preferred || |
598 | WS->getSpelledArgsCount() != SpelledArgsCount) { |
599 | Diag(WS->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL; |
600 | Diag(AL.getLoc(), diag::note_conflicting_attribute); |
601 | } |
602 | return nullptr; |
603 | } |
604 | HLSLWaveSizeAttr *Result = ::new (getASTContext()) |
605 | HLSLWaveSizeAttr(getASTContext(), AL, Min, Max, Preferred); |
606 | Result->setSpelledArgsCount(SpelledArgsCount); |
607 | return Result; |
608 | } |
609 | |
610 | HLSLShaderAttr * |
611 | SemaHLSL::mergeShaderAttr(Decl *D, const AttributeCommonInfo &AL, |
612 | llvm::Triple::EnvironmentType ShaderType) { |
613 | if (HLSLShaderAttr *NT = D->getAttr<HLSLShaderAttr>()) { |
614 | if (NT->getType() != ShaderType) { |
615 | Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL; |
616 | Diag(AL.getLoc(), diag::note_conflicting_attribute); |
617 | } |
618 | return nullptr; |
619 | } |
620 | return HLSLShaderAttr::Create(getASTContext(), ShaderType, AL); |
621 | } |
622 | |
623 | HLSLParamModifierAttr * |
624 | SemaHLSL::mergeParamModifierAttr(Decl *D, const AttributeCommonInfo &AL, |
625 | HLSLParamModifierAttr::Spelling Spelling) { |
626 | // We can only merge an `in` attribute with an `out` attribute. All other |
627 | // combinations of duplicated attributes are ill-formed. |
628 | if (HLSLParamModifierAttr *PA = D->getAttr<HLSLParamModifierAttr>()) { |
629 | if ((PA->isIn() && Spelling == HLSLParamModifierAttr::Keyword_out) || |
630 | (PA->isOut() && Spelling == HLSLParamModifierAttr::Keyword_in)) { |
631 | D->dropAttr<HLSLParamModifierAttr>(); |
632 | SourceRange AdjustedRange = {PA->getLocation(), AL.getRange().getEnd()}; |
633 | return HLSLParamModifierAttr::Create( |
634 | getASTContext(), /*MergedSpelling=*/true, AdjustedRange, |
635 | HLSLParamModifierAttr::Keyword_inout); |
636 | } |
637 | Diag(AL.getLoc(), diag::err_hlsl_duplicate_parameter_modifier) << AL; |
638 | Diag(PA->getLocation(), diag::note_conflicting_attribute); |
639 | return nullptr; |
640 | } |
641 | return HLSLParamModifierAttr::Create(getASTContext(), AL); |
642 | } |
643 | |
644 | void SemaHLSL::ActOnTopLevelFunction(FunctionDecl *FD) { |
645 | auto &TargetInfo = getASTContext().getTargetInfo(); |
646 | |
647 | if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry) |
648 | return; |
649 | |
650 | llvm::Triple::EnvironmentType Env = TargetInfo.getTriple().getEnvironment(); |
651 | if (HLSLShaderAttr::isValidShaderType(Env) && Env != llvm::Triple::Library) { |
652 | if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) { |
653 | // The entry point is already annotated - check that it matches the |
654 | // triple. |
655 | if (Shader->getType() != Env) { |
656 | Diag(Shader->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch) |
657 | << Shader; |
658 | FD->setInvalidDecl(); |
659 | } |
660 | } else { |
661 | // Implicitly add the shader attribute if the entry function isn't |
662 | // explicitly annotated. |
663 | FD->addAttr(HLSLShaderAttr::CreateImplicit(getASTContext(), Env, |
664 | FD->getBeginLoc())); |
665 | } |
666 | } else { |
667 | switch (Env) { |
668 | case llvm::Triple::UnknownEnvironment: |
669 | case llvm::Triple::Library: |
670 | break; |
671 | default: |
672 | llvm_unreachable("Unhandled environment in triple"); |
673 | } |
674 | } |
675 | } |
676 | |
677 | void SemaHLSL::CheckEntryPoint(FunctionDecl *FD) { |
678 | const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>(); |
679 | assert(ShaderAttr && "Entry point has no shader attribute"); |
680 | llvm::Triple::EnvironmentType ST = ShaderAttr->getType(); |
681 | auto &TargetInfo = getASTContext().getTargetInfo(); |
682 | VersionTuple Ver = TargetInfo.getTriple().getOSVersion(); |
683 | switch (ST) { |
684 | case llvm::Triple::Pixel: |
685 | case llvm::Triple::Vertex: |
686 | case llvm::Triple::Geometry: |
687 | case llvm::Triple::Hull: |
688 | case llvm::Triple::Domain: |
689 | case llvm::Triple::RayGeneration: |
690 | case llvm::Triple::Intersection: |
691 | case llvm::Triple::AnyHit: |
692 | case llvm::Triple::ClosestHit: |
693 | case llvm::Triple::Miss: |
694 | case llvm::Triple::Callable: |
695 | if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) { |
696 | DiagnoseAttrStageMismatch(A: NT, Stage: ST, |
697 | AllowedStages: {llvm::Triple::Compute, |
698 | llvm::Triple::Amplification, |
699 | llvm::Triple::Mesh}); |
700 | FD->setInvalidDecl(); |
701 | } |
702 | if (const auto *WS = FD->getAttr<HLSLWaveSizeAttr>()) { |
703 | DiagnoseAttrStageMismatch(A: WS, Stage: ST, |
704 | AllowedStages: {llvm::Triple::Compute, |
705 | llvm::Triple::Amplification, |
706 | llvm::Triple::Mesh}); |
707 | FD->setInvalidDecl(); |
708 | } |
709 | break; |
710 | |
711 | case llvm::Triple::Compute: |
712 | case llvm::Triple::Amplification: |
713 | case llvm::Triple::Mesh: |
714 | if (!FD->hasAttr<HLSLNumThreadsAttr>()) { |
715 | Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads) |
716 | << llvm::Triple::getEnvironmentTypeName(ST); |
717 | FD->setInvalidDecl(); |
718 | } |
719 | if (const auto *WS = FD->getAttr<HLSLWaveSizeAttr>()) { |
720 | if (Ver < VersionTuple(6, 6)) { |
721 | Diag(WS->getLocation(), diag::err_hlsl_attribute_in_wrong_shader_model) |
722 | << WS << "6.6"; |
723 | FD->setInvalidDecl(); |
724 | } else if (WS->getSpelledArgsCount() > 1 && Ver < VersionTuple(6, 8)) { |
725 | Diag( |
726 | WS->getLocation(), |
727 | diag::err_hlsl_attribute_number_arguments_insufficient_shader_model) |
728 | << WS << WS->getSpelledArgsCount() << "6.8"; |
729 | FD->setInvalidDecl(); |
730 | } |
731 | } |
732 | break; |
733 | default: |
734 | llvm_unreachable("Unhandled environment in triple"); |
735 | } |
736 | |
737 | for (ParmVarDecl *Param : FD->parameters()) { |
738 | if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) { |
739 | CheckSemanticAnnotation(EntryPoint: FD, Param, AnnotationAttr: AnnotationAttr); |
740 | } else { |
741 | // FIXME: Handle struct parameters where annotations are on struct fields. |
742 | // See: https://github.com/llvm/llvm-project/issues/57875 |
743 | Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation); |
744 | Diag(Param->getLocation(), diag::note_previous_decl) << Param; |
745 | FD->setInvalidDecl(); |
746 | } |
747 | } |
748 | // FIXME: Verify return type semantic annotation. |
749 | } |
750 | |
751 | void SemaHLSL::CheckSemanticAnnotation( |
752 | FunctionDecl *EntryPoint, const Decl *Param, |
753 | const HLSLAnnotationAttr *AnnotationAttr) { |
754 | auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>(); |
755 | assert(ShaderAttr && "Entry point has no shader attribute"); |
756 | llvm::Triple::EnvironmentType ST = ShaderAttr->getType(); |
757 | |
758 | switch (AnnotationAttr->getKind()) { |
759 | case attr::HLSLSV_DispatchThreadID: |
760 | case attr::HLSLSV_GroupIndex: |
761 | case attr::HLSLSV_GroupThreadID: |
762 | case attr::HLSLSV_GroupID: |
763 | if (ST == llvm::Triple::Compute) |
764 | return; |
765 | DiagnoseAttrStageMismatch(A: AnnotationAttr, Stage: ST, AllowedStages: {llvm::Triple::Compute}); |
766 | break; |
767 | case attr::HLSLSV_Position: |
768 | // TODO(#143523): allow use on other shader types & output once the overall |
769 | // semantic logic is implemented. |
770 | if (ST == llvm::Triple::Pixel) |
771 | return; |
772 | DiagnoseAttrStageMismatch(A: AnnotationAttr, Stage: ST, AllowedStages: {llvm::Triple::Pixel}); |
773 | break; |
774 | default: |
775 | llvm_unreachable("Unknown HLSLAnnotationAttr"); |
776 | } |
777 | } |
778 | |
779 | void SemaHLSL::DiagnoseAttrStageMismatch( |
780 | const Attr *A, llvm::Triple::EnvironmentType Stage, |
781 | std::initializer_list<llvm::Triple::EnvironmentType> AllowedStages) { |
782 | SmallVector<StringRef, 8> StageStrings; |
783 | llvm::transform(Range&: AllowedStages, d_first: std::back_inserter(x&: StageStrings), |
784 | F: [](llvm::Triple::EnvironmentType ST) { |
785 | return StringRef( |
786 | HLSLShaderAttr::ConvertEnvironmentTypeToStr(ST)); |
787 | }); |
788 | Diag(A->getLoc(), diag::err_hlsl_attr_unsupported_in_stage) |
789 | << A->getAttrName() << llvm::Triple::getEnvironmentTypeName(Stage) |
790 | << (AllowedStages.size() != 1) << join(StageStrings, ", "); |
791 | } |
792 | |
793 | template <CastKind Kind> |
794 | static void castVector(Sema &S, ExprResult &E, QualType &Ty, unsigned Sz) { |
795 | if (const auto *VTy = Ty->getAs<VectorType>()) |
796 | Ty = VTy->getElementType(); |
797 | Ty = S.getASTContext().getExtVectorType(VectorType: Ty, NumElts: Sz); |
798 | E = S.ImpCastExprToType(E: E.get(), Type: Ty, CK: Kind); |
799 | } |
800 | |
801 | template <CastKind Kind> |
802 | static QualType castElement(Sema &S, ExprResult &E, QualType Ty) { |
803 | E = S.ImpCastExprToType(E: E.get(), Type: Ty, CK: Kind); |
804 | return Ty; |
805 | } |
806 | |
807 | static QualType handleFloatVectorBinOpConversion( |
808 | Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType, |
809 | QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) { |
810 | bool LHSFloat = LElTy->isRealFloatingType(); |
811 | bool RHSFloat = RElTy->isRealFloatingType(); |
812 | |
813 | if (LHSFloat && RHSFloat) { |
814 | if (IsCompAssign || |
815 | SemaRef.getASTContext().getFloatingTypeOrder(LHS: LElTy, RHS: RElTy) > 0) |
816 | return castElement<CK_FloatingCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
817 | |
818 | return castElement<CK_FloatingCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
819 | } |
820 | |
821 | if (LHSFloat) |
822 | return castElement<CK_IntegralToFloating>(S&: SemaRef, E&: RHS, Ty: LHSType); |
823 | |
824 | assert(RHSFloat); |
825 | if (IsCompAssign) |
826 | return castElement<clang::CK_FloatingToIntegral>(S&: SemaRef, E&: RHS, Ty: LHSType); |
827 | |
828 | return castElement<CK_IntegralToFloating>(S&: SemaRef, E&: LHS, Ty: RHSType); |
829 | } |
830 | |
831 | static QualType handleIntegerVectorBinOpConversion( |
832 | Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType, |
833 | QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) { |
834 | |
835 | int IntOrder = SemaRef.Context.getIntegerTypeOrder(LHS: LElTy, RHS: RElTy); |
836 | bool LHSSigned = LElTy->hasSignedIntegerRepresentation(); |
837 | bool RHSSigned = RElTy->hasSignedIntegerRepresentation(); |
838 | auto &Ctx = SemaRef.getASTContext(); |
839 | |
840 | // If both types have the same signedness, use the higher ranked type. |
841 | if (LHSSigned == RHSSigned) { |
842 | if (IsCompAssign || IntOrder >= 0) |
843 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
844 | |
845 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
846 | } |
847 | |
848 | // If the unsigned type has greater than or equal rank of the signed type, use |
849 | // the unsigned type. |
850 | if (IntOrder != (LHSSigned ? 1 : -1)) { |
851 | if (IsCompAssign || RHSSigned) |
852 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
853 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
854 | } |
855 | |
856 | // At this point the signed type has higher rank than the unsigned type, which |
857 | // means it will be the same size or bigger. If the signed type is bigger, it |
858 | // can represent all the values of the unsigned type, so select it. |
859 | if (Ctx.getIntWidth(T: LElTy) != Ctx.getIntWidth(T: RElTy)) { |
860 | if (IsCompAssign || LHSSigned) |
861 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
862 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: RHSType); |
863 | } |
864 | |
865 | // This is a bit of an odd duck case in HLSL. It shouldn't happen, but can due |
866 | // to C/C++ leaking through. The place this happens today is long vs long |
867 | // long. When arguments are vector<unsigned long, N> and vector<long long, N>, |
868 | // the long long has higher rank than long even though they are the same size. |
869 | |
870 | // If this is a compound assignment cast the right hand side to the left hand |
871 | // side's type. |
872 | if (IsCompAssign) |
873 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: LHSType); |
874 | |
875 | // If this isn't a compound assignment we convert to unsigned long long. |
876 | QualType ElTy = Ctx.getCorrespondingUnsignedType(T: LHSSigned ? LElTy : RElTy); |
877 | QualType NewTy = Ctx.getExtVectorType( |
878 | VectorType: ElTy, NumElts: RHSType->castAs<VectorType>()->getNumElements()); |
879 | (void)castElement<CK_IntegralCast>(S&: SemaRef, E&: RHS, Ty: NewTy); |
880 | |
881 | return castElement<CK_IntegralCast>(S&: SemaRef, E&: LHS, Ty: NewTy); |
882 | } |
883 | |
884 | static CastKind getScalarCastKind(ASTContext &Ctx, QualType DestTy, |
885 | QualType SrcTy) { |
886 | if (DestTy->isRealFloatingType() && SrcTy->isRealFloatingType()) |
887 | return CK_FloatingCast; |
888 | if (DestTy->isIntegralType(Ctx) && SrcTy->isIntegralType(Ctx)) |
889 | return CK_IntegralCast; |
890 | if (DestTy->isRealFloatingType()) |
891 | return CK_IntegralToFloating; |
892 | assert(SrcTy->isRealFloatingType() && DestTy->isIntegralType(Ctx)); |
893 | return CK_FloatingToIntegral; |
894 | } |
895 | |
896 | QualType SemaHLSL::handleVectorBinOpConversion(ExprResult &LHS, ExprResult &RHS, |
897 | QualType LHSType, |
898 | QualType RHSType, |
899 | bool IsCompAssign) { |
900 | const auto *LVecTy = LHSType->getAs<VectorType>(); |
901 | const auto *RVecTy = RHSType->getAs<VectorType>(); |
902 | auto &Ctx = getASTContext(); |
903 | |
904 | // If the LHS is not a vector and this is a compound assignment, we truncate |
905 | // the argument to a scalar then convert it to the LHS's type. |
906 | if (!LVecTy && IsCompAssign) { |
907 | QualType RElTy = RHSType->castAs<VectorType>()->getElementType(); |
908 | RHS = SemaRef.ImpCastExprToType(E: RHS.get(), Type: RElTy, CK: CK_HLSLVectorTruncation); |
909 | RHSType = RHS.get()->getType(); |
910 | if (Ctx.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) |
911 | return LHSType; |
912 | RHS = SemaRef.ImpCastExprToType(E: RHS.get(), Type: LHSType, |
913 | CK: getScalarCastKind(Ctx, DestTy: LHSType, SrcTy: RHSType)); |
914 | return LHSType; |
915 | } |
916 | |
917 | unsigned EndSz = std::numeric_limits<unsigned>::max(); |
918 | unsigned LSz = 0; |
919 | if (LVecTy) |
920 | LSz = EndSz = LVecTy->getNumElements(); |
921 | if (RVecTy) |
922 | EndSz = std::min(a: RVecTy->getNumElements(), b: EndSz); |
923 | assert(EndSz != std::numeric_limits<unsigned>::max() && |
924 | "one of the above should have had a value"); |
925 | |
926 | // In a compound assignment, the left operand does not change type, the right |
927 | // operand is converted to the type of the left operand. |
928 | if (IsCompAssign && LSz != EndSz) { |
929 | Diag(LHS.get()->getBeginLoc(), |
930 | diag::err_hlsl_vector_compound_assignment_truncation) |
931 | << LHSType << RHSType; |
932 | return QualType(); |
933 | } |
934 | |
935 | if (RVecTy && RVecTy->getNumElements() > EndSz) |
936 | castVector<CK_HLSLVectorTruncation>(S&: SemaRef, E&: RHS, Ty&: RHSType, Sz: EndSz); |
937 | if (!IsCompAssign && LVecTy && LVecTy->getNumElements() > EndSz) |
938 | castVector<CK_HLSLVectorTruncation>(S&: SemaRef, E&: LHS, Ty&: LHSType, Sz: EndSz); |
939 | |
940 | if (!RVecTy) |
941 | castVector<CK_VectorSplat>(S&: SemaRef, E&: RHS, Ty&: RHSType, Sz: EndSz); |
942 | if (!IsCompAssign && !LVecTy) |
943 | castVector<CK_VectorSplat>(S&: SemaRef, E&: LHS, Ty&: LHSType, Sz: EndSz); |
944 | |
945 | // If we're at the same type after resizing we can stop here. |
946 | if (Ctx.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) |
947 | return Ctx.getCommonSugaredType(X: LHSType, Y: RHSType); |
948 | |
949 | QualType LElTy = LHSType->castAs<VectorType>()->getElementType(); |
950 | QualType RElTy = RHSType->castAs<VectorType>()->getElementType(); |
951 | |
952 | // Handle conversion for floating point vectors. |
953 | if (LElTy->isRealFloatingType() || RElTy->isRealFloatingType()) |
954 | return handleFloatVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType, |
955 | LElTy, RElTy, IsCompAssign); |
956 | |
957 | assert(LElTy->isIntegralType(Ctx) && RElTy->isIntegralType(Ctx) && |
958 | "HLSL Vectors can only contain integer or floating point types"); |
959 | return handleIntegerVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType, |
960 | LElTy, RElTy, IsCompAssign); |
961 | } |
962 | |
963 | void SemaHLSL::emitLogicalOperatorFixIt(Expr *LHS, Expr *RHS, |
964 | BinaryOperatorKind Opc) { |
965 | assert((Opc == BO_LOr || Opc == BO_LAnd) && |
966 | "Called with non-logical operator"); |
967 | llvm::SmallVector<char, 256> Buff; |
968 | llvm::raw_svector_ostream OS(Buff); |
