1 | //===-- NullabilityChecker.cpp - Nullability checker ----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This checker tries to find nullability violations. There are several kinds of |
10 | // possible violations: |
11 | // * Null pointer is passed to a pointer which has a _Nonnull type. |
12 | // * Null pointer is returned from a function which has a _Nonnull return type. |
13 | // * Nullable pointer is passed to a pointer which has a _Nonnull type. |
14 | // * Nullable pointer is returned from a function which has a _Nonnull return |
15 | // type. |
16 | // * Nullable pointer is dereferenced. |
17 | // |
18 | // This checker propagates the nullability information of the pointers and looks |
19 | // for the patterns that are described above. Explicit casts are trusted and are |
20 | // considered a way to suppress false positives for this checker. The other way |
21 | // to suppress warnings would be to add asserts or guarding if statements to the |
22 | // code. In addition to the nullability propagation this checker also uses some |
23 | // heuristics to suppress potential false positives. |
24 | // |
25 | //===----------------------------------------------------------------------===// |
26 | |
27 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
28 | |
29 | #include "clang/Analysis/AnyCall.h" |
30 | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
31 | #include "clang/StaticAnalyzer/Core/Checker.h" |
32 | #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
33 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
34 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
35 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" |
36 | |
37 | #include "llvm/ADT/STLExtras.h" |
38 | #include "llvm/ADT/StringExtras.h" |
39 | #include "llvm/Support/Path.h" |
40 | |
41 | using namespace clang; |
42 | using namespace ento; |
43 | |
44 | namespace { |
45 | |
46 | /// Returns the most nullable nullability. This is used for message expressions |
47 | /// like [receiver method], where the nullability of this expression is either |
48 | /// the nullability of the receiver or the nullability of the return type of the |
49 | /// method, depending on which is more nullable. Contradicted is considered to |
50 | /// be the most nullable, to avoid false positive results. |
51 | Nullability getMostNullable(Nullability Lhs, Nullability Rhs) { |
52 | return static_cast<Nullability>( |
53 | std::min(a: static_cast<char>(Lhs), b: static_cast<char>(Rhs))); |
54 | } |
55 | |
56 | const char *getNullabilityString(Nullability Nullab) { |
57 | switch (Nullab) { |
58 | case Nullability::Contradicted: |
59 | return "contradicted" ; |
60 | case Nullability::Nullable: |
61 | return "nullable" ; |
62 | case Nullability::Unspecified: |
63 | return "unspecified" ; |
64 | case Nullability::Nonnull: |
65 | return "nonnull" ; |
66 | } |
67 | llvm_unreachable("Unexpected enumeration." ); |
68 | return "" ; |
69 | } |
70 | |
71 | // These enums are used as an index to ErrorMessages array. |
72 | // FIXME: ErrorMessages no longer exists, perhaps remove this as well? |
73 | enum class ErrorKind : int { |
74 | NilAssignedToNonnull, |
75 | NilPassedToNonnull, |
76 | NilReturnedToNonnull, |
77 | NullableAssignedToNonnull, |
78 | NullableReturnedToNonnull, |
79 | NullableDereferenced, |
80 | NullablePassedToNonnull |
81 | }; |
82 | |
83 | class NullabilityChecker |
84 | : public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>, |
85 | check::PostCall, check::PostStmt<ExplicitCastExpr>, |
86 | check::PostObjCMessage, check::DeadSymbols, eval::Assume, |
87 | check::Location, check::Event<ImplicitNullDerefEvent>, |
88 | check::BeginFunction> { |
89 | |
90 | public: |
91 | // If true, the checker will not diagnose nullabilility issues for calls |
92 | // to system headers. This option is motivated by the observation that large |
93 | // projects may have many nullability warnings. These projects may |
94 | // find warnings about nullability annotations that they have explicitly |
95 | // added themselves higher priority to fix than warnings on calls to system |
96 | // libraries. |
97 | bool = false; |
98 | |
99 | void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const; |
100 | void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const; |
101 | void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; |
102 | void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; |
103 | void checkPostCall(const CallEvent &Call, CheckerContext &C) const; |
104 | void checkPreCall(const CallEvent &Call, CheckerContext &C) const; |
105 | void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; |
106 | void checkEvent(ImplicitNullDerefEvent Event) const; |
107 | void checkLocation(SVal Location, bool IsLoad, const Stmt *S, |
108 | CheckerContext &C) const; |
109 | void checkBeginFunction(CheckerContext &Ctx) const; |
110 | ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond, |
111 | bool Assumption) const; |
112 | |
113 | void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, |
114 | const char *Sep) const override; |
115 | |
116 | enum CheckKind { |
117 | CK_NullPassedToNonnull, |
118 | CK_NullReturnedFromNonnull, |
119 | CK_NullableDereferenced, |
120 | CK_NullablePassedToNonnull, |
121 | CK_NullableReturnedFromNonnull, |
122 | CK_NumCheckKinds |
123 | }; |
124 | |
125 | bool ChecksEnabled[CK_NumCheckKinds] = {false}; |
126 | CheckerNameRef CheckNames[CK_NumCheckKinds]; |
127 | mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds]; |
128 | |
129 | const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const { |
130 | if (!BTs[Kind]) |
131 | BTs[Kind].reset(p: new BugType(CheckNames[Kind], "Nullability" , |
132 | categories::MemoryError)); |
133 | return BTs[Kind]; |
134 | } |
135 | |
136 | // When set to false no nullability information will be tracked in |
137 | // NullabilityMap. It is possible to catch errors like passing a null pointer |
138 | // to a callee that expects nonnull argument without the information that is |
139 | // stored in the NullabilityMap. This is an optimization. |
140 | bool NeedTracking = false; |
141 | |
142 | private: |
143 | class NullabilityBugVisitor : public BugReporterVisitor { |
144 | public: |
145 | NullabilityBugVisitor(const MemRegion *M) : Region(M) {} |
146 | |
147 | void Profile(llvm::FoldingSetNodeID &ID) const override { |
148 | static int X = 0; |
149 | ID.AddPointer(Ptr: &X); |
150 | ID.AddPointer(Ptr: Region); |
151 | } |
152 | |
153 | PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
154 | BugReporterContext &BRC, |
155 | PathSensitiveBugReport &BR) override; |
156 | |
157 | private: |
158 | // The tracked region. |
159 | const MemRegion *Region; |
160 | }; |
161 | |
162 | /// When any of the nonnull arguments of the analyzed function is null, do not |
163 | /// report anything and turn off the check. |
164 | /// |
165 | /// When \p SuppressPath is set to true, no more bugs will be reported on this |
166 | /// path by this checker. |
167 | void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK, |
168 | ExplodedNode *N, const MemRegion *Region, |
169 | CheckerContext &C, |
170 | const Stmt *ValueExpr = nullptr, |
171 | bool SuppressPath = false) const; |
172 | |
173 | void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, |
174 | const MemRegion *Region, BugReporter &BR, |
175 | const Stmt *ValueExpr = nullptr) const { |
176 | const std::unique_ptr<BugType> &BT = getBugType(Kind: CK); |
