| 1 | // Copyright 2007, Google Inc. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | |
| 30 | // Google Mock - a framework for writing C++ mock classes. |
| 31 | // |
| 32 | // The MATCHER* family of macros can be used in a namespace scope to |
| 33 | // define custom matchers easily. |
| 34 | // |
| 35 | // Basic Usage |
| 36 | // =========== |
| 37 | // |
| 38 | // The syntax |
| 39 | // |
| 40 | // MATCHER(name, description_string) { statements; } |
| 41 | // |
| 42 | // defines a matcher with the given name that executes the statements, |
| 43 | // which must return a bool to indicate if the match succeeds. Inside |
| 44 | // the statements, you can refer to the value being matched by 'arg', |
| 45 | // and refer to its type by 'arg_type'. |
| 46 | // |
| 47 | // The description string documents what the matcher does, and is used |
| 48 | // to generate the failure message when the match fails. Since a |
| 49 | // MATCHER() is usually defined in a header file shared by multiple |
| 50 | // C++ source files, we require the description to be a C-string |
| 51 | // literal to avoid possible side effects. It can be empty, in which |
| 52 | // case we'll use the sequence of words in the matcher name as the |
| 53 | // description. |
| 54 | // |
| 55 | // For example: |
| 56 | // |
| 57 | // MATCHER(IsEven, "") { return (arg % 2) == 0; } |
| 58 | // |
| 59 | // allows you to write |
| 60 | // |
| 61 | // // Expects mock_foo.Bar(n) to be called where n is even. |
| 62 | // EXPECT_CALL(mock_foo, Bar(IsEven())); |
| 63 | // |
| 64 | // or, |
| 65 | // |
| 66 | // // Verifies that the value of some_expression is even. |
| 67 | // EXPECT_THAT(some_expression, IsEven()); |
| 68 | // |
| 69 | // If the above assertion fails, it will print something like: |
| 70 | // |
| 71 | // Value of: some_expression |
| 72 | // Expected: is even |
| 73 | // Actual: 7 |
| 74 | // |
| 75 | // where the description "is even" is automatically calculated from the |
| 76 | // matcher name IsEven. |
| 77 | // |
| 78 | // Argument Type |
| 79 | // ============= |
| 80 | // |
| 81 | // Note that the type of the value being matched (arg_type) is |
| 82 | // determined by the context in which you use the matcher and is |
| 83 | // supplied to you by the compiler, so you don't need to worry about |
| 84 | // declaring it (nor can you). This allows the matcher to be |
| 85 | // polymorphic. For example, IsEven() can be used to match any type |
| 86 | // where the value of "(arg % 2) == 0" can be implicitly converted to |
| 87 | // a bool. In the "Bar(IsEven())" example above, if method Bar() |
| 88 | // takes an int, 'arg_type' will be int; if it takes an unsigned long, |
| 89 | // 'arg_type' will be unsigned long; and so on. |
| 90 | // |
| 91 | // Parameterizing Matchers |
| 92 | // ======================= |
| 93 | // |
| 94 | // Sometimes you'll want to parameterize the matcher. For that you |
| 95 | // can use another macro: |
| 96 | // |
| 97 | // MATCHER_P(name, param_name, description_string) { statements; } |
| 98 | // |
| 99 | // For example: |
| 100 | // |
| 101 | // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } |
| 102 | // |
| 103 | // will allow you to write: |
| 104 | // |
| 105 | // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); |
| 106 | // |
| 107 | // which may lead to this message (assuming n is 10): |
| 108 | // |
| 109 | // Value of: Blah("a") |
| 110 | // Expected: has absolute value 10 |
| 111 | // Actual: -9 |
| 112 | // |
| 113 | // Note that both the matcher description and its parameter are |
| 114 | // printed, making the message human-friendly. |
| 115 | // |
| 116 | // In the matcher definition body, you can write 'foo_type' to |
| 117 | // reference the type of a parameter named 'foo'. For example, in the |
| 118 | // body of MATCHER_P(HasAbsoluteValue, value) above, you can write |
| 119 | // 'value_type' to refer to the type of 'value'. |
| 120 | // |
| 121 | // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to |
| 122 | // support multi-parameter matchers. |
| 123 | // |
| 124 | // Describing Parameterized Matchers |
| 125 | // ================================= |
| 126 | // |
| 127 | // The last argument to MATCHER*() is a string-typed expression. The |
| 128 | // expression can reference all of the matcher's parameters and a |
| 129 | // special bool-typed variable named 'negation'. When 'negation' is |
| 130 | // false, the expression should evaluate to the matcher's description; |
| 131 | // otherwise it should evaluate to the description of the negation of |
| 132 | // the matcher. For example, |
| 133 | // |
| 134 | // using testing::PrintToString; |
| 135 | // |
| 136 | // MATCHER_P2(InClosedRange, low, hi, |
| 137 | // std::string(negation ? "is not" : "is") + " in range [" + |
| 138 | // PrintToString(low) + ", " + PrintToString(hi) + "]") { |
| 139 | // return low <= arg && arg <= hi; |
| 140 | // } |
| 141 | // ... |
| 142 | // EXPECT_THAT(3, InClosedRange(4, 6)); |
| 143 | // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
| 144 | // |
| 145 | // would generate two failures that contain the text: |
| 146 | // |
| 147 | // Expected: is in range [4, 6] |
| 148 | // ... |
| 149 | // Expected: is not in range [2, 4] |
| 150 | // |
| 151 | // If you specify "" as the description, the failure message will |
| 152 | // contain the sequence of words in the matcher name followed by the |
| 153 | // parameter values printed as a tuple. For example, |
| 154 | // |
| 155 | // MATCHER_P2(InClosedRange, low, hi, "") { ... } |
| 156 | // ... |
| 157 | // EXPECT_THAT(3, InClosedRange(4, 6)); |
| 158 | // EXPECT_THAT(3, Not(InClosedRange(2, 4))); |
| 159 | // |
| 160 | // would generate two failures that contain the text: |
| 161 | // |
| 162 | // Expected: in closed range (4, 6) |
| 163 | // ... |
| 164 | // Expected: not (in closed range (2, 4)) |
| 165 | // |
| 166 | // Types of Matcher Parameters |
| 167 | // =========================== |
| 168 | // |
| 169 | // For the purpose of typing, you can view |
| 170 | // |
| 171 | // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } |
| 172 | // |
| 173 | // as shorthand for |
| 174 | // |
| 175 | // template <typename p1_type, ..., typename pk_type> |
| 176 | // FooMatcherPk<p1_type, ..., pk_type> |
| 177 | // Foo(p1_type p1, ..., pk_type pk) { ... } |
| 178 | // |
| 179 | // When you write Foo(v1, ..., vk), the compiler infers the types of |
| 180 | // the parameters v1, ..., and vk for you. If you are not happy with |
| 181 | // the result of the type inference, you can specify the types by |
| 182 | // explicitly instantiating the template, as in Foo<long, bool>(5, |
| 183 | // false). As said earlier, you don't get to (or need to) specify |
| 184 | // 'arg_type' as that's determined by the context in which the matcher |
| 185 | // is used. You can assign the result of expression Foo(p1, ..., pk) |
| 186 | // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This |
| 187 | // can be useful when composing matchers. |
| 188 | // |
| 189 | // While you can instantiate a matcher template with reference types, |
| 190 | // passing the parameters by pointer usually makes your code more |
| 191 | // readable. If, however, you still want to pass a parameter by |
| 192 | // reference, be aware that in the failure message generated by the |
| 193 | // matcher you will see the value of the referenced object but not its |
| 194 | // address. |
| 195 | // |
| 196 | // Explaining Match Results |
| 197 | // ======================== |
| 198 | // |
| 199 | // Sometimes the matcher description alone isn't enough to explain why |
| 200 | // the match has failed or succeeded. For example, when expecting a |
| 201 | // long string, it can be very helpful to also print the diff between |
| 202 | // the expected string and the actual one. To achieve that, you can |
| 203 | // optionally stream additional information to a special variable |
| 204 | // named result_listener, whose type is a pointer to class |
| 205 | // MatchResultListener: |
| 206 | // |
| 207 | // MATCHER_P(EqualsLongString, str, "") { |
| 208 | // if (arg == str) return true; |
| 209 | // |
| 210 | // *result_listener << "the difference: " |
| 211 | /// << DiffStrings(str, arg); |
| 212 | // return false; |
| 213 | // } |
| 214 | // |
| 215 | // Overloading Matchers |
| 216 | // ==================== |
| 217 | // |
| 218 | // You can overload matchers with different numbers of parameters: |
| 219 | // |
| 220 | // MATCHER_P(Blah, a, description_string1) { ... } |
| 221 | // MATCHER_P2(Blah, a, b, description_string2) { ... } |
| 222 | // |
| 223 | // Caveats |
| 224 | // ======= |
| 225 | // |
| 226 | // When defining a new matcher, you should also consider implementing |
| 227 | // MatcherInterface or using MakePolymorphicMatcher(). These |
| 228 | // approaches require more work than the MATCHER* macros, but also |
| 229 | // give you more control on the types of the value being matched and |
| 230 | // the matcher parameters, which may leads to better compiler error |
| 231 | // messages when the matcher is used wrong. They also allow |
| 232 | // overloading matchers based on parameter types (as opposed to just |
| 233 | // based on the number of parameters). |
| 234 | // |
| 235 | // MATCHER*() can only be used in a namespace scope as templates cannot be |
| 236 | // declared inside of a local class. |
| 237 | // |
| 238 | // More Information |
| 239 | // ================ |
| 240 | // |
| 241 | // To learn more about using these macros, please search for 'MATCHER' |
| 242 | // on |
| 243 | // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md |
| 244 | // |
| 245 | // This file also implements some commonly used argument matchers. More |
| 246 | // matchers can be defined by the user implementing the |
| 247 | // MatcherInterface<T> interface if necessary. |
| 248 | // |
| 249 | // See googletest/include/gtest/gtest-matchers.h for the definition of class |
| 250 | // Matcher, class MatcherInterface, and others. |
| 251 | |
| 252 | // IWYU pragma: private, include "gmock/gmock.h" |
| 253 | // IWYU pragma: friend gmock/.* |
| 254 | |
| 255 | #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| 256 | #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| 257 | |
| 258 | #include <algorithm> |
| 259 | #include <cmath> |
| 260 | #include <exception> |
| 261 | #include <functional> |
| 262 | #include <initializer_list> |
| 263 | #include <ios> |
| 264 | #include <iterator> |
| 265 | #include <limits> |
| 266 | #include <memory> |
| 267 | #include <ostream> // NOLINT |
| 268 | #include <sstream> |
| 269 | #include <string> |
| 270 | #include <type_traits> |
| 271 | #include <utility> |
| 272 | #include <vector> |
| 273 | |
| 274 | #include "gmock/internal/gmock-internal-utils.h" |
| 275 | #include "gmock/internal/gmock-port.h" |
| 276 | #include "gmock/internal/gmock-pp.h" |
| 277 | #include "gtest/gtest.h" |
| 278 | |
| 279 | // MSVC warning C5046 is new as of VS2017 version 15.8. |
| 280 | #if defined(_MSC_VER) && _MSC_VER >= 1915 |
| 281 | #define GMOCK_MAYBE_5046_ 5046 |
| 282 | #else |
| 283 | #define GMOCK_MAYBE_5046_ |
| 284 | #endif |
| 285 | |
| 286 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
| 287 | 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by |
| 288 | clients of class B */ |
| 289 | /* Symbol involving type with internal linkage not defined */) |
| 290 | |
| 291 | namespace testing { |
| 292 | |
| 293 | // To implement a matcher Foo for type T, define: |
| 294 | // 1. a class FooMatcherImpl that implements the |
| 295 | // MatcherInterface<T> interface, and |
| 296 | // 2. a factory function that creates a Matcher<T> object from a |
| 297 | // FooMatcherImpl*. |
| 298 | // |
| 299 | // The two-level delegation design makes it possible to allow a user |
| 300 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
| 301 | // is impossible if we pass matchers by pointers. It also eases |
| 302 | // ownership management as Matcher objects can now be copied like |
| 303 | // plain values. |
| 304 | |
| 305 | // A match result listener that stores the explanation in a string. |
| 306 | class StringMatchResultListener : public MatchResultListener { |
| 307 | public: |
| 308 | StringMatchResultListener() : MatchResultListener(&ss_) {} |
| 309 | |
| 310 | // Returns the explanation accumulated so far. |
| 311 | std::string str() const { return ss_.str(); } |
| 312 | |
| 313 | // Clears the explanation accumulated so far. |
| 314 | void Clear() { ss_.str(s: "" ); } |
| 315 | |
| 316 | private: |
| 317 | ::std::stringstream ss_; |
| 318 | |
| 319 | StringMatchResultListener(const StringMatchResultListener&) = delete; |
| 320 | StringMatchResultListener& operator=(const StringMatchResultListener&) = |
| 321 | delete; |
| 322 | }; |
| 323 | |
| 324 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| 325 | // and MUST NOT BE USED IN USER CODE!!! |
| 326 | namespace internal { |
| 327 | |
| 328 | // The MatcherCastImpl class template is a helper for implementing |
| 329 | // MatcherCast(). We need this helper in order to partially |
| 330 | // specialize the implementation of MatcherCast() (C++ allows |
| 331 | // class/struct templates to be partially specialized, but not |
| 332 | // function templates.). |
| 333 | |
| 334 | // This general version is used when MatcherCast()'s argument is a |
| 335 | // polymorphic matcher (i.e. something that can be converted to a |
| 336 | // Matcher but is not one yet; for example, Eq(value)) or a value (for |
| 337 | // example, "hello"). |
| 338 | template <typename T, typename M> |
| 339 | class MatcherCastImpl { |
| 340 | public: |
| 341 | static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
| 342 | // M can be a polymorphic matcher, in which case we want to use |
| 343 | // its conversion operator to create Matcher<T>. Or it can be a value |
| 344 | // that should be passed to the Matcher<T>'s constructor. |
| 345 | // |
| 346 | // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
| 347 | // polymorphic matcher because it'll be ambiguous if T has an implicit |
| 348 | // constructor from M (this usually happens when T has an implicit |
| 349 | // constructor from any type). |
| 350 | // |
| 351 | // It won't work to unconditionally implicit_cast |
| 352 | // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
| 353 | // a user-defined conversion from M to T if one exists (assuming M is |
| 354 | // a value). |
| 355 | return CastImpl(polymorphic_matcher_or_value, |
| 356 | std::is_convertible<M, Matcher<T>>{}, |
| 357 | std::is_convertible<M, T>{}); |
| 358 | } |
| 359 | |
| 360 | private: |
| 361 | template <bool Ignore> |
| 362 | static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
| 363 | std::true_type /* convertible_to_matcher */, |
| 364 | std::integral_constant<bool, Ignore>) { |
| 365 | // M is implicitly convertible to Matcher<T>, which means that either |
| 366 | // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
| 367 | // from M. In both cases using the implicit conversion will produce a |
| 368 | // matcher. |
| 369 | // |
| 370 | // Even if T has an implicit constructor from M, it won't be called because |
| 371 | // creating Matcher<T> would require a chain of two user-defined conversions |
| 372 | // (first to create T from M and then to create Matcher<T> from T). |
| 373 | return polymorphic_matcher_or_value; |
| 374 | } |
| 375 | |
| 376 | // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
| 377 | // matcher. It's a value of a type implicitly convertible to T. Use direct |
| 378 | // initialization to create a matcher. |
| 379 | static Matcher<T> CastImpl(const M& value, |
| 380 | std::false_type /* convertible_to_matcher */, |
| 381 | std::true_type /* convertible_to_T */) { |
| 382 | return Matcher<T>(ImplicitCast_<T>(value)); |
| 383 | } |
| 384 | |
| 385 | // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
| 386 | // polymorphic matcher Eq(value) in this case. |
| 387 | // |
| 388 | // Note that we first attempt to perform an implicit cast on the value and |
| 389 | // only fall back to the polymorphic Eq() matcher afterwards because the |
| 390 | // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
| 391 | // which might be undefined even when Rhs is implicitly convertible to Lhs |
| 392 | // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
| 393 | // |
| 394 | // We don't define this method inline as we need the declaration of Eq(). |
| 395 | static Matcher<T> CastImpl(const M& value, |
| 396 | std::false_type /* convertible_to_matcher */, |
| 397 | std::false_type /* convertible_to_T */); |
| 398 | }; |
| 399 | |
| 400 | // This more specialized version is used when MatcherCast()'s argument |
| 401 | // is already a Matcher. This only compiles when type T can be |
| 402 | // statically converted to type U. |
| 403 | template <typename T, typename U> |
| 404 | class MatcherCastImpl<T, Matcher<U>> { |
| 405 | public: |
| 406 | static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
| 407 | return Matcher<T>(new Impl(source_matcher)); |
| 408 | } |
| 409 | |
| 410 | private: |
| 411 | class Impl : public MatcherInterface<T> { |
| 412 | public: |
| 413 | explicit Impl(const Matcher<U>& source_matcher) |
| 414 | : source_matcher_(source_matcher) {} |
| 415 | |
| 416 | // We delegate the matching logic to the source matcher. |
| 417 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
| 418 | using FromType = typename std::remove_cv<typename std::remove_pointer< |
| 419 | typename std::remove_reference<T>::type>::type>::type; |
| 420 | using ToType = typename std::remove_cv<typename std::remove_pointer< |
| 421 | typename std::remove_reference<U>::type>::type>::type; |
| 422 | // Do not allow implicitly converting base*/& to derived*/&. |
| 423 | static_assert( |
| 424 | // Do not trigger if only one of them is a pointer. That implies a |
| 425 | // regular conversion and not a down_cast. |
| 426 | (std::is_pointer<typename std::remove_reference<T>::type>::value != |
| 427 | std::is_pointer<typename std::remove_reference<U>::type>::value) || |
| 428 | std::is_same<FromType, ToType>::value || |
| 429 | !std::is_base_of<FromType, ToType>::value, |
| 430 | "Can't implicitly convert from <base> to <derived>" ); |
| 431 | |
| 432 | // Do the cast to `U` explicitly if necessary. |
| 433 | // Otherwise, let implicit conversions do the trick. |
| 434 | using CastType = |
| 435 | typename std::conditional<std::is_convertible<T&, const U&>::value, |
| 436 | T&, U>::type; |
| 437 | |
| 438 | return source_matcher_.MatchAndExplain(static_cast<CastType>(x), |
| 439 | listener); |
| 440 | } |
| 441 | |
| 442 | void DescribeTo(::std::ostream* os) const override { |
| 443 | source_matcher_.DescribeTo(os); |
| 444 | } |
| 445 | |