969 | PrintingPolicy PP(SemaRef.getLangOpts()); |
970 | StringRef NewFnName = Opc == BO_LOr ? "or": "and"; |
971 | OS << NewFnName << "("; |
972 | LHS->printPretty(OS, nullptr, PP); |
973 | OS << ", "; |
974 | RHS->printPretty(OS, nullptr, PP); |
975 | OS << ")"; |
976 | SourceRange FullRange = SourceRange(LHS->getBeginLoc(), RHS->getEndLoc()); |
977 | SemaRef.Diag(LHS->getBeginLoc(), diag::note_function_suggestion) |
978 | << NewFnName << FixItHint::CreateReplacement(FullRange, OS.str()); |
979 | } |
980 | |
981 | void SemaHLSL::handleRootSignatureAttr(Decl *D, const ParsedAttr &AL) { |
982 | if (AL.getNumArgs() != 1) { |
983 | Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
984 | return; |
985 | } |
986 | |
987 | IdentifierInfo *Ident = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
988 | if (auto *RS = D->getAttr<RootSignatureAttr>()) { |
989 | if (RS->getSignatureIdent() != Ident) { |
990 | Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << RS; |
991 | return; |
992 | } |
993 | |
994 | Diag(AL.getLoc(), diag::warn_duplicate_attribute_exact) << RS; |
995 | return; |
996 | } |
997 | |
998 | LookupResult R(SemaRef, Ident, SourceLocation(), Sema::LookupOrdinaryName); |
999 | if (SemaRef.LookupQualifiedName(R, LookupCtx: D->getDeclContext())) |
1000 | if (auto *SignatureDecl = |
1001 | dyn_cast<HLSLRootSignatureDecl>(Val: R.getFoundDecl())) { |
1002 | // Perform validation of constructs here |
1003 | D->addAttr(::new (getASTContext()) RootSignatureAttr( |
1004 | getASTContext(), AL, Ident, SignatureDecl)); |
1005 | } |
1006 | } |
1007 | |
1008 | void SemaHLSL::handleNumThreadsAttr(Decl *D, const ParsedAttr &AL) { |
1009 | llvm::VersionTuple SMVersion = |
1010 | getASTContext().getTargetInfo().getTriple().getOSVersion(); |
1011 | uint32_t ZMax = 1024; |
1012 | uint32_t ThreadMax = 1024; |
1013 | if (SMVersion.getMajor() <= 4) { |
1014 | ZMax = 1; |
1015 | ThreadMax = 768; |
1016 | } else if (SMVersion.getMajor() == 5) { |
1017 | ZMax = 64; |
1018 | ThreadMax = 1024; |
1019 | } |
1020 | |
1021 | uint32_t X; |
1022 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: X)) |
1023 | return; |
1024 | if (X > 1024) { |
1025 | Diag(AL.getArgAsExpr(0)->getExprLoc(), |
1026 | diag::err_hlsl_numthreads_argument_oor) |
1027 | << 0 << 1024; |
1028 | return; |
1029 | } |
1030 | uint32_t Y; |
1031 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Y)) |
1032 | return; |
1033 | if (Y > 1024) { |
1034 | Diag(AL.getArgAsExpr(1)->getExprLoc(), |
1035 | diag::err_hlsl_numthreads_argument_oor) |
1036 | << 1 << 1024; |
1037 | return; |
1038 | } |
1039 | uint32_t Z; |
1040 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 2), Val&: Z)) |
1041 | return; |
1042 | if (Z > ZMax) { |
1043 | SemaRef.Diag(AL.getArgAsExpr(2)->getExprLoc(), |
1044 | diag::err_hlsl_numthreads_argument_oor) |
1045 | << 2 << ZMax; |
1046 | return; |
1047 | } |
1048 | |
1049 | if (X * Y * Z > ThreadMax) { |
1050 | Diag(AL.getLoc(), diag::err_hlsl_numthreads_invalid) << ThreadMax; |
1051 | return; |
1052 | } |
1053 | |
1054 | HLSLNumThreadsAttr *NewAttr = mergeNumThreadsAttr(D, AL, X, Y, Z); |
1055 | if (NewAttr) |
1056 | D->addAttr(A: NewAttr); |
1057 | } |
1058 | |
1059 | static bool isValidWaveSizeValue(unsigned Value) { |
1060 | return llvm::isPowerOf2_32(Value) && Value >= 4 && Value <= 128; |
1061 | } |
1062 | |
1063 | void SemaHLSL::handleWaveSizeAttr(Decl *D, const ParsedAttr &AL) { |
1064 | // validate that the wavesize argument is a power of 2 between 4 and 128 |
1065 | // inclusive |
1066 | unsigned SpelledArgsCount = AL.getNumArgs(); |
1067 | if (SpelledArgsCount == 0 || SpelledArgsCount > 3) |
1068 | return; |
1069 | |
1070 | uint32_t Min; |
1071 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Min)) |
1072 | return; |
1073 | |
1074 | uint32_t Max = 0; |
1075 | if (SpelledArgsCount > 1 && |
1076 | !SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Max)) |
1077 | return; |
1078 | |
1079 | uint32_t Preferred = 0; |
1080 | if (SpelledArgsCount > 2 && |
1081 | !SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 2), Val&: Preferred)) |
1082 | return; |
1083 | |
1084 | if (SpelledArgsCount > 2) { |
1085 | if (!isValidWaveSizeValue(Value: Preferred)) { |
1086 | Diag(AL.getArgAsExpr(2)->getExprLoc(), |
1087 | diag::err_attribute_power_of_two_in_range) |
1088 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize |
1089 | << Preferred; |
1090 | return; |
1091 | } |
1092 | // Preferred not in range. |
1093 | if (Preferred < Min || Preferred > Max) { |
1094 | Diag(AL.getArgAsExpr(2)->getExprLoc(), |
1095 | diag::err_attribute_power_of_two_in_range) |
1096 | << AL << Min << Max << Preferred; |
1097 | return; |
1098 | } |
1099 | } else if (SpelledArgsCount > 1) { |
1100 | if (!isValidWaveSizeValue(Value: Max)) { |
1101 | Diag(AL.getArgAsExpr(1)->getExprLoc(), |
1102 | diag::err_attribute_power_of_two_in_range) |
1103 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize << Max; |
1104 | return; |
1105 | } |
1106 | if (Max < Min) { |
1107 | Diag(AL.getLoc(), diag::err_attribute_argument_invalid) << AL << 1; |
1108 | return; |
1109 | } else if (Max == Min) { |
1110 | Diag(AL.getLoc(), diag::warn_attr_min_eq_max) << AL; |
1111 | } |
1112 | } else { |
1113 | if (!isValidWaveSizeValue(Value: Min)) { |
1114 | Diag(AL.getArgAsExpr(0)->getExprLoc(), |
1115 | diag::err_attribute_power_of_two_in_range) |
1116 | << AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize << Min; |
1117 | return; |
1118 | } |
1119 | } |
1120 | |
1121 | HLSLWaveSizeAttr *NewAttr = |
1122 | mergeWaveSizeAttr(D, AL, Min, Max, Preferred, SpelledArgsCount); |
1123 | if (NewAttr) |
1124 | D->addAttr(A: NewAttr); |
1125 | } |
1126 | |
1127 | void SemaHLSL::handleVkExtBuiltinInputAttr(Decl *D, const ParsedAttr &AL) { |
1128 | uint32_t ID; |
1129 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: ID)) |
1130 | return; |
1131 | D->addAttr(::new (getASTContext()) |
1132 | HLSLVkExtBuiltinInputAttr(getASTContext(), AL, ID)); |
1133 | } |
1134 | |
1135 | bool SemaHLSL::diagnoseInputIDType(QualType T, const ParsedAttr &AL) { |
1136 | const auto *VT = T->getAs<VectorType>(); |
1137 | |
1138 | if (!T->hasUnsignedIntegerRepresentation() || |
1139 | (VT && VT->getNumElements() > 3)) { |
1140 | Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_type) |
1141 | << AL << "uint/uint2/uint3"; |
1142 | return false; |
1143 | } |
1144 | |
1145 | return true; |
1146 | } |
1147 | |
1148 | void SemaHLSL::handleSV_DispatchThreadIDAttr(Decl *D, const ParsedAttr &AL) { |
1149 | auto *VD = cast<ValueDecl>(Val: D); |
1150 | if (!diagnoseInputIDType(T: VD->getType(), AL)) |
1151 | return; |
1152 | |
1153 | D->addAttr(::new (getASTContext()) |
1154 | HLSLSV_DispatchThreadIDAttr(getASTContext(), AL)); |
1155 | } |
1156 | |
1157 | bool SemaHLSL::diagnosePositionType(QualType T, const ParsedAttr &AL) { |
1158 | const auto *VT = T->getAs<VectorType>(); |
1159 | |
1160 | if (!T->hasFloatingRepresentation() || (VT && VT->getNumElements() > 4)) { |
1161 | Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_type) |
1162 | << AL << "float/float1/float2/float3/float4"; |
1163 | return false; |
1164 | } |
1165 | |
1166 | return true; |
1167 | } |
1168 | |
1169 | void SemaHLSL::handleSV_PositionAttr(Decl *D, const ParsedAttr &AL) { |
1170 | auto *VD = cast<ValueDecl>(Val: D); |
1171 | if (!diagnosePositionType(T: VD->getType(), AL)) |
1172 | return; |
1173 | |
1174 | D->addAttr(::new (getASTContext()) HLSLSV_PositionAttr(getASTContext(), AL)); |
1175 | } |
1176 | |
1177 | void SemaHLSL::handleSV_GroupThreadIDAttr(Decl *D, const ParsedAttr &AL) { |
1178 | auto *VD = cast<ValueDecl>(Val: D); |
1179 | if (!diagnoseInputIDType(T: VD->getType(), AL)) |
1180 | return; |
1181 | |
1182 | D->addAttr(::new (getASTContext()) |
1183 | HLSLSV_GroupThreadIDAttr(getASTContext(), AL)); |
1184 | } |
1185 | |
1186 | void SemaHLSL::handleSV_GroupIDAttr(Decl *D, const ParsedAttr &AL) { |
1187 | auto *VD = cast<ValueDecl>(Val: D); |
1188 | if (!diagnoseInputIDType(T: VD->getType(), AL)) |
1189 | return; |
1190 | |
1191 | D->addAttr(::new (getASTContext()) HLSLSV_GroupIDAttr(getASTContext(), AL)); |
1192 | } |
1193 | |
1194 | void SemaHLSL::handlePackOffsetAttr(Decl *D, const ParsedAttr &AL) { |
1195 | if (!isa<VarDecl>(Val: D) || !isa<HLSLBufferDecl>(Val: D->getDeclContext())) { |
1196 | Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_ast_node) |
1197 | << AL << "shader constant in a constant buffer"; |
1198 | return; |
1199 | } |
1200 | |
1201 | uint32_t SubComponent; |
1202 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: SubComponent)) |
1203 | return; |
1204 | uint32_t Component; |
1205 | if (!SemaRef.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 1), Val&: Component)) |
1206 | return; |
1207 | |
1208 | QualType T = cast<VarDecl>(Val: D)->getType().getCanonicalType(); |
1209 | // Check if T is an array or struct type. |
1210 | // TODO: mark matrix type as aggregate type. |
1211 | bool IsAggregateTy = (T->isArrayType() || T->isStructureType()); |
1212 | |
1213 | // Check Component is valid for T. |
1214 | if (Component) { |
1215 | unsigned Size = getASTContext().getTypeSize(T); |
1216 | if (IsAggregateTy || Size > 128) { |
1217 | Diag(AL.getLoc(), diag::err_hlsl_packoffset_cross_reg_boundary); |
1218 | return; |
1219 | } else { |
1220 | // Make sure Component + sizeof(T) <= 4. |
1221 | if ((Component * 32 + Size) > 128) { |
1222 | Diag(AL.getLoc(), diag::err_hlsl_packoffset_cross_reg_boundary); |
1223 | return; |
1224 | } |
1225 | QualType EltTy = T; |
1226 | if (const auto *VT = T->getAs<VectorType>()) |
1227 | EltTy = VT->getElementType(); |
1228 | unsigned Align = getASTContext().getTypeAlign(T: EltTy); |
1229 | if (Align > 32 && Component == 1) { |
1230 | // NOTE: Component 3 will hit err_hlsl_packoffset_cross_reg_boundary. |
1231 | // So we only need to check Component 1 here. |
1232 | Diag(AL.getLoc(), diag::err_hlsl_packoffset_alignment_mismatch) |
1233 | << Align << EltTy; |
1234 | return; |
1235 | } |
1236 | } |
1237 | } |
1238 | |
1239 | D->addAttr(::new (getASTContext()) HLSLPackOffsetAttr( |
1240 | getASTContext(), AL, SubComponent, Component)); |
1241 | } |
1242 | |
1243 | void SemaHLSL::handleShaderAttr(Decl *D, const ParsedAttr &AL) { |
1244 | StringRef Str; |
1245 | SourceLocation ArgLoc; |
1246 | if (!SemaRef.checkStringLiteralArgumentAttr(Attr: AL, ArgNum: 0, Str, ArgLocation: &ArgLoc)) |
1247 | return; |
1248 | |
1249 | llvm::Triple::EnvironmentType ShaderType; |
1250 | if (!HLSLShaderAttr::ConvertStrToEnvironmentType(Str, ShaderType)) { |
1251 | Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
1252 | << AL << Str << ArgLoc; |
1253 | return; |
1254 | } |
1255 | |
1256 | // FIXME: check function match the shader stage. |
1257 | |
1258 | HLSLShaderAttr *NewAttr = mergeShaderAttr(D, AL, ShaderType); |
1259 | if (NewAttr) |
1260 | D->addAttr(A: NewAttr); |
1261 | } |
1262 | |
1263 | bool clang::CreateHLSLAttributedResourceType( |
1264 | Sema &S, QualType Wrapped, ArrayRef<const Attr *> AttrList, |
1265 | QualType &ResType, HLSLAttributedResourceLocInfo *LocInfo) { |
1266 | assert(AttrList.size() && "expected list of resource attributes"); |
1267 | |
1268 | QualType ContainedTy = QualType(); |
1269 | TypeSourceInfo *ContainedTyInfo = nullptr; |
1270 | SourceLocation LocBegin = AttrList[0]->getRange().getBegin(); |
1271 | SourceLocation LocEnd = AttrList[0]->getRange().getEnd(); |
1272 | |
1273 | HLSLAttributedResourceType::Attributes ResAttrs; |
1274 | |
1275 | bool HasResourceClass = false; |
1276 | for (const Attr *A : AttrList) { |
1277 | if (!A) |
1278 | continue; |
1279 | LocEnd = A->getRange().getEnd(); |
1280 | switch (A->getKind()) { |
1281 | case attr::HLSLResourceClass: { |
1282 | ResourceClass RC = cast<HLSLResourceClassAttr>(A)->getResourceClass(); |
1283 | if (HasResourceClass) { |
1284 | S.Diag(A->getLocation(), ResAttrs.ResourceClass == RC |
1285 | ? diag::warn_duplicate_attribute_exact |
1286 | : diag::warn_duplicate_attribute) |
1287 | << A; |
1288 | return false; |
1289 | } |
1290 | ResAttrs.ResourceClass = RC; |
1291 | HasResourceClass = true; |
1292 | break; |
1293 | } |
1294 | case attr::HLSLROV: |
1295 | if (ResAttrs.IsROV) { |
1296 | S.Diag(A->getLocation(), diag::warn_duplicate_attribute_exact) << A; |
1297 | return false; |
1298 | } |
1299 | ResAttrs.IsROV = true; |
1300 | break; |
1301 | case attr::HLSLRawBuffer: |
1302 | if (ResAttrs.RawBuffer) { |
1303 | S.Diag(A->getLocation(), diag::warn_duplicate_attribute_exact) << A; |
1304 | return false; |
1305 | } |
1306 | ResAttrs.RawBuffer = true; |
1307 | break; |
1308 | case attr::HLSLContainedType: { |
1309 | const HLSLContainedTypeAttr *CTAttr = cast<HLSLContainedTypeAttr>(A); |
1310 | QualType Ty = CTAttr->getType(); |
1311 | if (!ContainedTy.isNull()) { |
1312 | S.Diag(A->getLocation(), ContainedTy == Ty |
1313 | ? diag::warn_duplicate_attribute_exact |
1314 | : diag::warn_duplicate_attribute) |
1315 | << A; |
1316 | return false; |
1317 | } |
1318 | ContainedTy = Ty; |
1319 | ContainedTyInfo = CTAttr->getTypeLoc(); |
1320 | break; |
1321 | } |
1322 | default: |
1323 | llvm_unreachable("unhandled resource attribute type"); |
1324 | } |
1325 | } |
1326 | |
1327 | if (!HasResourceClass) { |
1328 | S.Diag(AttrList.back()->getRange().getEnd(), |
1329 | diag::err_hlsl_missing_resource_class); |
1330 | return false; |
1331 | } |
1332 | |
1333 | ResType = S.getASTContext().getHLSLAttributedResourceType( |
1334 | Wrapped, Contained: ContainedTy, Attrs: ResAttrs); |
1335 | |
1336 | if (LocInfo && ContainedTyInfo) { |
1337 | LocInfo->Range = SourceRange(LocBegin, LocEnd); |
1338 | LocInfo->ContainedTyInfo = ContainedTyInfo; |
1339 | } |
1340 | return true; |
1341 | } |
1342 | |
1343 | // Validates and creates an HLSL attribute that is applied as type attribute on |
1344 | // HLSL resource. The attributes are collected in HLSLResourcesTypeAttrs and at |
1345 | // the end of the declaration they are applied to the declaration type by |
1346 | // wrapping it in HLSLAttributedResourceType. |
1347 | bool SemaHLSL::handleResourceTypeAttr(QualType T, const ParsedAttr &AL) { |
1348 | // only allow resource type attributes on intangible types |
1349 | if (!T->isHLSLResourceType()) { |
1350 | Diag(AL.getLoc(), diag::err_hlsl_attribute_needs_intangible_type) |
1351 | << AL << getASTContext().HLSLResourceTy; |
1352 | return false; |
1353 | } |
1354 | |
1355 | // validate number of arguments |
1356 | if (!AL.checkExactlyNumArgs(S&: SemaRef, Num: AL.getMinArgs())) |
1357 | return false; |
1358 | |
1359 | Attr *A = nullptr; |
1360 | switch (AL.getKind()) { |
1361 | case ParsedAttr::AT_HLSLResourceClass: { |
1362 | if (!AL.isArgIdent(Arg: 0)) { |
1363 | Diag(AL.getLoc(), diag::err_attribute_argument_type) |
1364 | << AL << AANT_ArgumentIdentifier; |
1365 | return false; |
1366 | } |
1367 | |
1368 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 0); |
1369 | StringRef Identifier = Loc->getIdentifierInfo()->getName(); |
1370 | SourceLocation ArgLoc = Loc->getLoc(); |
1371 | |
1372 | // Validate resource class value |
1373 | ResourceClass RC; |
1374 | if (!HLSLResourceClassAttr::ConvertStrToResourceClass(Identifier, RC)) { |
1375 | Diag(ArgLoc, diag::warn_attribute_type_not_supported) |
1376 | << "ResourceClass"<< Identifier; |
1377 | return false; |
1378 | } |
1379 | A = HLSLResourceClassAttr::Create(getASTContext(), RC, AL.getLoc()); |
1380 | break; |
1381 | } |
1382 | |
1383 | case ParsedAttr::AT_HLSLROV: |
1384 | A = HLSLROVAttr::Create(getASTContext(), AL.getLoc()); |
1385 | break; |
1386 | |
1387 | case ParsedAttr::AT_HLSLRawBuffer: |
1388 | A = HLSLRawBufferAttr::Create(getASTContext(), AL.getLoc()); |
1389 | break; |
1390 | |
1391 | case ParsedAttr::AT_HLSLContainedType: { |
1392 | if (AL.getNumArgs() != 1 && !AL.hasParsedType()) { |
1393 | Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
1394 | return false; |
1395 | } |
1396 | |
1397 | TypeSourceInfo *TSI = nullptr; |
1398 | QualType QT = SemaRef.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &TSI); |
1399 | assert(TSI && "no type source info for attribute argument"); |
1400 | if (SemaRef.RequireCompleteType(TSI->getTypeLoc().getBeginLoc(), QT, |
1401 | diag::err_incomplete_type)) |
1402 | return false; |
1403 | A = HLSLContainedTypeAttr::Create(getASTContext(), TSI, AL.getLoc()); |
1404 | break; |
1405 | } |
1406 | |
1407 | default: |
1408 | llvm_unreachable("unhandled HLSL attribute"); |