177 | auto R = std::make_unique<PathSensitiveBugReport>(args&: *BT, args&: Msg, args&: N); |
178 | if (Region) { |
179 | R->markInteresting(R: Region); |
180 | R->addVisitor<NullabilityBugVisitor>(ConstructorArgs&: Region); |
181 | } |
182 | if (ValueExpr) { |
183 | R->addRange(R: ValueExpr->getSourceRange()); |
184 | if (Error == ErrorKind::NilAssignedToNonnull || |
185 | Error == ErrorKind::NilPassedToNonnull || |
186 | Error == ErrorKind::NilReturnedToNonnull) |
187 | if (const auto *Ex = dyn_cast<Expr>(Val: ValueExpr)) |
188 | bugreporter::trackExpressionValue(N, E: Ex, R&: *R); |
189 | } |
190 | BR.emitReport(R: std::move(R)); |
191 | } |
192 | |
193 | /// If an SVal wraps a region that should be tracked, it will return a pointer |
194 | /// to the wrapped region. Otherwise it will return a nullptr. |
195 | const SymbolicRegion *getTrackRegion(SVal Val, |
196 | bool CheckSuperRegion = false) const; |
197 | |
198 | /// Returns true if the call is diagnosable in the current analyzer |
199 | /// configuration. |
200 | bool isDiagnosableCall(const CallEvent &Call) const { |
201 | if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader()) |
202 | return false; |
203 | |
204 | return true; |
205 | } |
206 | }; |
207 | |
208 | class NullabilityState { |
209 | public: |
210 | NullabilityState(Nullability Nullab, const Stmt *Source = nullptr) |
211 | : Nullab(Nullab), Source(Source) {} |
212 | |
213 | const Stmt *getNullabilitySource() const { return Source; } |
214 | |
215 | Nullability getValue() const { return Nullab; } |
216 | |
217 | void Profile(llvm::FoldingSetNodeID &ID) const { |
218 | ID.AddInteger(I: static_cast<char>(Nullab)); |
219 | ID.AddPointer(Ptr: Source); |
220 | } |
221 | |
222 | void print(raw_ostream &Out) const { |
223 | Out << getNullabilityString(Nullab) << "\n" ; |
224 | } |
225 | |
226 | private: |
227 | Nullability Nullab; |
228 | // Source is the expression which determined the nullability. For example in a |
229 | // message like [nullable nonnull_returning] has nullable nullability, because |
230 | // the receiver is nullable. Here the receiver will be the source of the |
231 | // nullability. This is useful information when the diagnostics are generated. |
232 | const Stmt *Source; |
233 | }; |
234 | |
235 | bool operator==(NullabilityState Lhs, NullabilityState Rhs) { |
236 | return Lhs.getValue() == Rhs.getValue() && |
237 | Lhs.getNullabilitySource() == Rhs.getNullabilitySource(); |
238 | } |
239 | |
240 | // For the purpose of tracking historical property accesses, the key for lookup |
241 | // is an object pointer (could be an instance or a class) paired with the unique |
242 | // identifier for the property being invoked on that object. |
243 | using ObjectPropPair = std::pair<const MemRegion *, const IdentifierInfo *>; |
244 | |
245 | // Metadata associated with the return value from a recorded property access. |
246 | struct ConstrainedPropertyVal { |
247 | // This will reference the conjured return SVal for some call |
248 | // of the form [object property] |
249 | DefinedOrUnknownSVal Value; |
250 | |
251 | // If the SVal has been determined to be nonnull, that is recorded here |
252 | bool isConstrainedNonnull; |
253 | |
254 | ConstrainedPropertyVal(DefinedOrUnknownSVal SV) |
255 | : Value(SV), isConstrainedNonnull(false) {} |
256 | |
257 | void Profile(llvm::FoldingSetNodeID &ID) const { |
258 | Value.Profile(ID); |
259 | ID.AddInteger(I: isConstrainedNonnull ? 1 : 0); |
260 | } |
261 | }; |
262 | |
263 | bool operator==(const ConstrainedPropertyVal &Lhs, |
264 | const ConstrainedPropertyVal &Rhs) { |
265 | return Lhs.Value == Rhs.Value && |
266 | Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull; |
267 | } |
268 | |
269 | } // end anonymous namespace |
270 | |
271 | REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *, |
272 | NullabilityState) |
273 | REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair, |
274 | ConstrainedPropertyVal) |
275 | |
276 | // We say "the nullability type invariant is violated" when a location with a |
277 | // non-null type contains NULL or a function with a non-null return type returns |
278 | // NULL. Violations of the nullability type invariant can be detected either |
279 | // directly (for example, when NULL is passed as an argument to a nonnull |
280 | // parameter) or indirectly (for example, when, inside a function, the |
281 | // programmer defensively checks whether a nonnull parameter contains NULL and |
282 | // finds that it does). |
283 | // |
284 | // As a matter of policy, the nullability checker typically warns on direct |
285 | // violations of the nullability invariant (although it uses various |
286 | // heuristics to suppress warnings in some cases) but will not warn if the |
287 | // invariant has already been violated along the path (either directly or |
288 | // indirectly). As a practical matter, this prevents the analyzer from |
289 | // (1) warning on defensive code paths where a nullability precondition is |
290 | // determined to have been violated, (2) warning additional times after an |
291 | // initial direct violation has been discovered, and (3) warning after a direct |
292 | // violation that has been implicitly or explicitly suppressed (for |
293 | // example, with a cast of NULL to _Nonnull). In essence, once an invariant |
294 | // violation is detected on a path, this checker will be essentially turned off |
295 | // for the rest of the analysis |
296 | // |
297 | // The analyzer takes this approach (rather than generating a sink node) to |
298 | // ensure coverage of defensive paths, which may be important for backwards |
299 | // compatibility in codebases that were developed without nullability in mind. |
300 | REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool) |
301 | |
302 | enum class NullConstraint { IsNull, IsNotNull, Unknown }; |
303 | |
304 | static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val, |
305 | ProgramStateRef State) { |
306 | ConditionTruthVal Nullness = State->isNull(V: Val); |
307 | if (Nullness.isConstrainedFalse()) |
308 | return NullConstraint::IsNotNull; |
309 | if (Nullness.isConstrainedTrue()) |
310 | return NullConstraint::IsNull; |
311 | return NullConstraint::Unknown; |
312 | } |
313 | |
314 | static bool isValidPointerType(QualType T) { |
315 | return T->isAnyPointerType() || T->isBlockPointerType(); |
316 | } |
317 | |
318 | const SymbolicRegion * |
319 | NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const { |
320 | if (!NeedTracking) |
321 | return nullptr; |
322 | |
323 | auto RegionSVal = Val.getAs<loc::MemRegionVal>(); |
324 | if (!RegionSVal) |
325 | return nullptr; |
326 | |
327 | const MemRegion *Region = RegionSVal->getRegion(); |
328 | |
329 | if (CheckSuperRegion) { |
330 | if (const SubRegion *FieldReg = Region->getAs<FieldRegion>()) { |
331 | if (const auto *ER = dyn_cast<ElementRegion>(Val: FieldReg->getSuperRegion())) |
332 | FieldReg = ER; |
333 | return dyn_cast<SymbolicRegion>(Val: FieldReg->getSuperRegion()); |
334 | } |
335 | if (auto ElementReg = Region->getAs<ElementRegion>()) |
336 | return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion()); |
337 | } |
338 | |
339 | return dyn_cast<SymbolicRegion>(Val: Region); |
340 | } |
341 | |
342 | PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode( |
343 | const ExplodedNode *N, BugReporterContext &BRC, |
344 | PathSensitiveBugReport &BR) { |
