1//===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Unit tests for Clang's Interpreter library.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InterpreterTestFixture.h"
14
15#include "clang/AST/Decl.h"
16#include "clang/AST/DeclGroup.h"
17#include "clang/AST/Mangle.h"
18#include "clang/Frontend/CompilerInstance.h"
19#include "clang/Frontend/TextDiagnosticPrinter.h"
20#include "clang/Interpreter/Interpreter.h"
21#include "clang/Interpreter/Value.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/Sema.h"
24
25#include "gmock/gmock.h"
26#include "gtest/gtest.h"
27
28using namespace clang;
29
30int Global = 42;
31// JIT reports symbol not found on Windows without the visibility attribute.
32REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
33REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
34
35namespace {
36
37class InterpreterTest : public InterpreterTestBase {
38 // TODO: Collect common variables and utility functions here
39};
40
41using Args = std::vector<const char *>;
42static std::unique_ptr<Interpreter>
43createInterpreter(const Args &ExtraArgs = {},
44 DiagnosticConsumer *Client = nullptr) {
45 Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
46 llvm::append_range(C&: ClangArgs, R: ExtraArgs);
47 auto CB = clang::IncrementalCompilerBuilder();
48 CB.SetCompilerArgs(ClangArgs);
49 auto CI = cantFail(ValOrErr: CB.CreateCpp());
50 if (Client)
51 CI->getDiagnostics().setClient(client: Client, /*ShouldOwnClient=*/false);
52 return cantFail(ValOrErr: clang::Interpreter::create(CI: std::move(CI)));
53}
54
55static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
56 return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
57}
58
59TEST_F(InterpreterTest, Sanity) {
60 std::unique_ptr<Interpreter> Interp = createInterpreter();
61
62 using PTU = PartialTranslationUnit;
63
64 PTU &R1(cantFail(ValOrErr: Interp->Parse(Code: "void g(); void g() {}")));
65 EXPECT_EQ(2U, DeclsSize(R1.TUPart));
66
67 PTU &R2(cantFail(ValOrErr: Interp->Parse(Code: "int i;")));
68 EXPECT_EQ(1U, DeclsSize(R2.TUPart));
69}
70
71static std::string DeclToString(Decl *D) {
72 return llvm::cast<NamedDecl>(Val: D)->getQualifiedNameAsString();
73}
74
75TEST_F(InterpreterTest, IncrementalInputTopLevelDecls) {
76 std::unique_ptr<Interpreter> Interp = createInterpreter();
77 auto R1 = Interp->Parse(Code: "int var1 = 42; int f() { return var1; }");
78 // gtest doesn't expand into explicit bool conversions.
79 EXPECT_TRUE(!!R1);
80 auto R1DeclRange = R1->TUPart->decls();
81 EXPECT_EQ(2U, DeclsSize(R1->TUPart));
82 EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
83 EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
84
85 auto R2 = Interp->Parse(Code: "int var2 = f();");
86 EXPECT_TRUE(!!R2);
87 auto R2DeclRange = R2->TUPart->decls();
88 EXPECT_EQ(1U, DeclsSize(R2->TUPart));
89 EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
90}
91
92TEST_F(InterpreterTest, Errors) {
93 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
94
95 // Create the diagnostic engine with unowned consumer.
96 std::string DiagnosticOutput;
97 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
98 DiagnosticOptions DiagOpts;
99 auto DiagPrinter =
100 std::make_unique<TextDiagnosticPrinter>(args&: DiagnosticsOS, args&: DiagOpts);
101
102 auto Interp = createInterpreter(ExtraArgs, Client: DiagPrinter.get());
103 auto Err = Interp->Parse(Code: "intentional_error v1 = 42; ").takeError();
104 using ::testing::HasSubstr;
105 EXPECT_THAT(DiagnosticOutput,
106 HasSubstr("error: unknown type name 'intentional_error'"));
107 EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
108
109 auto RecoverErr = Interp->Parse(Code: "int var1 = 42;");
110 EXPECT_TRUE(!!RecoverErr);
111
112 Err = Interp->Parse(Code: "try { throw 1; } catch { 0; }").takeError();
113 EXPECT_THAT(DiagnosticOutput, HasSubstr("error: expected '('"));
114 EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
115
116 RecoverErr = Interp->Parse(Code: "var1 = 424;");
117 EXPECT_TRUE(!!RecoverErr);
118}
119
120// Here we test whether the user can mix declarations and statements. The
121// interpreter should be smart enough to recognize the declarations from the
122// statements and wrap the latter into a declaration, producing valid code.