1409 | } |
1410 | |
1411 | HLSLResourcesTypeAttrs.emplace_back(Args&: A); |
1412 | return true; |
1413 | } |
1414 | |
1415 | // Combines all resource type attributes and creates HLSLAttributedResourceType. |
1416 | QualType SemaHLSL::ProcessResourceTypeAttributes(QualType CurrentType) { |
1417 | if (!HLSLResourcesTypeAttrs.size()) |
1418 | return CurrentType; |
1419 | |
1420 | QualType QT = CurrentType; |
1421 | HLSLAttributedResourceLocInfo LocInfo; |
1422 | if (CreateHLSLAttributedResourceType(S&: SemaRef, Wrapped: CurrentType, |
1423 | AttrList: HLSLResourcesTypeAttrs, ResType&: QT, LocInfo: &LocInfo)) { |
1424 | const HLSLAttributedResourceType *RT = |
1425 | cast<HLSLAttributedResourceType>(Val: QT.getTypePtr()); |
1426 | |
1427 | // Temporarily store TypeLoc information for the new type. |
1428 | // It will be transferred to HLSLAttributesResourceTypeLoc |
1429 | // shortly after the type is created by TypeSpecLocFiller which |
1430 | // will call the TakeLocForHLSLAttribute method below. |
1431 | LocsForHLSLAttributedResources.insert(KV: std::pair(RT, LocInfo)); |
1432 | } |
1433 | HLSLResourcesTypeAttrs.clear(); |
1434 | return QT; |
1435 | } |
1436 | |
1437 | // Returns source location for the HLSLAttributedResourceType |
1438 | HLSLAttributedResourceLocInfo |
1439 | SemaHLSL::TakeLocForHLSLAttribute(const HLSLAttributedResourceType *RT) { |
1440 | HLSLAttributedResourceLocInfo LocInfo = {}; |
1441 | auto I = LocsForHLSLAttributedResources.find(Val: RT); |
1442 | if (I != LocsForHLSLAttributedResources.end()) { |
1443 | LocInfo = I->second; |
1444 | LocsForHLSLAttributedResources.erase(I); |
1445 | return LocInfo; |
1446 | } |
1447 | LocInfo.Range = SourceRange(); |
1448 | return LocInfo; |
1449 | } |
1450 | |
1451 | // Walks though the global variable declaration, collects all resource binding |
1452 | // requirements and adds them to Bindings |
1453 | void SemaHLSL::collectResourceBindingsOnUserRecordDecl(const VarDecl *VD, |
1454 | const RecordType *RT) { |
1455 | const RecordDecl *RD = RT->getDecl(); |
1456 | for (FieldDecl *FD : RD->fields()) { |
1457 | const Type *Ty = FD->getType()->getUnqualifiedDesugaredType(); |
1458 | |
1459 | // Unwrap arrays |
1460 | // FIXME: Calculate array size while unwrapping |
1461 | assert(!Ty->isIncompleteArrayType() && |
1462 | "incomplete arrays inside user defined types are not supported"); |
1463 | while (Ty->isConstantArrayType()) { |
1464 | const ConstantArrayType *CAT = cast<ConstantArrayType>(Val: Ty); |
1465 | Ty = CAT->getElementType()->getUnqualifiedDesugaredType(); |
1466 | } |
1467 | |
1468 | if (!Ty->isRecordType()) |
1469 | continue; |
1470 | |
1471 | if (const HLSLAttributedResourceType *AttrResType = |
1472 | HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty)) { |
1473 | // Add a new DeclBindingInfo to Bindings if it does not already exist |
1474 | ResourceClass RC = AttrResType->getAttrs().ResourceClass; |
1475 | DeclBindingInfo *DBI = Bindings.getDeclBindingInfo(VD, ResClass: RC); |
1476 | if (!DBI) |
1477 | Bindings.addDeclBindingInfo(VD, ResClass: RC); |
1478 | } else if (const RecordType *RT = dyn_cast<RecordType>(Val: Ty)) { |
1479 | // Recursively scan embedded struct or class; it would be nice to do this |
1480 | // without recursion, but tricky to correctly calculate the size of the |
1481 | // binding, which is something we are probably going to need to do later |
1482 | // on. Hopefully nesting of structs in structs too many levels is |
1483 | // unlikely. |
1484 | collectResourceBindingsOnUserRecordDecl(VD, RT); |
1485 | } |
1486 | } |
1487 | } |
1488 | |
1489 | // Diagnose localized register binding errors for a single binding; does not |
1490 | // diagnose resource binding on user record types, that will be done later |
1491 | // in processResourceBindingOnDecl based on the information collected in |
1492 | // collectResourceBindingsOnVarDecl. |
1493 | // Returns false if the register binding is not valid. |
1494 | static bool DiagnoseLocalRegisterBinding(Sema &S, SourceLocation &ArgLoc, |
1495 | Decl *D, RegisterType RegType, |
1496 | bool SpecifiedSpace) { |
1497 | int RegTypeNum = static_cast<int>(RegType); |
1498 | |
1499 | // check if the decl type is groupshared |
1500 | if (D->hasAttr<HLSLGroupSharedAddressSpaceAttr>()) { |
1501 | S.Diag(ArgLoc, diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
1502 | return false; |
1503 | } |
1504 | |
1505 | // Cbuffers and Tbuffers are HLSLBufferDecl types |
1506 | if (HLSLBufferDecl *CBufferOrTBuffer = dyn_cast<HLSLBufferDecl>(Val: D)) { |
1507 | ResourceClass RC = CBufferOrTBuffer->isCBuffer() ? ResourceClass::CBuffer |
1508 | : ResourceClass::SRV; |
1509 | if (RegType == getRegisterType(RC)) |
1510 | return true; |
1511 | |
1512 | S.Diag(D->getLocation(), diag::err_hlsl_binding_type_mismatch) |
1513 | << RegTypeNum; |
1514 | return false; |
1515 | } |
1516 | |
1517 | // Samplers, UAVs, and SRVs are VarDecl types |
1518 | assert(isa<VarDecl>(D) && "D is expected to be VarDecl or HLSLBufferDecl"); |
1519 | VarDecl *VD = cast<VarDecl>(Val: D); |
1520 | |
1521 | // Resource |
1522 | if (const HLSLAttributedResourceType *AttrResType = |
1523 | HLSLAttributedResourceType::findHandleTypeOnResource( |
1524 | RT: VD->getType().getTypePtr())) { |
1525 | if (RegType == getRegisterType(AttrResType->getAttrs().ResourceClass)) |
1526 | return true; |
1527 | |
1528 | S.Diag(D->getLocation(), diag::err_hlsl_binding_type_mismatch) |
1529 | << RegTypeNum; |
1530 | return false; |
1531 | } |
1532 | |
1533 | const clang::Type *Ty = VD->getType().getTypePtr(); |
1534 | while (Ty->isArrayType()) |
1535 | Ty = Ty->getArrayElementTypeNoTypeQual(); |
1536 | |
1537 | // Basic types |
1538 | if (Ty->isArithmeticType() || Ty->isVectorType()) { |
1539 | bool DeclaredInCOrTBuffer = isa<HLSLBufferDecl>(Val: D->getDeclContext()); |
1540 | if (SpecifiedSpace && !DeclaredInCOrTBuffer) |
1541 | S.Diag(ArgLoc, diag::err_hlsl_space_on_global_constant); |
1542 | |
1543 | if (!DeclaredInCOrTBuffer && (Ty->isIntegralType(Ctx: S.getASTContext()) || |
1544 | Ty->isFloatingType() || Ty->isVectorType())) { |
1545 | // Register annotation on default constant buffer declaration ($Globals) |
1546 | if (RegType == RegisterType::CBuffer) |
1547 | S.Diag(ArgLoc, diag::warn_hlsl_deprecated_register_type_b); |
1548 | else if (RegType != RegisterType::C) |
1549 | S.Diag(ArgLoc, diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
1550 | else |
1551 | return true; |
1552 | } else { |
1553 | if (RegType == RegisterType::C) |
1554 | S.Diag(ArgLoc, diag::warn_hlsl_register_type_c_packoffset); |
1555 | else |
1556 | S.Diag(ArgLoc, diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
1557 | } |
1558 | return false; |
1559 | } |
1560 | if (Ty->isRecordType()) |
1561 | // RecordTypes will be diagnosed in processResourceBindingOnDecl |
1562 | // that is called from ActOnVariableDeclarator |
1563 | return true; |
1564 | |
1565 | // Anything else is an error |
1566 | S.Diag(ArgLoc, diag::err_hlsl_binding_type_mismatch) << RegTypeNum; |
1567 | return false; |
1568 | } |
1569 | |
1570 | static bool ValidateMultipleRegisterAnnotations(Sema &S, Decl *TheDecl, |
1571 | RegisterType regType) { |
1572 | // make sure that there are no two register annotations |
1573 | // applied to the decl with the same register type |
1574 | bool RegisterTypesDetected[5] = {false}; |
1575 | RegisterTypesDetected[static_cast<int>(regType)] = true; |
1576 | |
1577 | for (auto it = TheDecl->attr_begin(); it != TheDecl->attr_end(); ++it) { |
1578 | if (HLSLResourceBindingAttr *attr = |
1579 | dyn_cast<HLSLResourceBindingAttr>(*it)) { |
1580 | |
1581 | RegisterType otherRegType = attr->getRegisterType(); |
1582 | if (RegisterTypesDetected[static_cast<int>(otherRegType)]) { |
1583 | int otherRegTypeNum = static_cast<int>(otherRegType); |
1584 | S.Diag(TheDecl->getLocation(), |
1585 | diag::err_hlsl_duplicate_register_annotation) |
1586 | << otherRegTypeNum; |
1587 | return false; |
1588 | } |
1589 | RegisterTypesDetected[static_cast<int>(otherRegType)] = true; |
1590 | } |
1591 | } |
1592 | return true; |
1593 | } |
1594 | |
1595 | static bool DiagnoseHLSLRegisterAttribute(Sema &S, SourceLocation &ArgLoc, |
1596 | Decl *D, RegisterType RegType, |
1597 | bool SpecifiedSpace) { |
1598 | |
1599 | // exactly one of these two types should be set |
1600 | assert(((isa<VarDecl>(D) && !isa<HLSLBufferDecl>(D)) || |
1601 | (!isa<VarDecl>(D) && isa<HLSLBufferDecl>(D))) && |
1602 | "expecting VarDecl or HLSLBufferDecl"); |
1603 | |
1604 | // check if the declaration contains resource matching the register type |
1605 | if (!DiagnoseLocalRegisterBinding(S, ArgLoc, D, RegType, SpecifiedSpace)) |
1606 | return false; |
1607 | |
1608 | // next, if multiple register annotations exist, check that none conflict. |
1609 | return ValidateMultipleRegisterAnnotations(S, D, RegType); |
1610 | } |
1611 | |
1612 | void SemaHLSL::handleResourceBindingAttr(Decl *TheDecl, const ParsedAttr &AL) { |
1613 | if (isa<VarDecl>(Val: TheDecl)) { |
1614 | if (SemaRef.RequireCompleteType(TheDecl->getBeginLoc(), |
1615 | cast<ValueDecl>(TheDecl)->getType(), |
1616 | diag::err_incomplete_type)) |
1617 | return; |
1618 | } |
1619 | |
1620 | StringRef Slot = ""; |
1621 | StringRef Space = ""; |
1622 | SourceLocation SlotLoc, SpaceLoc; |
1623 | |
1624 | if (!AL.isArgIdent(Arg: 0)) { |
1625 | Diag(AL.getLoc(), diag::err_attribute_argument_type) |
1626 | << AL << AANT_ArgumentIdentifier; |
1627 | return; |
1628 | } |
1629 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: 0); |
1630 | |
1631 | if (AL.getNumArgs() == 2) { |
1632 | Slot = Loc->getIdentifierInfo()->getName(); |
1633 | SlotLoc = Loc->getLoc(); |
1634 | if (!AL.isArgIdent(Arg: 1)) { |
1635 | Diag(AL.getLoc(), diag::err_attribute_argument_type) |
1636 | << AL << AANT_ArgumentIdentifier; |
1637 | return; |
1638 | } |
1639 | Loc = AL.getArgAsIdent(Arg: 1); |
1640 | Space = Loc->getIdentifierInfo()->getName(); |
1641 | SpaceLoc = Loc->getLoc(); |
1642 | } else { |
1643 | StringRef Str = Loc->getIdentifierInfo()->getName(); |
1644 | if (Str.starts_with(Prefix: "space")) { |
1645 | Space = Str; |
1646 | SpaceLoc = Loc->getLoc(); |
1647 | } else { |
1648 | Slot = Str; |
1649 | SlotLoc = Loc->getLoc(); |
1650 | Space = "space0"; |
1651 | } |
1652 | } |
1653 | |
1654 | RegisterType RegType = RegisterType::SRV; |
1655 | std::optional<unsigned> SlotNum; |
1656 | unsigned SpaceNum = 0; |
1657 | |
1658 | // Validate slot |
1659 | if (!Slot.empty()) { |
1660 | if (!convertToRegisterType(Slot, &RegType)) { |
1661 | Diag(SlotLoc, diag::err_hlsl_binding_type_invalid) << Slot.substr(0, 1); |
1662 | return; |
1663 | } |
1664 | if (RegType == RegisterType::I) { |
1665 | Diag(SlotLoc, diag::warn_hlsl_deprecated_register_type_i); |
1666 | return; |
1667 | } |
1668 | StringRef SlotNumStr = Slot.substr(Start: 1); |
1669 | unsigned N; |
1670 | if (SlotNumStr.getAsInteger(Radix: 10, Result&: N)) { |
1671 | Diag(SlotLoc, diag::err_hlsl_unsupported_register_number); |
1672 | return; |
1673 | } |
1674 | SlotNum = N; |
1675 | } |
1676 | |
1677 | // Validate space |
1678 | if (!Space.starts_with(Prefix: "space")) { |
1679 | Diag(SpaceLoc, diag::err_hlsl_expected_space) << Space; |
1680 | return; |
1681 | } |
1682 | StringRef SpaceNumStr = Space.substr(Start: 5); |
1683 | if (SpaceNumStr.getAsInteger(Radix: 10, Result&: SpaceNum)) { |
1684 | Diag(SpaceLoc, diag::err_hlsl_expected_space) << Space; |
1685 | return; |
1686 | } |
1687 | |
1688 | // If we have slot, diagnose it is the right register type for the decl |
1689 | if (SlotNum.has_value()) |
1690 | if (!DiagnoseHLSLRegisterAttribute(SemaRef, SlotLoc, TheDecl, RegType, |
1691 | !SpaceLoc.isInvalid())) |
1692 | return; |
1693 | |
1694 | HLSLResourceBindingAttr *NewAttr = |
1695 | HLSLResourceBindingAttr::Create(getASTContext(), Slot, Space, AL); |
1696 | if (NewAttr) { |
1697 | NewAttr->setBinding(RegType, SlotNum, SpaceNum); |
1698 | TheDecl->addAttr(A: NewAttr); |
1699 | } |
1700 | } |
1701 | |
1702 | void SemaHLSL::handleParamModifierAttr(Decl *D, const ParsedAttr &AL) { |
1703 | HLSLParamModifierAttr *NewAttr = mergeParamModifierAttr( |
1704 | D, AL, |
1705 | static_cast<HLSLParamModifierAttr::Spelling>(AL.getSemanticSpelling())); |
1706 | if (NewAttr) |
1707 | D->addAttr(A: NewAttr); |
1708 | } |
1709 | |
1710 | namespace { |
1711 | |
1712 | /// This class implements HLSL availability diagnostics for default |
1713 | /// and relaxed mode |
1714 | /// |
1715 | /// The goal of this diagnostic is to emit an error or warning when an |
1716 | /// unavailable API is found in code that is reachable from the shader |
1717 | /// entry function or from an exported function (when compiling a shader |
1718 | /// library). |
1719 | /// |
1720 | /// This is done by traversing the AST of all shader entry point functions |
1721 | /// and of all exported functions, and any functions that are referenced |
1722 | /// from this AST. In other words, any functions that are reachable from |
1723 | /// the entry points. |
1724 | class DiagnoseHLSLAvailability : public DynamicRecursiveASTVisitor { |
1725 | Sema &SemaRef; |
1726 | |
1727 | // Stack of functions to be scaned |
1728 | llvm::SmallVector<const FunctionDecl *, 8> DeclsToScan; |
1729 | |
1730 | // Tracks which environments functions have been scanned in. |
1731 | // |
1732 | // Maps FunctionDecl to an unsigned number that represents the set of shader |
1733 | // environments the function has been scanned for. |
1734 | // The llvm::Triple::EnvironmentType enum values for shader stages guaranteed |
1735 | // to be numbered from llvm::Triple::Pixel to llvm::Triple::Amplification |
1736 | // (verified by static_asserts in Triple.cpp), we can use it to index |
1737 | // individual bits in the set, as long as we shift the values to start with 0 |
1738 | // by subtracting the value of llvm::Triple::Pixel first. |
1739 | // |
1740 | // The N'th bit in the set will be set if the function has been scanned |
1741 | // in shader environment whose llvm::Triple::EnvironmentType integer value |
1742 | // equals (llvm::Triple::Pixel + N). |
1743 | // |
1744 | // For example, if a function has been scanned in compute and pixel stage |
1745 | // environment, the value will be 0x21 (100001 binary) because: |
1746 | // |
1747 | // (int)(llvm::Triple::Pixel - llvm::Triple::Pixel) == 0 |
1748 | // (int)(llvm::Triple::Compute - llvm::Triple::Pixel) == 5 |
1749 | // |
1750 | // A FunctionDecl is mapped to 0 (or not included in the map) if it has not |
1751 | // been scanned in any environment. |
1752 | llvm::DenseMap<const FunctionDecl *, unsigned> ScannedDecls; |
1753 | |
1754 | // Do not access these directly, use the get/set methods below to make |
1755 | // sure the values are in sync |
1756 | llvm::Triple::EnvironmentType CurrentShaderEnvironment; |
1757 | unsigned CurrentShaderStageBit; |
1758 | |
1759 | // True if scanning a function that was already scanned in a different |
1760 | // shader stage context, and therefore we should not report issues that |
1761 | // depend only on shader model version because they would be duplicate. |
1762 | bool ReportOnlyShaderStageIssues; |
1763 | |
1764 | // Helper methods for dealing with current stage context / environment |
1765 | void SetShaderStageContext(llvm::Triple::EnvironmentType ShaderType) { |
1766 | static_assert(sizeof(unsigned) >= 4); |
1767 | assert(HLSLShaderAttr::isValidShaderType(ShaderType)); |
1768 | assert((unsigned)(ShaderType - llvm::Triple::Pixel) < 31 && |
1769 | "ShaderType is too big for this bitmap"); // 31 is reserved for |
1770 | // "unknown" |
1771 | |
1772 | unsigned bitmapIndex = ShaderType - llvm::Triple::Pixel; |
1773 | CurrentShaderEnvironment = ShaderType; |
1774 | CurrentShaderStageBit = (1 << bitmapIndex); |
1775 | } |
1776 | |
1777 | void SetUnknownShaderStageContext() { |
1778 | CurrentShaderEnvironment = llvm::Triple::UnknownEnvironment; |
1779 | CurrentShaderStageBit = (1 << 31); |
1780 | } |
1781 | |
1782 | llvm::Triple::EnvironmentType GetCurrentShaderEnvironment() const { |
1783 | return CurrentShaderEnvironment; |
1784 | } |
1785 | |
1786 | bool InUnknownShaderStageContext() const { |
1787 | return CurrentShaderEnvironment == llvm::Triple::UnknownEnvironment; |
1788 | } |
1789 | |
1790 | // Helper methods for dealing with shader stage bitmap |
1791 | void AddToScannedFunctions(const FunctionDecl *FD) { |
1792 | unsigned &ScannedStages = ScannedDecls[FD]; |