345 | ProgramStateRef State = N->getState(); |
346 | ProgramStateRef StatePrev = N->getFirstPred()->getState(); |
347 | |
348 | const NullabilityState *TrackedNullab = State->get<NullabilityMap>(key: Region); |
349 | const NullabilityState *TrackedNullabPrev = |
350 | StatePrev->get<NullabilityMap>(key: Region); |
351 | if (!TrackedNullab) |
352 | return nullptr; |
353 | |
354 | if (TrackedNullabPrev && |
355 | TrackedNullabPrev->getValue() == TrackedNullab->getValue()) |
356 | return nullptr; |
357 | |
358 | // Retrieve the associated statement. |
359 | const Stmt *S = TrackedNullab->getNullabilitySource(); |
360 | if (!S || S->getBeginLoc().isInvalid()) { |
361 | S = N->getStmtForDiagnostics(); |
362 | } |
363 | |
364 | if (!S) |
365 | return nullptr; |
366 | |
367 | std::string InfoText = |
368 | (llvm::Twine("Nullability '" ) + |
369 | getNullabilityString(Nullab: TrackedNullab->getValue()) + "' is inferred" ) |
370 | .str(); |
371 | |
372 | // Generate the extra diagnostic. |
373 | PathDiagnosticLocation Pos(S, BRC.getSourceManager(), |
374 | N->getLocationContext()); |
375 | return std::make_shared<PathDiagnosticEventPiece>(args&: Pos, args&: InfoText, args: true); |
376 | } |
377 | |
378 | /// Returns true when the value stored at the given location has been |
379 | /// constrained to null after being passed through an object of nonnnull type. |
380 | static bool checkValueAtLValForInvariantViolation(ProgramStateRef State, |
381 | SVal LV, QualType T) { |
382 | if (getNullabilityAnnotation(Type: T) != Nullability::Nonnull) |
383 | return false; |
384 | |
385 | auto RegionVal = LV.getAs<loc::MemRegionVal>(); |
386 | if (!RegionVal) |
387 | return false; |
388 | |
389 | // If the value was constrained to null *after* it was passed through that |
390 | // location, it could not have been a concrete pointer *when* it was passed. |
391 | // In that case we would have handled the situation when the value was |
392 | // bound to that location, by emitting (or not emitting) a report. |
393 | // Therefore we are only interested in symbolic regions that can be either |
394 | // null or non-null depending on the value of their respective symbol. |
395 | auto StoredVal = State->getSVal(LV: *RegionVal).getAs<loc::MemRegionVal>(); |
396 | if (!StoredVal || !isa<SymbolicRegion>(Val: StoredVal->getRegion())) |
397 | return false; |
398 | |
399 | if (getNullConstraint(Val: *StoredVal, State) == NullConstraint::IsNull) |
400 | return true; |
401 | |
402 | return false; |
403 | } |
404 | |
405 | static bool |
406 | checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params, |
407 | ProgramStateRef State, |
408 | const LocationContext *LocCtxt) { |
409 | for (const auto *ParamDecl : Params) { |
410 | if (ParamDecl->isParameterPack()) |
411 | break; |
412 | |
413 | SVal LV = State->getLValue(ParamDecl, LocCtxt); |
414 | if (checkValueAtLValForInvariantViolation(State, LV, |
415 | ParamDecl->getType())) { |
416 | return true; |
417 | } |
418 | } |
419 | return false; |
420 | } |
421 | |
422 | static bool |
423 | checkSelfIvarsForInvariantViolation(ProgramStateRef State, |
424 | const LocationContext *LocCtxt) { |
425 | auto *MD = dyn_cast<ObjCMethodDecl>(Val: LocCtxt->getDecl()); |
426 | if (!MD || !MD->isInstanceMethod()) |
427 | return false; |
428 | |
429 | const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl(); |
430 | if (!SelfDecl) |
431 | return false; |
432 | |
433 | SVal SelfVal = State->getSVal(R: State->getRegion(SelfDecl, LocCtxt)); |
434 | |
435 | const ObjCObjectPointerType *SelfType = |
436 | dyn_cast<ObjCObjectPointerType>(SelfDecl->getType()); |
437 | if (!SelfType) |
438 | return false; |
439 | |
440 | const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl(); |
441 | if (!ID) |
442 | return false; |
443 | |
444 | for (const auto *IvarDecl : ID->ivars()) { |
445 | SVal LV = State->getLValue(IvarDecl, SelfVal); |
446 | if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) { |
447 | return true; |
448 | } |
449 | } |
450 | return false; |
451 | } |
452 | |
453 | static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N, |
454 | CheckerContext &C) { |
455 | if (State->get<InvariantViolated>()) |
456 | return true; |
457 | |
458 | const LocationContext *LocCtxt = C.getLocationContext(); |
459 | const Decl *D = LocCtxt->getDecl(); |
460 | if (!D) |
461 | return false; |
462 | |
463 | ArrayRef<ParmVarDecl*> Params; |
464 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
465 | Params = BD->parameters(); |
466 | else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
467 | Params = FD->parameters(); |
468 | else if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
469 | Params = MD->parameters(); |
470 | else |
471 | return false; |
472 | |
473 | if (checkParamsForPreconditionViolation(Params, State, LocCtxt) || |
474 | checkSelfIvarsForInvariantViolation(State, LocCtxt)) { |
475 | if (!N->isSink()) |
476 | C.addTransition(State: State->set<InvariantViolated>(true), Pred: N); |
477 | return true; |
478 | } |
479 | return false; |
480 | } |
481 | |
482 | void NullabilityChecker::reportBugIfInvariantHolds( |
483 | StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, |
484 | const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr, |
485 | bool SuppressPath) const { |
486 | ProgramStateRef OriginalState = N->getState(); |
487 | |
488 | if (checkInvariantViolation(State: OriginalState, N, C)) |
489 | return; |
490 | if (SuppressPath) { |
491 | OriginalState = OriginalState->set<InvariantViolated>(true); |
492 | N = C.addTransition(State: OriginalState, Pred: N); |
493 | } |
494 | |
495 | reportBug(Msg, Error, CK, N, Region, BR&: C.getBugReporter(), ValueExpr); |
496 | } |
497 | |
498 | /// Cleaning up the program state. |
499 | void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR, |
500 | CheckerContext &C) const { |
501 | ProgramStateRef State = C.getState(); |
502 | NullabilityMapTy Nullabilities = State->get<NullabilityMap>(); |
503 | for (const MemRegion *Reg : llvm::make_first_range(c&: Nullabilities)) { |
504 | const auto *Region = Reg->getAs<SymbolicRegion>(); |
505 | assert(Region && "Non-symbolic region is tracked." ); |
506 | if (SR.isDead(sym: Region->getSymbol())) { |
507 | State = State->remove<NullabilityMap>(K: Reg); |
508 | } |
509 | } |
510 | |
511 | // When an object goes out of scope, we can free the history associated |
512 | // with any property accesses on that object |
513 | PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); |
514 | for (ObjectPropPair PropKey : llvm::make_first_range(c&: PropertyAccesses)) { |
515 | const MemRegion *ReceiverRegion = PropKey.first; |
516 | if (!SR.isLiveRegion(region: ReceiverRegion)) { |
517 | State = State->remove<PropertyAccessesMap>(K: PropKey); |
518 | } |
519 | } |
520 | |
521 | // When one of the nonnull arguments are constrained to be null, nullability |
522 | // preconditions are violated. It is not enough to check this only when we |
523 | // actually report an error, because at that time interesting symbols might be |
524 | // reaped. |
525 | if (checkInvariantViolation(State, N: C.getPredecessor(), C)) |
526 | return; |
527 | C.addTransition(State); |
528 | } |
529 | |
530 | /// This callback triggers when a pointer is dereferenced and the analyzer does |
531 | /// not know anything about the value of that pointer. When that pointer is |
532 | /// nullable, this code emits a warning. |