123
124TEST_F(InterpreterTest, DeclsAndStatements) {
125 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
126
127 // Create the diagnostic engine with unowned consumer.
128 std::string DiagnosticOutput;
129 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
130 DiagnosticOptions DiagOpts;
131 auto DiagPrinter =
132 std::make_unique<TextDiagnosticPrinter>(args&: DiagnosticsOS, args&: DiagOpts);
133
134 auto Interp = createInterpreter(ExtraArgs, Client: DiagPrinter.get());
135 auto R1 = Interp->Parse(
136 Code: "int var1 = 42; extern \"C\" int printf(const char*, ...);");
137 // gtest doesn't expand into explicit bool conversions.
138 EXPECT_TRUE(!!R1);
139
140 auto *PTU1 = R1->TUPart;
141 EXPECT_EQ(2U, DeclsSize(PTU1));
142
143 auto R2 = Interp->Parse(Code: "var1++; printf(\"var1 value %d\\n\", var1);");
144 EXPECT_TRUE(!!R2);
145}
146
147TEST_F(InterpreterTest, UndoCommand) {
148 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
149
150 // Create the diagnostic engine with unowned consumer.
151 std::string DiagnosticOutput;
152 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
153 DiagnosticOptions DiagOpts;
154 auto DiagPrinter =
155 std::make_unique<TextDiagnosticPrinter>(args&: DiagnosticsOS, args&: DiagOpts);
156
157 auto Interp = createInterpreter(ExtraArgs, Client: DiagPrinter.get());
158
159 // Fail to undo.
160 auto Err1 = Interp->Undo();
161 EXPECT_EQ("Operation failed. Too many undos",
162 llvm::toString(std::move(Err1)));
163 auto Err2 = Interp->Parse(Code: "int foo = 42;");
164 EXPECT_TRUE(!!Err2);
165 auto Err3 = Interp->Undo(N: 2);
166 EXPECT_EQ("Operation failed. Too many undos",
167 llvm::toString(std::move(Err3)));
168
169 // Succeed to undo.
170 auto Err4 = Interp->Parse(Code: "int x = 42;");
171 EXPECT_TRUE(!!Err4);
172 auto Err5 = Interp->Undo();
173 EXPECT_FALSE(Err5);
174 auto Err6 = Interp->Parse(Code: "int x = 24;");
175 EXPECT_TRUE(!!Err6);
176 auto Err7 = Interp->Parse(Code: "#define X 42");
177 EXPECT_TRUE(!!Err7);
178 auto Err8 = Interp->Undo();
179 EXPECT_FALSE(Err8);
180 auto Err9 = Interp->Parse(Code: "#define X 24");
181 EXPECT_TRUE(!!Err9);
182
183 // Undo input contains errors.
184 auto Err10 = Interp->Parse(Code: "int y = ;");
185 EXPECT_FALSE(!!Err10);
186 EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
187 auto Err11 = Interp->Parse(Code: "int y = 42;");
188 EXPECT_TRUE(!!Err11);
189 auto Err12 = Interp->Undo();
190 EXPECT_FALSE(Err12);
191}
192
193static std::string MangleName(NamedDecl *ND) {
194 ASTContext &C = ND->getASTContext();
195 std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
196 std::string mangledName;
197 llvm::raw_string_ostream RawStr(mangledName);
198 MangleC->mangleName(GD: ND, RawStr);
199 return mangledName;
200}
201
202TEST_F(InterpreterTest, FindMangledNameSymbol) {
203 std::unique_ptr<Interpreter> Interp = createInterpreter();
204
205 auto &PTU(cantFail(ValOrErr: Interp->Parse(Code: "int f(const char*) {return 0;}")));
206 EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
207 auto R1DeclRange = PTU.TUPart->decls();
208
209 NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
210 // Lower the PTU
211 if (llvm::Error Err = Interp->Execute(T&: PTU)) {
212 // We cannot execute on the platform.