1793 | ScannedStages |= CurrentShaderStageBit; |
1794 | } |
1795 | |
1796 | unsigned GetScannedStages(const FunctionDecl *FD) { return ScannedDecls[FD]; } |
1797 | |
1798 | bool WasAlreadyScannedInCurrentStage(const FunctionDecl *FD) { |
1799 | return WasAlreadyScannedInCurrentStage(ScannerStages: GetScannedStages(FD)); |
1800 | } |
1801 | |
1802 | bool WasAlreadyScannedInCurrentStage(unsigned ScannerStages) { |
1803 | return ScannerStages & CurrentShaderStageBit; |
1804 | } |
1805 | |
1806 | static bool NeverBeenScanned(unsigned ScannedStages) { |
1807 | return ScannedStages == 0; |
1808 | } |
1809 | |
1810 | // Scanning methods |
1811 | void HandleFunctionOrMethodRef(FunctionDecl *FD, Expr *RefExpr); |
1812 | void CheckDeclAvailability(NamedDecl *D, const AvailabilityAttr *AA, |
1813 | SourceRange Range); |
1814 | const AvailabilityAttr *FindAvailabilityAttr(const Decl *D); |
1815 | bool HasMatchingEnvironmentOrNone(const AvailabilityAttr *AA); |
1816 | |
1817 | public: |
1818 | DiagnoseHLSLAvailability(Sema &SemaRef) |
1819 | : SemaRef(SemaRef), |
1820 | CurrentShaderEnvironment(llvm::Triple::UnknownEnvironment), |
1821 | CurrentShaderStageBit(0), ReportOnlyShaderStageIssues(false) {} |
1822 | |
1823 | // AST traversal methods |
1824 | void RunOnTranslationUnit(const TranslationUnitDecl *TU); |
1825 | void RunOnFunction(const FunctionDecl *FD); |
1826 | |
1827 | bool VisitDeclRefExpr(DeclRefExpr *DRE) override { |
1828 | FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: DRE->getDecl()); |
1829 | if (FD) |
1830 | HandleFunctionOrMethodRef(FD, DRE); |
1831 | return true; |
1832 | } |
1833 | |
1834 | bool VisitMemberExpr(MemberExpr *ME) override { |
1835 | FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: ME->getMemberDecl()); |
1836 | if (FD) |
1837 | HandleFunctionOrMethodRef(FD, ME); |
1838 | return true; |
1839 | } |
1840 | }; |
1841 | |
1842 | void DiagnoseHLSLAvailability::HandleFunctionOrMethodRef(FunctionDecl *FD, |
1843 | Expr *RefExpr) { |
1844 | assert((isa<DeclRefExpr>(RefExpr) || isa<MemberExpr>(RefExpr)) && |
1845 | "expected DeclRefExpr or MemberExpr"); |
1846 | |
1847 | // has a definition -> add to stack to be scanned |
1848 | const FunctionDecl *FDWithBody = nullptr; |
1849 | if (FD->hasBody(Definition&: FDWithBody)) { |
1850 | if (!WasAlreadyScannedInCurrentStage(FD: FDWithBody)) |
1851 | DeclsToScan.push_back(Elt: FDWithBody); |
1852 | return; |
1853 | } |
1854 | |
1855 | // no body -> diagnose availability |
1856 | const AvailabilityAttr *AA = FindAvailabilityAttr(FD); |
1857 | if (AA) |
1858 | CheckDeclAvailability( |
1859 | FD, AA, SourceRange(RefExpr->getBeginLoc(), RefExpr->getEndLoc())); |
1860 | } |
1861 | |
1862 | void DiagnoseHLSLAvailability::RunOnTranslationUnit( |
1863 | const TranslationUnitDecl *TU) { |
1864 | |
1865 | // Iterate over all shader entry functions and library exports, and for those |
1866 | // that have a body (definiton), run diag scan on each, setting appropriate |
1867 | // shader environment context based on whether it is a shader entry function |
1868 | // or an exported function. Exported functions can be in namespaces and in |
1869 | // export declarations so we need to scan those declaration contexts as well. |
1870 | llvm::SmallVector<const DeclContext *, 8> DeclContextsToScan; |
1871 | DeclContextsToScan.push_back(TU); |
1872 | |
1873 | while (!DeclContextsToScan.empty()) { |
1874 | const DeclContext *DC = DeclContextsToScan.pop_back_val(); |
1875 | for (auto &D : DC->decls()) { |
1876 | // do not scan implicit declaration generated by the implementation |
1877 | if (D->isImplicit()) |
1878 | continue; |
1879 | |
1880 | // for namespace or export declaration add the context to the list to be |
1881 | // scanned later |
1882 | if (llvm::dyn_cast<NamespaceDecl>(Val: D) || llvm::dyn_cast<ExportDecl>(Val: D)) { |
1883 | DeclContextsToScan.push_back(Elt: llvm::dyn_cast<DeclContext>(Val: D)); |
1884 | continue; |
1885 | } |
1886 | |
1887 | // skip over other decls or function decls without body |
1888 | const FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(Val: D); |
1889 | if (!FD || !FD->isThisDeclarationADefinition()) |
1890 | continue; |
1891 | |
1892 | // shader entry point |
1893 | if (HLSLShaderAttr *ShaderAttr = FD->getAttr<HLSLShaderAttr>()) { |
1894 | SetShaderStageContext(ShaderAttr->getType()); |
1895 | RunOnFunction(FD); |
1896 | continue; |
1897 | } |
1898 | // exported library function |
1899 | // FIXME: replace this loop with external linkage check once issue #92071 |
1900 | // is resolved |
1901 | bool isExport = FD->isInExportDeclContext(); |
1902 | if (!isExport) { |
1903 | for (const auto *Redecl : FD->redecls()) { |
1904 | if (Redecl->isInExportDeclContext()) { |
1905 | isExport = true; |
1906 | break; |
1907 | } |
1908 | } |
1909 | } |
1910 | if (isExport) { |
1911 | SetUnknownShaderStageContext(); |
1912 | RunOnFunction(FD); |
1913 | continue; |
1914 | } |
1915 | } |
1916 | } |
1917 | } |
1918 | |
1919 | void DiagnoseHLSLAvailability::RunOnFunction(const FunctionDecl *FD) { |
1920 | assert(DeclsToScan.empty() && "DeclsToScan should be empty"); |
1921 | DeclsToScan.push_back(Elt: FD); |
1922 | |
1923 | while (!DeclsToScan.empty()) { |
1924 | // Take one decl from the stack and check it by traversing its AST. |
1925 | // For any CallExpr found during the traversal add it's callee to the top of |
1926 | // the stack to be processed next. Functions already processed are stored in |
1927 | // ScannedDecls. |
1928 | const FunctionDecl *FD = DeclsToScan.pop_back_val(); |
1929 | |
1930 | // Decl was already scanned |
1931 | const unsigned ScannedStages = GetScannedStages(FD); |
1932 | if (WasAlreadyScannedInCurrentStage(ScannerStages: ScannedStages)) |
1933 | continue; |
1934 | |
1935 | ReportOnlyShaderStageIssues = !NeverBeenScanned(ScannedStages); |
1936 | |
1937 | AddToScannedFunctions(FD); |
1938 | TraverseStmt(FD->getBody()); |
1939 | } |
1940 | } |
1941 | |
1942 | bool DiagnoseHLSLAvailability::HasMatchingEnvironmentOrNone( |
1943 | const AvailabilityAttr *AA) { |
1944 | IdentifierInfo *IIEnvironment = AA->getEnvironment(); |
1945 | if (!IIEnvironment) |
1946 | return true; |
1947 | |
1948 | llvm::Triple::EnvironmentType CurrentEnv = GetCurrentShaderEnvironment(); |
1949 | if (CurrentEnv == llvm::Triple::UnknownEnvironment) |
1950 | return false; |
1951 | |
1952 | llvm::Triple::EnvironmentType AttrEnv = |
1953 | AvailabilityAttr::getEnvironmentType(IIEnvironment->getName()); |
1954 | |
1955 | return CurrentEnv == AttrEnv; |
1956 | } |
1957 | |
1958 | const AvailabilityAttr * |
1959 | DiagnoseHLSLAvailability::FindAvailabilityAttr(const Decl *D) { |
1960 | AvailabilityAttr const *PartialMatch = nullptr; |
1961 | // Check each AvailabilityAttr to find the one for this platform. |
1962 | // For multiple attributes with the same platform try to find one for this |
1963 | // environment. |
1964 | for (const auto *A : D->attrs()) { |
1965 | if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) { |
1966 | StringRef AttrPlatform = Avail->getPlatform()->getName(); |
1967 | StringRef TargetPlatform = |
1968 | SemaRef.getASTContext().getTargetInfo().getPlatformName(); |
1969 | |
1970 | // Match the platform name. |
1971 | if (AttrPlatform == TargetPlatform) { |
1972 | // Find the best matching attribute for this environment |
1973 | if (HasMatchingEnvironmentOrNone(Avail)) |
1974 | return Avail; |
1975 | PartialMatch = Avail; |
1976 | } |
1977 | } |
1978 | } |
1979 | return PartialMatch; |
1980 | } |
1981 | |
1982 | // Check availability against target shader model version and current shader |
1983 | // stage and emit diagnostic |
1984 | void DiagnoseHLSLAvailability::CheckDeclAvailability(NamedDecl *D, |
1985 | const AvailabilityAttr *AA, |
1986 | SourceRange Range) { |
1987 | |
1988 | IdentifierInfo *IIEnv = AA->getEnvironment(); |
1989 | |
1990 | if (!IIEnv) { |
1991 | // The availability attribute does not have environment -> it depends only |
1992 | // on shader model version and not on specific the shader stage. |
1993 | |
1994 | // Skip emitting the diagnostics if the diagnostic mode is set to |
1995 | // strict (-fhlsl-strict-availability) because all relevant diagnostics |
1996 | // were already emitted in the DiagnoseUnguardedAvailability scan |
1997 | // (SemaAvailability.cpp). |
1998 | if (SemaRef.getLangOpts().HLSLStrictAvailability) |
1999 | return; |
2000 | |
2001 | // Do not report shader-stage-independent issues if scanning a function |
2002 | // that was already scanned in a different shader stage context (they would |
2003 | // be duplicate) |
2004 | if (ReportOnlyShaderStageIssues) |
2005 | return; |
2006 | |
2007 | } else { |
2008 | // The availability attribute has environment -> we need to know |
2009 | // the current stage context to property diagnose it. |
2010 | if (InUnknownShaderStageContext()) |
2011 | return; |
2012 | } |
2013 | |
2014 | // Check introduced version and if environment matches |
2015 | bool EnvironmentMatches = HasMatchingEnvironmentOrNone(AA); |
2016 | VersionTuple Introduced = AA->getIntroduced(); |
2017 | VersionTuple TargetVersion = |
2018 | SemaRef.Context.getTargetInfo().getPlatformMinVersion(); |
2019 | |
2020 | if (TargetVersion >= Introduced && EnvironmentMatches) |
2021 | return; |
2022 | |
2023 | // Emit diagnostic message |
2024 | const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo(); |
2025 | llvm::StringRef PlatformName( |
2026 | AvailabilityAttr::getPrettyPlatformName(TI.getPlatformName())); |
2027 | |
2028 | llvm::StringRef CurrentEnvStr = |
2029 | llvm::Triple::getEnvironmentTypeName(Kind: GetCurrentShaderEnvironment()); |
2030 | |
2031 | llvm::StringRef AttrEnvStr = |
2032 | AA->getEnvironment() ? AA->getEnvironment()->getName() : ""; |
2033 | bool UseEnvironment = !AttrEnvStr.empty(); |
2034 | |
2035 | if (EnvironmentMatches) { |
2036 | SemaRef.Diag(Range.getBegin(), diag::warn_hlsl_availability) |
2037 | << Range << D << PlatformName << Introduced.getAsString() |
2038 | << UseEnvironment << CurrentEnvStr; |
2039 | } else { |
2040 | SemaRef.Diag(Range.getBegin(), diag::warn_hlsl_availability_unavailable) |
2041 | << Range << D; |
2042 | } |
2043 | |
2044 | SemaRef.Diag(D->getLocation(), diag::note_partial_availability_specified_here) |
2045 | << D << PlatformName << Introduced.getAsString() |
2046 | << SemaRef.Context.getTargetInfo().getPlatformMinVersion().getAsString() |
2047 | << UseEnvironment << AttrEnvStr << CurrentEnvStr; |
2048 | } |
2049 | |
2050 | } // namespace |
2051 | |
2052 | void SemaHLSL::ActOnEndOfTranslationUnit(TranslationUnitDecl *TU) { |
2053 | // process default CBuffer - create buffer layout struct and invoke codegenCGH |
2054 | if (!DefaultCBufferDecls.empty()) { |
2055 | HLSLBufferDecl *DefaultCBuffer = HLSLBufferDecl::CreateDefaultCBuffer( |
2056 | C&: SemaRef.getASTContext(), LexicalParent: SemaRef.getCurLexicalContext(), |
2057 | DefaultCBufferDecls); |
2058 | addImplicitBindingAttrToBuffer(S&: SemaRef, BufDecl: DefaultCBuffer, |
2059 | ImplicitBindingOrderID: getNextImplicitBindingOrderID()); |
2060 | SemaRef.getCurLexicalContext()->addDecl(DefaultCBuffer); |
2061 | createHostLayoutStructForBuffer(S&: SemaRef, BufDecl: DefaultCBuffer); |
2062 | |
2063 | // Set HasValidPackoffset if any of the decls has a register(c#) annotation; |
2064 | for (const Decl *VD : DefaultCBufferDecls) { |
2065 | const HLSLResourceBindingAttr *RBA = |
2066 | VD->getAttr<HLSLResourceBindingAttr>(); |
2067 | if (RBA && RBA->hasRegisterSlot() && |
2068 | RBA->getRegisterType() == HLSLResourceBindingAttr::RegisterType::C) { |
2069 | DefaultCBuffer->setHasValidPackoffset(true); |
2070 | break; |
2071 | } |
2072 | } |
2073 | |
2074 | DeclGroupRef DG(DefaultCBuffer); |
2075 | SemaRef.Consumer.HandleTopLevelDecl(D: DG); |
2076 | } |
2077 | diagnoseAvailabilityViolations(TU); |
2078 | } |
2079 | |
2080 | void SemaHLSL::diagnoseAvailabilityViolations(TranslationUnitDecl *TU) { |
2081 | // Skip running the diagnostics scan if the diagnostic mode is |
2082 | // strict (-fhlsl-strict-availability) and the target shader stage is known |
2083 | // because all relevant diagnostics were already emitted in the |
2084 | // DiagnoseUnguardedAvailability scan (SemaAvailability.cpp). |
2085 | const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo(); |
2086 | if (SemaRef.getLangOpts().HLSLStrictAvailability && |
2087 | TI.getTriple().getEnvironment() != llvm::Triple::EnvironmentType::Library) |
2088 | return; |
2089 | |
2090 | DiagnoseHLSLAvailability(SemaRef).RunOnTranslationUnit(TU); |
2091 | } |
2092 | |
2093 | static bool CheckAllArgsHaveSameType(Sema *S, CallExpr *TheCall) { |
2094 | assert(TheCall->getNumArgs() > 1); |
2095 | QualType ArgTy0 = TheCall->getArg(Arg: 0)->getType(); |
2096 | |
2097 | for (unsigned I = 1, N = TheCall->getNumArgs(); I < N; ++I) { |
2098 | if (!S->getASTContext().hasSameUnqualifiedType( |
2099 | T1: ArgTy0, T2: TheCall->getArg(Arg: I)->getType())) { |
2100 | S->Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_incompatible_vector) |
2101 | << TheCall->getDirectCallee() << /*useAllTerminology*/ true |
2102 | << SourceRange(TheCall->getArg(0)->getBeginLoc(), |
2103 | TheCall->getArg(N - 1)->getEndLoc()); |
2104 | return true; |
2105 | } |
2106 | } |
2107 | return false; |
2108 | } |
2109 | |
2110 | static bool CheckArgTypeMatches(Sema *S, Expr *Arg, QualType ExpectedType) { |
2111 | QualType ArgType = Arg->getType(); |
2112 | if (!S->getASTContext().hasSameUnqualifiedType(T1: ArgType, T2: ExpectedType)) { |
2113 | S->Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible) |
2114 | << ArgType << ExpectedType << 1 << 0 << 0; |
2115 | return true; |
2116 | } |
2117 | return false; |
2118 | } |
2119 | |
2120 | static bool CheckAllArgTypesAreCorrect( |
2121 | Sema *S, CallExpr *TheCall, |
2122 | llvm::function_ref<bool(Sema *S, SourceLocation Loc, int ArgOrdinal, |
2123 | clang::QualType PassedType)> |
2124 | Check) { |
2125 | for (unsigned I = 0; I < TheCall->getNumArgs(); ++I) { |
2126 | Expr *Arg = TheCall->getArg(Arg: I); |
2127 | if (Check(S, Arg->getBeginLoc(), I + 1, Arg->getType())) |
2128 | return true; |
2129 | } |
2130 | return false; |
2131 | } |
2132 | |
2133 | static bool CheckFloatOrHalfRepresentation(Sema *S, SourceLocation Loc, |
2134 | int ArgOrdinal, |
2135 | clang::QualType PassedType) { |
2136 | clang::QualType BaseType = |
2137 | PassedType->isVectorType() |
2138 | ? PassedType->getAs<clang::VectorType>()->getElementType() |
2139 | : PassedType; |
2140 | if (!BaseType->isHalfType() && !BaseType->isFloat32Type()) |
2141 | return S->Diag(Loc, diag::err_builtin_invalid_arg_type) |
2142 | << ArgOrdinal << /* scalar or vector of */ 5 << /* no int */ 0 |
2143 | << /* half or float */ 2 << PassedType; |
2144 | return false; |
2145 | } |
2146 | |
2147 | static bool CheckModifiableLValue(Sema *S, CallExpr *TheCall, |
2148 | unsigned ArgIndex) { |
2149 | auto *Arg = TheCall->getArg(Arg: ArgIndex); |
2150 | SourceLocation OrigLoc = Arg->getExprLoc(); |
2151 | if (Arg->IgnoreCasts()->isModifiableLvalue(Ctx&: S->Context, Loc: &OrigLoc) == |
2152 | Expr::MLV_Valid) |
2153 | return false; |
2154 | S->Diag(OrigLoc, diag::error_hlsl_inout_lvalue) << Arg << 0; |
2155 | return true; |
2156 | } |
2157 | |
2158 | static bool CheckNoDoubleVectors(Sema *S, SourceLocation Loc, int ArgOrdinal, |
2159 | clang::QualType PassedType) { |
2160 | const auto *VecTy = PassedType->getAs<VectorType>(); |
2161 | if (!VecTy) |
2162 | return false; |
2163 | |
2164 | if (VecTy->getElementType()->isDoubleType()) |
2165 | return S->Diag(Loc, diag::err_builtin_invalid_arg_type) |
2166 | << ArgOrdinal << /* scalar */ 1 << /* no int */ 0 << /* fp */ 1 |
2167 | << PassedType; |
2168 | return false; |
2169 | } |
2170 | |
2171 | static bool CheckFloatingOrIntRepresentation(Sema *S, SourceLocation Loc, |
2172 | int ArgOrdinal, |
2173 | clang::QualType PassedType) { |
2174 | if (!PassedType->hasIntegerRepresentation() && |
2175 | !PassedType->hasFloatingRepresentation()) |
2176 | return S->Diag(Loc, diag::err_builtin_invalid_arg_type) |
2177 | << ArgOrdinal << /* scalar or vector of */ 5 << /* integer */ 1 |
2178 | << /* fp */ 1 << PassedType; |
2179 | return false; |
2180 | } |
2181 | |
2182 | static bool CheckUnsignedIntVecRepresentation(Sema *S, SourceLocation Loc, |
2183 | int ArgOrdinal, |
2184 | clang::QualType PassedType) { |
2185 | if (auto *VecTy = PassedType->getAs<VectorType>()) |
2186 | if (VecTy->getElementType()->isUnsignedIntegerType()) |