| 446 | void DescribeNegationTo(::std::ostream* os) const override { |
| 447 | source_matcher_.DescribeNegationTo(os); |
| 448 | } |
| 449 | |
| 450 | private: |
| 451 | const Matcher<U> source_matcher_; |
| 452 | }; |
| 453 | }; |
| 454 | |
| 455 | // This even more specialized version is used for efficiently casting |
| 456 | // a matcher to its own type. |
| 457 | template <typename T> |
| 458 | class MatcherCastImpl<T, Matcher<T>> { |
| 459 | public: |
| 460 | static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
| 461 | }; |
| 462 | |
| 463 | // Template specialization for parameterless Matcher. |
| 464 | template <typename Derived> |
| 465 | class MatcherBaseImpl { |
| 466 | public: |
| 467 | MatcherBaseImpl() = default; |
| 468 | |
| 469 | template <typename T> |
| 470 | operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) |
| 471 | return ::testing::Matcher<T>(new |
| 472 | typename Derived::template gmock_Impl<T>()); |
| 473 | } |
| 474 | }; |
| 475 | |
| 476 | // Template specialization for Matcher with parameters. |
| 477 | template <template <typename...> class Derived, typename... Ts> |
| 478 | class MatcherBaseImpl<Derived<Ts...>> { |
| 479 | public: |
| 480 | // Mark the constructor explicit for single argument T to avoid implicit |
| 481 | // conversions. |
| 482 | template <typename E = std::enable_if<sizeof...(Ts) == 1>, |
| 483 | typename E::type* = nullptr> |
| 484 | explicit MatcherBaseImpl(Ts... params) |
| 485 | : params_(std::forward<Ts>(params)...) {} |
| 486 | template <typename E = std::enable_if<sizeof...(Ts) != 1>, |
| 487 | typename = typename E::type> |
| 488 | MatcherBaseImpl(Ts... params) // NOLINT |
| 489 | : params_(std::forward<Ts>(params)...) {} |
| 490 | |
| 491 | template <typename F> |
| 492 | operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) |
| 493 | return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); |
| 494 | } |
| 495 | |
| 496 | private: |
| 497 | template <typename F, std::size_t... tuple_ids> |
| 498 | ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { |
| 499 | return ::testing::Matcher<F>( |
| 500 | new typename Derived<Ts...>::template gmock_Impl<F>( |
| 501 | std::get<tuple_ids>(params_)...)); |
| 502 | } |
| 503 | |
| 504 | const std::tuple<Ts...> params_; |
| 505 | }; |
| 506 | |
| 507 | } // namespace internal |
| 508 | |
| 509 | // In order to be safe and clear, casting between different matcher |
| 510 | // types is done explicitly via MatcherCast<T>(m), which takes a |
| 511 | // matcher m and returns a Matcher<T>. It compiles only when T can be |
| 512 | // statically converted to the argument type of m. |
| 513 | template <typename T, typename M> |
| 514 | inline Matcher<T> MatcherCast(const M& matcher) { |
| 515 | return internal::MatcherCastImpl<T, M>::Cast(matcher); |
| 516 | } |
| 517 | |
| 518 | // This overload handles polymorphic matchers and values only since |
| 519 | // monomorphic matchers are handled by the next one. |
| 520 | template <typename T, typename M> |
| 521 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { |
| 522 | return MatcherCast<T>(polymorphic_matcher_or_value); |
| 523 | } |
| 524 | |
| 525 | // This overload handles monomorphic matchers. |
| 526 | // |
| 527 | // In general, if type T can be implicitly converted to type U, we can |
| 528 | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
| 529 | // contravariant): just keep a copy of the original Matcher<U>, convert the |
| 530 | // argument from type T to U, and then pass it to the underlying Matcher<U>. |
| 531 | // The only exception is when U is a reference and T is not, as the |
| 532 | // underlying Matcher<U> may be interested in the argument's address, which |
| 533 | // is not preserved in the conversion from T to U. |
| 534 | template <typename T, typename U> |
| 535 | inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { |
| 536 | // Enforce that T can be implicitly converted to U. |
| 537 | static_assert(std::is_convertible<const T&, const U&>::value, |
| 538 | "T must be implicitly convertible to U" ); |
| 539 | // Enforce that we are not converting a non-reference type T to a reference |
| 540 | // type U. |
| 541 | static_assert(std::is_reference<T>::value || !std::is_reference<U>::value, |
| 542 | "cannot convert non reference arg to reference" ); |
| 543 | // In case both T and U are arithmetic types, enforce that the |
| 544 | // conversion is not lossy. |
| 545 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
| 546 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
| 547 | constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
| 548 | constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
| 549 | static_assert( |
| 550 | kTIsOther || kUIsOther || |
| 551 | (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
| 552 | "conversion of arithmetic types must be lossless" ); |
| 553 | return MatcherCast<T>(matcher); |
| 554 | } |
| 555 | |
| 556 | // A<T>() returns a matcher that matches any value of type T. |
| 557 | template <typename T> |
| 558 | Matcher<T> A(); |
| 559 | |
| 560 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
| 561 | // and MUST NOT BE USED IN USER CODE!!! |
| 562 | namespace internal { |
| 563 | |
| 564 | // If the explanation is not empty, prints it to the ostream. |
| 565 | inline void PrintIfNotEmpty(const std::string& explanation, |
| 566 | ::std::ostream* os) { |
| 567 | if (!explanation.empty() && os != nullptr) { |
| 568 | *os << ", " << explanation; |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | // Returns true if the given type name is easy to read by a human. |
| 573 | // This is used to decide whether printing the type of a value might |
| 574 | // be helpful. |
| 575 | inline bool IsReadableTypeName(const std::string& type_name) { |
| 576 | // We consider a type name readable if it's short or doesn't contain |
| 577 | // a template or function type. |
| 578 | return (type_name.length() <= 20 || |
| 579 | type_name.find_first_of(s: "<(" ) == std::string::npos); |
| 580 | } |
| 581 | |
| 582 | // Matches the value against the given matcher, prints the value and explains |
| 583 | // the match result to the listener. Returns the match result. |
| 584 | // 'listener' must not be NULL. |
| 585 | // Value cannot be passed by const reference, because some matchers take a |
| 586 | // non-const argument. |
| 587 | template <typename Value, typename T> |
| 588 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
| 589 | MatchResultListener* listener) { |
| 590 | if (!listener->IsInterested()) { |
| 591 | // If the listener is not interested, we do not need to construct the |
| 592 | // inner explanation. |
| 593 | return matcher.Matches(value); |
| 594 | } |
| 595 | |
| 596 | StringMatchResultListener inner_listener; |
| 597 | const bool match = matcher.MatchAndExplain(value, &inner_listener); |
| 598 | |
| 599 | UniversalPrint(value, listener->stream()); |
| 600 | #if GTEST_HAS_RTTI |
| 601 | const std::string& type_name = GetTypeName<Value>(); |
| 602 | if (IsReadableTypeName(type_name)) |
| 603 | *listener->stream() << " (of type " << type_name << ")" ; |
| 604 | #endif |
| 605 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
| 606 | |
| 607 | return match; |
| 608 | } |
| 609 | |
| 610 | // An internal helper class for doing compile-time loop on a tuple's |
| 611 | // fields. |
| 612 | template <size_t N> |
| 613 | class TuplePrefix { |
| 614 | public: |
| 615 | // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
| 616 | // if and only if the first N fields of matcher_tuple matches |
| 617 | // the first N fields of value_tuple, respectively. |
| 618 | template <typename MatcherTuple, typename ValueTuple> |
| 619 | static bool Matches(const MatcherTuple& matcher_tuple, |
| 620 | const ValueTuple& value_tuple) { |
| 621 | return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && |
| 622 | std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); |
| 623 | } |
| 624 | |
| 625 | // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
| 626 | // describes failures in matching the first N fields of matchers |
| 627 | // against the first N fields of values. If there is no failure, |
| 628 | // nothing will be streamed to os. |
| 629 | template <typename MatcherTuple, typename ValueTuple> |
| 630 | static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
| 631 | const ValueTuple& values, |
| 632 | ::std::ostream* os) { |
| 633 | // First, describes failures in the first N - 1 fields. |
| 634 | TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
| 635 | |
| 636 | // Then describes the failure (if any) in the (N - 1)-th (0-based) |
| 637 | // field. |
| 638 | typename std::tuple_element<N - 1, MatcherTuple>::type matcher = |
| 639 | std::get<N - 1>(matchers); |
| 640 | typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; |
| 641 | const Value& value = std::get<N - 1>(values); |
| 642 | StringMatchResultListener listener; |
| 643 | if (!matcher.MatchAndExplain(value, &listener)) { |
| 644 | *os << " Expected arg #" << N - 1 << ": " ; |
| 645 | std::get<N - 1>(matchers).DescribeTo(os); |
| 646 | *os << "\n Actual: " ; |
| 647 | // We remove the reference in type Value to prevent the |
| 648 | // universal printer from printing the address of value, which |
| 649 | // isn't interesting to the user most of the time. The |
| 650 | // matcher's MatchAndExplain() method handles the case when |
| 651 | // the address is interesting. |
| 652 | internal::UniversalPrint(value, os); |
| 653 | PrintIfNotEmpty(explanation: listener.str(), os); |
| 654 | *os << "\n" ; |
| 655 | } |
| 656 | } |
| 657 | }; |
| 658 | |
| 659 | // The base case. |
| 660 | template <> |
| 661 | class TuplePrefix<0> { |
| 662 | public: |
| 663 | template <typename MatcherTuple, typename ValueTuple> |
| 664 | static bool Matches(const MatcherTuple& /* matcher_tuple */, |
| 665 | const ValueTuple& /* value_tuple */) { |
| 666 | return true; |
| 667 | } |
| 668 | |
| 669 | template <typename MatcherTuple, typename ValueTuple> |
| 670 | static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
| 671 | const ValueTuple& /* values */, |
| 672 | ::std::ostream* /* os */) {} |
| 673 | }; |
| 674 | |
| 675 | // TupleMatches(matcher_tuple, value_tuple) returns true if and only if |
| 676 | // all matchers in matcher_tuple match the corresponding fields in |
| 677 | // value_tuple. It is a compiler error if matcher_tuple and |
| 678 | // value_tuple have different number of fields or incompatible field |
| 679 | // types. |
| 680 | template <typename MatcherTuple, typename ValueTuple> |
| 681 | bool TupleMatches(const MatcherTuple& matcher_tuple, |
| 682 | const ValueTuple& value_tuple) { |
| 683 | // Makes sure that matcher_tuple and value_tuple have the same |
| 684 | // number of fields. |
| 685 | static_assert(std::tuple_size<MatcherTuple>::value == |
| 686 | std::tuple_size<ValueTuple>::value, |
| 687 | "matcher and value have different numbers of fields" ); |
| 688 | return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, |
| 689 | value_tuple); |
| 690 | } |
| 691 | |
| 692 | // Describes failures in matching matchers against values. If there |
| 693 | // is no failure, nothing will be streamed to os. |
| 694 | template <typename MatcherTuple, typename ValueTuple> |
| 695 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
| 696 | const ValueTuple& values, ::std::ostream* os) { |
| 697 | TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
| 698 | matchers, values, os); |
| 699 | } |
| 700 | |
| 701 | // TransformTupleValues and its helper. |
| 702 | // |
| 703 | // TransformTupleValuesHelper hides the internal machinery that |
| 704 | // TransformTupleValues uses to implement a tuple traversal. |
| 705 | template <typename Tuple, typename Func, typename OutIter> |
| 706 | class TransformTupleValuesHelper { |
| 707 | private: |
| 708 | typedef ::std::tuple_size<Tuple> TupleSize; |
| 709 | |
| 710 | public: |
| 711 | // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
| 712 | // Returns the final value of 'out' in case the caller needs it. |
| 713 | static OutIter Run(Func f, const Tuple& t, OutIter out) { |
| 714 | return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
| 715 | } |
| 716 | |
| 717 | private: |
| 718 | template <typename Tup, size_t kRemainingSize> |
| 719 | struct IterateOverTuple { |
| 720 | OutIter operator()(Func f, const Tup& t, OutIter out) const { |
| 721 | *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); |
| 722 | return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
| 723 | } |
| 724 | }; |
| 725 | template <typename Tup> |
| 726 | struct IterateOverTuple<Tup, 0> { |
| 727 | OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const { |
| 728 | return out; |
| 729 | } |
| 730 | }; |
| 731 | }; |
| 732 | |
| 733 | // Successively invokes 'f(element)' on each element of the tuple 't', |
| 734 | // appending each result to the 'out' iterator. Returns the final value |
| 735 | // of 'out'. |
| 736 | template <typename Tuple, typename Func, typename OutIter> |
| 737 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
| 738 | return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
| 739 | } |
| 740 | |
| 741 | // Implements _, a matcher that matches any value of any |
| 742 | // type. This is a polymorphic matcher, so we need a template type |
| 743 | // conversion operator to make it appearing as a Matcher<T> for any |
| 744 | // type T. |
| 745 | class AnythingMatcher { |
| 746 | public: |
| 747 | using is_gtest_matcher = void; |
| 748 | |
| 749 | template <typename T> |
| 750 | bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { |
| 751 | return true; |
| 752 | } |
| 753 | void DescribeTo(std::ostream* os) const { *os << "is anything" ; } |
| 754 | void DescribeNegationTo(::std::ostream* os) const { |
| 755 | // This is mostly for completeness' sake, as it's not very useful |
| 756 | // to write Not(A<bool>()). However we cannot completely rule out |
| 757 | // such a possibility, and it doesn't hurt to be prepared. |
| 758 | *os << "never matches" ; |
| 759 | } |
| 760 | }; |
| 761 | |
| 762 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
| 763 | // pointer that is NULL. |
| 764 | class IsNullMatcher { |
| 765 | public: |
| 766 | template <typename Pointer> |
| 767 | bool MatchAndExplain(const Pointer& p, |
| 768 | MatchResultListener* /* listener */) const { |
| 769 | return p == nullptr; |
| 770 | } |
| 771 | |
| 772 | void DescribeTo(::std::ostream* os) const { *os << "is NULL" ; } |
| 773 | void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
| 774 | }; |
| 775 | |
| 776 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
| 777 | // pointer that is not NULL. |
| 778 | class NotNullMatcher { |
| 779 | public: |
| 780 | template <typename Pointer> |
| 781 | bool MatchAndExplain(const Pointer& p, |
| 782 | MatchResultListener* /* listener */) const { |
| 783 | return p != nullptr; |
| 784 | } |
| 785 | |
| 786 | void DescribeTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
| 787 | void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL" ; } |
| 788 | }; |
| 789 | |
| 790 | // Ref(variable) matches any argument that is a reference to |
| 791 | // 'variable'. This matcher is polymorphic as it can match any |
| 792 | // super type of the type of 'variable'. |
| 793 | // |
| 794 | // The RefMatcher template class implements Ref(variable). It can |
| 795 | // only be instantiated with a reference type. This prevents a user |
| 796 | // from mistakenly using Ref(x) to match a non-reference function |
| 797 | // argument. For example, the following will righteously cause a |
| 798 | // compiler error: |
| 799 | // |
| 800 | // int n; |
| 801 | // Matcher<int> m1 = Ref(n); // This won't compile. |
| 802 | // Matcher<int&> m2 = Ref(n); // This will compile. |
| 803 | template <typename T> |
| 804 | class RefMatcher; |
| 805 | |
| 806 | template <typename T> |
| 807 | class RefMatcher<T&> { |
| 808 | // Google Mock is a generic framework and thus needs to support |
| 809 | // mocking any function types, including those that take non-const |
| 810 | // reference arguments. Therefore the template parameter T (and |
| 811 | // Super below) can be instantiated to either a const type or a |
| 812 | // non-const type. |
| 813 | public: |
| 814 | // RefMatcher() takes a T& instead of const T&, as we want the |
| 815 | // compiler to catch using Ref(const_value) as a matcher for a |
| 816 | // non-const reference. |
| 817 | explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
| 818 | |
| 819 | template <typename Super> |
| 820 | operator Matcher<Super&>() const { |
| 821 | // By passing object_ (type T&) to Impl(), which expects a Super&, |
| 822 | // we make sure that Super is a super type of T. In particular, |
| 823 | // this catches using Ref(const_value) as a matcher for a |
| 824 | // non-const reference, as you cannot implicitly convert a const |
| 825 | // reference to a non-const reference. |
| 826 | return MakeMatcher(new Impl<Super>(object_)); |
| 827 | } |
| 828 | |
| 829 | private: |
| 830 | template <typename Super> |
| 831 | class Impl : public MatcherInterface<Super&> { |
| 832 | public: |
| 833 | explicit Impl(Super& x) : object_(x) {} // NOLINT |
| 834 | |
| 835 | // MatchAndExplain() takes a Super& (as opposed to const Super&) |
| 836 | // in order to match the interface MatcherInterface<Super&>. |
| 837 | bool MatchAndExplain(Super& x, |
| 838 | MatchResultListener* listener) const override { |
| 839 | *listener << "which is located @" << static_cast<const void*>(&x); |
| 840 | return &x == &object_; |
| 841 | } |
| 842 | |
| 843 | void DescribeTo(::std::ostream* os) const override { |
| 844 | *os << "references the variable " ; |
| 845 | UniversalPrinter<Super&>::Print(object_, os); |
| 846 | } |
| 847 | |
| 848 | void DescribeNegationTo(::std::ostream* os) const override { |
| 849 | *os << "does not reference the variable " ; |
| 850 | UniversalPrinter<Super&>::Print(object_, os); |
| 851 | } |
| 852 | |
| 853 | private: |
| 854 | const Super& object_; |
| 855 | }; |
| 856 | |
| 857 | T& object_; |
| 858 | }; |
| 859 | |
| 860 | // Polymorphic helper functions for narrow and wide string matchers. |
| 861 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
| 862 | return String::CaseInsensitiveCStringEquals(lhs, rhs); |
| 863 | } |
| 864 | |
| 865 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
| 866 | const wchar_t* rhs) { |
| 867 | return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
| 868 | } |
| 869 | |
| 870 | // String comparison for narrow or wide strings that can have embedded NUL |
| 871 | // characters. |
| 872 | template <typename StringType> |
| 873 | bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { |
| 874 | // Are the heads equal? |
| 875 | if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