213 consumeError(Err: std::move(Err));
214 return;
215 }
216
217 std::string MangledName = MangleName(ND: FD);
218 auto Addr = Interp->getSymbolAddress(IRName: MangledName);
219 EXPECT_FALSE(!Addr);
220 EXPECT_NE(0U, Addr->getValue());
221 GlobalDecl GD(FD);
222 EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
223 cantFail(
224 Err: Interp->ParseAndExecute(Code: "extern \"C\" int printf(const char*,...);"));
225 Addr = Interp->getSymbolAddress(IRName: "printf");
226 EXPECT_FALSE(!Addr);
227
228 // FIXME: Re-enable when we investigate the way we handle dllimports on Win.
229#ifndef _WIN32
230 EXPECT_EQ((uintptr_t)&printf, Addr->getValue());
231#endif // _WIN32
232}
233
234static Value AllocateObject(TypeDecl *TD, Interpreter &Interp) {
235 std::string Name = TD->getQualifiedNameAsString();
236 Value Addr;
237 // FIXME: Consider providing an option in clang::Value to take ownership of
238 // the memory created from the interpreter.
239 // cantFail(Interp.ParseAndExecute("new " + Name + "()", &Addr));
240
241 // The lifetime of the temporary is extended by the clang::Value.
242 cantFail(Err: Interp.ParseAndExecute(Code: Name + "()", V: &Addr));
243 return Addr;
244}
245
246static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
247 Sema &SemaRef = Interp.getCompilerInstance()->getSema();
248 ASTContext &C = SemaRef.getASTContext();
249 DeclarationName DeclName = &C.Idents.get(Name);
250 LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
251 SemaRef.LookupName(R, S: SemaRef.TUScope);
252 assert(!R.empty());
253 return R.getFoundDecl();
254}
255
256TEST_F(InterpreterTest, InstantiateTemplate) {
257 // FIXME: We cannot yet handle delayed template parsing. If we run with
258 // -fdelayed-template-parsing we try adding the newly created decl to the
259 // active PTU which causes an assert.
260 std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
261 std::unique_ptr<Interpreter> Interp = createInterpreter(ExtraArgs: Args);
262
263 llvm::cantFail(ValOrErr: Interp->Parse(Code: "extern \"C\" int printf(const char*,...);"
264 "class A {};"
265 "struct B {"
266 " template<typename T>"
267 " static int callme(T) { return 42; }"
268 "};"));
269 auto &PTU = llvm::cantFail(ValOrErr: Interp->Parse(Code: "auto _t = &B::callme<A*>;"));
270 auto PTUDeclRange = PTU.TUPart->decls();
271 EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
272
273 // Lower the PTU
274 if (llvm::Error Err = Interp->Execute(T&: PTU)) {
275 // We cannot execute on the platform.
276 consumeError(Err: std::move(Err));
277 return;
278 }
279
280 TypeDecl *TD = cast<TypeDecl>(Val: LookupSingleName(Interp&: *Interp, Name: "A"));
281 Value NewA = AllocateObject(TD, Interp&: *Interp);
282
283 // Find back the template specialization
284 VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
285 UnaryOperator *UO = llvm::cast<UnaryOperator>(Val: VD->getInit());
286 NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(Val: UO->getSubExpr())->getDecl();
287
288 std::string MangledName = MangleName(ND: TmpltSpec);
289 typedef int (*TemplateSpecFn)(void *);
290 auto fn =
291 cantFail(ValOrErr: Interp->getSymbolAddress(IRName: MangledName)).toPtr<TemplateSpecFn>();
292 EXPECT_EQ(42, fn(NewA.getPtr()));
293}
294
295TEST_F(InterpreterTest, Value) {
296 std::vector<const char *> Args = {"-fno-sized-deallocation"};
297 std::unique_ptr<Interpreter> Interp = createInterpreter(ExtraArgs: Args);
298
299 Value V1;
300 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "int x = 42;"));
301 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "x", V: &V1));
302 EXPECT_TRUE(V1.isValid());
303 EXPECT_TRUE(V1.hasValue());
304 EXPECT_EQ(V1.getInt(), 42);
305 EXPECT_EQ(V1.convertTo<int>(), 42);
306 EXPECT_TRUE(V1.getType()->isIntegerType());
307 EXPECT_EQ(V1.getKind(), Value::K_Int);
308 EXPECT_FALSE(V1.isManuallyAlloc());
309
310 Value V1b;
311 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "char c = 42;"));
312 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "c", V: &V1b));
313 EXPECT_TRUE(V1b.getKind() == Value::K_Char_S ||
314 V1b.getKind() == Value::K_Char_U);
315
316 Value V2;