2187 | return false; |
2188 | |
2189 | return S->Diag(Loc, diag::err_builtin_invalid_arg_type) |
2190 | << ArgOrdinal << /* vector of */ 4 << /* uint */ 3 << /* no fp */ 0 |
2191 | << PassedType; |
2192 | } |
2193 | |
2194 | // checks for unsigned ints of all sizes |
2195 | static bool CheckUnsignedIntRepresentation(Sema *S, SourceLocation Loc, |
2196 | int ArgOrdinal, |
2197 | clang::QualType PassedType) { |
2198 | if (!PassedType->hasUnsignedIntegerRepresentation()) |
2199 | return S->Diag(Loc, diag::err_builtin_invalid_arg_type) |
2200 | << ArgOrdinal << /* scalar or vector of */ 5 << /* unsigned int */ 3 |
2201 | << /* no fp */ 0 << PassedType; |
2202 | return false; |
2203 | } |
2204 | |
2205 | static void SetElementTypeAsReturnType(Sema *S, CallExpr *TheCall, |
2206 | QualType ReturnType) { |
2207 | auto *VecTyA = TheCall->getArg(Arg: 0)->getType()->getAs<VectorType>(); |
2208 | if (VecTyA) |
2209 | ReturnType = S->Context.getVectorType(VectorType: ReturnType, NumElts: VecTyA->getNumElements(), |
2210 | VecKind: VectorKind::Generic); |
2211 | TheCall->setType(ReturnType); |
2212 | } |
2213 | |
2214 | static bool CheckScalarOrVector(Sema *S, CallExpr *TheCall, QualType Scalar, |
2215 | unsigned ArgIndex) { |
2216 | assert(TheCall->getNumArgs() >= ArgIndex); |
2217 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
2218 | auto *VTy = ArgType->getAs<VectorType>(); |
2219 | // not the scalar or vector<scalar> |
2220 | if (!(S->Context.hasSameUnqualifiedType(T1: ArgType, T2: Scalar) || |
2221 | (VTy && |
2222 | S->Context.hasSameUnqualifiedType(T1: VTy->getElementType(), T2: Scalar)))) { |
2223 | S->Diag(TheCall->getArg(0)->getBeginLoc(), |
2224 | diag::err_typecheck_expect_scalar_or_vector) |
2225 | << ArgType << Scalar; |
2226 | return true; |
2227 | } |
2228 | return false; |
2229 | } |
2230 | |
2231 | static bool CheckAnyScalarOrVector(Sema *S, CallExpr *TheCall, |
2232 | unsigned ArgIndex) { |
2233 | assert(TheCall->getNumArgs() >= ArgIndex); |
2234 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
2235 | auto *VTy = ArgType->getAs<VectorType>(); |
2236 | // not the scalar or vector<scalar> |
2237 | if (!(ArgType->isScalarType() || |
2238 | (VTy && VTy->getElementType()->isScalarType()))) { |
2239 | S->Diag(TheCall->getArg(0)->getBeginLoc(), |
2240 | diag::err_typecheck_expect_any_scalar_or_vector) |
2241 | << ArgType << 1; |
2242 | return true; |
2243 | } |
2244 | return false; |
2245 | } |
2246 | |
2247 | static bool CheckWaveActive(Sema *S, CallExpr *TheCall) { |
2248 | QualType BoolType = S->getASTContext().BoolTy; |
2249 | assert(TheCall->getNumArgs() >= 1); |
2250 | QualType ArgType = TheCall->getArg(Arg: 0)->getType(); |
2251 | auto *VTy = ArgType->getAs<VectorType>(); |
2252 | // is the bool or vector<bool> |
2253 | if (S->Context.hasSameUnqualifiedType(T1: ArgType, T2: BoolType) || |
2254 | (VTy && |
2255 | S->Context.hasSameUnqualifiedType(T1: VTy->getElementType(), T2: BoolType))) { |
2256 | S->Diag(TheCall->getArg(0)->getBeginLoc(), |
2257 | diag::err_typecheck_expect_any_scalar_or_vector) |
2258 | << ArgType << 0; |
2259 | return true; |
2260 | } |
2261 | return false; |
2262 | } |
2263 | |
2264 | static bool CheckBoolSelect(Sema *S, CallExpr *TheCall) { |
2265 | assert(TheCall->getNumArgs() == 3); |
2266 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
2267 | Expr *Arg2 = TheCall->getArg(Arg: 2); |
2268 | if (!S->Context.hasSameUnqualifiedType(T1: Arg1->getType(), T2: Arg2->getType())) { |
2269 | S->Diag(TheCall->getBeginLoc(), |
2270 | diag::err_typecheck_call_different_arg_types) |
2271 | << Arg1->getType() << Arg2->getType() << Arg1->getSourceRange() |
2272 | << Arg2->getSourceRange(); |
2273 | return true; |
2274 | } |
2275 | |
2276 | TheCall->setType(Arg1->getType()); |
2277 | return false; |
2278 | } |
2279 | |
2280 | static bool CheckVectorSelect(Sema *S, CallExpr *TheCall) { |
2281 | assert(TheCall->getNumArgs() == 3); |
2282 | Expr *Arg1 = TheCall->getArg(Arg: 1); |
2283 | QualType Arg1Ty = Arg1->getType(); |
2284 | Expr *Arg2 = TheCall->getArg(Arg: 2); |
2285 | QualType Arg2Ty = Arg2->getType(); |
2286 | |
2287 | QualType Arg1ScalarTy = Arg1Ty; |
2288 | if (auto VTy = Arg1ScalarTy->getAs<VectorType>()) |
2289 | Arg1ScalarTy = VTy->getElementType(); |
2290 | |
2291 | QualType Arg2ScalarTy = Arg2Ty; |
2292 | if (auto VTy = Arg2ScalarTy->getAs<VectorType>()) |
2293 | Arg2ScalarTy = VTy->getElementType(); |
2294 | |
2295 | if (!S->Context.hasSameUnqualifiedType(Arg1ScalarTy, Arg2ScalarTy)) |
2296 | S->Diag(Arg1->getBeginLoc(), diag::err_hlsl_builtin_scalar_vector_mismatch) |
2297 | << /* second and third */ 1 << TheCall->getCallee() << Arg1Ty << Arg2Ty; |
2298 | |
2299 | QualType Arg0Ty = TheCall->getArg(Arg: 0)->getType(); |
2300 | unsigned Arg0Length = Arg0Ty->getAs<VectorType>()->getNumElements(); |
2301 | unsigned Arg1Length = Arg1Ty->isVectorType() |
2302 | ? Arg1Ty->getAs<VectorType>()->getNumElements() |
2303 | : 0; |
2304 | unsigned Arg2Length = Arg2Ty->isVectorType() |
2305 | ? Arg2Ty->getAs<VectorType>()->getNumElements() |
2306 | : 0; |
2307 | if (Arg1Length > 0 && Arg0Length != Arg1Length) { |
2308 | S->Diag(TheCall->getBeginLoc(), |
2309 | diag::err_typecheck_vector_lengths_not_equal) |
2310 | << Arg0Ty << Arg1Ty << TheCall->getArg(0)->getSourceRange() |
2311 | << Arg1->getSourceRange(); |
2312 | return true; |
2313 | } |
2314 | |
2315 | if (Arg2Length > 0 && Arg0Length != Arg2Length) { |
2316 | S->Diag(TheCall->getBeginLoc(), |
2317 | diag::err_typecheck_vector_lengths_not_equal) |
2318 | << Arg0Ty << Arg2Ty << TheCall->getArg(0)->getSourceRange() |
2319 | << Arg2->getSourceRange(); |
2320 | return true; |
2321 | } |
2322 | |
2323 | TheCall->setType( |
2324 | S->getASTContext().getExtVectorType(VectorType: Arg1ScalarTy, NumElts: Arg0Length)); |
2325 | return false; |
2326 | } |
2327 | |
2328 | static bool CheckResourceHandle( |
2329 | Sema *S, CallExpr *TheCall, unsigned ArgIndex, |
2330 | llvm::function_ref<bool(const HLSLAttributedResourceType *ResType)> Check = |
2331 | nullptr) { |
2332 | assert(TheCall->getNumArgs() >= ArgIndex); |
2333 | QualType ArgType = TheCall->getArg(Arg: ArgIndex)->getType(); |
2334 | const HLSLAttributedResourceType *ResTy = |
2335 | ArgType.getTypePtr()->getAs<HLSLAttributedResourceType>(); |
2336 | if (!ResTy) { |
2337 | S->Diag(TheCall->getArg(ArgIndex)->getBeginLoc(), |
2338 | diag::err_typecheck_expect_hlsl_resource) |
2339 | << ArgType; |
2340 | return true; |
2341 | } |
2342 | if (Check && Check(ResTy)) { |
2343 | S->Diag(TheCall->getArg(ArgIndex)->getExprLoc(), |
2344 | diag::err_invalid_hlsl_resource_type) |
2345 | << ArgType; |
2346 | return true; |
2347 | } |
2348 | return false; |
2349 | } |
2350 | |
2351 | // Note: returning true in this case results in CheckBuiltinFunctionCall |
2352 | // returning an ExprError |
2353 | bool SemaHLSL::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { |
2354 | switch (BuiltinID) { |
2355 | case Builtin::BI__builtin_hlsl_adduint64: { |
2356 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2357 | return true; |
2358 | |
2359 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2360 | Check: CheckUnsignedIntVecRepresentation)) |
2361 | return true; |
2362 | |
2363 | auto *VTy = TheCall->getArg(Arg: 0)->getType()->getAs<VectorType>(); |
2364 | // ensure arg integers are 32-bits |
2365 | uint64_t ElementBitCount = getASTContext() |
2366 | .getTypeSizeInChars(T: VTy->getElementType()) |
2367 | .getQuantity() * |
2368 | 8; |
2369 | if (ElementBitCount != 32) { |
2370 | SemaRef.Diag(TheCall->getBeginLoc(), |
2371 | diag::err_integer_incorrect_bit_count) |
2372 | << 32 << ElementBitCount; |
2373 | return true; |
2374 | } |
2375 | |
2376 | // ensure both args are vectors of total bit size of a multiple of 64 |
2377 | int NumElementsArg = VTy->getNumElements(); |
2378 | if (NumElementsArg != 2 && NumElementsArg != 4) { |
2379 | SemaRef.Diag(TheCall->getBeginLoc(), diag::err_vector_incorrect_bit_count) |
2380 | << 1 /*a multiple of*/ << 64 << NumElementsArg * ElementBitCount; |
2381 | return true; |
2382 | } |
2383 | |
2384 | // ensure first arg and second arg have the same type |
2385 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
2386 | return true; |
2387 | |
2388 | ExprResult A = TheCall->getArg(Arg: 0); |
2389 | QualType ArgTyA = A.get()->getType(); |
2390 | // return type is the same as the input type |
2391 | TheCall->setType(ArgTyA); |
2392 | break; |
2393 | } |
2394 | case Builtin::BI__builtin_hlsl_resource_getpointer: { |
2395 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2) || |
2396 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0) || |
2397 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 1), |
2398 | SemaRef.getASTContext().UnsignedIntTy)) |
2399 | return true; |
2400 | |
2401 | auto *ResourceTy = |
2402 | TheCall->getArg(Arg: 0)->getType()->castAs<HLSLAttributedResourceType>(); |
2403 | QualType ContainedTy = ResourceTy->getContainedType(); |
2404 | auto ReturnType = |
2405 | SemaRef.Context.getAddrSpaceQualType(T: ContainedTy, AddressSpace: LangAS::hlsl_device); |
2406 | ReturnType = SemaRef.Context.getPointerType(T: ReturnType); |
2407 | TheCall->setType(ReturnType); |
2408 | TheCall->setValueKind(VK_LValue); |
2409 | |
2410 | break; |
2411 | } |
2412 | case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: { |
2413 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1) || |
2414 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0)) |
2415 | return true; |
2416 | // use the type of the handle (arg0) as a return type |
2417 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
2418 | TheCall->setType(ResourceTy); |
2419 | break; |
2420 | } |
2421 | case Builtin::BI__builtin_hlsl_resource_handlefrombinding: { |
2422 | ASTContext &AST = SemaRef.getASTContext(); |
2423 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 6) || |
2424 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0) || |
2425 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 1), AST.UnsignedIntTy) || |
2426 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 2), AST.UnsignedIntTy) || |
2427 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 3), AST.IntTy) || |
2428 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 4), AST.UnsignedIntTy) || |
2429 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 5), |
2430 | AST.getPointerType(AST.CharTy.withConst()))) |
2431 | return true; |
2432 | // use the type of the handle (arg0) as a return type |
2433 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
2434 | TheCall->setType(ResourceTy); |
2435 | break; |
2436 | } |
2437 | case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: { |
2438 | ASTContext &AST = SemaRef.getASTContext(); |
2439 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 6) || |
2440 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0) || |
2441 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 1), AST.UnsignedIntTy) || |
2442 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 2), AST.IntTy) || |
2443 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 3), AST.UnsignedIntTy) || |
2444 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 4), AST.UnsignedIntTy) || |
2445 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 5), |
2446 | AST.getPointerType(AST.CharTy.withConst()))) |
2447 | return true; |
2448 | // use the type of the handle (arg0) as a return type |
2449 | QualType ResourceTy = TheCall->getArg(Arg: 0)->getType(); |
2450 | TheCall->setType(ResourceTy); |
2451 | break; |
2452 | } |
2453 | case Builtin::BI__builtin_hlsl_and: |
2454 | case Builtin::BI__builtin_hlsl_or: { |
2455 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2456 | return true; |
2457 | if (CheckScalarOrVector(&SemaRef, TheCall, getASTContext().BoolTy, 0)) |
2458 | return true; |
2459 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
2460 | return true; |
2461 | |
2462 | ExprResult A = TheCall->getArg(Arg: 0); |
2463 | QualType ArgTyA = A.get()->getType(); |
2464 | // return type is the same as the input type |
2465 | TheCall->setType(ArgTyA); |
2466 | break; |
2467 | } |
2468 | case Builtin::BI__builtin_hlsl_all: |
2469 | case Builtin::BI__builtin_hlsl_any: { |
2470 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2471 | return true; |
2472 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
2473 | return true; |
2474 | break; |
2475 | } |
2476 | case Builtin::BI__builtin_hlsl_asdouble: { |
2477 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2478 | return true; |
2479 | if (CheckScalarOrVector( |
2480 | &SemaRef, TheCall, |
2481 | /*only check for uint*/ SemaRef.Context.UnsignedIntTy, |
2482 | /* arg index */ 0)) |
2483 | return true; |
2484 | if (CheckScalarOrVector( |
2485 | &SemaRef, TheCall, |
2486 | /*only check for uint*/ SemaRef.Context.UnsignedIntTy, |
2487 | /* arg index */ 1)) |
2488 | return true; |
2489 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
2490 | return true; |
2491 | |
2492 | SetElementTypeAsReturnType(&SemaRef, TheCall, getASTContext().DoubleTy); |
2493 | break; |
2494 | } |
2495 | case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
2496 | if (SemaRef.BuiltinElementwiseTernaryMath( |
2497 | TheCall, /*ArgTyRestr=*/ |
2498 | Sema::EltwiseBuiltinArgTyRestriction::None)) |
2499 | return true; |
2500 | break; |
2501 | } |
2502 | case Builtin::BI__builtin_hlsl_dot: { |
2503 | // arg count is checked by BuiltinVectorToScalarMath |
2504 | if (SemaRef.BuiltinVectorToScalarMath(TheCall)) |
2505 | return true; |
2506 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, Check: CheckNoDoubleVectors)) |
2507 | return true; |
2508 | break; |
2509 | } |
2510 | case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: |
2511 | case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: { |
2512 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2513 | return true; |
2514 | |
2515 | const Expr *Arg = TheCall->getArg(Arg: 0); |
2516 | QualType ArgTy = Arg->getType(); |
2517 | QualType EltTy = ArgTy; |
2518 | |
2519 | QualType ResTy = SemaRef.Context.UnsignedIntTy; |
2520 | |
2521 | if (auto *VecTy = EltTy->getAs<VectorType>()) { |
2522 | EltTy = VecTy->getElementType(); |
2523 | ResTy = SemaRef.Context.getVectorType(VectorType: ResTy, NumElts: VecTy->getNumElements(), |
2524 | VecKind: VecTy->getVectorKind()); |
2525 | } |
2526 | |
2527 | if (!EltTy->isIntegerType()) { |
2528 | Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type) |
2529 | << 1 << /* scalar or vector of */ 5 << /* integer ty */ 1 |
2530 | << /* no fp */ 0 << ArgTy; |
2531 | return true; |
2532 | } |
2533 | |
2534 | TheCall->setType(ResTy); |
2535 | break; |
2536 | } |
2537 | case Builtin::BI__builtin_hlsl_select: { |
2538 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
2539 | return true; |
2540 | if (CheckScalarOrVector(&SemaRef, TheCall, getASTContext().BoolTy, 0)) |
2541 | return true; |
2542 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
2543 | if (ArgTy->isBooleanType() && CheckBoolSelect(S: &SemaRef, TheCall)) |
2544 | return true; |
2545 | auto *VTy = ArgTy->getAs<VectorType>(); |
2546 | if (VTy && VTy->getElementType()->isBooleanType() && |
2547 | CheckVectorSelect(S: &SemaRef, TheCall)) |
2548 | return true; |
2549 | break; |
2550 | } |
2551 | case Builtin::BI__builtin_hlsl_elementwise_saturate: |
2552 | case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
2553 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2554 | return true; |
2555 | if (!TheCall->getArg(0) |
2556 | ->getType() |
2557 | ->hasFloatingRepresentation()) // half or float or double |
2558 | return SemaRef.Diag(TheCall->getArg(0)->getBeginLoc(), |
2559 | diag::err_builtin_invalid_arg_type) |
2560 | << /* ordinal */ 1 << /* scalar or vector */ 5 << /* no int */ 0 |
2561 | << /* fp */ 1 << TheCall->getArg(0)->getType(); |
2562 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2563 | return true; |
2564 | break; |
2565 | } |
2566 | case Builtin::BI__builtin_hlsl_elementwise_degrees: |
2567 | case Builtin::BI__builtin_hlsl_elementwise_radians: |
2568 | case Builtin::BI__builtin_hlsl_elementwise_rsqrt: |
2569 | case Builtin::BI__builtin_hlsl_elementwise_frac: { |
2570 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2571 | return true; |
2572 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2573 | Check: CheckFloatOrHalfRepresentation)) |
2574 | return true; |
2575 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2576 | return true; |