| 876 | return false; |
| 877 | } |
| 878 | |
| 879 | // Skip the equal heads. |
| 880 | const typename StringType::value_type nul = 0; |
| 881 | const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
| 882 | |
| 883 | // Are we at the end of either s1 or s2? |
| 884 | if (i1 == StringType::npos || i2 == StringType::npos) { |
| 885 | return i1 == i2; |
| 886 | } |
| 887 | |
| 888 | // Are the tails equal? |
| 889 | return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
| 890 | } |
| 891 | |
| 892 | // String matchers. |
| 893 | |
| 894 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
| 895 | template <typename StringType> |
| 896 | class StrEqualityMatcher { |
| 897 | public: |
| 898 | StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) |
| 899 | : string_(std::move(str)), |
| 900 | expect_eq_(expect_eq), |
| 901 | case_sensitive_(case_sensitive) {} |
| 902 | |
| 903 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
| 904 | bool MatchAndExplain(const internal::StringView& s, |
| 905 | MatchResultListener* listener) const { |
| 906 | // This should fail to compile if StringView is used with wide |
| 907 | // strings. |
| 908 | const StringType& str = std::string(s); |
| 909 | return MatchAndExplain(str, listener); |
| 910 | } |
| 911 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| 912 | |
| 913 | // Accepts pointer types, particularly: |
| 914 | // const char* |
| 915 | // char* |
| 916 | // const wchar_t* |
| 917 | // wchar_t* |
| 918 | template <typename CharType> |
| 919 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| 920 | if (s == nullptr) { |
| 921 | return !expect_eq_; |
| 922 | } |
| 923 | return MatchAndExplain(StringType(s), listener); |
| 924 | } |
| 925 | |
| 926 | // Matches anything that can convert to StringType. |
| 927 | // |
| 928 | // This is a template, not just a plain function with const StringType&, |
| 929 | // because StringView has some interfering non-explicit constructors. |
| 930 | template <typename MatcheeStringType> |
| 931 | bool MatchAndExplain(const MatcheeStringType& s, |
| 932 | MatchResultListener* /* listener */) const { |
| 933 | const StringType s2(s); |
| 934 | const bool eq = case_sensitive_ ? s2 == string_ |
| 935 | : CaseInsensitiveStringEquals(s2, string_); |
| 936 | return expect_eq_ == eq; |
| 937 | } |
| 938 | |
| 939 | void DescribeTo(::std::ostream* os) const { |
| 940 | DescribeToHelper(expect_eq: expect_eq_, os); |
| 941 | } |
| 942 | |
| 943 | void DescribeNegationTo(::std::ostream* os) const { |
| 944 | DescribeToHelper(expect_eq: !expect_eq_, os); |
| 945 | } |
| 946 | |
| 947 | private: |
| 948 | void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
| 949 | *os << (expect_eq ? "is " : "isn't " ); |
| 950 | *os << "equal to " ; |
| 951 | if (!case_sensitive_) { |
| 952 | *os << "(ignoring case) " ; |
| 953 | } |
| 954 | UniversalPrint(string_, os); |
| 955 | } |
| 956 | |
| 957 | const StringType string_; |
| 958 | const bool expect_eq_; |
| 959 | const bool case_sensitive_; |
| 960 | }; |
| 961 | |
| 962 | // Implements the polymorphic HasSubstr(substring) matcher, which |
| 963 | // can be used as a Matcher<T> as long as T can be converted to a |
| 964 | // string. |
| 965 | template <typename StringType> |
| 966 | class HasSubstrMatcher { |
| 967 | public: |
| 968 | explicit HasSubstrMatcher(const StringType& substring) |
| 969 | : substring_(substring) {} |
| 970 | |
| 971 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
| 972 | bool MatchAndExplain(const internal::StringView& s, |
| 973 | MatchResultListener* listener) const { |
| 974 | // This should fail to compile if StringView is used with wide |
| 975 | // strings. |
| 976 | const StringType& str = std::string(s); |
| 977 | return MatchAndExplain(str, listener); |
| 978 | } |
| 979 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| 980 | |
| 981 | // Accepts pointer types, particularly: |
| 982 | // const char* |
| 983 | // char* |
| 984 | // const wchar_t* |
| 985 | // wchar_t* |
| 986 | template <typename CharType> |
| 987 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| 988 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
| 989 | } |
| 990 | |
| 991 | // Matches anything that can convert to StringType. |
| 992 | // |
| 993 | // This is a template, not just a plain function with const StringType&, |
| 994 | // because StringView has some interfering non-explicit constructors. |
| 995 | template <typename MatcheeStringType> |
| 996 | bool MatchAndExplain(const MatcheeStringType& s, |
| 997 | MatchResultListener* /* listener */) const { |
| 998 | return StringType(s).find(substring_) != StringType::npos; |
| 999 | } |
| 1000 | |
| 1001 | // Describes what this matcher matches. |
| 1002 | void DescribeTo(::std::ostream* os) const { |
| 1003 | *os << "has substring " ; |
| 1004 | UniversalPrint(substring_, os); |
| 1005 | } |
| 1006 | |
| 1007 | void DescribeNegationTo(::std::ostream* os) const { |
| 1008 | *os << "has no substring " ; |
| 1009 | UniversalPrint(substring_, os); |
| 1010 | } |
| 1011 | |
| 1012 | private: |
| 1013 | const StringType substring_; |
| 1014 | }; |
| 1015 | |
| 1016 | // Implements the polymorphic StartsWith(substring) matcher, which |
| 1017 | // can be used as a Matcher<T> as long as T can be converted to a |
| 1018 | // string. |
| 1019 | template <typename StringType> |
| 1020 | class StartsWithMatcher { |
| 1021 | public: |
| 1022 | explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {} |
| 1023 | |
| 1024 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
| 1025 | bool MatchAndExplain(const internal::StringView& s, |
| 1026 | MatchResultListener* listener) const { |
| 1027 | // This should fail to compile if StringView is used with wide |
| 1028 | // strings. |
| 1029 | const StringType& str = std::string(s); |
| 1030 | return MatchAndExplain(str, listener); |
| 1031 | } |
| 1032 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| 1033 | |
| 1034 | // Accepts pointer types, particularly: |
| 1035 | // const char* |
| 1036 | // char* |
| 1037 | // const wchar_t* |
| 1038 | // wchar_t* |
| 1039 | template <typename CharType> |
| 1040 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| 1041 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
| 1042 | } |
| 1043 | |
| 1044 | // Matches anything that can convert to StringType. |
| 1045 | // |
| 1046 | // This is a template, not just a plain function with const StringType&, |
| 1047 | // because StringView has some interfering non-explicit constructors. |
| 1048 | template <typename MatcheeStringType> |
| 1049 | bool MatchAndExplain(const MatcheeStringType& s, |
| 1050 | MatchResultListener* /* listener */) const { |
| 1051 | const StringType& s2(s); |
| 1052 | return s2.length() >= prefix_.length() && |
| 1053 | s2.substr(0, prefix_.length()) == prefix_; |
| 1054 | } |
| 1055 | |
| 1056 | void DescribeTo(::std::ostream* os) const { |
| 1057 | *os << "starts with " ; |
| 1058 | UniversalPrint(prefix_, os); |
| 1059 | } |
| 1060 | |
| 1061 | void DescribeNegationTo(::std::ostream* os) const { |
| 1062 | *os << "doesn't start with " ; |
| 1063 | UniversalPrint(prefix_, os); |
| 1064 | } |
| 1065 | |
| 1066 | private: |
| 1067 | const StringType prefix_; |
| 1068 | }; |
| 1069 | |
| 1070 | // Implements the polymorphic EndsWith(substring) matcher, which |
| 1071 | // can be used as a Matcher<T> as long as T can be converted to a |
| 1072 | // string. |
| 1073 | template <typename StringType> |
| 1074 | class EndsWithMatcher { |
| 1075 | public: |
| 1076 | explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
| 1077 | |
| 1078 | #if GTEST_INTERNAL_HAS_STRING_VIEW |
| 1079 | bool MatchAndExplain(const internal::StringView& s, |
| 1080 | MatchResultListener* listener) const { |
| 1081 | // This should fail to compile if StringView is used with wide |
| 1082 | // strings. |
| 1083 | const StringType& str = std::string(s); |
| 1084 | return MatchAndExplain(str, listener); |
| 1085 | } |
| 1086 | #endif // GTEST_INTERNAL_HAS_STRING_VIEW |
| 1087 | |
| 1088 | // Accepts pointer types, particularly: |
| 1089 | // const char* |
| 1090 | // char* |
| 1091 | // const wchar_t* |
| 1092 | // wchar_t* |
| 1093 | template <typename CharType> |
| 1094 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
| 1095 | return s != nullptr && MatchAndExplain(StringType(s), listener); |
| 1096 | } |
| 1097 | |
| 1098 | // Matches anything that can convert to StringType. |
| 1099 | // |
| 1100 | // This is a template, not just a plain function with const StringType&, |
| 1101 | // because StringView has some interfering non-explicit constructors. |
| 1102 | template <typename MatcheeStringType> |
| 1103 | bool MatchAndExplain(const MatcheeStringType& s, |
| 1104 | MatchResultListener* /* listener */) const { |
| 1105 | const StringType& s2(s); |
| 1106 | return s2.length() >= suffix_.length() && |
| 1107 | s2.substr(s2.length() - suffix_.length()) == suffix_; |
| 1108 | } |
| 1109 | |
| 1110 | void DescribeTo(::std::ostream* os) const { |
| 1111 | *os << "ends with " ; |
| 1112 | UniversalPrint(suffix_, os); |
| 1113 | } |
| 1114 | |
| 1115 | void DescribeNegationTo(::std::ostream* os) const { |
| 1116 | *os << "doesn't end with " ; |
| 1117 | UniversalPrint(suffix_, os); |
| 1118 | } |
| 1119 | |
| 1120 | private: |
| 1121 | const StringType suffix_; |
| 1122 | }; |
| 1123 | |
| 1124 | // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be |
| 1125 | // used as a Matcher<T> as long as T can be converted to a string. |
| 1126 | class WhenBase64UnescapedMatcher { |
| 1127 | public: |
| 1128 | using is_gtest_matcher = void; |
| 1129 | |
| 1130 | explicit WhenBase64UnescapedMatcher( |
| 1131 | const Matcher<const std::string&>& internal_matcher) |
| 1132 | : internal_matcher_(internal_matcher) {} |
| 1133 | |
| 1134 | // Matches anything that can convert to std::string. |
| 1135 | template <typename MatcheeStringType> |
| 1136 | bool MatchAndExplain(const MatcheeStringType& s, |
| 1137 | MatchResultListener* listener) const { |
| 1138 | const std::string s2(s); // NOLINT (needed for working with string_view). |
| 1139 | std::string unescaped; |
| 1140 | if (!internal::Base64Unescape(encoded: s2, decoded: &unescaped)) { |
| 1141 | if (listener != nullptr) { |
| 1142 | *listener << "is not a valid base64 escaped string" ; |
| 1143 | } |
| 1144 | return false; |
| 1145 | } |
| 1146 | return MatchPrintAndExplain(value&: unescaped, matcher: internal_matcher_, listener); |
| 1147 | } |
| 1148 | |
| 1149 | void DescribeTo(::std::ostream* os) const { |
| 1150 | *os << "matches after Base64Unescape " ; |
| 1151 | internal_matcher_.DescribeTo(os); |
| 1152 | } |
| 1153 | |
| 1154 | void DescribeNegationTo(::std::ostream* os) const { |
| 1155 | *os << "does not match after Base64Unescape " ; |
| 1156 | internal_matcher_.DescribeTo(os); |
| 1157 | } |
| 1158 | |
| 1159 | private: |
| 1160 | const Matcher<const std::string&> internal_matcher_; |
| 1161 | }; |
| 1162 | |
| 1163 | // Implements a matcher that compares the two fields of a 2-tuple |
| 1164 | // using one of the ==, <=, <, etc, operators. The two fields being |
| 1165 | // compared don't have to have the same type. |
| 1166 | // |
| 1167 | // The matcher defined here is polymorphic (for example, Eq() can be |
| 1168 | // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, |
| 1169 | // etc). Therefore we use a template type conversion operator in the |
| 1170 | // implementation. |
| 1171 | template <typename D, typename Op> |
| 1172 | class PairMatchBase { |
| 1173 | public: |
| 1174 | template <typename T1, typename T2> |
| 1175 | operator Matcher<::std::tuple<T1, T2>>() const { |
| 1176 | return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); |
| 1177 | } |
| 1178 | template <typename T1, typename T2> |
| 1179 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
| 1180 | return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); |
| 1181 | } |
| 1182 | |
| 1183 | private: |
| 1184 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
| 1185 | return os << D::Desc(); |
| 1186 | } |
| 1187 | |
| 1188 | template <typename Tuple> |
| 1189 | class Impl : public MatcherInterface<Tuple> { |
| 1190 | public: |
| 1191 | bool MatchAndExplain(Tuple args, |
| 1192 | MatchResultListener* /* listener */) const override { |
| 1193 | return Op()(::std::get<0>(args), ::std::get<1>(args)); |
| 1194 | } |
| 1195 | void DescribeTo(::std::ostream* os) const override { |
| 1196 | *os << "are " << GetDesc; |
| 1197 | } |
| 1198 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1199 | *os << "aren't " << GetDesc; |
| 1200 | } |
| 1201 | }; |
| 1202 | }; |
| 1203 | |
| 1204 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, std::equal_to<>> { |
| 1205 | public: |
| 1206 | static const char* Desc() { return "an equal pair" ; } |
| 1207 | }; |
| 1208 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, std::not_equal_to<>> { |
| 1209 | public: |
| 1210 | static const char* Desc() { return "an unequal pair" ; } |
| 1211 | }; |
| 1212 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, std::less<>> { |
| 1213 | public: |
| 1214 | static const char* Desc() { return "a pair where the first < the second" ; } |
| 1215 | }; |
| 1216 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, std::greater<>> { |
| 1217 | public: |
| 1218 | static const char* Desc() { return "a pair where the first > the second" ; } |
| 1219 | }; |
| 1220 | class Le2Matcher : public PairMatchBase<Le2Matcher, std::less_equal<>> { |
| 1221 | public: |
| 1222 | static const char* Desc() { return "a pair where the first <= the second" ; } |
| 1223 | }; |
| 1224 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, std::greater_equal<>> { |
| 1225 | public: |
| 1226 | static const char* Desc() { return "a pair where the first >= the second" ; } |
| 1227 | }; |
| 1228 | |
| 1229 | // Implements the Not(...) matcher for a particular argument type T. |
| 1230 | // We do not nest it inside the NotMatcher class template, as that |
| 1231 | // will prevent different instantiations of NotMatcher from sharing |
| 1232 | // the same NotMatcherImpl<T> class. |
| 1233 | template <typename T> |
| 1234 | class NotMatcherImpl : public MatcherInterface<const T&> { |
| 1235 | public: |
| 1236 | explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {} |
| 1237 | |
| 1238 | bool MatchAndExplain(const T& x, |
| 1239 | MatchResultListener* listener) const override { |
| 1240 | return !matcher_.MatchAndExplain(x, listener); |
| 1241 | } |
| 1242 | |
| 1243 | void DescribeTo(::std::ostream* os) const override { |
| 1244 | matcher_.DescribeNegationTo(os); |
| 1245 | } |
| 1246 | |
| 1247 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1248 | matcher_.DescribeTo(os); |
| 1249 | } |
| 1250 | |
| 1251 | private: |
| 1252 | const Matcher<T> matcher_; |
| 1253 | }; |
| 1254 | |
| 1255 | // Implements the Not(m) matcher, which matches a value that doesn't |
| 1256 | // match matcher m. |
| 1257 | template <typename InnerMatcher> |
| 1258 | class NotMatcher { |
| 1259 | public: |
| 1260 | explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
| 1261 | |
| 1262 | // This template type conversion operator allows Not(m) to be used |
| 1263 | // to match any type m can match. |
| 1264 | template <typename T> |
| 1265 | operator Matcher<T>() const { |
| 1266 | return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
| 1267 | } |
| 1268 | |
| 1269 | private: |
| 1270 | InnerMatcher matcher_; |
| 1271 | }; |
| 1272 | |
| 1273 | // Implements the AllOf(m1, m2) matcher for a particular argument type |
| 1274 | // T. We do not nest it inside the BothOfMatcher class template, as |
| 1275 | // that will prevent different instantiations of BothOfMatcher from |
| 1276 | // sharing the same BothOfMatcherImpl<T> class. |
| 1277 | template <typename T> |
| 1278 | class AllOfMatcherImpl : public MatcherInterface<const T&> { |
| 1279 | public: |
| 1280 | explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers) |
| 1281 | : matchers_(std::move(matchers)) {} |
| 1282 | |
| 1283 | void DescribeTo(::std::ostream* os) const override { |
| 1284 | *os << "(" ; |
| 1285 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1286 | if (i != 0) *os << ") and (" ; |
| 1287 | matchers_[i].DescribeTo(os); |
| 1288 | } |
| 1289 | *os << ")" ; |
| 1290 | } |
| 1291 | |
| 1292 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1293 | *os << "(" ; |
| 1294 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1295 | if (i != 0) *os << ") or (" ; |
| 1296 | matchers_[i].DescribeNegationTo(os); |
| 1297 | } |
| 1298 | *os << ")" ; |
| 1299 | } |
| 1300 | |
| 1301 | bool MatchAndExplain(const T& x, |
| 1302 | MatchResultListener* listener) const override { |
| 1303 | // If either matcher1_ or matcher2_ doesn't match x, we only need |
| 1304 | // to explain why one of them fails. |
| 1305 | std::string all_match_result; |
| 1306 | |
| 1307 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1308 | StringMatchResultListener slistener; |
| 1309 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
| 1310 | if (all_match_result.empty()) { |
| 1311 | all_match_result = slistener.str(); |
| 1312 | } else { |
| 1313 | std::string result = slistener.str(); |
| 1314 | if (!result.empty()) { |
| 1315 | all_match_result += ", and " ; |
| 1316 | all_match_result += result; |
| 1317 | } |
| 1318 | } |
| 1319 | } else { |
| 1320 | *listener << slistener.str(); |
| 1321 | return false; |
| 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | // Otherwise we need to explain why *both* of them match. |
| 1326 | *listener << all_match_result; |
| 1327 | return true; |
| 1328 | } |
| 1329 | |
| 1330 | private: |
| 1331 | const std::vector<Matcher<T>> matchers_; |
| 1332 | }; |
| 1333 | |
| 1334 | // VariadicMatcher is used for the variadic implementation of |
| 1335 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
| 1336 | // CombiningMatcher<T> is used to recursively combine the provided matchers |
| 1337 | // (of type Args...). |
| 1338 | template <template <typename T> class CombiningMatcher, typename... Args> |
| 1339 | class VariadicMatcher { |
| 1340 | public: |
| 1341 | VariadicMatcher(const Args&... matchers) // NOLINT |
| 1342 | : matchers_(matchers...) { |
| 1343 | static_assert(sizeof...(Args) > 0, "Must have at least one matcher." ); |
| 1344 | } |
| 1345 | |
| 1346 | VariadicMatcher(const VariadicMatcher&) = default; |
| 1347 | VariadicMatcher& operator=(const VariadicMatcher&) = delete; |
| 1348 | |
| 1349 | // This template type conversion operator allows an |
| 1350 | // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
| 1351 | // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
| 1352 | template <typename T> |
| 1353 | operator Matcher<T>() const { |