533 | void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const { |
534 | if (Event.SinkNode->getState()->get<InvariantViolated>()) |
535 | return; |
536 | |
537 | const MemRegion *Region = |
538 | getTrackRegion(Val: Event.Location, /*CheckSuperRegion=*/true); |
539 | if (!Region) |
540 | return; |
541 | |
542 | ProgramStateRef State = Event.SinkNode->getState(); |
543 | const NullabilityState *TrackedNullability = |
544 | State->get<NullabilityMap>(key: Region); |
545 | |
546 | if (!TrackedNullability) |
547 | return; |
548 | |
549 | if (ChecksEnabled[CK_NullableDereferenced] && |
550 | TrackedNullability->getValue() == Nullability::Nullable) { |
551 | BugReporter &BR = *Event.BR; |
552 | // Do not suppress errors on defensive code paths, because dereferencing |
553 | // a nullable pointer is always an error. |
554 | if (Event.IsDirectDereference) |
555 | reportBug(Msg: "Nullable pointer is dereferenced" , |
556 | Error: ErrorKind::NullableDereferenced, CK: CK_NullableDereferenced, |
557 | N: Event.SinkNode, Region, BR); |
558 | else { |
559 | reportBug(Msg: "Nullable pointer is passed to a callee that requires a " |
560 | "non-null" , |
561 | Error: ErrorKind::NullablePassedToNonnull, CK: CK_NullableDereferenced, |
562 | N: Event.SinkNode, Region, BR); |
563 | } |
564 | } |
565 | } |
566 | |
567 | void NullabilityChecker::checkBeginFunction(CheckerContext &C) const { |
568 | if (!C.inTopFrame()) |
569 | return; |
570 | |
571 | const LocationContext *LCtx = C.getLocationContext(); |
572 | auto AbstractCall = AnyCall::forDecl(D: LCtx->getDecl()); |
573 | if (!AbstractCall || AbstractCall->parameters().empty()) |
574 | return; |
575 | |
576 | ProgramStateRef State = C.getState(); |
577 | for (const ParmVarDecl *Param : AbstractCall->parameters()) { |
578 | if (!isValidPointerType(Param->getType())) |
579 | continue; |
580 | |
581 | Nullability RequiredNullability = |
582 | getNullabilityAnnotation(Param->getType()); |
583 | if (RequiredNullability != Nullability::Nullable) |
584 | continue; |
585 | |
586 | const VarRegion *ParamRegion = State->getRegion(Param, LCtx); |
587 | const MemRegion *ParamPointeeRegion = |
588 | State->getSVal(R: ParamRegion).getAsRegion(); |
589 | if (!ParamPointeeRegion) |
590 | continue; |
591 | |
592 | State = State->set<NullabilityMap>(K: ParamPointeeRegion, |
593 | E: NullabilityState(RequiredNullability)); |
594 | } |
595 | C.addTransition(State); |
596 | } |
597 | |
598 | // Whenever we see a load from a typed memory region that's been annotated as |
599 | // 'nonnull', we want to trust the user on that and assume that it is is indeed |
600 | // non-null. |
601 | // |
602 | // We do so even if the value is known to have been assigned to null. |
603 | // The user should be warned on assigning the null value to a non-null pointer |
604 | // as opposed to warning on the later dereference of this pointer. |
605 | // |
606 | // \code |
607 | // int * _Nonnull var = 0; // we want to warn the user here... |
608 | // // . . . |
609 | // *var = 42; // ...and not here |
610 | // \endcode |
611 | void NullabilityChecker::checkLocation(SVal Location, bool IsLoad, |
612 | const Stmt *S, |
613 | CheckerContext &Context) const { |
614 | // We should care only about loads. |
615 | // The main idea is to add a constraint whenever we're loading a value from |
616 | // an annotated pointer type. |
617 | if (!IsLoad) |
618 | return; |
619 | |
620 | // Annotations that we want to consider make sense only for types. |
621 | const auto *Region = |
622 | dyn_cast_or_null<TypedValueRegion>(Val: Location.getAsRegion()); |
623 | if (!Region) |
624 | return; |
625 | |
626 | ProgramStateRef State = Context.getState(); |
627 | |
628 | auto StoredVal = State->getSVal(R: Region).getAs<loc::MemRegionVal>(); |
629 | if (!StoredVal) |
630 | return; |
631 | |
632 | Nullability NullabilityOfTheLoadedValue = |
633 | getNullabilityAnnotation(Type: Region->getValueType()); |
634 | |
635 | if (NullabilityOfTheLoadedValue == Nullability::Nonnull) { |
636 | // It doesn't matter what we think about this particular pointer, it should |
637 | // be considered non-null as annotated by the developer. |
638 | if (ProgramStateRef NewState = State->assume(Cond: *StoredVal, Assumption: true)) { |
639 | Context.addTransition(State: NewState); |
640 | } |
641 | } |
642 | } |
643 | |
644 | /// Find the outermost subexpression of E that is not an implicit cast. |
645 | /// This looks through the implicit casts to _Nonnull that ARC adds to |
646 | /// return expressions of ObjC types when the return type of the function or |
647 | /// method is non-null but the express is not. |
648 | static const Expr *lookThroughImplicitCasts(const Expr *E) { |
649 | return E->IgnoreImpCasts(); |
650 | } |
651 | |
652 | /// This method check when nullable pointer or null value is returned from a |
653 | /// function that has nonnull return type. |
654 | void NullabilityChecker::checkPreStmt(const ReturnStmt *S, |
655 | CheckerContext &C) const { |
656 | auto RetExpr = S->getRetValue(); |
657 | if (!RetExpr) |
658 | return; |
659 | |
660 | if (!isValidPointerType(T: RetExpr->getType())) |
661 | return; |
662 | |
663 | ProgramStateRef State = C.getState(); |
664 | if (State->get<InvariantViolated>()) |
665 | return; |
666 | |
667 | auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>(); |
668 | if (!RetSVal) |
669 | return; |
670 | |
671 | bool InSuppressedMethodFamily = false; |
672 | |
673 | QualType RequiredRetType; |
674 | AnalysisDeclContext *DeclCtxt = |
675 | C.getLocationContext()->getAnalysisDeclContext(); |
676 | const Decl *D = DeclCtxt->getDecl(); |
677 | if (auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) { |
678 | // HACK: This is a big hammer to avoid warning when there are defensive |
679 | // nil checks in -init and -copy methods. We should add more sophisticated |
680 | // logic here to suppress on common defensive idioms but still |
681 | // warn when there is a likely problem. |
682 | ObjCMethodFamily Family = MD->getMethodFamily(); |
683 | if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family) |
684 | InSuppressedMethodFamily = true; |
685 | |
686 | RequiredRetType = MD->getReturnType(); |
687 | } else if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
688 | RequiredRetType = FD->getReturnType(); |
689 | } else { |
690 | return; |
691 | } |
692 | |
693 | NullConstraint Nullness = getNullConstraint(*RetSVal, State); |
694 | |
695 | Nullability RequiredNullability = getNullabilityAnnotation(Type: RequiredRetType); |
696 | if (const auto *FunDecl = C.getLocationContext()->getDecl(); |
697 | FunDecl && FunDecl->getAttr<ReturnsNonNullAttr>() && |
698 | (RequiredNullability == Nullability::Unspecified || |
699 | RequiredNullability == Nullability::Nullable)) { |
700 | // If a function is marked with the returns_nonnull attribute, |
701 | // the return value must be non-null. |
702 | RequiredNullability = Nullability::Nonnull; |
703 | } |
704 | |
705 | // If the returned value is null but the type of the expression |
706 | // generating it is nonnull then we will suppress the diagnostic. |
707 | // This enables explicit suppression when returning a nil literal in a |
708 | // function with a _Nonnull return type: |
709 | // return (NSString * _Nonnull)0; |
710 | Nullability RetExprTypeLevelNullability = |
711 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: RetExpr)->getType()); |
712 | |
713 | bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull && |
714 | Nullness == NullConstraint::IsNull); |
715 | if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull && |
716 | RetExprTypeLevelNullability != Nullability::Nonnull && |
717 | !InSuppressedMethodFamily) { |
718 | ExplodedNode *N = C.generateErrorNode(State); |
719 | if (!N) |
720 | return; |
721 | |
722 | SmallString<256> SBuf; |
723 | llvm::raw_svector_ostream OS(SBuf); |
724 | OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null" ); |
725 | OS << " returned from a " << C.getDeclDescription(D) << |
726 | " that is expected to return a non-null value" ; |
727 | reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull, |
728 | CK_NullReturnedFromNonnull, N, nullptr, C, |
729 | RetExpr); |
730 | return; |
731 | } |
732 | |
733 | // If null was returned from a non-null function, mark the nullability |
734 | // invariant as violated even if the diagnostic was suppressed. |
735 | if (NullReturnedFromNonNull) { |
736 | State = State->set<InvariantViolated>(true); |
737 | C.addTransition(State); |
738 | return; |
739 | } |
740 | |
741 | const MemRegion *Region = getTrackRegion(Val: *RetSVal); |
742 | if (!Region) |
743 | return; |
744 | |
745 | const NullabilityState *TrackedNullability = |
746 | State->get<NullabilityMap>(key: Region); |
747 | if (TrackedNullability) { |
748 | Nullability TrackedNullabValue = TrackedNullability->getValue(); |
749 | if (ChecksEnabled[CK_NullableReturnedFromNonnull] && |
750 | Nullness != NullConstraint::IsNotNull && |
751 | TrackedNullabValue == Nullability::Nullable && |
752 | RequiredNullability == Nullability::Nonnull) { |
753 | ExplodedNode *N = C.addTransition(State, Pred: C.getPredecessor()); |
754 | |
755 | SmallString<256> SBuf; |
756 | llvm::raw_svector_ostream OS(SBuf); |
757 | OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) << |
758 | " that is expected to return a non-null value" ; |
759 | |
760 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NullableReturnedToNonnull, |
761 | CK: CK_NullableReturnedFromNonnull, N, Region, C); |
762 | } |
763 | return; |
764 | } |
765 | if (RequiredNullability == Nullability::Nullable) { |
766 | State = State->set<NullabilityMap>(K: Region, |
767 | E: NullabilityState(RequiredNullability, |
768 | S)); |
769 | C.addTransition(State); |
770 | } |
771 | } |
772 | |
773 | /// This callback warns when a nullable pointer or a null value is passed to a |
774 | /// function that expects its argument to be nonnull. |
775 | void NullabilityChecker::checkPreCall(const CallEvent &Call, |
776 | CheckerContext &C) const { |
777 | if (!Call.getDecl()) |
778 | return; |
779 | |
780 | ProgramStateRef State = C.getState(); |
781 | if (State->get<InvariantViolated>()) |
782 | return; |
783 | |
784 | ProgramStateRef OrigState = State; |
785 | |
786 | unsigned Idx = 0; |
787 | for (const ParmVarDecl *Param : Call.parameters()) { |
788 | if (Param->isParameterPack()) |
789 | break; |
790 | |
791 | if (Idx >= Call.getNumArgs()) |
792 | break; |
793 | |
794 | const Expr *ArgExpr = Call.getArgExpr(Index: Idx); |
795 | auto ArgSVal = Call.getArgSVal(Index: Idx++).getAs<DefinedOrUnknownSVal>(); |
796 | if (!ArgSVal) |
797 | continue; |
798 | |
799 | if (!isValidPointerType(Param->getType()) && |
800 | !Param->getType()->isReferenceType()) |
801 | continue; |
802 | |
803 | NullConstraint Nullness = getNullConstraint(Val: *ArgSVal, State); |
804 | |
805 | Nullability RequiredNullability = |
806 | getNullabilityAnnotation(Param->getType()); |
807 | Nullability ArgExprTypeLevelNullability = |
808 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: ArgExpr)->getType()); |
809 | |
810 | unsigned ParamIdx = Param->getFunctionScopeIndex() + 1; |
811 | |
812 | if (ChecksEnabled[CK_NullPassedToNonnull] && |
813 | Nullness == NullConstraint::IsNull && |
814 | ArgExprTypeLevelNullability != Nullability::Nonnull && |
815 | RequiredNullability == Nullability::Nonnull && |
816 | isDiagnosableCall(Call)) { |
817 | ExplodedNode *N = C.generateErrorNode(State); |
818 | if (!N) |
819 | return; |
820 | |
821 | SmallString<256> SBuf; |
822 | llvm::raw_svector_ostream OS(SBuf); |
823 | OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null" ); |
824 | OS << " passed to a callee that requires a non-null " << ParamIdx |
825 | << llvm::getOrdinalSuffix(Val: ParamIdx) << " parameter" ; |
826 | reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull, |
827 | CK_NullPassedToNonnull, N, nullptr, C, ArgExpr, |
828 | /*SuppressPath=*/false); |
829 | return; |
830 | } |
831 | |
832 | const MemRegion *Region = getTrackRegion(Val: *ArgSVal); |
833 | if (!Region) |
834 | continue; |
835 | |
836 | const NullabilityState *TrackedNullability = |
837 | State->get<NullabilityMap>(key: Region); |
838 | |
839 | if (TrackedNullability) { |
840 | if (Nullness == NullConstraint::IsNotNull || |
841 | TrackedNullability->getValue() != Nullability::Nullable) |
842 | continue; |
843 | |
844 | if (ChecksEnabled[CK_NullablePassedToNonnull] && |
845 | RequiredNullability == Nullability::Nonnull && |
846 | isDiagnosableCall(Call)) { |
847 | ExplodedNode *N = C.addTransition(State); |
848 | SmallString<256> SBuf; |
849 | llvm::raw_svector_ostream OS(SBuf); |
850 | OS << "Nullable pointer is passed to a callee that requires a non-null " |
851 | << ParamIdx << llvm::getOrdinalSuffix(Val: ParamIdx) << " parameter" ; |
852 | reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull, |
853 | CK_NullablePassedToNonnull, N, Region, C, |
854 | ArgExpr, /*SuppressPath=*/true); |
855 | return; |
856 | } |
857 | if (ChecksEnabled[CK_NullableDereferenced] && |
858 | Param->getType()->isReferenceType()) { |
859 | ExplodedNode *N = C.addTransition(State); |
860 | reportBugIfInvariantHolds("Nullable pointer is dereferenced" , |
861 | ErrorKind::NullableDereferenced, |
862 | CK_NullableDereferenced, N, Region, C, |
863 | ArgExpr, /*SuppressPath=*/true); |
864 | return; |
865 | } |
866 | continue; |
867 | } |
868 | } |
869 | if (State != OrigState) |
870 | C.addTransition(State); |
871 | } |
872 | |
873 | /// Suppress the nullability warnings for some functions. |
874 | void NullabilityChecker::checkPostCall(const CallEvent &Call, |
875 | CheckerContext &C) const { |
876 | auto Decl = Call.getDecl(); |
877 | if (!Decl) |
878 | return; |
879 | // ObjC Messages handles in a different callback. |
880 | if (Call.getKind() == CE_ObjCMessage) |
881 | return; |
882 | const FunctionType *FuncType = Decl->getFunctionType(); |
883 | if (!FuncType) |
884 | return; |
885 | QualType ReturnType = FuncType->getReturnType(); |
886 | if (!isValidPointerType(T: ReturnType)) |
887 | return; |
888 | ProgramStateRef State = C.getState(); |
889 | if (State->get<InvariantViolated>()) |
890 | return; |
891 | |
892 | const MemRegion *Region = getTrackRegion(Val: Call.getReturnValue()); |
893 | if (!Region) |
894 | return; |
895 | |
896 | // CG headers are misannotated. Do not warn for symbols that are the results |
897 | // of CG calls. |
898 | const SourceManager &SM = C.getSourceManager(); |
899 | StringRef FilePath = SM.getFilename(SpellingLoc: SM.getSpellingLoc(Loc: Decl->getBeginLoc())); |
900 | if (llvm::sys::path::filename(path: FilePath).starts_with(Prefix: "CG" )) { |
901 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
902 | C.addTransition(State); |
903 | return; |
904 | } |
905 | |
906 | const NullabilityState *TrackedNullability = |
907 | State->get<NullabilityMap>(key: Region); |
908 | |