2577 | break; |
2578 | } |
2579 | case Builtin::BI__builtin_hlsl_elementwise_isinf: { |
2580 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2581 | return true; |
2582 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2583 | Check: CheckFloatOrHalfRepresentation)) |
2584 | return true; |
2585 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2586 | return true; |
2587 | SetElementTypeAsReturnType(&SemaRef, TheCall, getASTContext().BoolTy); |
2588 | break; |
2589 | } |
2590 | case Builtin::BI__builtin_hlsl_lerp: { |
2591 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
2592 | return true; |
2593 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2594 | Check: CheckFloatOrHalfRepresentation)) |
2595 | return true; |
2596 | if (CheckAllArgsHaveSameType(S: &SemaRef, TheCall)) |
2597 | return true; |
2598 | if (SemaRef.BuiltinElementwiseTernaryMath(TheCall)) |
2599 | return true; |
2600 | break; |
2601 | } |
2602 | case Builtin::BI__builtin_hlsl_mad: { |
2603 | if (SemaRef.BuiltinElementwiseTernaryMath( |
2604 | TheCall, /*ArgTyRestr=*/ |
2605 | Sema::EltwiseBuiltinArgTyRestriction::None)) |
2606 | return true; |
2607 | break; |
2608 | } |
2609 | case Builtin::BI__builtin_hlsl_normalize: { |
2610 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2611 | return true; |
2612 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2613 | Check: CheckFloatOrHalfRepresentation)) |
2614 | return true; |
2615 | ExprResult A = TheCall->getArg(Arg: 0); |
2616 | QualType ArgTyA = A.get()->getType(); |
2617 | // return type is the same as the input type |
2618 | TheCall->setType(ArgTyA); |
2619 | break; |
2620 | } |
2621 | case Builtin::BI__builtin_hlsl_elementwise_sign: { |
2622 | if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2623 | return true; |
2624 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2625 | Check: CheckFloatingOrIntRepresentation)) |
2626 | return true; |
2627 | SetElementTypeAsReturnType(&SemaRef, TheCall, getASTContext().IntTy); |
2628 | break; |
2629 | } |
2630 | case Builtin::BI__builtin_hlsl_step: { |
2631 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2632 | return true; |
2633 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2634 | Check: CheckFloatOrHalfRepresentation)) |
2635 | return true; |
2636 | |
2637 | ExprResult A = TheCall->getArg(Arg: 0); |
2638 | QualType ArgTyA = A.get()->getType(); |
2639 | // return type is the same as the input type |
2640 | TheCall->setType(ArgTyA); |
2641 | break; |
2642 | } |
2643 | case Builtin::BI__builtin_hlsl_wave_active_max: |
2644 | case Builtin::BI__builtin_hlsl_wave_active_sum: { |
2645 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2646 | return true; |
2647 | |
2648 | // Ensure input expr type is a scalar/vector and the same as the return type |
2649 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
2650 | return true; |
2651 | if (CheckWaveActive(S: &SemaRef, TheCall)) |
2652 | return true; |
2653 | ExprResult Expr = TheCall->getArg(Arg: 0); |
2654 | QualType ArgTyExpr = Expr.get()->getType(); |
2655 | TheCall->setType(ArgTyExpr); |
2656 | break; |
2657 | } |
2658 | // Note these are llvm builtins that we want to catch invalid intrinsic |
2659 | // generation. Normal handling of these builitns will occur elsewhere. |
2660 | case Builtin::BI__builtin_elementwise_bitreverse: { |
2661 | // does not include a check for number of arguments |
2662 | // because that is done previously |
2663 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2664 | Check: CheckUnsignedIntRepresentation)) |
2665 | return true; |
2666 | break; |
2667 | } |
2668 | case Builtin::BI__builtin_hlsl_wave_read_lane_at: { |
2669 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2670 | return true; |
2671 | |
2672 | // Ensure index parameter type can be interpreted as a uint |
2673 | ExprResult Index = TheCall->getArg(Arg: 1); |
2674 | QualType ArgTyIndex = Index.get()->getType(); |
2675 | if (!ArgTyIndex->isIntegerType()) { |
2676 | SemaRef.Diag(TheCall->getArg(1)->getBeginLoc(), |
2677 | diag::err_typecheck_convert_incompatible) |
2678 | << ArgTyIndex << SemaRef.Context.UnsignedIntTy << 1 << 0 << 0; |
2679 | return true; |
2680 | } |
2681 | |
2682 | // Ensure input expr type is a scalar/vector and the same as the return type |
2683 | if (CheckAnyScalarOrVector(S: &SemaRef, TheCall, ArgIndex: 0)) |
2684 | return true; |
2685 | |
2686 | ExprResult Expr = TheCall->getArg(Arg: 0); |
2687 | QualType ArgTyExpr = Expr.get()->getType(); |
2688 | TheCall->setType(ArgTyExpr); |
2689 | break; |
2690 | } |
2691 | case Builtin::BI__builtin_hlsl_wave_get_lane_index: { |
2692 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 0)) |
2693 | return true; |
2694 | break; |
2695 | } |
2696 | case Builtin::BI__builtin_hlsl_elementwise_splitdouble: { |
2697 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
2698 | return true; |
2699 | |
2700 | if (CheckScalarOrVector(&SemaRef, TheCall, SemaRef.Context.DoubleTy, 0) || |
2701 | CheckScalarOrVector(&SemaRef, TheCall, SemaRef.Context.UnsignedIntTy, |
2702 | 1) || |
2703 | CheckScalarOrVector(&SemaRef, TheCall, SemaRef.Context.UnsignedIntTy, |
2704 | 2)) |
2705 | return true; |
2706 | |
2707 | if (CheckModifiableLValue(S: &SemaRef, TheCall, ArgIndex: 1) || |
2708 | CheckModifiableLValue(S: &SemaRef, TheCall, ArgIndex: 2)) |
2709 | return true; |
2710 | break; |
2711 | } |
2712 | case Builtin::BI__builtin_hlsl_elementwise_clip: { |
2713 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2714 | return true; |
2715 | |
2716 | if (CheckScalarOrVector(&SemaRef, TheCall, SemaRef.Context.FloatTy, 0)) |
2717 | return true; |
2718 | break; |
2719 | } |
2720 | case Builtin::BI__builtin_elementwise_acos: |
2721 | case Builtin::BI__builtin_elementwise_asin: |
2722 | case Builtin::BI__builtin_elementwise_atan: |
2723 | case Builtin::BI__builtin_elementwise_atan2: |
2724 | case Builtin::BI__builtin_elementwise_ceil: |
2725 | case Builtin::BI__builtin_elementwise_cos: |
2726 | case Builtin::BI__builtin_elementwise_cosh: |
2727 | case Builtin::BI__builtin_elementwise_exp: |
2728 | case Builtin::BI__builtin_elementwise_exp2: |
2729 | case Builtin::BI__builtin_elementwise_exp10: |
2730 | case Builtin::BI__builtin_elementwise_floor: |
2731 | case Builtin::BI__builtin_elementwise_fmod: |
2732 | case Builtin::BI__builtin_elementwise_log: |
2733 | case Builtin::BI__builtin_elementwise_log2: |
2734 | case Builtin::BI__builtin_elementwise_log10: |
2735 | case Builtin::BI__builtin_elementwise_pow: |
2736 | case Builtin::BI__builtin_elementwise_roundeven: |
2737 | case Builtin::BI__builtin_elementwise_sin: |
2738 | case Builtin::BI__builtin_elementwise_sinh: |
2739 | case Builtin::BI__builtin_elementwise_sqrt: |
2740 | case Builtin::BI__builtin_elementwise_tan: |
2741 | case Builtin::BI__builtin_elementwise_tanh: |
2742 | case Builtin::BI__builtin_elementwise_trunc: { |
2743 | if (CheckAllArgTypesAreCorrect(S: &SemaRef, TheCall, |
2744 | Check: CheckFloatOrHalfRepresentation)) |
2745 | return true; |
2746 | break; |
2747 | } |
2748 | case Builtin::BI__builtin_hlsl_buffer_update_counter: { |
2749 | auto checkResTy = [](const HLSLAttributedResourceType *ResTy) -> bool { |
2750 | return !(ResTy->getAttrs().ResourceClass == ResourceClass::UAV && |
2751 | ResTy->getAttrs().RawBuffer && ResTy->hasContainedType()); |
2752 | }; |
2753 | if (SemaRef.checkArgCount(Call: TheCall, DesiredArgCount: 2) || |
2754 | CheckResourceHandle(S: &SemaRef, TheCall, ArgIndex: 0, Check: checkResTy) || |
2755 | CheckArgTypeMatches(&SemaRef, TheCall->getArg(Arg: 1), |
2756 | SemaRef.getASTContext().IntTy)) |
2757 | return true; |
2758 | Expr *OffsetExpr = TheCall->getArg(Arg: 1); |
2759 | std::optional<llvm::APSInt> Offset = |
2760 | OffsetExpr->getIntegerConstantExpr(Ctx: SemaRef.getASTContext()); |
2761 | if (!Offset.has_value() || std::abs(i: Offset->getExtValue()) != 1) { |
2762 | SemaRef.Diag(TheCall->getArg(1)->getBeginLoc(), |
2763 | diag::err_hlsl_expect_arg_const_int_one_or_neg_one) |
2764 | << 1; |
2765 | return true; |
2766 | } |
2767 | break; |
2768 | } |
2769 | } |
2770 | return false; |
2771 | } |
2772 | |
2773 | static void BuildFlattenedTypeList(QualType BaseTy, |
2774 | llvm::SmallVectorImpl<QualType> &List) { |
2775 | llvm::SmallVector<QualType, 16> WorkList; |
2776 | WorkList.push_back(Elt: BaseTy); |
2777 | while (!WorkList.empty()) { |
2778 | QualType T = WorkList.pop_back_val(); |
2779 | T = T.getCanonicalType().getUnqualifiedType(); |
2780 | assert(!isa<MatrixType>(T) && "Matrix types not yet supported in HLSL"); |
2781 | if (const auto *AT = dyn_cast<ConstantArrayType>(Val&: T)) { |
2782 | llvm::SmallVector<QualType, 16> ElementFields; |
2783 | // Generally I've avoided recursion in this algorithm, but arrays of |
2784 | // structs could be time-consuming to flatten and churn through on the |
2785 | // work list. Hopefully nesting arrays of structs containing arrays |
2786 | // of structs too many levels deep is unlikely. |
2787 | BuildFlattenedTypeList(AT->getElementType(), ElementFields); |
2788 | // Repeat the element's field list n times. |
2789 | for (uint64_t Ct = 0; Ct < AT->getZExtSize(); ++Ct) |
2790 | llvm::append_range(C&: List, R&: ElementFields); |
2791 | continue; |
2792 | } |
2793 | // Vectors can only have element types that are builtin types, so this can |
2794 | // add directly to the list instead of to the WorkList. |
2795 | if (const auto *VT = dyn_cast<VectorType>(Val&: T)) { |
2796 | List.insert(I: List.end(), NumToInsert: VT->getNumElements(), Elt: VT->getElementType()); |
2797 | continue; |
2798 | } |
2799 | if (const auto *RT = dyn_cast<RecordType>(Val&: T)) { |
2800 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
2801 | assert(RD && "HLSL record types should all be CXXRecordDecls!"); |
2802 | |
2803 | if (RD->isStandardLayout()) |
2804 | RD = RD->getStandardLayoutBaseWithFields(); |
2805 | |
2806 | // For types that we shouldn't decompose (unions and non-aggregates), just |
2807 | // add the type itself to the list. |
2808 | if (RD->isUnion() || !RD->isAggregate()) { |
2809 | List.push_back(Elt: T); |
2810 | continue; |
2811 | } |
2812 | |
2813 | llvm::SmallVector<QualType, 16> FieldTypes; |
2814 | for (const auto *FD : RD->fields()) |
2815 | FieldTypes.push_back(FD->getType()); |
2816 | // Reverse the newly added sub-range. |
2817 | std::reverse(first: FieldTypes.begin(), last: FieldTypes.end()); |
2818 | llvm::append_range(C&: WorkList, R&: FieldTypes); |
2819 | |
2820 | // If this wasn't a standard layout type we may also have some base |
2821 | // classes to deal with. |
2822 | if (!RD->isStandardLayout()) { |
2823 | FieldTypes.clear(); |
2824 | for (const auto &Base : RD->bases()) |
2825 | FieldTypes.push_back(Base.getType()); |
2826 | std::reverse(first: FieldTypes.begin(), last: FieldTypes.end()); |
2827 | llvm::append_range(C&: WorkList, R&: FieldTypes); |
2828 | } |
2829 | continue; |
2830 | } |
2831 | List.push_back(Elt: T); |
2832 | } |
2833 | } |
2834 | |
2835 | bool SemaHLSL::IsTypedResourceElementCompatible(clang::QualType QT) { |
2836 | // null and array types are not allowed. |
2837 | if (QT.isNull() || QT->isArrayType()) |
2838 | return false; |
2839 | |
2840 | // UDT types are not allowed |
2841 | if (QT->isRecordType()) |
2842 | return false; |
2843 | |
2844 | if (QT->isBooleanType() || QT->isEnumeralType()) |
2845 | return false; |
2846 | |
2847 | // the only other valid builtin types are scalars or vectors |
2848 | if (QT->isArithmeticType()) { |
2849 | if (SemaRef.Context.getTypeSize(T: QT) / 8 > 16) |
2850 | return false; |
2851 | return true; |
2852 | } |
2853 | |
2854 | if (const VectorType *VT = QT->getAs<VectorType>()) { |
2855 | int ArraySize = VT->getNumElements(); |
2856 | |
2857 | if (ArraySize > 4) |
2858 | return false; |
2859 | |
2860 | QualType ElTy = VT->getElementType(); |
2861 | if (ElTy->isBooleanType()) |
2862 | return false; |
2863 | |
2864 | if (SemaRef.Context.getTypeSize(T: QT) / 8 > 16) |
2865 | return false; |
2866 | return true; |
2867 | } |
2868 | |
2869 | return false; |
2870 | } |
2871 | |
2872 | bool SemaHLSL::IsScalarizedLayoutCompatible(QualType T1, QualType T2) const { |
2873 | if (T1.isNull() || T2.isNull()) |
2874 | return false; |
2875 | |
2876 | T1 = T1.getCanonicalType().getUnqualifiedType(); |
2877 | T2 = T2.getCanonicalType().getUnqualifiedType(); |
2878 | |
2879 | // If both types are the same canonical type, they're obviously compatible. |
2880 | if (SemaRef.getASTContext().hasSameType(T1, T2)) |
2881 | return true; |
2882 | |
2883 | llvm::SmallVector<QualType, 16> T1Types; |
2884 | BuildFlattenedTypeList(BaseTy: T1, List&: T1Types); |
2885 | llvm::SmallVector<QualType, 16> T2Types; |
2886 | BuildFlattenedTypeList(BaseTy: T2, List&: T2Types); |
2887 | |
2888 | // Check the flattened type list |
2889 | return llvm::equal(LRange&: T1Types, RRange&: T2Types, |
2890 | P: [this](QualType LHS, QualType RHS) -> bool { |
2891 | return SemaRef.IsLayoutCompatible(T1: LHS, T2: RHS); |
2892 | }); |
2893 | } |
2894 | |
2895 | bool SemaHLSL::CheckCompatibleParameterABI(FunctionDecl *New, |
2896 | FunctionDecl *Old) { |
2897 | if (New->getNumParams() != Old->getNumParams()) |
2898 | return true; |
2899 | |
2900 | bool HadError = false; |
2901 | |
2902 | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { |
2903 | ParmVarDecl *NewParam = New->getParamDecl(i); |
2904 | ParmVarDecl *OldParam = Old->getParamDecl(i); |
2905 | |
2906 | // HLSL parameter declarations for inout and out must match between |
2907 | // declarations. In HLSL inout and out are ambiguous at the call site, |
2908 | // but have different calling behavior, so you cannot overload a |
2909 | // method based on a difference between inout and out annotations. |
2910 | const auto *NDAttr = NewParam->getAttr<HLSLParamModifierAttr>(); |
2911 | unsigned NSpellingIdx = (NDAttr ? NDAttr->getSpellingListIndex() : 0); |
2912 | const auto *ODAttr = OldParam->getAttr<HLSLParamModifierAttr>(); |
2913 | unsigned OSpellingIdx = (ODAttr ? ODAttr->getSpellingListIndex() : 0); |
2914 | |
2915 | if (NSpellingIdx != OSpellingIdx) { |
2916 | SemaRef.Diag(NewParam->getLocation(), |
2917 | diag::err_hlsl_param_qualifier_mismatch) |
2918 | << NDAttr << NewParam; |
2919 | SemaRef.Diag(OldParam->getLocation(), diag::note_previous_declaration_as) |
2920 | << ODAttr; |
2921 | HadError = true; |
2922 | } |
2923 | } |
2924 | return HadError; |
2925 | } |
2926 | |
2927 | // Generally follows PerformScalarCast, with cases reordered for |
2928 | // clarity of what types are supported |
2929 | bool SemaHLSL::CanPerformScalarCast(QualType SrcTy, QualType DestTy) { |
2930 | |
2931 | if (!SrcTy->isScalarType() || !DestTy->isScalarType()) |
2932 | return false; |
2933 | |
2934 | if (SemaRef.getASTContext().hasSameUnqualifiedType(T1: SrcTy, T2: DestTy)) |
2935 | return true; |
2936 | |
2937 | switch (SrcTy->getScalarTypeKind()) { |
2938 | case Type::STK_Bool: // casting from bool is like casting from an integer |
2939 | case Type::STK_Integral: |
2940 | switch (DestTy->getScalarTypeKind()) { |
2941 | case Type::STK_Bool: |
2942 | case Type::STK_Integral: |
2943 | case Type::STK_Floating: |
2944 | return true; |
2945 | case Type::STK_CPointer: |
2946 | case Type::STK_ObjCObjectPointer: |
2947 | case Type::STK_BlockPointer: |
2948 | case Type::STK_MemberPointer: |
2949 | llvm_unreachable("HLSL doesn't support pointers."); |
2950 | case Type::STK_IntegralComplex: |
2951 | case Type::STK_FloatingComplex: |
2952 | llvm_unreachable("HLSL doesn't support complex types."); |
2953 | case Type::STK_FixedPoint: |
2954 | llvm_unreachable("HLSL doesn't support fixed point types."); |
2955 | } |
2956 | llvm_unreachable("Should have returned before this"); |
2957 | |
2958 | case Type::STK_Floating: |
2959 | switch (DestTy->getScalarTypeKind()) { |
2960 | case Type::STK_Floating: |
2961 | case Type::STK_Bool: |
2962 | case Type::STK_Integral: |
2963 | return true; |
2964 | case Type::STK_FloatingComplex: |
2965 | case Type::STK_IntegralComplex: |
2966 | llvm_unreachable("HLSL doesn't support complex types."); |
2967 | case Type::STK_FixedPoint: |
2968 | llvm_unreachable("HLSL doesn't support fixed point types."); |
2969 | case Type::STK_CPointer: |
2970 | case Type::STK_ObjCObjectPointer: |
2971 | case Type::STK_BlockPointer: |
2972 | case Type::STK_MemberPointer: |
2973 | llvm_unreachable("HLSL doesn't support pointers."); |
2974 | } |