| 1354 | std::vector<Matcher<T>> values; |
| 1355 | CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
| 1356 | return Matcher<T>(new CombiningMatcher<T>(std::move(values))); |
| 1357 | } |
| 1358 | |
| 1359 | private: |
| 1360 | template <typename T, size_t I> |
| 1361 | void CreateVariadicMatcher(std::vector<Matcher<T>>* values, |
| 1362 | std::integral_constant<size_t, I>) const { |
| 1363 | values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
| 1364 | CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
| 1365 | } |
| 1366 | |
| 1367 | template <typename T> |
| 1368 | void CreateVariadicMatcher( |
| 1369 | std::vector<Matcher<T>>*, |
| 1370 | std::integral_constant<size_t, sizeof...(Args)>) const {} |
| 1371 | |
| 1372 | std::tuple<Args...> matchers_; |
| 1373 | }; |
| 1374 | |
| 1375 | template <typename... Args> |
| 1376 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
| 1377 | |
| 1378 | // Implements the AnyOf(m1, m2) matcher for a particular argument type |
| 1379 | // T. We do not nest it inside the AnyOfMatcher class template, as |
| 1380 | // that will prevent different instantiations of AnyOfMatcher from |
| 1381 | // sharing the same EitherOfMatcherImpl<T> class. |
| 1382 | template <typename T> |
| 1383 | class AnyOfMatcherImpl : public MatcherInterface<const T&> { |
| 1384 | public: |
| 1385 | explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers) |
| 1386 | : matchers_(std::move(matchers)) {} |
| 1387 | |
| 1388 | void DescribeTo(::std::ostream* os) const override { |
| 1389 | *os << "(" ; |
| 1390 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1391 | if (i != 0) *os << ") or (" ; |
| 1392 | matchers_[i].DescribeTo(os); |
| 1393 | } |
| 1394 | *os << ")" ; |
| 1395 | } |
| 1396 | |
| 1397 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1398 | *os << "(" ; |
| 1399 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1400 | if (i != 0) *os << ") and (" ; |
| 1401 | matchers_[i].DescribeNegationTo(os); |
| 1402 | } |
| 1403 | *os << ")" ; |
| 1404 | } |
| 1405 | |
| 1406 | bool MatchAndExplain(const T& x, |
| 1407 | MatchResultListener* listener) const override { |
| 1408 | std::string no_match_result; |
| 1409 | |
| 1410 | // If either matcher1_ or matcher2_ matches x, we just need to |
| 1411 | // explain why *one* of them matches. |
| 1412 | for (size_t i = 0; i < matchers_.size(); ++i) { |
| 1413 | StringMatchResultListener slistener; |
| 1414 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
| 1415 | *listener << slistener.str(); |
| 1416 | return true; |
| 1417 | } else { |
| 1418 | if (no_match_result.empty()) { |
| 1419 | no_match_result = slistener.str(); |
| 1420 | } else { |
| 1421 | std::string result = slistener.str(); |
| 1422 | if (!result.empty()) { |
| 1423 | no_match_result += ", and " ; |
| 1424 | no_match_result += result; |
| 1425 | } |
| 1426 | } |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | // Otherwise we need to explain why *both* of them fail. |
| 1431 | *listener << no_match_result; |
| 1432 | return false; |
| 1433 | } |
| 1434 | |
| 1435 | private: |
| 1436 | const std::vector<Matcher<T>> matchers_; |
| 1437 | }; |
| 1438 | |
| 1439 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
| 1440 | template <typename... Args> |
| 1441 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
| 1442 | |
| 1443 | // ConditionalMatcher is the implementation of Conditional(cond, m1, m2) |
| 1444 | template <typename MatcherTrue, typename MatcherFalse> |
| 1445 | class ConditionalMatcher { |
| 1446 | public: |
| 1447 | ConditionalMatcher(bool condition, MatcherTrue matcher_true, |
| 1448 | MatcherFalse matcher_false) |
| 1449 | : condition_(condition), |
| 1450 | matcher_true_(std::move(matcher_true)), |
| 1451 | matcher_false_(std::move(matcher_false)) {} |
| 1452 | |
| 1453 | template <typename T> |
| 1454 | operator Matcher<T>() const { // NOLINT(runtime/explicit) |
| 1455 | return condition_ ? SafeMatcherCast<T>(matcher_true_) |
| 1456 | : SafeMatcherCast<T>(matcher_false_); |
| 1457 | } |
| 1458 | |
| 1459 | private: |
| 1460 | bool condition_; |
| 1461 | MatcherTrue matcher_true_; |
| 1462 | MatcherFalse matcher_false_; |
| 1463 | }; |
| 1464 | |
| 1465 | // Wrapper for implementation of Any/AllOfArray(). |
| 1466 | template <template <class> class MatcherImpl, typename T> |
| 1467 | class SomeOfArrayMatcher { |
| 1468 | public: |
| 1469 | // Constructs the matcher from a sequence of element values or |
| 1470 | // element matchers. |
| 1471 | template <typename Iter> |
| 1472 | SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| 1473 | |
| 1474 | template <typename U> |
| 1475 | operator Matcher<U>() const { // NOLINT |
| 1476 | using RawU = typename std::decay<U>::type; |
| 1477 | std::vector<Matcher<RawU>> matchers; |
| 1478 | matchers.reserve(matchers_.size()); |
| 1479 | for (const auto& matcher : matchers_) { |
| 1480 | matchers.push_back(MatcherCast<RawU>(matcher)); |
| 1481 | } |
| 1482 | return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); |
| 1483 | } |
| 1484 | |
| 1485 | private: |
| 1486 | const ::std::vector<T> matchers_; |
| 1487 | }; |
| 1488 | |
| 1489 | template <typename T> |
| 1490 | using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; |
| 1491 | |
| 1492 | template <typename T> |
| 1493 | using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; |
| 1494 | |
| 1495 | // Used for implementing Truly(pred), which turns a predicate into a |
| 1496 | // matcher. |
| 1497 | template <typename Predicate> |
| 1498 | class TrulyMatcher { |
| 1499 | public: |
| 1500 | explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
| 1501 | |
| 1502 | // This method template allows Truly(pred) to be used as a matcher |
| 1503 | // for type T where T is the argument type of predicate 'pred'. The |
| 1504 | // argument is passed by reference as the predicate may be |
| 1505 | // interested in the address of the argument. |
| 1506 | template <typename T> |
| 1507 | bool MatchAndExplain(T& x, // NOLINT |
| 1508 | MatchResultListener* listener) const { |
| 1509 | // Without the if-statement, MSVC sometimes warns about converting |
| 1510 | // a value to bool (warning 4800). |
| 1511 | // |
| 1512 | // We cannot write 'return !!predicate_(x);' as that doesn't work |
| 1513 | // when predicate_(x) returns a class convertible to bool but |
| 1514 | // having no operator!(). |
| 1515 | if (predicate_(x)) return true; |
| 1516 | *listener << "didn't satisfy the given predicate" ; |
| 1517 | return false; |
| 1518 | } |
| 1519 | |
| 1520 | void DescribeTo(::std::ostream* os) const { |
| 1521 | *os << "satisfies the given predicate" ; |
| 1522 | } |
| 1523 | |
| 1524 | void DescribeNegationTo(::std::ostream* os) const { |
| 1525 | *os << "doesn't satisfy the given predicate" ; |
| 1526 | } |
| 1527 | |
| 1528 | private: |
| 1529 | Predicate predicate_; |
| 1530 | }; |
| 1531 | |
| 1532 | // Used for implementing Matches(matcher), which turns a matcher into |
| 1533 | // a predicate. |
| 1534 | template <typename M> |
| 1535 | class MatcherAsPredicate { |
| 1536 | public: |
| 1537 | explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
| 1538 | |
| 1539 | // This template operator() allows Matches(m) to be used as a |
| 1540 | // predicate on type T where m is a matcher on type T. |
| 1541 | // |
| 1542 | // The argument x is passed by reference instead of by value, as |
| 1543 | // some matcher may be interested in its address (e.g. as in |
| 1544 | // Matches(Ref(n))(x)). |
| 1545 | template <typename T> |
| 1546 | bool operator()(const T& x) const { |
| 1547 | // We let matcher_ commit to a particular type here instead of |
| 1548 | // when the MatcherAsPredicate object was constructed. This |
| 1549 | // allows us to write Matches(m) where m is a polymorphic matcher |
| 1550 | // (e.g. Eq(5)). |
| 1551 | // |
| 1552 | // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
| 1553 | // compile when matcher_ has type Matcher<const T&>; if we write |
| 1554 | // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
| 1555 | // when matcher_ has type Matcher<T>; if we just write |
| 1556 | // matcher_.Matches(x), it won't compile when matcher_ is |
| 1557 | // polymorphic, e.g. Eq(5). |
| 1558 | // |
| 1559 | // MatcherCast<const T&>() is necessary for making the code work |
| 1560 | // in all of the above situations. |
| 1561 | return MatcherCast<const T&>(matcher_).Matches(x); |
| 1562 | } |
| 1563 | |
| 1564 | private: |
| 1565 | M matcher_; |
| 1566 | }; |
| 1567 | |
| 1568 | // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
| 1569 | // argument M must be a type that can be converted to a matcher. |
| 1570 | template <typename M> |
| 1571 | class PredicateFormatterFromMatcher { |
| 1572 | public: |
| 1573 | explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} |
| 1574 | |
| 1575 | // This template () operator allows a PredicateFormatterFromMatcher |
| 1576 | // object to act as a predicate-formatter suitable for using with |
| 1577 | // Google Test's EXPECT_PRED_FORMAT1() macro. |
| 1578 | template <typename T> |
| 1579 | AssertionResult operator()(const char* value_text, const T& x) const { |
| 1580 | // We convert matcher_ to a Matcher<const T&> *now* instead of |
| 1581 | // when the PredicateFormatterFromMatcher object was constructed, |
| 1582 | // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
| 1583 | // know which type to instantiate it to until we actually see the |
| 1584 | // type of x here. |
| 1585 | // |
| 1586 | // We write SafeMatcherCast<const T&>(matcher_) instead of |
| 1587 | // Matcher<const T&>(matcher_), as the latter won't compile when |
| 1588 | // matcher_ has type Matcher<T> (e.g. An<int>()). |
| 1589 | // We don't write MatcherCast<const T&> either, as that allows |
| 1590 | // potentially unsafe downcasting of the matcher argument. |
| 1591 | const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
| 1592 | |
| 1593 | // The expected path here is that the matcher should match (i.e. that most |
| 1594 | // tests pass) so optimize for this case. |
| 1595 | if (matcher.Matches(x)) { |
| 1596 | return AssertionSuccess(); |
| 1597 | } |
| 1598 | |
| 1599 | ::std::stringstream ss; |
| 1600 | ss << "Value of: " << value_text << "\n" |
| 1601 | << "Expected: " ; |
| 1602 | matcher.DescribeTo(&ss); |
| 1603 | |
| 1604 | // Rerun the matcher to "PrintAndExplain" the failure. |
| 1605 | StringMatchResultListener listener; |
| 1606 | if (MatchPrintAndExplain(x, matcher, &listener)) { |
| 1607 | ss << "\n The matcher failed on the initial attempt; but passed when " |
| 1608 | "rerun to generate the explanation." ; |
| 1609 | } |
| 1610 | ss << "\n Actual: " << listener.str(); |
| 1611 | return AssertionFailure() << ss.str(); |
| 1612 | } |
| 1613 | |
| 1614 | private: |
| 1615 | const M matcher_; |
| 1616 | }; |
| 1617 | |
| 1618 | // A helper function for converting a matcher to a predicate-formatter |
| 1619 | // without the user needing to explicitly write the type. This is |
| 1620 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
| 1621 | // Implementation detail: 'matcher' is received by-value to force decaying. |
| 1622 | template <typename M> |
| 1623 | inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher( |
| 1624 | M matcher) { |
| 1625 | return PredicateFormatterFromMatcher<M>(std::move(matcher)); |
| 1626 | } |
| 1627 | |
| 1628 | // Implements the polymorphic IsNan() matcher, which matches any floating type |
| 1629 | // value that is Nan. |
| 1630 | class IsNanMatcher { |
| 1631 | public: |
| 1632 | template <typename FloatType> |
| 1633 | bool MatchAndExplain(const FloatType& f, |
| 1634 | MatchResultListener* /* listener */) const { |
| 1635 | return (::std::isnan)(f); |
| 1636 | } |
| 1637 | |
| 1638 | void DescribeTo(::std::ostream* os) const { *os << "is NaN" ; } |
| 1639 | void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN" ; } |
| 1640 | }; |
| 1641 | |
| 1642 | // Implements the polymorphic floating point equality matcher, which matches |
| 1643 | // two float values using ULP-based approximation or, optionally, a |
| 1644 | // user-specified epsilon. The template is meant to be instantiated with |
| 1645 | // FloatType being either float or double. |
| 1646 | template <typename FloatType> |
| 1647 | class FloatingEqMatcher { |
| 1648 | public: |
| 1649 | // Constructor for FloatingEqMatcher. |
| 1650 | // The matcher's input will be compared with expected. The matcher treats two |
| 1651 | // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
| 1652 | // equality comparisons between NANs will always return false. We specify a |
| 1653 | // negative max_abs_error_ term to indicate that ULP-based approximation will |
| 1654 | // be used for comparison. |
| 1655 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan) |
| 1656 | : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {} |
| 1657 | |
| 1658 | // Constructor that supports a user-specified max_abs_error that will be used |
| 1659 | // for comparison instead of ULP-based approximation. The max absolute |
| 1660 | // should be non-negative. |
| 1661 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
| 1662 | FloatType max_abs_error) |
| 1663 | : expected_(expected), |
| 1664 | nan_eq_nan_(nan_eq_nan), |
| 1665 | max_abs_error_(max_abs_error) { |
| 1666 | GTEST_CHECK_(max_abs_error >= 0) |
| 1667 | << ", where max_abs_error is" << max_abs_error; |
| 1668 | } |
| 1669 | |
| 1670 | // Implements floating point equality matcher as a Matcher<T>. |
| 1671 | template <typename T> |
| 1672 | class Impl : public MatcherInterface<T> { |
| 1673 | public: |
| 1674 | Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
| 1675 | : expected_(expected), |
| 1676 | nan_eq_nan_(nan_eq_nan), |
| 1677 | max_abs_error_(max_abs_error) {} |
| 1678 | |
| 1679 | bool MatchAndExplain(T value, |
| 1680 | MatchResultListener* listener) const override { |
| 1681 | const FloatingPoint<FloatType> actual(value), expected(expected_); |
| 1682 | |
| 1683 | // Compares NaNs first, if nan_eq_nan_ is true. |
| 1684 | if (actual.is_nan() || expected.is_nan()) { |
| 1685 | if (actual.is_nan() && expected.is_nan()) { |
| 1686 | return nan_eq_nan_; |
| 1687 | } |
| 1688 | // One is nan; the other is not nan. |
| 1689 | return false; |
| 1690 | } |
| 1691 | if (HasMaxAbsError()) { |
| 1692 | // We perform an equality check so that inf will match inf, regardless |
| 1693 | // of error bounds. If the result of value - expected_ would result in |
| 1694 | // overflow or if either value is inf, the default result is infinity, |
| 1695 | // which should only match if max_abs_error_ is also infinity. |
| 1696 | if (value == expected_) { |
| 1697 | return true; |
| 1698 | } |
| 1699 | |
| 1700 | const FloatType diff = value - expected_; |
| 1701 | if (::std::fabs(diff) <= max_abs_error_) { |
| 1702 | return true; |
| 1703 | } |
| 1704 | |
| 1705 | if (listener->IsInterested()) { |
| 1706 | *listener << "which is " << diff << " from " << expected_; |
| 1707 | } |
| 1708 | return false; |
| 1709 | } else { |
| 1710 | return actual.AlmostEquals(expected); |
| 1711 | } |
| 1712 | } |
| 1713 | |
| 1714 | void DescribeTo(::std::ostream* os) const override { |
| 1715 | // os->precision() returns the previously set precision, which we |
| 1716 | // store to restore the ostream to its original configuration |
| 1717 | // after outputting. |
| 1718 | const ::std::streamsize old_precision = |
| 1719 | os->precision(::std::numeric_limits<FloatType>::digits10 + 2); |
| 1720 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
| 1721 | if (nan_eq_nan_) { |
| 1722 | *os << "is NaN" ; |
| 1723 | } else { |
| 1724 | *os << "never matches" ; |
| 1725 | } |
| 1726 | } else { |
| 1727 | *os << "is approximately " << expected_; |
| 1728 | if (HasMaxAbsError()) { |
| 1729 | *os << " (absolute error <= " << max_abs_error_ << ")" ; |
| 1730 | } |
| 1731 | } |
| 1732 | os->precision(prec: old_precision); |
| 1733 | } |
| 1734 | |
| 1735 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1736 | // As before, get original precision. |
| 1737 | const ::std::streamsize old_precision = |
| 1738 | os->precision(::std::numeric_limits<FloatType>::digits10 + 2); |
| 1739 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
| 1740 | if (nan_eq_nan_) { |
| 1741 | *os << "isn't NaN" ; |
| 1742 | } else { |
| 1743 | *os << "is anything" ; |
| 1744 | } |
| 1745 | } else { |
| 1746 | *os << "isn't approximately " << expected_; |
| 1747 | if (HasMaxAbsError()) { |
| 1748 | *os << " (absolute error > " << max_abs_error_ << ")" ; |
| 1749 | } |
| 1750 | } |
| 1751 | // Restore original precision. |
| 1752 | os->precision(prec: old_precision); |
| 1753 | } |
| 1754 | |
| 1755 | private: |
| 1756 | bool HasMaxAbsError() const { return max_abs_error_ >= 0; } |
| 1757 | |
| 1758 | const FloatType expected_; |
| 1759 | const bool nan_eq_nan_; |
| 1760 | // max_abs_error will be used for value comparison when >= 0. |
| 1761 | const FloatType max_abs_error_; |
| 1762 | }; |
| 1763 | |
| 1764 | // The following 3 type conversion operators allow FloatEq(expected) and |
| 1765 | // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
| 1766 | // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
| 1767 | operator Matcher<FloatType>() const { |
| 1768 | return MakeMatcher( |
| 1769 | new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
| 1770 | } |
| 1771 | |
| 1772 | operator Matcher<const FloatType&>() const { |
| 1773 | return MakeMatcher( |
| 1774 | new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
| 1775 | } |
| 1776 | |
| 1777 | operator Matcher<FloatType&>() const { |
| 1778 | return MakeMatcher( |
| 1779 | new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
| 1780 | } |
| 1781 | |
| 1782 | private: |
| 1783 | const FloatType expected_; |
| 1784 | const bool nan_eq_nan_; |
| 1785 | // max_abs_error will be used for value comparison when >= 0. |
| 1786 | const FloatType max_abs_error_; |
| 1787 | }; |
| 1788 | |
| 1789 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
| 1790 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
| 1791 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
| 1792 | // against y. The former implements "Eq", the latter "Near". At present, there |
| 1793 | // is no version that compares NaNs as equal. |
| 1794 | template <typename FloatType> |
| 1795 | class FloatingEq2Matcher { |
| 1796 | public: |
| 1797 | FloatingEq2Matcher() { Init(max_abs_error_val: -1, nan_eq_nan_val: false); } |
| 1798 | |
| 1799 | explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(max_abs_error_val: -1, nan_eq_nan_val: nan_eq_nan); } |
| 1800 | |
| 1801 | explicit FloatingEq2Matcher(FloatType max_abs_error) { |
| 1802 | Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: false); |
| 1803 | } |
| 1804 | |