909 | // ObjCMessageExpr gets the actual type through |
910 | // Sema::getMessageSendResultType, instead of using the return type of |
911 | // MethodDecl directly. The final type is generated by considering the |
912 | // nullability of receiver and MethodDecl together. Thus, The type of |
913 | // ObjCMessageExpr is prefer. |
914 | if (const Expr *E = Call.getOriginExpr()) |
915 | ReturnType = E->getType(); |
916 | |
917 | if (!TrackedNullability && |
918 | getNullabilityAnnotation(Type: ReturnType) == Nullability::Nullable) { |
919 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Nullable); |
920 | C.addTransition(State); |
921 | } |
922 | } |
923 | |
924 | static Nullability getReceiverNullability(const ObjCMethodCall &M, |
925 | ProgramStateRef State) { |
926 | if (M.isReceiverSelfOrSuper()) { |
927 | // For super and super class receivers we assume that the receiver is |
928 | // nonnull. |
929 | return Nullability::Nonnull; |
930 | } |
931 | // Otherwise look up nullability in the state. |
932 | SVal Receiver = M.getReceiverSVal(); |
933 | if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) { |
934 | // If the receiver is constrained to be nonnull, assume that it is nonnull |
935 | // regardless of its type. |
936 | NullConstraint Nullness = getNullConstraint(Val: *DefOrUnknown, State); |
937 | if (Nullness == NullConstraint::IsNotNull) |
938 | return Nullability::Nonnull; |
939 | } |
940 | auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>(); |
941 | if (ValueRegionSVal) { |
942 | const MemRegion *SelfRegion = ValueRegionSVal->getRegion(); |
943 | assert(SelfRegion); |
944 | |
945 | const NullabilityState *TrackedSelfNullability = |
946 | State->get<NullabilityMap>(key: SelfRegion); |
947 | if (TrackedSelfNullability) |
948 | return TrackedSelfNullability->getValue(); |
949 | } |
950 | return Nullability::Unspecified; |
951 | } |
952 | |
953 | // The return value of a property access is typically a temporary value which |
954 | // will not be tracked in a persistent manner by the analyzer. We use |
955 | // evalAssume() in order to immediately record constraints on those temporaries |
956 | // at the time they are imposed (e.g. by a nil-check conditional). |
957 | ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond, |
958 | bool Assumption) const { |
959 | PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); |
960 | for (auto [PropKey, PropVal] : PropertyAccesses) { |
961 | if (!PropVal.isConstrainedNonnull) { |
962 | ConditionTruthVal IsNonNull = State->isNonNull(V: PropVal.Value); |
963 | if (IsNonNull.isConstrainedTrue()) { |
964 | ConstrainedPropertyVal Replacement = PropVal; |
965 | Replacement.isConstrainedNonnull = true; |
966 | State = State->set<PropertyAccessesMap>(K: PropKey, E: Replacement); |
967 | } else if (IsNonNull.isConstrainedFalse()) { |
968 | // Space optimization: no point in tracking constrained-null cases |
969 | State = State->remove<PropertyAccessesMap>(K: PropKey); |
970 | } |
971 | } |
972 | } |
973 | |
974 | return State; |
975 | } |
976 | |
977 | /// Calculate the nullability of the result of a message expr based on the |
978 | /// nullability of the receiver, the nullability of the return value, and the |
979 | /// constraints. |
980 | void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M, |
981 | CheckerContext &C) const { |
982 | auto Decl = M.getDecl(); |
983 | if (!Decl) |
984 | return; |
985 | QualType RetType = Decl->getReturnType(); |
986 | if (!isValidPointerType(T: RetType)) |
987 | return; |
988 | |
989 | ProgramStateRef State = C.getState(); |
990 | if (State->get<InvariantViolated>()) |
991 | return; |
992 | |
993 | const MemRegion *ReturnRegion = getTrackRegion(Val: M.getReturnValue()); |
994 | if (!ReturnRegion) |
995 | return; |
996 | |
997 | auto Interface = Decl->getClassInterface(); |
998 | auto Name = Interface ? Interface->getName() : "" ; |
999 | // In order to reduce the noise in the diagnostics generated by this checker, |
1000 | // some framework and programming style based heuristics are used. These |
1001 | // heuristics are for Cocoa APIs which have NS prefix. |
1002 | if (Name.starts_with("NS" )) { |
1003 | // Developers rely on dynamic invariants such as an item should be available |
1004 | // in a collection, or a collection is not empty often. Those invariants can |
1005 | // not be inferred by any static analysis tool. To not to bother the users |
1006 | // with too many false positives, every item retrieval function should be |
1007 | // ignored for collections. The instance methods of dictionaries in Cocoa |
1008 | // are either item retrieval related or not interesting nullability wise. |
1009 | // Using this fact, to keep the code easier to read just ignore the return |
1010 | // value of every instance method of dictionaries. |
1011 | if (M.isInstanceMessage() && Name.contains("Dictionary" )) { |
1012 | State = |
1013 | State->set<NullabilityMap>(K: ReturnRegion, E: Nullability::Contradicted); |
1014 | C.addTransition(State); |
1015 | return; |
1016 | } |
1017 | // For similar reasons ignore some methods of Cocoa arrays. |
1018 | StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(argIndex: 0); |
1019 | if (Name.contains("Array" ) && |
1020 | (FirstSelectorSlot == "firstObject" || |
1021 | FirstSelectorSlot == "lastObject" )) { |
1022 | State = |
1023 | State->set<NullabilityMap>(K: ReturnRegion, E: Nullability::Contradicted); |
1024 | C.addTransition(State); |
1025 | return; |
1026 | } |
1027 | |
1028 | // Encoding related methods of string should not fail when lossless |
1029 | // encodings are used. Using lossless encodings is so frequent that ignoring |
1030 | // this class of methods reduced the emitted diagnostics by about 30% on |
1031 | // some projects (and all of that was false positives). |
1032 | if (Name.contains("String" )) { |
1033 | for (auto *Param : M.parameters()) { |
1034 | if (Param->getName() == "encoding" ) { |
1035 | State = State->set<NullabilityMap>(K: ReturnRegion, |
1036 | E: Nullability::Contradicted); |
1037 | C.addTransition(State); |
1038 | return; |
1039 | } |
1040 | } |
1041 | } |
1042 | } |
1043 | |
1044 | const ObjCMessageExpr *Message = M.getOriginExpr(); |
1045 | Nullability SelfNullability = getReceiverNullability(M, State); |
1046 | |
1047 | const NullabilityState *NullabilityOfReturn = |
1048 | State->get<NullabilityMap>(key: ReturnRegion); |
1049 | |
1050 | if (NullabilityOfReturn) { |
1051 | // When we have a nullability tracked for the return value, the nullability |
1052 | // of the expression will be the most nullable of the receiver and the |
1053 | // return value. |
1054 | Nullability RetValTracked = NullabilityOfReturn->getValue(); |
1055 | Nullability ComputedNullab = |
1056 | getMostNullable(Lhs: RetValTracked, Rhs: SelfNullability); |
1057 | if (ComputedNullab != RetValTracked && |
1058 | ComputedNullab != Nullability::Unspecified) { |
1059 | const Stmt *NullabilitySource = |
1060 | ComputedNullab == RetValTracked |
1061 | ? NullabilityOfReturn->getNullabilitySource() |
1062 | : Message->getInstanceReceiver(); |
1063 | State = State->set<NullabilityMap>( |
1064 | K: ReturnRegion, E: NullabilityState(ComputedNullab, NullabilitySource)); |
1065 | C.addTransition(State); |
1066 | } |
1067 | return; |
1068 | } |
1069 | |
1070 | // No tracked information. Use static type information for return value. |
1071 | Nullability RetNullability = getNullabilityAnnotation(Message->getType()); |