2975 | llvm_unreachable("Should have returned before this"); |
2976 | |
2977 | case Type::STK_MemberPointer: |
2978 | case Type::STK_CPointer: |
2979 | case Type::STK_BlockPointer: |
2980 | case Type::STK_ObjCObjectPointer: |
2981 | llvm_unreachable("HLSL doesn't support pointers."); |
2982 | |
2983 | case Type::STK_FixedPoint: |
2984 | llvm_unreachable("HLSL doesn't support fixed point types."); |
2985 | |
2986 | case Type::STK_FloatingComplex: |
2987 | case Type::STK_IntegralComplex: |
2988 | llvm_unreachable("HLSL doesn't support complex types."); |
2989 | } |
2990 | |
2991 | llvm_unreachable("Unhandled scalar cast"); |
2992 | } |
2993 | |
2994 | // Detect if a type contains a bitfield. Will be removed when |
2995 | // bitfield support is added to HLSLElementwiseCast and HLSLAggregateSplatCast |
2996 | bool SemaHLSL::ContainsBitField(QualType BaseTy) { |
2997 | llvm::SmallVector<QualType, 16> WorkList; |
2998 | WorkList.push_back(Elt: BaseTy); |
2999 | while (!WorkList.empty()) { |
3000 | QualType T = WorkList.pop_back_val(); |
3001 | T = T.getCanonicalType().getUnqualifiedType(); |
3002 | // only check aggregate types |
3003 | if (const auto *AT = dyn_cast<ConstantArrayType>(Val&: T)) { |
3004 | WorkList.push_back(Elt: AT->getElementType()); |
3005 | continue; |
3006 | } |
3007 | if (const auto *RT = dyn_cast<RecordType>(Val&: T)) { |
3008 | const RecordDecl *RD = RT->getDecl(); |
3009 | if (RD->isUnion()) |
3010 | continue; |
3011 | |
3012 | const CXXRecordDecl *CXXD = dyn_cast<CXXRecordDecl>(Val: RD); |
3013 | |
3014 | if (CXXD && CXXD->isStandardLayout()) |
3015 | RD = CXXD->getStandardLayoutBaseWithFields(); |
3016 | |
3017 | for (const auto *FD : RD->fields()) { |
3018 | if (FD->isBitField()) |
3019 | return true; |
3020 | WorkList.push_back(Elt: FD->getType()); |
3021 | } |
3022 | continue; |
3023 | } |
3024 | } |
3025 | return false; |
3026 | } |
3027 | |
3028 | // Can perform an HLSL Aggregate splat cast if the Dest is an aggregate and the |
3029 | // Src is a scalar or a vector of length 1 |
3030 | // Or if Dest is a vector and Src is a vector of length 1 |
3031 | bool SemaHLSL::CanPerformAggregateSplatCast(Expr *Src, QualType DestTy) { |
3032 | |
3033 | QualType SrcTy = Src->getType(); |
3034 | // Not a valid HLSL Aggregate Splat cast if Dest is a scalar or if this is |
3035 | // going to be a vector splat from a scalar. |
3036 | if ((SrcTy->isScalarType() && DestTy->isVectorType()) || |
3037 | DestTy->isScalarType()) |
3038 | return false; |
3039 | |
3040 | const VectorType *SrcVecTy = SrcTy->getAs<VectorType>(); |
3041 | |
3042 | // Src isn't a scalar or a vector of length 1 |
3043 | if (!SrcTy->isScalarType() && !(SrcVecTy && SrcVecTy->getNumElements() == 1)) |
3044 | return false; |
3045 | |
3046 | if (SrcVecTy) |
3047 | SrcTy = SrcVecTy->getElementType(); |
3048 | |
3049 | if (ContainsBitField(BaseTy: DestTy)) |
3050 | return false; |
3051 | |
3052 | llvm::SmallVector<QualType> DestTypes; |
3053 | BuildFlattenedTypeList(BaseTy: DestTy, List&: DestTypes); |
3054 | |
3055 | for (unsigned I = 0, Size = DestTypes.size(); I < Size; ++I) { |
3056 | if (DestTypes[I]->isUnionType()) |
3057 | return false; |
3058 | if (!CanPerformScalarCast(SrcTy, DestTy: DestTypes[I])) |
3059 | return false; |
3060 | } |
3061 | return true; |
3062 | } |
3063 | |
3064 | // Can we perform an HLSL Elementwise cast? |
3065 | // TODO: update this code when matrices are added; see issue #88060 |
3066 | bool SemaHLSL::CanPerformElementwiseCast(Expr *Src, QualType DestTy) { |
3067 | |
3068 | // Don't handle casts where LHS and RHS are any combination of scalar/vector |
3069 | // There must be an aggregate somewhere |
3070 | QualType SrcTy = Src->getType(); |
3071 | if (SrcTy->isScalarType()) // always a splat and this cast doesn't handle that |
3072 | return false; |
3073 | |
3074 | if (SrcTy->isVectorType() && |
3075 | (DestTy->isScalarType() || DestTy->isVectorType())) |
3076 | return false; |
3077 | |
3078 | if (ContainsBitField(BaseTy: DestTy) || ContainsBitField(BaseTy: SrcTy)) |
3079 | return false; |
3080 | |
3081 | llvm::SmallVector<QualType> DestTypes; |
3082 | BuildFlattenedTypeList(BaseTy: DestTy, List&: DestTypes); |
3083 | llvm::SmallVector<QualType> SrcTypes; |
3084 | BuildFlattenedTypeList(BaseTy: SrcTy, List&: SrcTypes); |
3085 | |
3086 | // Usually the size of SrcTypes must be greater than or equal to the size of |
3087 | // DestTypes. |
3088 | if (SrcTypes.size() < DestTypes.size()) |
3089 | return false; |
3090 | |
3091 | unsigned SrcSize = SrcTypes.size(); |
3092 | unsigned DstSize = DestTypes.size(); |
3093 | unsigned I; |
3094 | for (I = 0; I < DstSize && I < SrcSize; I++) { |
3095 | if (SrcTypes[I]->isUnionType() || DestTypes[I]->isUnionType()) |
3096 | return false; |
3097 | if (!CanPerformScalarCast(SrcTy: SrcTypes[I], DestTy: DestTypes[I])) { |
3098 | return false; |
3099 | } |
3100 | } |
3101 | |
3102 | // check the rest of the source type for unions. |
3103 | for (; I < SrcSize; I++) { |
3104 | if (SrcTypes[I]->isUnionType()) |
3105 | return false; |
3106 | } |
3107 | return true; |
3108 | } |
3109 | |
3110 | ExprResult SemaHLSL::ActOnOutParamExpr(ParmVarDecl *Param, Expr *Arg) { |
3111 | assert(Param->hasAttr<HLSLParamModifierAttr>() && |
3112 | "We should not get here without a parameter modifier expression"); |
3113 | const auto *Attr = Param->getAttr<HLSLParamModifierAttr>(); |
3114 | if (Attr->getABI() == ParameterABI::Ordinary) |
3115 | return ExprResult(Arg); |
3116 | |
3117 | bool IsInOut = Attr->getABI() == ParameterABI::HLSLInOut; |
3118 | if (!Arg->isLValue()) { |
3119 | SemaRef.Diag(Arg->getBeginLoc(), diag::error_hlsl_inout_lvalue) |
3120 | << Arg << (IsInOut ? 1 : 0); |
3121 | return ExprError(); |
3122 | } |
3123 | |
3124 | ASTContext &Ctx = SemaRef.getASTContext(); |
3125 | |
3126 | QualType Ty = Param->getType().getNonLValueExprType(Ctx); |
3127 | |
3128 | // HLSL allows implicit conversions from scalars to vectors, but not the |
3129 | // inverse, so we need to disallow `inout` with scalar->vector or |
3130 | // scalar->matrix conversions. |
3131 | if (Arg->getType()->isScalarType() != Ty->isScalarType()) { |
3132 | SemaRef.Diag(Arg->getBeginLoc(), diag::error_hlsl_inout_scalar_extension) |
3133 | << Arg << (IsInOut ? 1 : 0); |
3134 | return ExprError(); |
3135 | } |
3136 | |
3137 | auto *ArgOpV = new (Ctx) OpaqueValueExpr(Param->getBeginLoc(), Arg->getType(), |
3138 | VK_LValue, OK_Ordinary, Arg); |
3139 | |
3140 | // Parameters are initialized via copy initialization. This allows for |
3141 | // overload resolution of argument constructors. |
3142 | InitializedEntity Entity = |
3143 | InitializedEntity::InitializeParameter(Context&: Ctx, Type: Ty, Consumed: false); |
3144 | ExprResult Res = |
3145 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: Param->getBeginLoc(), Init: ArgOpV); |
3146 | if (Res.isInvalid()) |
3147 | return ExprError(); |
3148 | Expr *Base = Res.get(); |
3149 | // After the cast, drop the reference type when creating the exprs. |
3150 | Ty = Ty.getNonLValueExprType(Context: Ctx); |
3151 | auto *OpV = new (Ctx) |
3152 | OpaqueValueExpr(Param->getBeginLoc(), Ty, VK_LValue, OK_Ordinary, Base); |
3153 | |
3154 | // Writebacks are performed with `=` binary operator, which allows for |
3155 | // overload resolution on writeback result expressions. |
3156 | Res = SemaRef.ActOnBinOp(S: SemaRef.getCurScope(), TokLoc: Param->getBeginLoc(), |
3157 | Kind: tok::equal, LHSExpr: ArgOpV, RHSExpr: OpV); |
3158 | |
3159 | if (Res.isInvalid()) |
3160 | return ExprError(); |
3161 | Expr *Writeback = Res.get(); |
3162 | auto *OutExpr = |
3163 | HLSLOutArgExpr::Create(C: Ctx, Ty, Base: ArgOpV, OpV: OpV, WB: Writeback, IsInOut); |
3164 | |
3165 | return ExprResult(OutExpr); |
3166 | } |
3167 | |
3168 | QualType SemaHLSL::getInoutParameterType(QualType Ty) { |
3169 | // If HLSL gains support for references, all the cites that use this will need |
3170 | // to be updated with semantic checking to produce errors for |
3171 | // pointers/references. |
3172 | assert(!Ty->isReferenceType() && |
3173 | "Pointer and reference types cannot be inout or out parameters"); |
3174 | Ty = SemaRef.getASTContext().getLValueReferenceType(T: Ty); |
3175 | Ty.addRestrict(); |
3176 | return Ty; |
3177 | } |
3178 | |
3179 | static bool IsDefaultBufferConstantDecl(VarDecl *VD) { |
3180 | QualType QT = VD->getType(); |
3181 | return VD->getDeclContext()->isTranslationUnit() && |
3182 | QT.getAddressSpace() == LangAS::Default && |
3183 | VD->getStorageClass() != SC_Static && |
3184 | !isInvalidConstantBufferLeafElementType(Ty: QT.getTypePtr()); |
3185 | } |
3186 | |
3187 | void SemaHLSL::deduceAddressSpace(VarDecl *Decl) { |
3188 | // The variable already has an address space (groupshared for ex). |
3189 | if (Decl->getType().hasAddressSpace()) |
3190 | return; |
3191 | |
3192 | if (Decl->getType()->isDependentType()) |
3193 | return; |
3194 | |
3195 | QualType Type = Decl->getType(); |
3196 | |
3197 | if (Decl->hasAttr<HLSLVkExtBuiltinInputAttr>()) { |
3198 | LangAS ImplAS = LangAS::hlsl_input; |
3199 | Type = SemaRef.getASTContext().getAddrSpaceQualType(T: Type, AddressSpace: ImplAS); |
3200 | Decl->setType(Type); |
3201 | return; |
3202 | } |
3203 | |
3204 | if (Type->isSamplerT() || Type->isVoidType()) |
3205 | return; |
3206 | |
3207 | // Resource handles. |
3208 | if (isResourceRecordTypeOrArrayOf(Ty: Type->getUnqualifiedDesugaredType())) |
3209 | return; |
3210 | |
3211 | // Only static globals belong to the Private address space. |
3212 | // Non-static globals belongs to the cbuffer. |
3213 | if (Decl->getStorageClass() != SC_Static && !Decl->isStaticDataMember()) |
3214 | return; |
3215 | |
3216 | LangAS ImplAS = LangAS::hlsl_private; |
3217 | Type = SemaRef.getASTContext().getAddrSpaceQualType(T: Type, AddressSpace: ImplAS); |
3218 | Decl->setType(Type); |
3219 | } |
3220 | |
3221 | void SemaHLSL::ActOnVariableDeclarator(VarDecl *VD) { |
3222 | if (VD->hasGlobalStorage()) { |
3223 | // make sure the declaration has a complete type |
3224 | if (SemaRef.RequireCompleteType( |
3225 | VD->getLocation(), |
3226 | SemaRef.getASTContext().getBaseElementType(VD->getType()), |
3227 | diag::err_typecheck_decl_incomplete_type)) { |
3228 | VD->setInvalidDecl(); |
3229 | deduceAddressSpace(Decl: VD); |
3230 | return; |
3231 | } |
3232 | |
3233 | // Global variables outside a cbuffer block that are not a resource, static, |
3234 | // groupshared, or an empty array or struct belong to the default constant |
3235 | // buffer $Globals (to be created at the end of the translation unit). |
3236 | if (IsDefaultBufferConstantDecl(VD)) { |
3237 | // update address space to hlsl_constant |
3238 | QualType NewTy = getASTContext().getAddrSpaceQualType( |
3239 | T: VD->getType(), AddressSpace: LangAS::hlsl_constant); |
3240 | VD->setType(NewTy); |
3241 | DefaultCBufferDecls.push_back(VD); |
3242 | } |
3243 | |
3244 | // find all resources bindings on decl |
3245 | if (VD->getType()->isHLSLIntangibleType()) |
3246 | collectResourceBindingsOnVarDecl(D: VD); |
3247 | |
3248 | const Type *VarType = VD->getType().getTypePtr(); |
3249 | while (VarType->isArrayType()) |
3250 | VarType = VarType->getArrayElementTypeNoTypeQual(); |
3251 | if (VarType->isHLSLResourceRecord()) { |
3252 | // Make the variable for resources static. The global externally visible |
3253 | // storage is accessed through the handle, which is a member. The variable |
3254 | // itself is not externally visible. |
3255 | VD->setStorageClass(StorageClass::SC_Static); |
3256 | } |
3257 | |
3258 | // process explicit bindings |
3259 | processExplicitBindingsOnDecl(D: VD); |
3260 | } |
3261 | |
3262 | deduceAddressSpace(Decl: VD); |
3263 | } |
3264 | |
3265 | static bool initVarDeclWithCtor(Sema &S, VarDecl *VD, |
3266 | MutableArrayRef<Expr *> Args) { |
3267 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: VD); |
3268 | InitializationKind Kind = InitializationKind::CreateDirect( |
3269 | InitLoc: VD->getLocation(), LParenLoc: SourceLocation(), RParenLoc: SourceLocation()); |
3270 | |
3271 | InitializationSequence InitSeq(S, Entity, Kind, Args); |
3272 | if (InitSeq.Failed()) |
3273 | return false; |
3274 | |
3275 | ExprResult Init = InitSeq.Perform(S, Entity, Kind, Args); |
3276 | if (!Init.get()) |
3277 | return false; |
3278 | |
3279 | VD->setInit(S.MaybeCreateExprWithCleanups(SubExpr: Init.get())); |
3280 | VD->setInitStyle(VarDecl::CallInit); |
3281 | S.CheckCompleteVariableDeclaration(VD); |
3282 | return true; |
3283 | } |
3284 | |
3285 | bool SemaHLSL::initGlobalResourceDecl(VarDecl *VD) { |
3286 | std::optional<uint32_t> RegisterSlot; |
3287 | uint32_t SpaceNo = 0; |
3288 | HLSLResourceBindingAttr *RBA = VD->getAttr<HLSLResourceBindingAttr>(); |
3289 | if (RBA) { |
3290 | if (RBA->hasRegisterSlot()) |
3291 | RegisterSlot = RBA->getSlotNumber(); |
3292 | SpaceNo = RBA->getSpaceNumber(); |
3293 | } |
3294 | |
3295 | ASTContext &AST = SemaRef.getASTContext(); |
3296 | uint64_t UIntTySize = AST.getTypeSize(AST.UnsignedIntTy); |
3297 | uint64_t IntTySize = AST.getTypeSize(AST.IntTy); |
3298 | IntegerLiteral *RangeSize = IntegerLiteral::Create( |
3299 | AST, llvm::APInt(IntTySize, 1), AST.IntTy, SourceLocation()); |
3300 | IntegerLiteral *Index = IntegerLiteral::Create( |
3301 | AST, llvm::APInt(UIntTySize, 0), AST.UnsignedIntTy, SourceLocation()); |
3302 | IntegerLiteral *Space = |
3303 | IntegerLiteral::Create(AST, llvm::APInt(UIntTySize, SpaceNo), |
3304 | AST.UnsignedIntTy, SourceLocation()); |
3305 | StringRef VarName = VD->getName(); |
3306 | StringLiteral *Name = StringLiteral::Create( |
3307 | AST, VarName, StringLiteralKind::Ordinary, false, |
3308 | AST.getStringLiteralArrayType(EltTy: AST.CharTy.withConst(), Length: VarName.size()), |
3309 | SourceLocation()); |
3310 | |
3311 | // resource with explicit binding |
3312 | if (RegisterSlot.has_value()) { |
3313 | IntegerLiteral *RegSlot = IntegerLiteral::Create( |
3314 | AST, llvm::APInt(UIntTySize, RegisterSlot.value()), AST.UnsignedIntTy, |
3315 | SourceLocation()); |
3316 | Expr *Args[] = {RegSlot, Space, RangeSize, Index, Name}; |
3317 | return initVarDeclWithCtor(SemaRef, VD, Args); |
3318 | } |
3319 | |
3320 | // resource with implicit binding |
3321 | IntegerLiteral *OrderId = IntegerLiteral::Create( |
3322 | AST, llvm::APInt(UIntTySize, getNextImplicitBindingOrderID()), |
3323 | AST.UnsignedIntTy, SourceLocation()); |
3324 | Expr *Args[] = {Space, RangeSize, Index, OrderId, Name}; |
3325 | return initVarDeclWithCtor(SemaRef, VD, Args); |
3326 | } |
3327 | |
3328 | // Returns true if the initialization has been handled. |
3329 | // Returns false to use default initialization. |
3330 | bool SemaHLSL::ActOnUninitializedVarDecl(VarDecl *VD) { |
3331 | // Objects in the hlsl_constant address space are initialized |
3332 | // externally, so don't synthesize an implicit initializer. |
3333 | if (VD->getType().getAddressSpace() == LangAS::hlsl_constant) |
3334 | return true; |
3335 | |
3336 | // Initialize resources |
3337 | if (!isResourceRecordTypeOrArrayOf(VD)) |
3338 | return false; |
3339 | |
3340 | // FIXME: We currectly support only simple resources - no arrays of resources |
3341 | // or resources in user defined structs. |
3342 | // (llvm/llvm-project#133835, llvm/llvm-project#133837) |
3343 | // Initialize resources at the global scope |
3344 | if (VD->hasGlobalStorage() && VD->getType()->isHLSLResourceRecord()) |
3345 | return initGlobalResourceDecl(VD); |
3346 | |
3347 | return false; |
3348 | } |
3349 | |
3350 | // Walks though the global variable declaration, collects all resource binding |
3351 | // requirements and adds them to Bindings |
3352 | void SemaHLSL::collectResourceBindingsOnVarDecl(VarDecl *VD) { |
3353 | assert(VD->hasGlobalStorage() && VD->getType()->isHLSLIntangibleType() && |
3354 | "expected global variable that contains HLSL resource"); |
3355 | |
3356 | // Cbuffers and Tbuffers are HLSLBufferDecl types |
3357 | if (const HLSLBufferDecl *CBufferOrTBuffer = dyn_cast<HLSLBufferDecl>(Val: VD)) { |
3358 | Bindings.addDeclBindingInfo(VD, ResClass: CBufferOrTBuffer->isCBuffer() |
3359 | ? ResourceClass::CBuffer |
3360 | : ResourceClass::SRV); |
3361 | return; |
3362 | } |
3363 | |
3364 | // Unwrap arrays |
3365 | // FIXME: Calculate array size while unwrapping |
3366 | const Type *Ty = VD->getType()->getUnqualifiedDesugaredType(); |
3367 | while (Ty->isConstantArrayType()) { |
3368 | const ConstantArrayType *CAT = cast<ConstantArrayType>(Val: Ty); |