| 1805 | FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
| 1806 | Init(max_abs_error_val: max_abs_error, nan_eq_nan_val: nan_eq_nan); |
| 1807 | } |
| 1808 | |
| 1809 | template <typename T1, typename T2> |
| 1810 | operator Matcher<::std::tuple<T1, T2>>() const { |
| 1811 | return MakeMatcher( |
| 1812 | new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); |
| 1813 | } |
| 1814 | template <typename T1, typename T2> |
| 1815 | operator Matcher<const ::std::tuple<T1, T2>&>() const { |
| 1816 | return MakeMatcher( |
| 1817 | new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
| 1818 | } |
| 1819 | |
| 1820 | private: |
| 1821 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
| 1822 | return os << "an almost-equal pair" ; |
| 1823 | } |
| 1824 | |
| 1825 | template <typename Tuple> |
| 1826 | class Impl : public MatcherInterface<Tuple> { |
| 1827 | public: |
| 1828 | Impl(FloatType max_abs_error, bool nan_eq_nan) |
| 1829 | : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {} |
| 1830 | |
| 1831 | bool MatchAndExplain(Tuple args, |
| 1832 | MatchResultListener* listener) const override { |
| 1833 | if (max_abs_error_ == -1) { |
| 1834 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); |
| 1835 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
| 1836 | ::std::get<1>(args), listener); |
| 1837 | } else { |
| 1838 | FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, |
| 1839 | max_abs_error_); |
| 1840 | return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( |
| 1841 | ::std::get<1>(args), listener); |
| 1842 | } |
| 1843 | } |
| 1844 | void DescribeTo(::std::ostream* os) const override { |
| 1845 | *os << "are " << GetDesc; |
| 1846 | } |
| 1847 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1848 | *os << "aren't " << GetDesc; |
| 1849 | } |
| 1850 | |
| 1851 | private: |
| 1852 | FloatType max_abs_error_; |
| 1853 | const bool nan_eq_nan_; |
| 1854 | }; |
| 1855 | |
| 1856 | void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
| 1857 | max_abs_error_ = max_abs_error_val; |
| 1858 | nan_eq_nan_ = nan_eq_nan_val; |
| 1859 | } |
| 1860 | FloatType max_abs_error_; |
| 1861 | bool nan_eq_nan_; |
| 1862 | }; |
| 1863 | |
| 1864 | // Implements the Pointee(m) matcher for matching a pointer whose |
| 1865 | // pointee matches matcher m. The pointer can be either raw or smart. |
| 1866 | template <typename InnerMatcher> |
| 1867 | class PointeeMatcher { |
| 1868 | public: |
| 1869 | explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
| 1870 | |
| 1871 | // This type conversion operator template allows Pointee(m) to be |
| 1872 | // used as a matcher for any pointer type whose pointee type is |
| 1873 | // compatible with the inner matcher, where type Pointer can be |
| 1874 | // either a raw pointer or a smart pointer. |
| 1875 | // |
| 1876 | // The reason we do this instead of relying on |
| 1877 | // MakePolymorphicMatcher() is that the latter is not flexible |
| 1878 | // enough for implementing the DescribeTo() method of Pointee(). |
| 1879 | template <typename Pointer> |
| 1880 | operator Matcher<Pointer>() const { |
| 1881 | return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); |
| 1882 | } |
| 1883 | |
| 1884 | private: |
| 1885 | // The monomorphic implementation that works for a particular pointer type. |
| 1886 | template <typename Pointer> |
| 1887 | class Impl : public MatcherInterface<Pointer> { |
| 1888 | public: |
| 1889 | using Pointee = |
| 1890 | typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
| 1891 | Pointer)>::element_type; |
| 1892 | |
| 1893 | explicit Impl(const InnerMatcher& matcher) |
| 1894 | : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
| 1895 | |
| 1896 | void DescribeTo(::std::ostream* os) const override { |
| 1897 | *os << "points to a value that " ; |
| 1898 | matcher_.DescribeTo(os); |
| 1899 | } |
| 1900 | |
| 1901 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1902 | *os << "does not point to a value that " ; |
| 1903 | matcher_.DescribeTo(os); |
| 1904 | } |
| 1905 | |
| 1906 | bool MatchAndExplain(Pointer pointer, |
| 1907 | MatchResultListener* listener) const override { |
| 1908 | if (GetRawPointer(pointer) == nullptr) return false; |
| 1909 | |
| 1910 | *listener << "which points to " ; |
| 1911 | return MatchPrintAndExplain(*pointer, matcher_, listener); |
| 1912 | } |
| 1913 | |
| 1914 | private: |
| 1915 | const Matcher<const Pointee&> matcher_; |
| 1916 | }; |
| 1917 | |
| 1918 | const InnerMatcher matcher_; |
| 1919 | }; |
| 1920 | |
| 1921 | // Implements the Pointer(m) matcher |
| 1922 | // Implements the Pointer(m) matcher for matching a pointer that matches matcher |
| 1923 | // m. The pointer can be either raw or smart, and will match `m` against the |
| 1924 | // raw pointer. |
| 1925 | template <typename InnerMatcher> |
| 1926 | class PointerMatcher { |
| 1927 | public: |
| 1928 | explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
| 1929 | |
| 1930 | // This type conversion operator template allows Pointer(m) to be |
| 1931 | // used as a matcher for any pointer type whose pointer type is |
| 1932 | // compatible with the inner matcher, where type PointerType can be |
| 1933 | // either a raw pointer or a smart pointer. |
| 1934 | // |
| 1935 | // The reason we do this instead of relying on |
| 1936 | // MakePolymorphicMatcher() is that the latter is not flexible |
| 1937 | // enough for implementing the DescribeTo() method of Pointer(). |
| 1938 | template <typename PointerType> |
| 1939 | operator Matcher<PointerType>() const { // NOLINT |
| 1940 | return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); |
| 1941 | } |
| 1942 | |
| 1943 | private: |
| 1944 | // The monomorphic implementation that works for a particular pointer type. |
| 1945 | template <typename PointerType> |
| 1946 | class Impl : public MatcherInterface<PointerType> { |
| 1947 | public: |
| 1948 | using Pointer = |
| 1949 | const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( |
| 1950 | PointerType)>::element_type*; |
| 1951 | |
| 1952 | explicit Impl(const InnerMatcher& matcher) |
| 1953 | : matcher_(MatcherCast<Pointer>(matcher)) {} |
| 1954 | |
| 1955 | void DescribeTo(::std::ostream* os) const override { |
| 1956 | *os << "is a pointer that " ; |
| 1957 | matcher_.DescribeTo(os); |
| 1958 | } |
| 1959 | |
| 1960 | void DescribeNegationTo(::std::ostream* os) const override { |
| 1961 | *os << "is not a pointer that " ; |
| 1962 | matcher_.DescribeTo(os); |
| 1963 | } |
| 1964 | |
| 1965 | bool MatchAndExplain(PointerType pointer, |
| 1966 | MatchResultListener* listener) const override { |
| 1967 | *listener << "which is a pointer that " ; |
| 1968 | Pointer p = GetRawPointer(pointer); |
| 1969 | return MatchPrintAndExplain(p, matcher_, listener); |
| 1970 | } |
| 1971 | |
| 1972 | private: |
| 1973 | Matcher<Pointer> matcher_; |
| 1974 | }; |
| 1975 | |
| 1976 | const InnerMatcher matcher_; |
| 1977 | }; |
| 1978 | |
| 1979 | #if GTEST_HAS_RTTI |
| 1980 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
| 1981 | // reference that matches inner_matcher when dynamic_cast<T> is applied. |
| 1982 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
| 1983 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
| 1984 | // If To is a reference and the cast fails, this matcher returns false |
| 1985 | // immediately. |
| 1986 | template <typename To> |
| 1987 | class WhenDynamicCastToMatcherBase { |
| 1988 | public: |
| 1989 | explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
| 1990 | : matcher_(matcher) {} |
| 1991 | |
| 1992 | void DescribeTo(::std::ostream* os) const { |
| 1993 | GetCastTypeDescription(os); |
| 1994 | matcher_.DescribeTo(os); |
| 1995 | } |
| 1996 | |
| 1997 | void DescribeNegationTo(::std::ostream* os) const { |
| 1998 | GetCastTypeDescription(os); |
| 1999 | matcher_.DescribeNegationTo(os); |
| 2000 | } |
| 2001 | |
| 2002 | protected: |
| 2003 | const Matcher<To> matcher_; |
| 2004 | |
| 2005 | static std::string GetToName() { return GetTypeName<To>(); } |
| 2006 | |
| 2007 | private: |
| 2008 | static void GetCastTypeDescription(::std::ostream* os) { |
| 2009 | *os << "when dynamic_cast to " << GetToName() << ", " ; |
| 2010 | } |
| 2011 | }; |
| 2012 | |
| 2013 | // Primary template. |
| 2014 | // To is a pointer. Cast and forward the result. |
| 2015 | template <typename To> |
| 2016 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
| 2017 | public: |
| 2018 | explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
| 2019 | : WhenDynamicCastToMatcherBase<To>(matcher) {} |
| 2020 | |
| 2021 | template <typename From> |
| 2022 | bool MatchAndExplain(From from, MatchResultListener* listener) const { |
| 2023 | To to = dynamic_cast<To>(from); |
| 2024 | return MatchPrintAndExplain(to, this->matcher_, listener); |
| 2025 | } |
| 2026 | }; |
| 2027 | |
| 2028 | // Specialize for references. |
| 2029 | // In this case we return false if the dynamic_cast fails. |
| 2030 | template <typename To> |
| 2031 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
| 2032 | public: |
| 2033 | explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
| 2034 | : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
| 2035 | |
| 2036 | template <typename From> |
| 2037 | bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
| 2038 | // We don't want an std::bad_cast here, so do the cast with pointers. |
| 2039 | To* to = dynamic_cast<To*>(&from); |
| 2040 | if (to == nullptr) { |
| 2041 | *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
| 2042 | return false; |
| 2043 | } |
| 2044 | return MatchPrintAndExplain(*to, this->matcher_, listener); |
| 2045 | } |
| 2046 | }; |
| 2047 | #endif // GTEST_HAS_RTTI |
| 2048 | |
| 2049 | // Implements the Field() matcher for matching a field (i.e. member |
| 2050 | // variable) of an object. |
| 2051 | template <typename Class, typename FieldType> |
| 2052 | class FieldMatcher { |
| 2053 | public: |
| 2054 | FieldMatcher(FieldType Class::*field, |
| 2055 | const Matcher<const FieldType&>& matcher) |
| 2056 | : field_(field), matcher_(matcher), whose_field_("whose given field " ) {} |
| 2057 | |
| 2058 | FieldMatcher(const std::string& field_name, FieldType Class::*field, |
| 2059 | const Matcher<const FieldType&>& matcher) |
| 2060 | : field_(field), |
| 2061 | matcher_(matcher), |
| 2062 | whose_field_("whose field `" + field_name + "` " ) {} |
| 2063 | |
| 2064 | void DescribeTo(::std::ostream* os) const { |
| 2065 | *os << "is an object " << whose_field_; |
| 2066 | matcher_.DescribeTo(os); |
| 2067 | } |
| 2068 | |
| 2069 | void DescribeNegationTo(::std::ostream* os) const { |
| 2070 | *os << "is an object " << whose_field_; |
| 2071 | matcher_.DescribeNegationTo(os); |
| 2072 | } |
| 2073 | |
| 2074 | template <typename T> |
| 2075 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
| 2076 | // FIXME: The dispatch on std::is_pointer was introduced as a workaround for |
| 2077 | // a compiler bug, and can now be removed. |
| 2078 | return MatchAndExplainImpl( |
| 2079 | typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
| 2080 | value, listener); |
| 2081 | } |
| 2082 | |
| 2083 | private: |
| 2084 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
| 2085 | const Class& obj, |
| 2086 | MatchResultListener* listener) const { |
| 2087 | *listener << whose_field_ << "is " ; |
| 2088 | return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
| 2089 | } |
| 2090 | |
| 2091 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
| 2092 | MatchResultListener* listener) const { |
| 2093 | if (p == nullptr) return false; |
| 2094 | |
| 2095 | *listener << "which points to an object " ; |
| 2096 | // Since *p has a field, it must be a class/struct/union type and |
| 2097 | // thus cannot be a pointer. Therefore we pass false_type() as |
| 2098 | // the first argument. |
| 2099 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
| 2100 | } |
| 2101 | |
| 2102 | const FieldType Class::*field_; |
| 2103 | const Matcher<const FieldType&> matcher_; |
| 2104 | |
| 2105 | // Contains either "whose given field " if the name of the field is unknown |
| 2106 | // or "whose field `name_of_field` " if the name is known. |
| 2107 | const std::string whose_field_; |
| 2108 | }; |
| 2109 | |
| 2110 | // Implements the Property() matcher for matching a property |
| 2111 | // (i.e. return value of a getter method) of an object. |
| 2112 | // |
| 2113 | // Property is a const-qualified member function of Class returning |
| 2114 | // PropertyType. |
| 2115 | template <typename Class, typename PropertyType, typename Property> |
| 2116 | class PropertyMatcher { |
| 2117 | public: |
| 2118 | typedef const PropertyType& RefToConstProperty; |
| 2119 | |
| 2120 | PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
| 2121 | : property_(property), |
| 2122 | matcher_(matcher), |
| 2123 | whose_property_("whose given property " ) {} |
| 2124 | |
| 2125 | PropertyMatcher(const std::string& property_name, Property property, |
| 2126 | const Matcher<RefToConstProperty>& matcher) |
| 2127 | : property_(property), |
| 2128 | matcher_(matcher), |
| 2129 | whose_property_("whose property `" + property_name + "` " ) {} |
| 2130 | |
| 2131 | void DescribeTo(::std::ostream* os) const { |
| 2132 | *os << "is an object " << whose_property_; |
| 2133 | matcher_.DescribeTo(os); |
| 2134 | } |
| 2135 | |
| 2136 | void DescribeNegationTo(::std::ostream* os) const { |
| 2137 | *os << "is an object " << whose_property_; |
| 2138 | matcher_.DescribeNegationTo(os); |
| 2139 | } |
| 2140 | |
| 2141 | template <typename T> |
| 2142 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
| 2143 | return MatchAndExplainImpl( |
| 2144 | typename std::is_pointer<typename std::remove_const<T>::type>::type(), |
| 2145 | value, listener); |
| 2146 | } |
| 2147 | |
| 2148 | private: |
| 2149 | bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, |
| 2150 | const Class& obj, |
| 2151 | MatchResultListener* listener) const { |
| 2152 | *listener << whose_property_ << "is " ; |
| 2153 | // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
| 2154 | // which takes a non-const reference as argument. |
| 2155 | RefToConstProperty result = (obj.*property_)(); |
| 2156 | return MatchPrintAndExplain(result, matcher_, listener); |
| 2157 | } |
| 2158 | |
| 2159 | bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, |
| 2160 | MatchResultListener* listener) const { |
| 2161 | if (p == nullptr) return false; |
| 2162 | |
| 2163 | *listener << "which points to an object " ; |
| 2164 | // Since *p has a property method, it must be a class/struct/union |
| 2165 | // type and thus cannot be a pointer. Therefore we pass |
| 2166 | // false_type() as the first argument. |
| 2167 | return MatchAndExplainImpl(std::false_type(), *p, listener); |
| 2168 | } |
| 2169 | |
| 2170 | Property property_; |
| 2171 | const Matcher<RefToConstProperty> matcher_; |
| 2172 | |
| 2173 | // Contains either "whose given property " if the name of the property is |
| 2174 | // unknown or "whose property `name_of_property` " if the name is known. |
| 2175 | const std::string whose_property_; |
| 2176 | }; |
| 2177 | |
| 2178 | // Type traits specifying various features of different functors for ResultOf. |
| 2179 | // The default template specifies features for functor objects. |
| 2180 | template <typename Functor> |
| 2181 | struct CallableTraits { |
| 2182 | typedef Functor StorageType; |
| 2183 | |
| 2184 | static void CheckIsValid(Functor /* functor */) {} |
| 2185 | |
| 2186 | template <typename T> |
| 2187 | static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { |
| 2188 | return f(arg); |
| 2189 | } |
| 2190 | }; |
| 2191 | |
| 2192 | // Specialization for function pointers. |
| 2193 | template <typename ArgType, typename ResType> |
| 2194 | struct CallableTraits<ResType (*)(ArgType)> { |
| 2195 | typedef ResType ResultType; |
| 2196 | typedef ResType (*StorageType)(ArgType); |
| 2197 | |
| 2198 | static void CheckIsValid(ResType (*f)(ArgType)) { |
| 2199 | GTEST_CHECK_(f != nullptr) |
| 2200 | << "NULL function pointer is passed into ResultOf()." ; |
| 2201 | } |
| 2202 | template <typename T> |
| 2203 | static ResType Invoke(ResType (*f)(ArgType), T arg) { |
| 2204 | return (*f)(arg); |
| 2205 | } |
| 2206 | }; |
| 2207 | |
| 2208 | // Implements the ResultOf() matcher for matching a return value of a |
| 2209 | // unary function of an object. |
| 2210 | template <typename Callable, typename InnerMatcher> |
| 2211 | class ResultOfMatcher { |
| 2212 | public: |
| 2213 | ResultOfMatcher(Callable callable, InnerMatcher matcher) |
| 2214 | : ResultOfMatcher(/*result_description=*/"" , std::move(callable), |
| 2215 | std::move(matcher)) {} |
| 2216 | |
| 2217 | ResultOfMatcher(const std::string& result_description, Callable callable, |
| 2218 | InnerMatcher matcher) |
| 2219 | : result_description_(result_description), |
| 2220 | callable_(std::move(callable)), |
| 2221 | matcher_(std::move(matcher)) { |
| 2222 | CallableTraits<Callable>::CheckIsValid(callable_); |
| 2223 | } |
| 2224 | |
| 2225 | template <typename T> |
| 2226 | operator Matcher<T>() const { |
| 2227 | return Matcher<T>( |
| 2228 | new Impl<const T&>(result_description_, callable_, matcher_)); |
| 2229 | } |
| 2230 | |
| 2231 | private: |
| 2232 | typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
| 2233 | |
| 2234 | template <typename T> |
| 2235 | class Impl : public MatcherInterface<T> { |
| 2236 | using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
| 2237 | std::declval<CallableStorageType>(), std::declval<T>())); |
| 2238 | |
| 2239 | public: |
| 2240 | template <typename M> |
| 2241 | Impl(const std::string& result_description, |
| 2242 | const CallableStorageType& callable, const M& matcher) |
| 2243 | : result_description_(result_description), |
| 2244 | callable_(callable), |
| 2245 | matcher_(MatcherCast<ResultType>(matcher)) {} |
| 2246 | |
| 2247 | void DescribeTo(::std::ostream* os) const override { |
| 2248 | if (result_description_.empty()) { |
| 2249 | *os << "is mapped by the given callable to a value that " ; |
| 2250 | } else { |
| 2251 | *os << "whose " << result_description_ << " " ; |
| 2252 | } |
| 2253 | matcher_.DescribeTo(os); |
| 2254 | } |
| 2255 | |
| 2256 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2257 | if (result_description_.empty()) { |
| 2258 | *os << "is mapped by the given callable to a value that " ; |
| 2259 | } else { |
| 2260 | *os << "whose " << result_description_ << " " ; |
| 2261 | } |
| 2262 | matcher_.DescribeNegationTo(os); |
| 2263 | } |
| 2264 | |
| 2265 | bool MatchAndExplain(T obj, MatchResultListener* listener) const override { |
| 2266 | if (result_description_.empty()) { |
| 2267 | *listener << "which is mapped by the given callable to " ; |
| 2268 | } else { |