317 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "double y = 3.14;"));
318 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "y", V: &V2));
319 EXPECT_TRUE(V2.isValid());
320 EXPECT_TRUE(V2.hasValue());
321 EXPECT_EQ(V2.getDouble(), 3.14);
322 EXPECT_EQ(V2.convertTo<double>(), 3.14);
323 EXPECT_TRUE(V2.getType()->isFloatingType());
324 EXPECT_EQ(V2.getKind(), Value::K_Double);
325 EXPECT_FALSE(V2.isManuallyAlloc());
326
327 Value V3;
328 llvm::cantFail(Err: Interp->ParseAndExecute(
329 Code: "struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
330 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "S{}", V: &V3));
331 EXPECT_TRUE(V3.isValid());
332 EXPECT_TRUE(V3.hasValue());
333 EXPECT_TRUE(V3.getType()->isRecordType());
334 EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
335 EXPECT_TRUE(V3.isManuallyAlloc());
336
337 Value V4;
338 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "int getGlobal();"));
339 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "void setGlobal(int);"));
340 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "getGlobal()", V: &V4));
341 EXPECT_EQ(V4.getInt(), 42);
342 EXPECT_TRUE(V4.getType()->isIntegerType());
343
344 Value V5;
345 // Change the global from the compiled code.
346 setGlobal(43);
347 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "getGlobal()", V: &V5));
348 EXPECT_EQ(V5.getInt(), 43);
349 EXPECT_TRUE(V5.getType()->isIntegerType());
350
351 // Change the global from the interpreted code.
352 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "setGlobal(44);"));
353 EXPECT_EQ(getGlobal(), 44);
354
355 Value V6;
356 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "void foo() {}"));
357 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "foo()", V: &V6));
358 EXPECT_TRUE(V6.isValid());
359 EXPECT_FALSE(V6.hasValue());
360 EXPECT_TRUE(V6.getType()->isVoidType());
361 EXPECT_EQ(V6.getKind(), Value::K_Void);
362 EXPECT_FALSE(V2.isManuallyAlloc());
363
364 Value V7;
365 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "foo", V: &V7));
366 EXPECT_TRUE(V7.isValid());
367 EXPECT_TRUE(V7.hasValue());
368 EXPECT_TRUE(V7.getType()->isFunctionProtoType());
369 EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
370 EXPECT_FALSE(V7.isManuallyAlloc());
371
372 Value V8;
373 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "struct SS{ void f() {} };"));
374 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "&SS::f", V: &V8));
375 EXPECT_TRUE(V8.isValid());
376 EXPECT_TRUE(V8.hasValue());
377 EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
378 EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
379 EXPECT_TRUE(V8.isManuallyAlloc());
380
381 Value V9;
382 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "struct A { virtual int f(); };"));
383 llvm::cantFail(
384 Err: Interp->ParseAndExecute(Code: "struct B : A { int f() { return 42; }};"));
385 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "int (B::*ptr)() = &B::f;"));
386 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "ptr", V: &V9));
387 EXPECT_TRUE(V9.isValid());
388 EXPECT_TRUE(V9.hasValue());
389 EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
390 EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
391 EXPECT_TRUE(V9.isManuallyAlloc());
392}
393
394TEST_F(InterpreterTest, TranslationUnit_CanonicalDecl) {
395 std::vector<const char *> Args;
396 std::unique_ptr<Interpreter> Interp = createInterpreter(ExtraArgs: Args);
397
398 Sema &sema = Interp->getCompilerInstance()->getSema();
399
400 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "int x = 42;"));
401
402 TranslationUnitDecl *TU =
403 sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl();
404
405 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "long y = 84;"));
406
407 EXPECT_EQ(TU,
408 sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl());
409
410 llvm::cantFail(Err: Interp->ParseAndExecute(Code: "char z = 'z';"));
411
412 EXPECT_EQ(TU,
413 sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl());
414}
415
416} // end anonymous namespace
417

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of clang/unittests/Interpreter/InterpreterTest.cpp