3369 | Ty = CAT->getElementType()->getUnqualifiedDesugaredType(); |
3370 | } |
3371 | |
3372 | // Resource (or array of resources) |
3373 | if (const HLSLAttributedResourceType *AttrResType = |
3374 | HLSLAttributedResourceType::findHandleTypeOnResource(RT: Ty)) { |
3375 | Bindings.addDeclBindingInfo(VD, ResClass: AttrResType->getAttrs().ResourceClass); |
3376 | return; |
3377 | } |
3378 | |
3379 | // User defined record type |
3380 | if (const RecordType *RT = dyn_cast<RecordType>(Val: Ty)) |
3381 | collectResourceBindingsOnUserRecordDecl(VD, RT); |
3382 | } |
3383 | |
3384 | // Walks though the explicit resource binding attributes on the declaration, |
3385 | // and makes sure there is a resource that matched the binding and updates |
3386 | // DeclBindingInfoLists |
3387 | void SemaHLSL::processExplicitBindingsOnDecl(VarDecl *VD) { |
3388 | assert(VD->hasGlobalStorage() && "expected global variable"); |
3389 | |
3390 | bool HasBinding = false; |
3391 | for (Attr *A : VD->attrs()) { |
3392 | HLSLResourceBindingAttr *RBA = dyn_cast<HLSLResourceBindingAttr>(A); |
3393 | if (!RBA || !RBA->hasRegisterSlot()) |
3394 | continue; |
3395 | HasBinding = true; |
3396 | |
3397 | RegisterType RT = RBA->getRegisterType(); |
3398 | assert(RT != RegisterType::I && "invalid or obsolete register type should " |
3399 | "never have an attribute created"); |
3400 | |
3401 | if (RT == RegisterType::C) { |
3402 | if (Bindings.hasBindingInfoForDecl(VD)) |
3403 | SemaRef.Diag(VD->getLocation(), |
3404 | diag::warn_hlsl_user_defined_type_missing_member) |
3405 | << static_cast<int>(RT); |
3406 | continue; |
3407 | } |
3408 | |
3409 | // Find DeclBindingInfo for this binding and update it, or report error |
3410 | // if it does not exist (user type does to contain resources with the |
3411 | // expected resource class). |
3412 | ResourceClass RC = getResourceClass(RT); |
3413 | if (DeclBindingInfo *BI = Bindings.getDeclBindingInfo(VD, RC)) { |
3414 | // update binding info |
3415 | BI->setBindingAttribute(RBA, BindingType::Explicit); |
3416 | } else { |
3417 | SemaRef.Diag(VD->getLocation(), |
3418 | diag::warn_hlsl_user_defined_type_missing_member) |
3419 | << static_cast<int>(RT); |
3420 | } |
3421 | } |
3422 | |
3423 | if (!HasBinding && isResourceRecordTypeOrArrayOf(VD)) |
3424 | SemaRef.Diag(VD->getLocation(), diag::warn_hlsl_implicit_binding); |
3425 | } |
3426 | namespace { |
3427 | class InitListTransformer { |
3428 | Sema &S; |
3429 | ASTContext &Ctx; |
3430 | QualType InitTy; |
3431 | QualType *DstIt = nullptr; |
3432 | Expr **ArgIt = nullptr; |
3433 | // Is wrapping the destination type iterator required? This is only used for |
3434 | // incomplete array types where we loop over the destination type since we |
3435 | // don't know the full number of elements from the declaration. |
3436 | bool Wrap; |
3437 | |
3438 | bool castInitializer(Expr *E) { |
3439 | assert(DstIt && "This should always be something!"); |
3440 | if (DstIt == DestTypes.end()) { |
3441 | if (!Wrap) { |
3442 | ArgExprs.push_back(Elt: E); |
3443 | // This is odd, but it isn't technically a failure due to conversion, we |
3444 | // handle mismatched counts of arguments differently. |
3445 | return true; |
3446 | } |
3447 | DstIt = DestTypes.begin(); |
3448 | } |
3449 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
3450 | Context&: Ctx, Type: *DstIt, /* Consumed (ObjC) */ Consumed: false); |
3451 | ExprResult Res = S.PerformCopyInitialization(Entity, EqualLoc: E->getBeginLoc(), Init: E); |
3452 | if (Res.isInvalid()) |
3453 | return false; |
3454 | Expr *Init = Res.get(); |
3455 | ArgExprs.push_back(Elt: Init); |
3456 | DstIt++; |
3457 | return true; |
3458 | } |
3459 | |
3460 | bool buildInitializerListImpl(Expr *E) { |
3461 | // If this is an initialization list, traverse the sub initializers. |
3462 | if (auto *Init = dyn_cast<InitListExpr>(Val: E)) { |
3463 | for (auto *SubInit : Init->inits()) |
3464 | if (!buildInitializerListImpl(E: SubInit)) |
3465 | return false; |
3466 | return true; |
3467 | } |
3468 | |
3469 | // If this is a scalar type, just enqueue the expression. |
3470 | QualType Ty = E->getType(); |
3471 | |
3472 | if (Ty->isScalarType() || (Ty->isRecordType() && !Ty->isAggregateType())) |
3473 | return castInitializer(E); |
3474 | |
3475 | if (auto *VecTy = Ty->getAs<VectorType>()) { |
3476 | uint64_t Size = VecTy->getNumElements(); |
3477 | |
3478 | QualType SizeTy = Ctx.getSizeType(); |
3479 | uint64_t SizeTySize = Ctx.getTypeSize(T: SizeTy); |
3480 | for (uint64_t I = 0; I < Size; ++I) { |
3481 | auto *Idx = IntegerLiteral::Create(C: Ctx, V: llvm::APInt(SizeTySize, I), |
3482 | type: SizeTy, l: SourceLocation()); |
3483 | |
3484 | ExprResult ElExpr = S.CreateBuiltinArraySubscriptExpr( |
3485 | Base: E, LLoc: E->getBeginLoc(), Idx, RLoc: E->getEndLoc()); |
3486 | if (ElExpr.isInvalid()) |
3487 | return false; |
3488 | if (!castInitializer(E: ElExpr.get())) |
3489 | return false; |
3490 | } |
3491 | return true; |
3492 | } |
3493 | |
3494 | if (auto *ArrTy = dyn_cast<ConstantArrayType>(Val: Ty.getTypePtr())) { |
3495 | uint64_t Size = ArrTy->getZExtSize(); |
3496 | QualType SizeTy = Ctx.getSizeType(); |
3497 | uint64_t SizeTySize = Ctx.getTypeSize(T: SizeTy); |
3498 | for (uint64_t I = 0; I < Size; ++I) { |
3499 | auto *Idx = IntegerLiteral::Create(C: Ctx, V: llvm::APInt(SizeTySize, I), |
3500 | type: SizeTy, l: SourceLocation()); |
3501 | ExprResult ElExpr = S.CreateBuiltinArraySubscriptExpr( |
3502 | Base: E, LLoc: E->getBeginLoc(), Idx, RLoc: E->getEndLoc()); |
3503 | if (ElExpr.isInvalid()) |
3504 | return false; |
3505 | if (!buildInitializerListImpl(E: ElExpr.get())) |
3506 | return false; |
3507 | } |
3508 | return true; |
3509 | } |
3510 | |
3511 | if (auto *RTy = Ty->getAs<RecordType>()) { |
3512 | llvm::SmallVector<const RecordType *> RecordTypes; |
3513 | RecordTypes.push_back(Elt: RTy); |
3514 | while (RecordTypes.back()->getAsCXXRecordDecl()->getNumBases()) { |
3515 | CXXRecordDecl *D = RecordTypes.back()->getAsCXXRecordDecl(); |
3516 | assert(D->getNumBases() == 1 && |
3517 | "HLSL doesn't support multiple inheritance"); |
3518 | RecordTypes.push_back(Elt: D->bases_begin()->getType()->getAs<RecordType>()); |
3519 | } |
3520 | while (!RecordTypes.empty()) { |
3521 | const RecordType *RT = RecordTypes.pop_back_val(); |
3522 | for (auto *FD : RT->getDecl()->fields()) { |
3523 | DeclAccessPair Found = DeclAccessPair::make(D: FD, AS: FD->getAccess()); |
3524 | DeclarationNameInfo NameInfo(FD->getDeclName(), E->getBeginLoc()); |
3525 | ExprResult Res = S.BuildFieldReferenceExpr( |
3526 | BaseExpr: E, IsArrow: false, OpLoc: E->getBeginLoc(), SS: CXXScopeSpec(), Field: FD, FoundDecl: Found, MemberNameInfo: NameInfo); |
3527 | if (Res.isInvalid()) |
3528 | return false; |
3529 | if (!buildInitializerListImpl(E: Res.get())) |
3530 | return false; |
3531 | } |
3532 | } |
3533 | } |
3534 | return true; |
3535 | } |
3536 | |
3537 | Expr *generateInitListsImpl(QualType Ty) { |
3538 | assert(ArgIt != ArgExprs.end() && "Something is off in iteration!"); |
3539 | if (Ty->isScalarType() || (Ty->isRecordType() && !Ty->isAggregateType())) |
3540 | return *(ArgIt++); |
3541 | |
3542 | llvm::SmallVector<Expr *> Inits; |
3543 | assert(!isa<MatrixType>(Ty) && "Matrix types not yet supported in HLSL"); |
3544 | Ty = Ty.getDesugaredType(Context: Ctx); |
3545 | if (Ty->isVectorType() || Ty->isConstantArrayType()) { |
3546 | QualType ElTy; |
3547 | uint64_t Size = 0; |
3548 | if (auto *ATy = Ty->getAs<VectorType>()) { |
3549 | ElTy = ATy->getElementType(); |
3550 | Size = ATy->getNumElements(); |
3551 | } else { |
3552 | auto *VTy = cast<ConstantArrayType>(Val: Ty.getTypePtr()); |
3553 | ElTy = VTy->getElementType(); |
3554 | Size = VTy->getZExtSize(); |
3555 | } |
3556 | for (uint64_t I = 0; I < Size; ++I) |
3557 | Inits.push_back(Elt: generateInitListsImpl(Ty: ElTy)); |
3558 | } |
3559 | if (auto *RTy = Ty->getAs<RecordType>()) { |
3560 | llvm::SmallVector<const RecordType *> RecordTypes; |
3561 | RecordTypes.push_back(Elt: RTy); |
3562 | while (RecordTypes.back()->getAsCXXRecordDecl()->getNumBases()) { |
3563 | CXXRecordDecl *D = RecordTypes.back()->getAsCXXRecordDecl(); |
3564 | assert(D->getNumBases() == 1 && |
3565 | "HLSL doesn't support multiple inheritance"); |
3566 | RecordTypes.push_back(Elt: D->bases_begin()->getType()->getAs<RecordType>()); |
3567 | } |
3568 | while (!RecordTypes.empty()) { |
3569 | const RecordType *RT = RecordTypes.pop_back_val(); |
3570 | for (auto *FD : RT->getDecl()->fields()) { |
3571 | Inits.push_back(Elt: generateInitListsImpl(Ty: FD->getType())); |
3572 | } |
3573 | } |
3574 | } |
3575 | auto *NewInit = new (Ctx) InitListExpr(Ctx, Inits.front()->getBeginLoc(), |
3576 | Inits, Inits.back()->getEndLoc()); |
3577 | NewInit->setType(Ty); |
3578 | return NewInit; |
3579 | } |
3580 | |
3581 | public: |
3582 | llvm::SmallVector<QualType, 16> DestTypes; |
3583 | llvm::SmallVector<Expr *, 16> ArgExprs; |
3584 | InitListTransformer(Sema &SemaRef, const InitializedEntity &Entity) |
3585 | : S(SemaRef), Ctx(SemaRef.getASTContext()), |
3586 | Wrap(Entity.getType()->isIncompleteArrayType()) { |
3587 | InitTy = Entity.getType().getNonReferenceType(); |
3588 | // When we're generating initializer lists for incomplete array types we |
3589 | // need to wrap around both when building the initializers and when |
3590 | // generating the final initializer lists. |
3591 | if (Wrap) { |
3592 | assert(InitTy->isIncompleteArrayType()); |
3593 | const IncompleteArrayType *IAT = Ctx.getAsIncompleteArrayType(InitTy); |
3594 | InitTy = IAT->getElementType(); |
3595 | } |
3596 | BuildFlattenedTypeList(InitTy, DestTypes); |
3597 | DstIt = DestTypes.begin(); |
3598 | } |
3599 | |
3600 | bool buildInitializerList(Expr *E) { return buildInitializerListImpl(E); } |
3601 | |
3602 | Expr *generateInitLists() { |
3603 | assert(!ArgExprs.empty() && |
3604 | "Call buildInitializerList to generate argument expressions."); |
3605 | ArgIt = ArgExprs.begin(); |
3606 | if (!Wrap) |
3607 | return generateInitListsImpl(InitTy); |
3608 | llvm::SmallVector<Expr *> Inits; |
3609 | while (ArgIt != ArgExprs.end()) |
3610 | Inits.push_back(generateInitListsImpl(InitTy)); |
3611 | |
3612 | auto *NewInit = new (Ctx) InitListExpr(Ctx, Inits.front()->getBeginLoc(), |
3613 | Inits, Inits.back()->getEndLoc()); |
3614 | llvm::APInt ArySize(64, Inits.size()); |
3615 | NewInit->setType(Ctx.getConstantArrayType(InitTy, ArySize, nullptr, |
3616 | ArraySizeModifier::Normal, 0)); |
3617 | return NewInit; |
3618 | } |
3619 | }; |
3620 | } // namespace |
3621 | |
3622 | bool SemaHLSL::transformInitList(const InitializedEntity &Entity, |
3623 | InitListExpr *Init) { |
3624 | // If the initializer is a scalar, just return it. |
3625 | if (Init->getType()->isScalarType()) |
3626 | return true; |
3627 | ASTContext &Ctx = SemaRef.getASTContext(); |
3628 | InitListTransformer ILT(SemaRef, Entity); |
3629 | |
3630 | for (unsigned I = 0; I < Init->getNumInits(); ++I) { |
3631 | Expr *E = Init->getInit(Init: I); |
3632 | if (E->HasSideEffects(Ctx)) { |
3633 | QualType Ty = E->getType(); |
3634 | if (Ty->isRecordType()) |
3635 | E = new (Ctx) MaterializeTemporaryExpr(Ty, E, E->isLValue()); |
3636 | E = new (Ctx) OpaqueValueExpr(E->getBeginLoc(), Ty, E->getValueKind(), |
3637 | E->getObjectKind(), E); |
3638 | Init->setInit(Init: I, expr: E); |
3639 | } |
3640 | if (!ILT.buildInitializerList(E)) |
3641 | return false; |
3642 | } |
3643 | size_t ExpectedSize = ILT.DestTypes.size(); |
3644 | size_t ActualSize = ILT.ArgExprs.size(); |
3645 | // For incomplete arrays it is completely arbitrary to choose whether we think |
3646 | // the user intended fewer or more elements. This implementation assumes that |
3647 | // the user intended more, and errors that there are too few initializers to |
3648 | // complete the final element. |
3649 | if (Entity.getType()->isIncompleteArrayType()) |
3650 | ExpectedSize = |
3651 | ((ActualSize + ExpectedSize - 1) / ExpectedSize) * ExpectedSize; |
3652 | |
3653 | // An initializer list might be attempting to initialize a reference or |
3654 | // rvalue-reference. When checking the initializer we should look through |
3655 | // the reference. |
3656 | QualType InitTy = Entity.getType().getNonReferenceType(); |
3657 | if (InitTy.hasAddressSpace()) |
3658 | InitTy = SemaRef.getASTContext().removeAddrSpaceQualType(T: InitTy); |
3659 | if (ExpectedSize != ActualSize) { |
3660 | int TooManyOrFew = ActualSize > ExpectedSize ? 1 : 0; |
3661 | SemaRef.Diag(Init->getBeginLoc(), diag::err_hlsl_incorrect_num_initializers) |
3662 | << TooManyOrFew << InitTy << ExpectedSize << ActualSize; |
3663 | return false; |
3664 | } |
3665 | |
3666 | // generateInitListsImpl will always return an InitListExpr here, because the |
3667 | // scalar case is handled above. |
3668 | auto *NewInit = cast<InitListExpr>(Val: ILT.generateInitLists()); |
3669 | Init->resizeInits(Context: Ctx, NumInits: NewInit->getNumInits()); |
3670 | for (unsigned I = 0; I < NewInit->getNumInits(); ++I) |
3671 | Init->updateInit(C: Ctx, Init: I, expr: NewInit->getInit(Init: I)); |
3672 | return true; |
3673 | } |
3674 |
Definitions
- getRegisterType
- convertToRegisterType
- getResourceClass
- addDeclBindingInfo
- getDeclBindingInfo
- hasBindingInfoForDecl
- SemaHLSL
- ActOnStartBuffer
- calculateLegacyCbufferFieldAlign
- calculateLegacyCbufferSize
- validatePackoffset
- isZeroSizedArray
- isResourceRecordTypeOrArrayOf
- isResourceRecordTypeOrArrayOf
- isInvalidConstantBufferLeafElementType
- requiresImplicitBufferLayoutStructure
- findRecordDeclInContext
- getHostLayoutStructName
- createFieldForHostLayoutStruct
- createHostLayoutStruct
- createHostLayoutStructForBuffer
- addImplicitBindingAttrToBuffer
- ActOnFinishBuffer
- mergeNumThreadsAttr
- mergeWaveSizeAttr
- mergeShaderAttr
- mergeParamModifierAttr
- ActOnTopLevelFunction
- CheckEntryPoint
- CheckSemanticAnnotation
- DiagnoseAttrStageMismatch
- castVector
- castElement
- handleFloatVectorBinOpConversion
- handleIntegerVectorBinOpConversion
- getScalarCastKind
- handleVectorBinOpConversion
- emitLogicalOperatorFixIt
- handleRootSignatureAttr
- handleNumThreadsAttr
- isValidWaveSizeValue
- handleWaveSizeAttr
- handleVkExtBuiltinInputAttr
- diagnoseInputIDType
- handleSV_DispatchThreadIDAttr
- diagnosePositionType
- handleSV_PositionAttr
- handleSV_GroupThreadIDAttr
- handleSV_GroupIDAttr
- handlePackOffsetAttr
- handleShaderAttr
- CreateHLSLAttributedResourceType
- handleResourceTypeAttr
- ProcessResourceTypeAttributes
- TakeLocForHLSLAttribute
- collectResourceBindingsOnUserRecordDecl
- DiagnoseLocalRegisterBinding
- ValidateMultipleRegisterAnnotations
- DiagnoseHLSLRegisterAttribute
- handleResourceBindingAttr
- handleParamModifierAttr
- DiagnoseHLSLAvailability
- SetShaderStageContext
- SetUnknownShaderStageContext
- GetCurrentShaderEnvironment
- InUnknownShaderStageContext
- AddToScannedFunctions
- GetScannedStages
- WasAlreadyScannedInCurrentStage
- WasAlreadyScannedInCurrentStage
- NeverBeenScanned
- DiagnoseHLSLAvailability
- VisitDeclRefExpr
- VisitMemberExpr
- HandleFunctionOrMethodRef
- RunOnTranslationUnit
- RunOnFunction
- HasMatchingEnvironmentOrNone
- FindAvailabilityAttr
- CheckDeclAvailability
- ActOnEndOfTranslationUnit
- diagnoseAvailabilityViolations
- CheckAllArgsHaveSameType
- CheckArgTypeMatches
- CheckAllArgTypesAreCorrect
- CheckFloatOrHalfRepresentation
- CheckModifiableLValue
- CheckNoDoubleVectors
- CheckFloatingOrIntRepresentation
- CheckUnsignedIntVecRepresentation
- CheckUnsignedIntRepresentation
- SetElementTypeAsReturnType
- CheckScalarOrVector
- CheckAnyScalarOrVector
- CheckWaveActive
- CheckBoolSelect
- CheckVectorSelect
- CheckResourceHandle
- CheckBuiltinFunctionCall
- BuildFlattenedTypeList
- IsTypedResourceElementCompatible
- IsScalarizedLayoutCompatible
- CheckCompatibleParameterABI
- CanPerformScalarCast
- ContainsBitField
- CanPerformAggregateSplatCast
- CanPerformElementwiseCast
- ActOnOutParamExpr
- getInoutParameterType
- IsDefaultBufferConstantDecl
- deduceAddressSpace
- ActOnVariableDeclarator
- initVarDeclWithCtor
- initGlobalResourceDecl
- ActOnUninitializedVarDecl
- collectResourceBindingsOnVarDecl
- processExplicitBindingsOnDecl
- InitListTransformer
- castInitializer
- buildInitializerListImpl
- generateInitListsImpl
- InitListTransformer
- buildInitializerList
- generateInitLists
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more