| 2269 | *listener << "whose " << result_description_ << " is " ; |
| 2270 | } |
| 2271 | // Cannot pass the return value directly to MatchPrintAndExplain, which |
| 2272 | // takes a non-const reference as argument. |
| 2273 | // Also, specifying template argument explicitly is needed because T could |
| 2274 | // be a non-const reference (e.g. Matcher<Uncopyable&>). |
| 2275 | ResultType result = |
| 2276 | CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
| 2277 | return MatchPrintAndExplain(result, matcher_, listener); |
| 2278 | } |
| 2279 | |
| 2280 | private: |
| 2281 | const std::string result_description_; |
| 2282 | // Functors often define operator() as non-const method even though |
| 2283 | // they are actually stateless. But we need to use them even when |
| 2284 | // 'this' is a const pointer. It's the user's responsibility not to |
| 2285 | // use stateful callables with ResultOf(), which doesn't guarantee |
| 2286 | // how many times the callable will be invoked. |
| 2287 | mutable CallableStorageType callable_; |
| 2288 | const Matcher<ResultType> matcher_; |
| 2289 | }; // class Impl |
| 2290 | |
| 2291 | const std::string result_description_; |
| 2292 | const CallableStorageType callable_; |
| 2293 | const InnerMatcher matcher_; |
| 2294 | }; |
| 2295 | |
| 2296 | // Implements a matcher that checks the size of an STL-style container. |
| 2297 | template <typename SizeMatcher> |
| 2298 | class SizeIsMatcher { |
| 2299 | public: |
| 2300 | explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
| 2301 | : size_matcher_(size_matcher) {} |
| 2302 | |
| 2303 | template <typename Container> |
| 2304 | operator Matcher<Container>() const { |
| 2305 | return Matcher<Container>(new Impl<const Container&>(size_matcher_)); |
| 2306 | } |
| 2307 | |
| 2308 | template <typename Container> |
| 2309 | class Impl : public MatcherInterface<Container> { |
| 2310 | public: |
| 2311 | using SizeType = decltype(std::declval<Container>().size()); |
| 2312 | explicit Impl(const SizeMatcher& size_matcher) |
| 2313 | : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
| 2314 | |
| 2315 | void DescribeTo(::std::ostream* os) const override { |
| 2316 | *os << "has a size that " ; |
| 2317 | size_matcher_.DescribeTo(os); |
| 2318 | } |
| 2319 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2320 | *os << "has a size that " ; |
| 2321 | size_matcher_.DescribeNegationTo(os); |
| 2322 | } |
| 2323 | |
| 2324 | bool MatchAndExplain(Container container, |
| 2325 | MatchResultListener* listener) const override { |
| 2326 | SizeType size = container.size(); |
| 2327 | StringMatchResultListener size_listener; |
| 2328 | const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
| 2329 | *listener << "whose size " << size |
| 2330 | << (result ? " matches" : " doesn't match" ); |
| 2331 | PrintIfNotEmpty(explanation: size_listener.str(), os: listener->stream()); |
| 2332 | return result; |
| 2333 | } |
| 2334 | |
| 2335 | private: |
| 2336 | const Matcher<SizeType> size_matcher_; |
| 2337 | }; |
| 2338 | |
| 2339 | private: |
| 2340 | const SizeMatcher size_matcher_; |
| 2341 | }; |
| 2342 | |
| 2343 | // Implements a matcher that checks the begin()..end() distance of an STL-style |
| 2344 | // container. |
| 2345 | template <typename DistanceMatcher> |
| 2346 | class BeginEndDistanceIsMatcher { |
| 2347 | public: |
| 2348 | explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
| 2349 | : distance_matcher_(distance_matcher) {} |
| 2350 | |
| 2351 | template <typename Container> |
| 2352 | operator Matcher<Container>() const { |
| 2353 | return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); |
| 2354 | } |
| 2355 | |
| 2356 | template <typename Container> |
| 2357 | class Impl : public MatcherInterface<Container> { |
| 2358 | public: |
| 2359 | // LLVM local change to support std::begin/std::end. |
| 2360 | // |
| 2361 | // typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
| 2362 | // Container)> |
| 2363 | // ContainerView; |
| 2364 | // typedef typename std::iterator_traits< |
| 2365 | // typename ContainerView::type::const_iterator>::difference_type |
| 2366 | // DistanceType; |
| 2367 | // |
| 2368 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 2369 | typedef internal::StlContainerView<RawContainer> View; |
| 2370 | typedef typename View::type StlContainer; |
| 2371 | typedef typename View::const_reference StlContainerReference; |
| 2372 | typedef decltype(std::begin( |
| 2373 | std::declval<StlContainerReference>())) StlContainerConstIterator; |
| 2374 | typedef typename std::iterator_traits< |
| 2375 | StlContainerConstIterator>::difference_type DistanceType; |
| 2376 | // LLVM local change end. |
| 2377 | explicit Impl(const DistanceMatcher& distance_matcher) |
| 2378 | : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
| 2379 | |
| 2380 | void DescribeTo(::std::ostream* os) const override { |
| 2381 | *os << "distance between begin() and end() " ; |
| 2382 | distance_matcher_.DescribeTo(os); |
| 2383 | } |
| 2384 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2385 | *os << "distance between begin() and end() " ; |
| 2386 | distance_matcher_.DescribeNegationTo(os); |
| 2387 | } |
| 2388 | |
| 2389 | bool MatchAndExplain(Container container, |
| 2390 | MatchResultListener* listener) const override { |
| 2391 | using std::begin; |
| 2392 | using std::end; |
| 2393 | DistanceType distance = std::distance(begin(container), end(container)); |
| 2394 | StringMatchResultListener distance_listener; |
| 2395 | const bool result = |
| 2396 | distance_matcher_.MatchAndExplain(distance, &distance_listener); |
| 2397 | *listener << "whose distance between begin() and end() " << distance |
| 2398 | << (result ? " matches" : " doesn't match" ); |
| 2399 | PrintIfNotEmpty(explanation: distance_listener.str(), os: listener->stream()); |
| 2400 | return result; |
| 2401 | } |
| 2402 | |
| 2403 | private: |
| 2404 | const Matcher<DistanceType> distance_matcher_; |
| 2405 | }; |
| 2406 | |
| 2407 | private: |
| 2408 | const DistanceMatcher distance_matcher_; |
| 2409 | }; |
| 2410 | |
| 2411 | // Implements an equality matcher for any STL-style container whose elements |
| 2412 | // support ==. This matcher is like Eq(), but its failure explanations provide |
| 2413 | // more detailed information that is useful when the container is used as a set. |
| 2414 | // The failure message reports elements that are in one of the operands but not |
| 2415 | // the other. The failure messages do not report duplicate or out-of-order |
| 2416 | // elements in the containers (which don't properly matter to sets, but can |
| 2417 | // occur if the containers are vectors or lists, for example). |
| 2418 | // |
| 2419 | // Uses the container's const_iterator, value_type, operator ==, |
| 2420 | // begin(), and end(). |
| 2421 | template <typename Container> |
| 2422 | class ContainerEqMatcher { |
| 2423 | public: |
| 2424 | typedef internal::StlContainerView<Container> View; |
| 2425 | typedef typename View::type StlContainer; |
| 2426 | typedef typename View::const_reference StlContainerReference; |
| 2427 | |
| 2428 | static_assert(!std::is_const<Container>::value, |
| 2429 | "Container type must not be const" ); |
| 2430 | static_assert(!std::is_reference<Container>::value, |
| 2431 | "Container type must not be a reference" ); |
| 2432 | |
| 2433 | // We make a copy of expected in case the elements in it are modified |
| 2434 | // after this matcher is created. |
| 2435 | explicit ContainerEqMatcher(const Container& expected) |
| 2436 | : expected_(View::Copy(expected)) {} |
| 2437 | |
| 2438 | void DescribeTo(::std::ostream* os) const { |
| 2439 | *os << "equals " ; |
| 2440 | UniversalPrint(expected_, os); |
| 2441 | } |
| 2442 | void DescribeNegationTo(::std::ostream* os) const { |
| 2443 | *os << "does not equal " ; |
| 2444 | UniversalPrint(expected_, os); |
| 2445 | } |
| 2446 | |
| 2447 | template <typename LhsContainer> |
| 2448 | bool MatchAndExplain(const LhsContainer& lhs, |
| 2449 | MatchResultListener* listener) const { |
| 2450 | typedef internal::StlContainerView< |
| 2451 | typename std::remove_const<LhsContainer>::type> |
| 2452 | LhsView; |
| 2453 | StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| 2454 | if (lhs_stl_container == expected_) return true; |
| 2455 | |
| 2456 | ::std::ostream* const os = listener->stream(); |
| 2457 | if (os != nullptr) { |
| 2458 | // Something is different. Check for extra values first. |
| 2459 | bool = false; |
| 2460 | for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end(); |
| 2461 | ++it) { |
| 2462 | if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
| 2463 | expected_.end()) { |
| 2464 | if (printed_header) { |
| 2465 | *os << ", " ; |
| 2466 | } else { |
| 2467 | *os << "which has these unexpected elements: " ; |
| 2468 | printed_header = true; |
| 2469 | } |
| 2470 | UniversalPrint(*it, os); |
| 2471 | } |
| 2472 | } |
| 2473 | |
| 2474 | // Now check for missing values. |
| 2475 | bool = false; |
| 2476 | for (auto it = expected_.begin(); it != expected_.end(); ++it) { |
| 2477 | if (internal::ArrayAwareFind(lhs_stl_container.begin(), |
| 2478 | lhs_stl_container.end(), |
| 2479 | *it) == lhs_stl_container.end()) { |
| 2480 | if (printed_header2) { |
| 2481 | *os << ", " ; |
| 2482 | } else { |
| 2483 | *os << (printed_header ? ",\nand" : "which" ) |
| 2484 | << " doesn't have these expected elements: " ; |
| 2485 | printed_header2 = true; |
| 2486 | } |
| 2487 | UniversalPrint(*it, os); |
| 2488 | } |
| 2489 | } |
| 2490 | } |
| 2491 | |
| 2492 | return false; |
| 2493 | } |
| 2494 | |
| 2495 | private: |
| 2496 | const StlContainer expected_; |
| 2497 | }; |
| 2498 | |
| 2499 | // A comparator functor that uses the < operator to compare two values. |
| 2500 | struct LessComparator { |
| 2501 | template <typename T, typename U> |
| 2502 | bool operator()(const T& lhs, const U& rhs) const { |
| 2503 | return lhs < rhs; |
| 2504 | } |
| 2505 | }; |
| 2506 | |
| 2507 | // Implements WhenSortedBy(comparator, container_matcher). |
| 2508 | template <typename Comparator, typename ContainerMatcher> |
| 2509 | class WhenSortedByMatcher { |
| 2510 | public: |
| 2511 | WhenSortedByMatcher(const Comparator& comparator, |
| 2512 | const ContainerMatcher& matcher) |
| 2513 | : comparator_(comparator), matcher_(matcher) {} |
| 2514 | |
| 2515 | template <typename LhsContainer> |
| 2516 | operator Matcher<LhsContainer>() const { |
| 2517 | return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
| 2518 | } |
| 2519 | |
| 2520 | template <typename LhsContainer> |
| 2521 | class Impl : public MatcherInterface<LhsContainer> { |
| 2522 | public: |
| 2523 | typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
| 2524 | LhsContainer)> |
| 2525 | LhsView; |
| 2526 | typedef typename LhsView::type LhsStlContainer; |
| 2527 | typedef typename LhsView::const_reference LhsStlContainerReference; |
| 2528 | // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
| 2529 | // so that we can match associative containers. |
| 2530 | typedef |
| 2531 | typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type |
| 2532 | LhsValue; |
| 2533 | |
| 2534 | Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
| 2535 | : comparator_(comparator), matcher_(matcher) {} |
| 2536 | |
| 2537 | void DescribeTo(::std::ostream* os) const override { |
| 2538 | *os << "(when sorted) " ; |
| 2539 | matcher_.DescribeTo(os); |
| 2540 | } |
| 2541 | |
| 2542 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2543 | *os << "(when sorted) " ; |
| 2544 | matcher_.DescribeNegationTo(os); |
| 2545 | } |
| 2546 | |
| 2547 | bool MatchAndExplain(LhsContainer lhs, |
| 2548 | MatchResultListener* listener) const override { |
| 2549 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| 2550 | ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
| 2551 | lhs_stl_container.end()); |
| 2552 | ::std::sort(sorted_container.begin(), sorted_container.end(), |
| 2553 | comparator_); |
| 2554 | |
| 2555 | if (!listener->IsInterested()) { |
| 2556 | // If the listener is not interested, we do not need to |
| 2557 | // construct the inner explanation. |
| 2558 | return matcher_.Matches(sorted_container); |
| 2559 | } |
| 2560 | |
| 2561 | *listener << "which is " ; |
| 2562 | UniversalPrint(sorted_container, listener->stream()); |
| 2563 | *listener << " when sorted" ; |
| 2564 | |
| 2565 | StringMatchResultListener inner_listener; |
| 2566 | const bool match = |
| 2567 | matcher_.MatchAndExplain(sorted_container, &inner_listener); |
| 2568 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
| 2569 | return match; |
| 2570 | } |
| 2571 | |
| 2572 | private: |
| 2573 | const Comparator comparator_; |
| 2574 | const Matcher<const ::std::vector<LhsValue>&> matcher_; |
| 2575 | |
| 2576 | Impl(const Impl&) = delete; |
| 2577 | Impl& operator=(const Impl&) = delete; |
| 2578 | }; |
| 2579 | |
| 2580 | private: |
| 2581 | const Comparator comparator_; |
| 2582 | const ContainerMatcher matcher_; |
| 2583 | }; |
| 2584 | |
| 2585 | // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
| 2586 | // must be able to be safely cast to Matcher<std::tuple<const T1&, const |
| 2587 | // T2&> >, where T1 and T2 are the types of elements in the LHS |
| 2588 | // container and the RHS container respectively. |
| 2589 | template <typename TupleMatcher, typename RhsContainer> |
| 2590 | class PointwiseMatcher { |
| 2591 | static_assert( |
| 2592 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
| 2593 | "use UnorderedPointwise with hash tables" ); |
| 2594 | |
| 2595 | public: |
| 2596 | typedef internal::StlContainerView<RhsContainer> RhsView; |
| 2597 | typedef typename RhsView::type RhsStlContainer; |
| 2598 | typedef typename RhsStlContainer::value_type RhsValue; |
| 2599 | |
| 2600 | static_assert(!std::is_const<RhsContainer>::value, |
| 2601 | "RhsContainer type must not be const" ); |
| 2602 | static_assert(!std::is_reference<RhsContainer>::value, |
| 2603 | "RhsContainer type must not be a reference" ); |
| 2604 | |
| 2605 | // Like ContainerEq, we make a copy of rhs in case the elements in |
| 2606 | // it are modified after this matcher is created. |
| 2607 | PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
| 2608 | : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} |
| 2609 | |
| 2610 | template <typename LhsContainer> |
| 2611 | operator Matcher<LhsContainer>() const { |
| 2612 | static_assert( |
| 2613 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
| 2614 | "use UnorderedPointwise with hash tables" ); |
| 2615 | |
| 2616 | return Matcher<LhsContainer>( |
| 2617 | new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); |
| 2618 | } |
| 2619 | |
| 2620 | template <typename LhsContainer> |
| 2621 | class Impl : public MatcherInterface<LhsContainer> { |
| 2622 | public: |
| 2623 | typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_( |
| 2624 | LhsContainer)> |
| 2625 | LhsView; |
| 2626 | typedef typename LhsView::type LhsStlContainer; |
| 2627 | typedef typename LhsView::const_reference LhsStlContainerReference; |
| 2628 | typedef typename LhsStlContainer::value_type LhsValue; |
| 2629 | // We pass the LHS value and the RHS value to the inner matcher by |
| 2630 | // reference, as they may be expensive to copy. We must use tuple |
| 2631 | // instead of pair here, as a pair cannot hold references (C++ 98, |
| 2632 | // 20.2.2 [lib.pairs]). |
| 2633 | typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
| 2634 | |
| 2635 | Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
| 2636 | // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
| 2637 | : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
| 2638 | rhs_(rhs) {} |
| 2639 | |
| 2640 | void DescribeTo(::std::ostream* os) const override { |
| 2641 | *os << "contains " << rhs_.size() |
| 2642 | << " values, where each value and its corresponding value in " ; |
| 2643 | UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
| 2644 | *os << " " ; |
| 2645 | mono_tuple_matcher_.DescribeTo(os); |
| 2646 | } |
| 2647 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2648 | *os << "doesn't contain exactly " << rhs_.size() |
| 2649 | << " values, or contains a value x at some index i" |
| 2650 | << " where x and the i-th value of " ; |
| 2651 | UniversalPrint(rhs_, os); |
| 2652 | *os << " " ; |
| 2653 | mono_tuple_matcher_.DescribeNegationTo(os); |
| 2654 | } |
| 2655 | |
| 2656 | bool MatchAndExplain(LhsContainer lhs, |
| 2657 | MatchResultListener* listener) const override { |
| 2658 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
| 2659 | const size_t actual_size = lhs_stl_container.size(); |
| 2660 | if (actual_size != rhs_.size()) { |
| 2661 | *listener << "which contains " << actual_size << " values" ; |
| 2662 | return false; |
| 2663 | } |
| 2664 | |
| 2665 | auto left = lhs_stl_container.begin(); |
| 2666 | auto right = rhs_.begin(); |
| 2667 | for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
| 2668 | if (listener->IsInterested()) { |
| 2669 | StringMatchResultListener inner_listener; |
| 2670 | // Create InnerMatcherArg as a temporarily object to avoid it outlives |
| 2671 | // *left and *right. Dereference or the conversion to `const T&` may |
| 2672 | // return temp objects, e.g. for vector<bool>. |
| 2673 | if (!mono_tuple_matcher_.MatchAndExplain( |
| 2674 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
| 2675 | ImplicitCast_<const RhsValue&>(*right)), |
| 2676 | &inner_listener)) { |
| 2677 | *listener << "where the value pair (" ; |
| 2678 | UniversalPrint(*left, listener->stream()); |
| 2679 | *listener << ", " ; |
| 2680 | UniversalPrint(*right, listener->stream()); |
| 2681 | *listener << ") at index #" << i << " don't match" ; |
| 2682 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
| 2683 | return false; |
| 2684 | } |
| 2685 | } else { |
| 2686 | if (!mono_tuple_matcher_.Matches( |
| 2687 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
| 2688 | ImplicitCast_<const RhsValue&>(*right)))) |
| 2689 | return false; |
| 2690 | } |
| 2691 | } |
| 2692 | |
| 2693 | return true; |
| 2694 | } |
| 2695 | |
| 2696 | private: |
| 2697 | const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
| 2698 | const RhsStlContainer rhs_; |
| 2699 | }; |
| 2700 | |
| 2701 | private: |
| 2702 | const TupleMatcher tuple_matcher_; |
| 2703 | const RhsStlContainer rhs_; |
| 2704 | }; |
| 2705 | |
| 2706 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
| 2707 | template <typename Container> |
| 2708 | class QuantifierMatcherImpl : public MatcherInterface<Container> { |
| 2709 | public: |
| 2710 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 2711 | typedef StlContainerView<RawContainer> View; |
| 2712 | typedef typename View::type StlContainer; |