1072 | |
1073 | // Properties might be computed, which means the property value could |
1074 | // theoretically change between calls even in commonly-observed cases like |
1075 | // this: |
1076 | // |
1077 | // if (foo.prop) { // ok, it's nonnull here... |
1078 | // [bar doStuffWithNonnullVal:foo.prop]; // ...but what about |
1079 | // here? |
1080 | // } |
1081 | // |
1082 | // If the property is nullable-annotated, a naive analysis would lead to many |
1083 | // false positives despite the presence of probably-correct nil-checks. To |
1084 | // reduce the false positive rate, we maintain a history of the most recently |
1085 | // observed property value. For each property access, if the prior value has |
1086 | // been constrained to be not nil then we will conservatively assume that the |
1087 | // next access can be inferred as nonnull. |
1088 | if (RetNullability != Nullability::Nonnull && |
1089 | M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) { |
1090 | bool LookupResolved = false; |
1091 | if (const MemRegion *ReceiverRegion = getTrackRegion(Val: M.getReceiverSVal())) { |
1092 | if (const IdentifierInfo *Ident = |
1093 | M.getSelector().getIdentifierInfoForSlot(argIndex: 0)) { |
1094 | LookupResolved = true; |
1095 | ObjectPropPair Key = std::make_pair(x&: ReceiverRegion, y&: Ident); |
1096 | const ConstrainedPropertyVal *PrevPropVal = |
1097 | State->get<PropertyAccessesMap>(key: Key); |
1098 | if (PrevPropVal && PrevPropVal->isConstrainedNonnull) { |
1099 | RetNullability = Nullability::Nonnull; |
1100 | } else { |
1101 | // If a previous property access was constrained as nonnull, we hold |
1102 | // on to that constraint (effectively inferring that all subsequent |
1103 | // accesses on that code path can be inferred as nonnull). If the |
1104 | // previous property access was *not* constrained as nonnull, then |
1105 | // let's throw it away in favor of keeping the SVal associated with |
1106 | // this more recent access. |
1107 | if (auto ReturnSVal = |
1108 | M.getReturnValue().getAs<DefinedOrUnknownSVal>()) { |
1109 | State = State->set<PropertyAccessesMap>( |
1110 | K: Key, E: ConstrainedPropertyVal(*ReturnSVal)); |
1111 | } |
1112 | } |
1113 | } |
1114 | } |
1115 | |
1116 | if (!LookupResolved) { |
1117 | // Fallback: err on the side of suppressing the false positive. |
1118 | RetNullability = Nullability::Nonnull; |
1119 | } |
1120 | } |
1121 | |
1122 | Nullability ComputedNullab = getMostNullable(Lhs: RetNullability, Rhs: SelfNullability); |
1123 | if (ComputedNullab == Nullability::Nullable) { |
1124 | const Stmt *NullabilitySource = ComputedNullab == RetNullability |
1125 | ? Message |
1126 | : Message->getInstanceReceiver(); |
1127 | State = State->set<NullabilityMap>( |
1128 | K: ReturnRegion, E: NullabilityState(ComputedNullab, NullabilitySource)); |
1129 | C.addTransition(State); |
1130 | } |
1131 | } |
1132 | |
1133 | /// Explicit casts are trusted. If there is a disagreement in the nullability |
1134 | /// annotations in the destination and the source or '0' is casted to nonnull |
1135 | /// track the value as having contraditory nullability. This will allow users to |
1136 | /// suppress warnings. |
1137 | void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE, |
1138 | CheckerContext &C) const { |
1139 | QualType OriginType = CE->getSubExpr()->getType(); |
1140 | QualType DestType = CE->getType(); |
1141 | if (!isValidPointerType(T: OriginType)) |
1142 | return; |
1143 | if (!isValidPointerType(T: DestType)) |
1144 | return; |
1145 | |
1146 | ProgramStateRef State = C.getState(); |
1147 | if (State->get<InvariantViolated>()) |
1148 | return; |
1149 | |
1150 | Nullability DestNullability = getNullabilityAnnotation(Type: DestType); |
1151 | |
1152 | // No explicit nullability in the destination type, so this cast does not |
1153 | // change the nullability. |
1154 | if (DestNullability == Nullability::Unspecified) |
1155 | return; |
1156 | |
1157 | auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>(); |
1158 | const MemRegion *Region = getTrackRegion(Val: *RegionSVal); |
1159 | if (!Region) |
1160 | return; |
1161 | |
1162 | // When 0 is converted to nonnull mark it as contradicted. |
1163 | if (DestNullability == Nullability::Nonnull) { |
1164 | NullConstraint Nullness = getNullConstraint(*RegionSVal, State); |
1165 | if (Nullness == NullConstraint::IsNull) { |
1166 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
1167 | C.addTransition(State); |
1168 | return; |
1169 | } |
1170 | } |
1171 | |
1172 | const NullabilityState *TrackedNullability = |
1173 | State->get<NullabilityMap>(key: Region); |
1174 | |
1175 | if (!TrackedNullability) { |
1176 | if (DestNullability != Nullability::Nullable) |
1177 | return; |
1178 | State = State->set<NullabilityMap>(K: Region, |
1179 | E: NullabilityState(DestNullability, CE)); |
1180 | C.addTransition(State); |
1181 | return; |
1182 | } |
1183 | |
1184 | if (TrackedNullability->getValue() != DestNullability && |
1185 | TrackedNullability->getValue() != Nullability::Contradicted) { |
1186 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
1187 | C.addTransition(State); |
1188 | } |
1189 | } |
1190 | |
1191 | /// For a given statement performing a bind, attempt to syntactically |
1192 | /// match the expression resulting in the bound value. |
1193 | static const Expr * matchValueExprForBind(const Stmt *S) { |
1194 | // For `x = e` the value expression is the right-hand side. |
1195 | if (auto *BinOp = dyn_cast<BinaryOperator>(Val: S)) { |
1196 | if (BinOp->getOpcode() == BO_Assign) |
1197 | return BinOp->getRHS(); |
1198 | } |
1199 | |
1200 | // For `int x = e` the value expression is the initializer. |
1201 | if (auto *DS = dyn_cast<DeclStmt>(Val: S)) { |
1202 | if (DS->isSingleDecl()) { |
1203 | auto *VD = dyn_cast<VarDecl>(Val: DS->getSingleDecl()); |
1204 | if (!VD) |
1205 | return nullptr; |
1206 | |
1207 | if (const Expr *Init = VD->getInit()) |
1208 | return Init; |
1209 | } |
1210 | } |
1211 | |
1212 | return nullptr; |
1213 | } |
1214 | |
1215 | /// Returns true if \param S is a DeclStmt for a local variable that |
1216 | /// ObjC automated reference counting initialized with zero. |
1217 | static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) { |
1218 | // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This |
1219 | // prevents false positives when a _Nonnull local variable cannot be |
1220 | // initialized with an initialization expression: |
1221 | // NSString * _Nonnull s; // no-warning |
1222 | // @autoreleasepool { |
1223 | // s = ... |
1224 | // } |
1225 | // |
1226 | // FIXME: We should treat implicitly zero-initialized _Nonnull locals as |
1227 | // uninitialized in Sema's UninitializedValues analysis to warn when a use of |
1228 | // the zero-initialized definition will unexpectedly yield nil. |
1229 | |
1230 | // Locals are only zero-initialized when automated reference counting |
1231 | // is turned on. |
1232 | if (!C.getASTContext().getLangOpts().ObjCAutoRefCount) |
1233 | return false; |
1234 | |
1235 | auto *DS = dyn_cast<DeclStmt>(Val: S); |
1236 | if (!DS || !DS->isSingleDecl()) |
1237 | return false; |
1238 | |
1239 | auto *VD = dyn_cast<VarDecl>(Val: DS->getSingleDecl()); |
1240 | if (!VD) |
1241 | return false; |
1242 | |
1243 | // Sema only zero-initializes locals with ObjCLifetimes. |
1244 | if(!VD->getType().getQualifiers().hasObjCLifetime()) |
1245 | return false; |
1246 | |