| 2713 | typedef typename View::const_reference StlContainerReference; |
| 2714 | typedef typename StlContainer::value_type Element; |
| 2715 | |
| 2716 | template <typename InnerMatcher> |
| 2717 | explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
| 2718 | : inner_matcher_( |
| 2719 | testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
| 2720 | |
| 2721 | // Checks whether: |
| 2722 | // * All elements in the container match, if all_elements_should_match. |
| 2723 | // * Any element in the container matches, if !all_elements_should_match. |
| 2724 | bool MatchAndExplainImpl(bool all_elements_should_match, Container container, |
| 2725 | MatchResultListener* listener) const { |
| 2726 | StlContainerReference stl_container = View::ConstReference(container); |
| 2727 | size_t i = 0; |
| 2728 | for (auto it = stl_container.begin(); it != stl_container.end(); |
| 2729 | ++it, ++i) { |
| 2730 | StringMatchResultListener inner_listener; |
| 2731 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
| 2732 | |
| 2733 | if (matches != all_elements_should_match) { |
| 2734 | *listener << "whose element #" << i |
| 2735 | << (matches ? " matches" : " doesn't match" ); |
| 2736 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
| 2737 | return !all_elements_should_match; |
| 2738 | } |
| 2739 | } |
| 2740 | return all_elements_should_match; |
| 2741 | } |
| 2742 | |
| 2743 | bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher, |
| 2744 | Container container, |
| 2745 | MatchResultListener* listener) const { |
| 2746 | StlContainerReference stl_container = View::ConstReference(container); |
| 2747 | size_t i = 0; |
| 2748 | std::vector<size_t> match_elements; |
| 2749 | for (auto it = stl_container.begin(); it != stl_container.end(); |
| 2750 | ++it, ++i) { |
| 2751 | StringMatchResultListener inner_listener; |
| 2752 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
| 2753 | if (matches) { |
| 2754 | match_elements.push_back(x: i); |
| 2755 | } |
| 2756 | } |
| 2757 | if (listener->IsInterested()) { |
| 2758 | if (match_elements.empty()) { |
| 2759 | *listener << "has no element that matches" ; |
| 2760 | } else if (match_elements.size() == 1) { |
| 2761 | *listener << "whose element #" << match_elements[0] << " matches" ; |
| 2762 | } else { |
| 2763 | *listener << "whose elements (" ; |
| 2764 | std::string sep = "" ; |
| 2765 | for (size_t e : match_elements) { |
| 2766 | *listener << sep << e; |
| 2767 | sep = ", " ; |
| 2768 | } |
| 2769 | *listener << ") match" ; |
| 2770 | } |
| 2771 | } |
| 2772 | StringMatchResultListener count_listener; |
| 2773 | if (count_matcher.MatchAndExplain(x: match_elements.size(), listener: &count_listener)) { |
| 2774 | *listener << " and whose match quantity of " << match_elements.size() |
| 2775 | << " matches" ; |
| 2776 | PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream()); |
| 2777 | return true; |
| 2778 | } else { |
| 2779 | if (match_elements.empty()) { |
| 2780 | *listener << " and" ; |
| 2781 | } else { |
| 2782 | *listener << " but" ; |
| 2783 | } |
| 2784 | *listener << " whose match quantity of " << match_elements.size() |
| 2785 | << " does not match" ; |
| 2786 | PrintIfNotEmpty(explanation: count_listener.str(), os: listener->stream()); |
| 2787 | return false; |
| 2788 | } |
| 2789 | } |
| 2790 | |
| 2791 | protected: |
| 2792 | const Matcher<const Element&> inner_matcher_; |
| 2793 | }; |
| 2794 | |
| 2795 | // Implements Contains(element_matcher) for the given argument type Container. |
| 2796 | // Symmetric to EachMatcherImpl. |
| 2797 | template <typename Container> |
| 2798 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
| 2799 | public: |
| 2800 | template <typename InnerMatcher> |
| 2801 | explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
| 2802 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| 2803 | |
| 2804 | // Describes what this matcher does. |
| 2805 | void DescribeTo(::std::ostream* os) const override { |
| 2806 | *os << "contains at least one element that " ; |
| 2807 | this->inner_matcher_.DescribeTo(os); |
| 2808 | } |
| 2809 | |
| 2810 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2811 | *os << "doesn't contain any element that " ; |
| 2812 | this->inner_matcher_.DescribeTo(os); |
| 2813 | } |
| 2814 | |
| 2815 | bool MatchAndExplain(Container container, |
| 2816 | MatchResultListener* listener) const override { |
| 2817 | return this->MatchAndExplainImpl(false, container, listener); |
| 2818 | } |
| 2819 | }; |
| 2820 | |
| 2821 | // Implements Each(element_matcher) for the given argument type Container. |
| 2822 | // Symmetric to ContainsMatcherImpl. |
| 2823 | template <typename Container> |
| 2824 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
| 2825 | public: |
| 2826 | template <typename InnerMatcher> |
| 2827 | explicit EachMatcherImpl(InnerMatcher inner_matcher) |
| 2828 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
| 2829 | |
| 2830 | // Describes what this matcher does. |
| 2831 | void DescribeTo(::std::ostream* os) const override { |
| 2832 | *os << "only contains elements that " ; |
| 2833 | this->inner_matcher_.DescribeTo(os); |
| 2834 | } |
| 2835 | |
| 2836 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2837 | *os << "contains some element that " ; |
| 2838 | this->inner_matcher_.DescribeNegationTo(os); |
| 2839 | } |
| 2840 | |
| 2841 | bool MatchAndExplain(Container container, |
| 2842 | MatchResultListener* listener) const override { |
| 2843 | return this->MatchAndExplainImpl(true, container, listener); |
| 2844 | } |
| 2845 | }; |
| 2846 | |
| 2847 | // Implements Contains(element_matcher).Times(n) for the given argument type |
| 2848 | // Container. |
| 2849 | template <typename Container> |
| 2850 | class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> { |
| 2851 | public: |
| 2852 | template <typename InnerMatcher> |
| 2853 | explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher, |
| 2854 | Matcher<size_t> count_matcher) |
| 2855 | : QuantifierMatcherImpl<Container>(inner_matcher), |
| 2856 | count_matcher_(std::move(count_matcher)) {} |
| 2857 | |
| 2858 | void DescribeTo(::std::ostream* os) const override { |
| 2859 | *os << "quantity of elements that match " ; |
| 2860 | this->inner_matcher_.DescribeTo(os); |
| 2861 | *os << " " ; |
| 2862 | count_matcher_.DescribeTo(os); |
| 2863 | } |
| 2864 | |
| 2865 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2866 | *os << "quantity of elements that match " ; |
| 2867 | this->inner_matcher_.DescribeTo(os); |
| 2868 | *os << " " ; |
| 2869 | count_matcher_.DescribeNegationTo(os); |
| 2870 | } |
| 2871 | |
| 2872 | bool MatchAndExplain(Container container, |
| 2873 | MatchResultListener* listener) const override { |
| 2874 | return this->MatchAndExplainImpl(count_matcher_, container, listener); |
| 2875 | } |
| 2876 | |
| 2877 | private: |
| 2878 | const Matcher<size_t> count_matcher_; |
| 2879 | }; |
| 2880 | |
| 2881 | // Implements polymorphic Contains(element_matcher).Times(n). |
| 2882 | template <typename M> |
| 2883 | class ContainsTimesMatcher { |
| 2884 | public: |
| 2885 | explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher) |
| 2886 | : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {} |
| 2887 | |
| 2888 | template <typename Container> |
| 2889 | operator Matcher<Container>() const { // NOLINT |
| 2890 | return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>( |
| 2891 | inner_matcher_, count_matcher_)); |
| 2892 | } |
| 2893 | |
| 2894 | private: |
| 2895 | const M inner_matcher_; |
| 2896 | const Matcher<size_t> count_matcher_; |
| 2897 | }; |
| 2898 | |
| 2899 | // Implements polymorphic Contains(element_matcher). |
| 2900 | template <typename M> |
| 2901 | class ContainsMatcher { |
| 2902 | public: |
| 2903 | explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
| 2904 | |
| 2905 | template <typename Container> |
| 2906 | operator Matcher<Container>() const { // NOLINT |
| 2907 | return Matcher<Container>( |
| 2908 | new ContainsMatcherImpl<const Container&>(inner_matcher_)); |
| 2909 | } |
| 2910 | |
| 2911 | ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const { |
| 2912 | return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher)); |
| 2913 | } |
| 2914 | |
| 2915 | private: |
| 2916 | const M inner_matcher_; |
| 2917 | }; |
| 2918 | |
| 2919 | // Implements polymorphic Each(element_matcher). |
| 2920 | template <typename M> |
| 2921 | class EachMatcher { |
| 2922 | public: |
| 2923 | explicit EachMatcher(M m) : inner_matcher_(m) {} |
| 2924 | |
| 2925 | template <typename Container> |
| 2926 | operator Matcher<Container>() const { // NOLINT |
| 2927 | return Matcher<Container>( |
| 2928 | new EachMatcherImpl<const Container&>(inner_matcher_)); |
| 2929 | } |
| 2930 | |
| 2931 | private: |
| 2932 | const M inner_matcher_; |
| 2933 | }; |
| 2934 | |
| 2935 | struct Rank1 {}; |
| 2936 | struct Rank0 : Rank1 {}; |
| 2937 | |
| 2938 | namespace pair_getters { |
| 2939 | using std::get; |
| 2940 | template <typename T> |
| 2941 | auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
| 2942 | return get<0>(x); |
| 2943 | } |
| 2944 | template <typename T> |
| 2945 | auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
| 2946 | return x.first; |
| 2947 | } |
| 2948 | |
| 2949 | template <typename T> |
| 2950 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
| 2951 | return get<1>(x); |
| 2952 | } |
| 2953 | template <typename T> |
| 2954 | auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
| 2955 | return x.second; |
| 2956 | } |
| 2957 | } // namespace pair_getters |
| 2958 | |
| 2959 | // Implements Key(inner_matcher) for the given argument pair type. |
| 2960 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| 2961 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| 2962 | // std::map that contains at least one element whose key is >= 5. |
| 2963 | template <typename PairType> |
| 2964 | class KeyMatcherImpl : public MatcherInterface<PairType> { |
| 2965 | public: |
| 2966 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| 2967 | typedef typename RawPairType::first_type KeyType; |
| 2968 | |
| 2969 | template <typename InnerMatcher> |
| 2970 | explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
| 2971 | : inner_matcher_( |
| 2972 | testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {} |
| 2973 | |
| 2974 | // Returns true if and only if 'key_value.first' (the key) matches the inner |
| 2975 | // matcher. |
| 2976 | bool MatchAndExplain(PairType key_value, |
| 2977 | MatchResultListener* listener) const override { |
| 2978 | StringMatchResultListener inner_listener; |
| 2979 | const bool match = inner_matcher_.MatchAndExplain( |
| 2980 | pair_getters::First(key_value, Rank0()), &inner_listener); |
| 2981 | const std::string explanation = inner_listener.str(); |
| 2982 | if (!explanation.empty()) { |
| 2983 | *listener << "whose first field is a value " << explanation; |
| 2984 | } |
| 2985 | return match; |
| 2986 | } |
| 2987 | |
| 2988 | // Describes what this matcher does. |
| 2989 | void DescribeTo(::std::ostream* os) const override { |
| 2990 | *os << "has a key that " ; |
| 2991 | inner_matcher_.DescribeTo(os); |
| 2992 | } |
| 2993 | |
| 2994 | // Describes what the negation of this matcher does. |
| 2995 | void DescribeNegationTo(::std::ostream* os) const override { |
| 2996 | *os << "doesn't have a key that " ; |
| 2997 | inner_matcher_.DescribeTo(os); |
| 2998 | } |
| 2999 | |
| 3000 | private: |
| 3001 | const Matcher<const KeyType&> inner_matcher_; |
| 3002 | }; |
| 3003 | |
| 3004 | // Implements polymorphic Key(matcher_for_key). |
| 3005 | template <typename M> |
| 3006 | class KeyMatcher { |
| 3007 | public: |
| 3008 | explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
| 3009 | |
| 3010 | template <typename PairType> |
| 3011 | operator Matcher<PairType>() const { |
| 3012 | return Matcher<PairType>( |
| 3013 | new KeyMatcherImpl<const PairType&>(matcher_for_key_)); |
| 3014 | } |
| 3015 | |
| 3016 | private: |
| 3017 | const M matcher_for_key_; |
| 3018 | }; |
| 3019 | |
| 3020 | // Implements polymorphic Address(matcher_for_address). |
| 3021 | template <typename InnerMatcher> |
| 3022 | class AddressMatcher { |
| 3023 | public: |
| 3024 | explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} |
| 3025 | |
| 3026 | template <typename Type> |
| 3027 | operator Matcher<Type>() const { // NOLINT |
| 3028 | return Matcher<Type>(new Impl<const Type&>(matcher_)); |
| 3029 | } |
| 3030 | |
| 3031 | private: |
| 3032 | // The monomorphic implementation that works for a particular object type. |
| 3033 | template <typename Type> |
| 3034 | class Impl : public MatcherInterface<Type> { |
| 3035 | public: |
| 3036 | using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; |
| 3037 | explicit Impl(const InnerMatcher& matcher) |
| 3038 | : matcher_(MatcherCast<Address>(matcher)) {} |
| 3039 | |
| 3040 | void DescribeTo(::std::ostream* os) const override { |
| 3041 | *os << "has address that " ; |
| 3042 | matcher_.DescribeTo(os); |
| 3043 | } |
| 3044 | |
| 3045 | void DescribeNegationTo(::std::ostream* os) const override { |
| 3046 | *os << "does not have address that " ; |
| 3047 | matcher_.DescribeTo(os); |
| 3048 | } |
| 3049 | |
| 3050 | bool MatchAndExplain(Type object, |
| 3051 | MatchResultListener* listener) const override { |
| 3052 | *listener << "which has address " ; |
| 3053 | Address address = std::addressof(object); |
| 3054 | return MatchPrintAndExplain(address, matcher_, listener); |
| 3055 | } |
| 3056 | |
| 3057 | private: |
| 3058 | const Matcher<Address> matcher_; |
| 3059 | }; |
| 3060 | const InnerMatcher matcher_; |
| 3061 | }; |
| 3062 | |
| 3063 | // Implements Pair(first_matcher, second_matcher) for the given argument pair |
| 3064 | // type with its two matchers. See Pair() function below. |
| 3065 | template <typename PairType> |
| 3066 | class PairMatcherImpl : public MatcherInterface<PairType> { |
| 3067 | public: |
| 3068 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
| 3069 | typedef typename RawPairType::first_type FirstType; |
| 3070 | typedef typename RawPairType::second_type SecondType; |
| 3071 | |
| 3072 | template <typename FirstMatcher, typename SecondMatcher> |
| 3073 | PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| 3074 | : first_matcher_( |
| 3075 | testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
| 3076 | second_matcher_( |
| 3077 | testing::SafeMatcherCast<const SecondType&>(second_matcher)) {} |
| 3078 | |
| 3079 | // Describes what this matcher does. |
| 3080 | void DescribeTo(::std::ostream* os) const override { |
| 3081 | *os << "has a first field that " ; |
| 3082 | first_matcher_.DescribeTo(os); |
| 3083 | *os << ", and has a second field that " ; |
| 3084 | second_matcher_.DescribeTo(os); |
| 3085 | } |
| 3086 | |
| 3087 | // Describes what the negation of this matcher does. |
| 3088 | void DescribeNegationTo(::std::ostream* os) const override { |
| 3089 | *os << "has a first field that " ; |
| 3090 | first_matcher_.DescribeNegationTo(os); |
| 3091 | *os << ", or has a second field that " ; |
| 3092 | second_matcher_.DescribeNegationTo(os); |
| 3093 | } |
| 3094 | |
| 3095 | // Returns true if and only if 'a_pair.first' matches first_matcher and |
| 3096 | // 'a_pair.second' matches second_matcher. |
| 3097 | bool MatchAndExplain(PairType a_pair, |
| 3098 | MatchResultListener* listener) const override { |
| 3099 | if (!listener->IsInterested()) { |
| 3100 | // If the listener is not interested, we don't need to construct the |
| 3101 | // explanation. |
| 3102 | return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
| 3103 | second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
| 3104 | } |
| 3105 | StringMatchResultListener first_inner_listener; |
| 3106 | if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
| 3107 | &first_inner_listener)) { |
| 3108 | *listener << "whose first field does not match" ; |
| 3109 | PrintIfNotEmpty(explanation: first_inner_listener.str(), os: listener->stream()); |
| 3110 | return false; |
| 3111 | } |
| 3112 | StringMatchResultListener second_inner_listener; |
| 3113 | if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
| 3114 | &second_inner_listener)) { |
| 3115 | *listener << "whose second field does not match" ; |
| 3116 | PrintIfNotEmpty(explanation: second_inner_listener.str(), os: listener->stream()); |
| 3117 | return false; |
| 3118 | } |
| 3119 | ExplainSuccess(first_explanation: first_inner_listener.str(), second_explanation: second_inner_listener.str(), |
| 3120 | listener); |
| 3121 | return true; |
| 3122 | } |
| 3123 | |
| 3124 | private: |
| 3125 | void ExplainSuccess(const std::string& first_explanation, |
| 3126 | const std::string& second_explanation, |
| 3127 | MatchResultListener* listener) const { |
| 3128 | *listener << "whose both fields match" ; |
| 3129 | if (!first_explanation.empty()) { |
| 3130 | *listener << ", where the first field is a value " << first_explanation; |
| 3131 | } |
| 3132 | if (!second_explanation.empty()) { |
| 3133 | *listener << ", " ; |
| 3134 | if (!first_explanation.empty()) { |
| 3135 | *listener << "and " ; |
| 3136 | } else { |
| 3137 | *listener << "where " ; |
| 3138 | } |
| 3139 | *listener << "the second field is a value " << second_explanation; |
| 3140 | } |
| 3141 | } |
| 3142 | |
| 3143 | const Matcher<const FirstType&> first_matcher_; |
| 3144 | const Matcher<const SecondType&> second_matcher_; |
| 3145 | }; |
| 3146 | |
| 3147 | // Implements polymorphic Pair(first_matcher, second_matcher). |
| 3148 | template <typename FirstMatcher, typename SecondMatcher> |
| 3149 | class PairMatcher { |
| 3150 | public: |
| 3151 | PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
| 3152 | : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
| 3153 | |
| 3154 | template <typename PairType> |
| 3155 | operator Matcher<PairType>() const { |
| 3156 | return Matcher<PairType>( |
| 3157 | new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); |
| 3158 | } |
| 3159 | |
| 3160 | private: |
| 3161 | const FirstMatcher first_matcher_; |
| 3162 | const SecondMatcher second_matcher_; |
| 3163 | }; |
| 3164 | |
| 3165 | template <typename T, size_t... I> |
| 3166 | auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) |
| 3167 | -> decltype(std::tie(get<I>(t)...)) { |
| 3168 | static_assert(std::tuple_size<T>::value == sizeof...(I), |
| 3169 | "Number of arguments doesn't match the number of fields." ); |
| 3170 | return std::tie(get<I>(t)...); |
| 3171 | } |
| 3172 | |
| 3173 | #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 |
| 3174 | template <typename T> |
| 3175 | auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { |
| 3176 | const auto& [a] = t; |
| 3177 | return std::tie(a); |
| 3178 | } |