1247 | const Expr *Init = VD->getInit(); |
1248 | assert(Init && "ObjC local under ARC without initializer" ); |
1249 | |
1250 | // Return false if the local is explicitly initialized (e.g., with '= nil'). |
1251 | if (!isa<ImplicitValueInitExpr>(Val: Init)) |
1252 | return false; |
1253 | |
1254 | return true; |
1255 | } |
1256 | |
1257 | /// Propagate the nullability information through binds and warn when nullable |
1258 | /// pointer or null symbol is assigned to a pointer with a nonnull type. |
1259 | void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S, |
1260 | CheckerContext &C) const { |
1261 | const TypedValueRegion *TVR = |
1262 | dyn_cast_or_null<TypedValueRegion>(Val: L.getAsRegion()); |
1263 | if (!TVR) |
1264 | return; |
1265 | |
1266 | QualType LocType = TVR->getValueType(); |
1267 | if (!isValidPointerType(T: LocType)) |
1268 | return; |
1269 | |
1270 | ProgramStateRef State = C.getState(); |
1271 | if (State->get<InvariantViolated>()) |
1272 | return; |
1273 | |
1274 | auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>(); |
1275 | if (!ValDefOrUnknown) |
1276 | return; |
1277 | |
1278 | NullConstraint RhsNullness = getNullConstraint(Val: *ValDefOrUnknown, State); |
1279 | |
1280 | Nullability ValNullability = Nullability::Unspecified; |
1281 | if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol()) |
1282 | ValNullability = getNullabilityAnnotation(Type: Sym->getType()); |
1283 | |
1284 | Nullability LocNullability = getNullabilityAnnotation(Type: LocType); |
1285 | |
1286 | // If the type of the RHS expression is nonnull, don't warn. This |
1287 | // enables explicit suppression with a cast to nonnull. |
1288 | Nullability ValueExprTypeLevelNullability = Nullability::Unspecified; |
1289 | const Expr *ValueExpr = matchValueExprForBind(S); |
1290 | if (ValueExpr) { |
1291 | ValueExprTypeLevelNullability = |
1292 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: ValueExpr)->getType()); |
1293 | } |
1294 | |
1295 | bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull && |
1296 | RhsNullness == NullConstraint::IsNull); |
1297 | if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull && |
1298 | ValNullability != Nullability::Nonnull && |
1299 | ValueExprTypeLevelNullability != Nullability::Nonnull && |
1300 | !isARCNilInitializedLocal(C, S)) { |
1301 | ExplodedNode *N = C.generateErrorNode(State); |
1302 | if (!N) |
1303 | return; |
1304 | |
1305 | |
1306 | const Stmt *ValueStmt = S; |
1307 | if (ValueExpr) |
1308 | ValueStmt = ValueExpr; |
1309 | |
1310 | SmallString<256> SBuf; |
1311 | llvm::raw_svector_ostream OS(SBuf); |
1312 | OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null" ); |
1313 | OS << " assigned to a pointer which is expected to have non-null value" ; |
1314 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NilAssignedToNonnull, |
1315 | CK: CK_NullPassedToNonnull, N, Region: nullptr, C, ValueExpr: ValueStmt); |
1316 | return; |
1317 | } |
1318 | |
1319 | // If null was returned from a non-null function, mark the nullability |
1320 | // invariant as violated even if the diagnostic was suppressed. |
1321 | if (NullAssignedToNonNull) { |
1322 | State = State->set<InvariantViolated>(true); |
1323 | C.addTransition(State); |
1324 | return; |
1325 | } |
1326 | |
1327 | // Intentionally missing case: '0' is bound to a reference. It is handled by |
1328 | // the DereferenceChecker. |
1329 | |
1330 | const MemRegion *ValueRegion = getTrackRegion(Val: *ValDefOrUnknown); |
1331 | if (!ValueRegion) |
1332 | return; |
1333 | |
1334 | const NullabilityState *TrackedNullability = |
1335 | State->get<NullabilityMap>(key: ValueRegion); |
1336 | |
1337 | if (TrackedNullability) { |
1338 | if (RhsNullness == NullConstraint::IsNotNull || |
1339 | TrackedNullability->getValue() != Nullability::Nullable) |
1340 | return; |
1341 | if (ChecksEnabled[CK_NullablePassedToNonnull] && |
1342 | LocNullability == Nullability::Nonnull) { |
1343 | ExplodedNode *N = C.addTransition(State, Pred: C.getPredecessor()); |
1344 | reportBugIfInvariantHolds(Msg: "Nullable pointer is assigned to a pointer " |
1345 | "which is expected to have non-null value" , |
1346 | Error: ErrorKind::NullableAssignedToNonnull, |
1347 | CK: CK_NullablePassedToNonnull, N, Region: ValueRegion, C); |
1348 | } |
1349 | return; |
1350 | } |
1351 | |
1352 | const auto *BinOp = dyn_cast<BinaryOperator>(Val: S); |
1353 | |
1354 | if (ValNullability == Nullability::Nullable) { |
1355 | // Trust the static information of the value more than the static |
1356 | // information on the location. |
1357 | const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S; |
1358 | State = State->set<NullabilityMap>( |
1359 | K: ValueRegion, E: NullabilityState(ValNullability, NullabilitySource)); |
1360 | C.addTransition(State); |
1361 | return; |
1362 | } |
1363 | |
1364 | if (LocNullability == Nullability::Nullable) { |
1365 | const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S; |
1366 | State = State->set<NullabilityMap>( |
1367 | K: ValueRegion, E: NullabilityState(LocNullability, NullabilitySource)); |
1368 | C.addTransition(State); |
1369 | } |
1370 | } |
1371 | |
1372 | void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State, |
1373 | const char *NL, const char *Sep) const { |
1374 | |
1375 | NullabilityMapTy B = State->get<NullabilityMap>(); |
1376 | |
1377 | if (State->get<InvariantViolated>()) |
1378 | Out << Sep << NL |
1379 | << "Nullability invariant was violated, warnings suppressed." << NL; |
1380 | |
1381 | if (B.isEmpty()) |
1382 | return; |
1383 | |
1384 | if (!State->get<InvariantViolated>()) |
1385 | Out << Sep << NL; |
1386 | |
1387 | for (auto [Region, State] : B) { |
1388 | Out << Region << " : " ; |
1389 | State.print(Out); |
1390 | Out << NL; |
1391 | } |
1392 | } |
1393 | |
1394 | void ento::registerNullabilityBase(CheckerManager &mgr) { |
1395 | mgr.registerChecker<NullabilityChecker>(); |
1396 | } |
1397 | |
1398 | bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) { |
1399 | return true; |
1400 | } |
1401 | |
1402 | #define REGISTER_CHECKER(name, trackingRequired) \ |
1403 | void ento::register##name##Checker(CheckerManager &mgr) { \ |
1404 | NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>(); \ |
1405 | checker->ChecksEnabled[NullabilityChecker::CK_##name] = true; \ |
1406 | checker->CheckNames[NullabilityChecker::CK_##name] = \ |
1407 | mgr.getCurrentCheckerName(); \ |
1408 | checker->NeedTracking = checker->NeedTracking || trackingRequired; \ |
1409 | checker->NoDiagnoseCallsToSystemHeaders = \ |
1410 | checker->NoDiagnoseCallsToSystemHeaders || \ |
1411 | mgr.getAnalyzerOptions().getCheckerBooleanOption( \ |
1412 | checker, "NoDiagnoseCallsToSystemHeaders", true); \ |
1413 | } \ |
1414 | \ |
1415 | bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) { \ |
1416 | return true; \ |
1417 | } |
1418 | |
1419 | // The checks are likely to be turned on by default and it is possible to do |
1420 | // them without tracking any nullability related information. As an optimization |
1421 | // no nullability information will be tracked when only these two checks are |
1422 | // enables. |
1423 | REGISTER_CHECKER(NullPassedToNonnull, false) |
1424 | REGISTER_CHECKER(NullReturnedFromNonnull, false) |
1425 | |
1426 | REGISTER_CHECKER(NullableDereferenced, true) |
1427 | REGISTER_CHECKER(NullablePassedToNonnull, true) |
1428 | REGISTER_CHECKER(NullableReturnedFromNonnull, true) |
1429 | |