| 3179 | template <typename T> |
| 3180 | auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { |
| 3181 | const auto& [a, b] = t; |
| 3182 | return std::tie(a, b); |
| 3183 | } |
| 3184 | template <typename T> |
| 3185 | auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { |
| 3186 | const auto& [a, b, c] = t; |
| 3187 | return std::tie(a, b, c); |
| 3188 | } |
| 3189 | template <typename T> |
| 3190 | auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { |
| 3191 | const auto& [a, b, c, d] = t; |
| 3192 | return std::tie(a, b, c, d); |
| 3193 | } |
| 3194 | template <typename T> |
| 3195 | auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { |
| 3196 | const auto& [a, b, c, d, e] = t; |
| 3197 | return std::tie(a, b, c, d, e); |
| 3198 | } |
| 3199 | template <typename T> |
| 3200 | auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { |
| 3201 | const auto& [a, b, c, d, e, f] = t; |
| 3202 | return std::tie(a, b, c, d, e, f); |
| 3203 | } |
| 3204 | template <typename T> |
| 3205 | auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { |
| 3206 | const auto& [a, b, c, d, e, f, g] = t; |
| 3207 | return std::tie(a, b, c, d, e, f, g); |
| 3208 | } |
| 3209 | template <typename T> |
| 3210 | auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { |
| 3211 | const auto& [a, b, c, d, e, f, g, h] = t; |
| 3212 | return std::tie(a, b, c, d, e, f, g, h); |
| 3213 | } |
| 3214 | template <typename T> |
| 3215 | auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { |
| 3216 | const auto& [a, b, c, d, e, f, g, h, i] = t; |
| 3217 | return std::tie(a, b, c, d, e, f, g, h, i); |
| 3218 | } |
| 3219 | template <typename T> |
| 3220 | auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { |
| 3221 | const auto& [a, b, c, d, e, f, g, h, i, j] = t; |
| 3222 | return std::tie(a, b, c, d, e, f, g, h, i, j); |
| 3223 | } |
| 3224 | template <typename T> |
| 3225 | auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { |
| 3226 | const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; |
| 3227 | return std::tie(a, b, c, d, e, f, g, h, i, j, k); |
| 3228 | } |
| 3229 | template <typename T> |
| 3230 | auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { |
| 3231 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; |
| 3232 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); |
| 3233 | } |
| 3234 | template <typename T> |
| 3235 | auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { |
| 3236 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; |
| 3237 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); |
| 3238 | } |
| 3239 | template <typename T> |
| 3240 | auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { |
| 3241 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; |
| 3242 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); |
| 3243 | } |
| 3244 | template <typename T> |
| 3245 | auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { |
| 3246 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; |
| 3247 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); |
| 3248 | } |
| 3249 | template <typename T> |
| 3250 | auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { |
| 3251 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; |
| 3252 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); |
| 3253 | } |
| 3254 | template <typename T> |
| 3255 | auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) { |
| 3256 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t; |
| 3257 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q); |
| 3258 | } |
| 3259 | template <typename T> |
| 3260 | auto UnpackStructImpl(const T& t, MakeIndexSequence<18>, char) { |
| 3261 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t; |
| 3262 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r); |
| 3263 | } |
| 3264 | template <typename T> |
| 3265 | auto UnpackStructImpl(const T& t, MakeIndexSequence<19>, char) { |
| 3266 | const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t; |
| 3267 | return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s); |
| 3268 | } |
| 3269 | #endif // defined(__cpp_structured_bindings) |
| 3270 | |
| 3271 | template <size_t I, typename T> |
| 3272 | auto UnpackStruct(const T& t) |
| 3273 | -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { |
| 3274 | return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); |
| 3275 | } |
| 3276 | |
| 3277 | // Helper function to do comma folding in C++11. |
| 3278 | // The array ensures left-to-right order of evaluation. |
| 3279 | // Usage: VariadicExpand({expr...}); |
| 3280 | template <typename T, size_t N> |
| 3281 | void VariadicExpand(const T (&)[N]) {} |
| 3282 | |
| 3283 | template <typename Struct, typename StructSize> |
| 3284 | class FieldsAreMatcherImpl; |
| 3285 | |
| 3286 | template <typename Struct, size_t... I> |
| 3287 | class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> |
| 3288 | : public MatcherInterface<Struct> { |
| 3289 | using UnpackedType = |
| 3290 | decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); |
| 3291 | using MatchersType = std::tuple< |
| 3292 | Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; |
| 3293 | |
| 3294 | public: |
| 3295 | template <typename Inner> |
| 3296 | explicit FieldsAreMatcherImpl(const Inner& matchers) |
| 3297 | : matchers_(testing::SafeMatcherCast< |
| 3298 | const typename std::tuple_element<I, UnpackedType>::type&>( |
| 3299 | std::get<I>(matchers))...) {} |
| 3300 | |
| 3301 | void DescribeTo(::std::ostream* os) const override { |
| 3302 | const char* separator = "" ; |
| 3303 | VariadicExpand( |
| 3304 | {(*os << separator << "has field #" << I << " that " , |
| 3305 | std::get<I>(matchers_).DescribeTo(os), separator = ", and " )...}); |
| 3306 | } |
| 3307 | |
| 3308 | void DescribeNegationTo(::std::ostream* os) const override { |
| 3309 | const char* separator = "" ; |
| 3310 | VariadicExpand({(*os << separator << "has field #" << I << " that " , |
| 3311 | std::get<I>(matchers_).DescribeNegationTo(os), |
| 3312 | separator = ", or " )...}); |
| 3313 | } |
| 3314 | |
| 3315 | bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { |
| 3316 | return MatchInternal(tuple: (UnpackStruct<sizeof...(I)>)(t), listener); |
| 3317 | } |
| 3318 | |
| 3319 | private: |
| 3320 | bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { |
| 3321 | if (!listener->IsInterested()) { |
| 3322 | // If the listener is not interested, we don't need to construct the |
| 3323 | // explanation. |
| 3324 | bool good = true; |
| 3325 | VariadicExpand({good = good && std::get<I>(matchers_).Matches( |
| 3326 | std::get<I>(tuple))...}); |
| 3327 | return good; |
| 3328 | } |
| 3329 | |
| 3330 | size_t failed_pos = ~size_t{}; |
| 3331 | |
| 3332 | std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); |
| 3333 | |
| 3334 | VariadicExpand( |
| 3335 | {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( |
| 3336 | std::get<I>(tuple), &inner_listener[I]) |
| 3337 | ? failed_pos = I |
| 3338 | : 0 ...}); |
| 3339 | if (failed_pos != ~size_t{}) { |
| 3340 | *listener << "whose field #" << failed_pos << " does not match" ; |
| 3341 | PrintIfNotEmpty(explanation: inner_listener[failed_pos].str(), os: listener->stream()); |
| 3342 | return false; |
| 3343 | } |
| 3344 | |
| 3345 | *listener << "whose all elements match" ; |
| 3346 | const char* separator = ", where" ; |
| 3347 | for (size_t index = 0; index < sizeof...(I); ++index) { |
| 3348 | const std::string str = inner_listener[index].str(); |
| 3349 | if (!str.empty()) { |
| 3350 | *listener << separator << " field #" << index << " is a value " << str; |
| 3351 | separator = ", and" ; |
| 3352 | } |
| 3353 | } |
| 3354 | |
| 3355 | return true; |
| 3356 | } |
| 3357 | |
| 3358 | MatchersType matchers_; |
| 3359 | }; |
| 3360 | |
| 3361 | template <typename... Inner> |
| 3362 | class FieldsAreMatcher { |
| 3363 | public: |
| 3364 | explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} |
| 3365 | |
| 3366 | template <typename Struct> |
| 3367 | operator Matcher<Struct>() const { // NOLINT |
| 3368 | return Matcher<Struct>( |
| 3369 | new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( |
| 3370 | matchers_)); |
| 3371 | } |
| 3372 | |
| 3373 | private: |
| 3374 | std::tuple<Inner...> matchers_; |
| 3375 | }; |
| 3376 | |
| 3377 | // Implements ElementsAre() and ElementsAreArray(). |
| 3378 | template <typename Container> |
| 3379 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
| 3380 | public: |
| 3381 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 3382 | typedef internal::StlContainerView<RawContainer> View; |
| 3383 | typedef typename View::type StlContainer; |
| 3384 | typedef typename View::const_reference StlContainerReference; |
| 3385 | |
| 3386 | // LLVM local change to support std::begin/std::end. |
| 3387 | // |
| 3388 | // typedef typename StlContainer::value_type Element; |
| 3389 | // |
| 3390 | typedef decltype(std::begin( |
| 3391 | std::declval<StlContainerReference>())) StlContainerConstIterator; |
| 3392 | typedef typename std::remove_reference< |
| 3393 | decltype(*std::declval<StlContainerConstIterator &>())>::type Element; |
| 3394 | // LLVM local change end. |
| 3395 | |
| 3396 | // Constructs the matcher from a sequence of element values or |
| 3397 | // element matchers. |
| 3398 | template <typename InputIter> |
| 3399 | ElementsAreMatcherImpl(InputIter first, InputIter last) { |
| 3400 | while (first != last) { |
| 3401 | matchers_.push_back(MatcherCast<const Element&>(*first++)); |
| 3402 | } |
| 3403 | } |
| 3404 | |
| 3405 | // Describes what this matcher does. |
| 3406 | void DescribeTo(::std::ostream* os) const override { |
| 3407 | if (count() == 0) { |
| 3408 | *os << "is empty" ; |
| 3409 | } else if (count() == 1) { |
| 3410 | *os << "has 1 element that " ; |
| 3411 | matchers_[0].DescribeTo(os); |
| 3412 | } else { |
| 3413 | *os << "has " << Elements(count: count()) << " where\n" ; |
| 3414 | for (size_t i = 0; i != count(); ++i) { |
| 3415 | *os << "element #" << i << " " ; |
| 3416 | matchers_[i].DescribeTo(os); |
| 3417 | if (i + 1 < count()) { |
| 3418 | *os << ",\n" ; |
| 3419 | } |
| 3420 | } |
| 3421 | } |
| 3422 | } |
| 3423 | |
| 3424 | // Describes what the negation of this matcher does. |
| 3425 | void DescribeNegationTo(::std::ostream* os) const override { |
| 3426 | if (count() == 0) { |
| 3427 | *os << "isn't empty" ; |
| 3428 | return; |
| 3429 | } |
| 3430 | |
| 3431 | *os << "doesn't have " << Elements(count: count()) << ", or\n" ; |
| 3432 | for (size_t i = 0; i != count(); ++i) { |
| 3433 | *os << "element #" << i << " " ; |
| 3434 | matchers_[i].DescribeNegationTo(os); |
| 3435 | if (i + 1 < count()) { |
| 3436 | *os << ", or\n" ; |
| 3437 | } |
| 3438 | } |
| 3439 | } |
| 3440 | |
| 3441 | bool MatchAndExplain(Container container, |
| 3442 | MatchResultListener* listener) const override { |
| 3443 | // To work with stream-like "containers", we must only walk |
| 3444 | // through the elements in one pass. |
| 3445 | |
| 3446 | const bool listener_interested = listener->IsInterested(); |
| 3447 | |
| 3448 | // explanations[i] is the explanation of the element at index i. |
| 3449 | ::std::vector<std::string> explanations(count()); |
| 3450 | StlContainerReference stl_container = View::ConstReference(container); |
| 3451 | // LLVM local change to support std::begin/std::end. |
| 3452 | // |
| 3453 | // auto it = stl_container.begin(); |
| 3454 | // |
| 3455 | StlContainerConstIterator it = stl_container.begin(); |
| 3456 | // LLVM local change end. |
| 3457 | size_t exam_pos = 0; |
| 3458 | bool mismatch_found = false; // Have we found a mismatched element yet? |
| 3459 | |
| 3460 | // Go through the elements and matchers in pairs, until we reach |
| 3461 | // the end of either the elements or the matchers, or until we find a |
| 3462 | // mismatch. |
| 3463 | for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
| 3464 | bool match; // Does the current element match the current matcher? |
| 3465 | if (listener_interested) { |
| 3466 | StringMatchResultListener s; |
| 3467 | match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
| 3468 | explanations[exam_pos] = s.str(); |
| 3469 | } else { |
| 3470 | match = matchers_[exam_pos].Matches(*it); |
| 3471 | } |
| 3472 | |
| 3473 | if (!match) { |
| 3474 | mismatch_found = true; |
| 3475 | break; |
| 3476 | } |
| 3477 | } |
| 3478 | // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
| 3479 | |
| 3480 | // Find how many elements the actual container has. We avoid |
| 3481 | // calling size() s.t. this code works for stream-like "containers" |
| 3482 | // that don't define size(). |
| 3483 | size_t actual_count = exam_pos; |
| 3484 | for (; it != stl_container.end(); ++it) { |
| 3485 | ++actual_count; |
| 3486 | } |
| 3487 | |
| 3488 | if (actual_count != count()) { |
| 3489 | // The element count doesn't match. If the container is empty, |
| 3490 | // there's no need to explain anything as Google Mock already |
| 3491 | // prints the empty container. Otherwise we just need to show |
| 3492 | // how many elements there actually are. |
| 3493 | if (listener_interested && (actual_count != 0)) { |
| 3494 | *listener << "which has " << Elements(count: actual_count); |
| 3495 | } |
| 3496 | return false; |
| 3497 | } |
| 3498 | |
| 3499 | if (mismatch_found) { |
| 3500 | // The element count matches, but the exam_pos-th element doesn't match. |
| 3501 | if (listener_interested) { |
| 3502 | *listener << "whose element #" << exam_pos << " doesn't match" ; |
| 3503 | PrintIfNotEmpty(explanation: explanations[exam_pos], os: listener->stream()); |
| 3504 | } |
| 3505 | return false; |
| 3506 | } |
| 3507 | |
| 3508 | // Every element matches its expectation. We need to explain why |
| 3509 | // (the obvious ones can be skipped). |
| 3510 | if (listener_interested) { |
| 3511 | bool reason_printed = false; |
| 3512 | for (size_t i = 0; i != count(); ++i) { |
| 3513 | const std::string& s = explanations[i]; |
| 3514 | if (!s.empty()) { |
| 3515 | if (reason_printed) { |
| 3516 | *listener << ",\nand " ; |
| 3517 | } |
| 3518 | *listener << "whose element #" << i << " matches, " << s; |
| 3519 | reason_printed = true; |
| 3520 | } |
| 3521 | } |
| 3522 | } |
| 3523 | return true; |
| 3524 | } |
| 3525 | |
| 3526 | private: |
| 3527 | static Message Elements(size_t count) { |
| 3528 | return Message() << count << (count == 1 ? " element" : " elements" ); |
| 3529 | } |
| 3530 | |
| 3531 | size_t count() const { return matchers_.size(); } |
| 3532 | |
| 3533 | ::std::vector<Matcher<const Element&>> matchers_; |
| 3534 | }; |
| 3535 | |
| 3536 | // Connectivity matrix of (elements X matchers), in element-major order. |
| 3537 | // Initially, there are no edges. |
| 3538 | // Use NextGraph() to iterate over all possible edge configurations. |
| 3539 | // Use Randomize() to generate a random edge configuration. |
| 3540 | class GTEST_API_ MatchMatrix { |
| 3541 | public: |
| 3542 | MatchMatrix(size_t num_elements, size_t num_matchers) |
| 3543 | : num_elements_(num_elements), |
| 3544 | num_matchers_(num_matchers), |
| 3545 | matched_(num_elements_ * num_matchers_, 0) {} |
| 3546 | |
| 3547 | size_t LhsSize() const { return num_elements_; } |
| 3548 | size_t RhsSize() const { return num_matchers_; } |
| 3549 | bool HasEdge(size_t ilhs, size_t irhs) const { |
| 3550 | return matched_[SpaceIndex(ilhs, irhs)] == 1; |
| 3551 | } |
| 3552 | void SetEdge(size_t ilhs, size_t irhs, bool b) { |
| 3553 | matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
| 3554 | } |
| 3555 | |
| 3556 | // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
| 3557 | // adds 1 to that number; returns false if incrementing the graph left it |
| 3558 | // empty. |
| 3559 | bool NextGraph(); |
| 3560 | |
| 3561 | void Randomize(); |
| 3562 | |
| 3563 | std::string DebugString() const; |
| 3564 | |
| 3565 | private: |
| 3566 | size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
| 3567 | return ilhs * num_matchers_ + irhs; |
| 3568 | } |
| 3569 | |
| 3570 | size_t num_elements_; |
| 3571 | size_t num_matchers_; |
| 3572 | |
| 3573 | // Each element is a char interpreted as bool. They are stored as a |
| 3574 | // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
| 3575 | // a (ilhs, irhs) matrix coordinate into an offset. |
| 3576 | ::std::vector<char> matched_; |
| 3577 | }; |
| 3578 | |
| 3579 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
| 3580 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
| 3581 | |
| 3582 | // Returns a maximum bipartite matching for the specified graph 'g'. |
| 3583 | // The matching is represented as a vector of {element, matcher} pairs. |
| 3584 | GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g); |
| 3585 | |
| 3586 | struct UnorderedMatcherRequire { |
| 3587 | enum Flags { |
| 3588 | Superset = 1 << 0, |
| 3589 | Subset = 1 << 1, |
| 3590 | ExactMatch = Superset | Subset, |
| 3591 | }; |
| 3592 | }; |
| 3593 | |
| 3594 | // Untyped base class for implementing UnorderedElementsAre. By |
| 3595 | // putting logic that's not specific to the element type here, we |
| 3596 | // reduce binary bloat and increase compilation speed. |
| 3597 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
| 3598 | protected: |
| 3599 | explicit UnorderedElementsAreMatcherImplBase( |
| 3600 | UnorderedMatcherRequire::Flags matcher_flags) |
| 3601 | : match_flags_(matcher_flags) {} |
| 3602 | |
| 3603 | // A vector of matcher describers, one for each element matcher. |
| 3604 | // Does not own the describers (and thus can be used only when the |
| 3605 | // element matchers are alive). |
| 3606 | typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
| 3607 | |
| 3608 | // Describes this UnorderedElementsAre matcher. |
| 3609 | void DescribeToImpl(::std::ostream* os) const; |
| 3610 | |
| 3611 | // Describes the negation of this UnorderedElementsAre matcher. |
| 3612 | void DescribeNegationToImpl(::std::ostream* os) const; |
| 3613 | |
| 3614 | bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
| 3615 | const MatchMatrix& matrix, |
| 3616 | MatchResultListener* listener) const; |
| 3617 | |
| 3618 | bool FindPairing(const MatchMatrix& matrix, |
| 3619 | MatchResultListener* listener) const; |
| 3620 | |
| 3621 | MatcherDescriberVec& matcher_describers() { return matcher_describers_; } |
| 3622 | |
| 3623 | static Message Elements(size_t n) { |
| 3624 | return Message() << n << " element" << (n == 1 ? "" : "s" ); |
| 3625 | } |
| 3626 | |
| 3627 | UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
| 3628 | |
| 3629 | private: |
| 3630 | UnorderedMatcherRequire::Flags match_flags_; |
| 3631 | MatcherDescriberVec matcher_describers_; |
| 3632 | }; |
| 3633 | |
| 3634 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
| 3635 | // IsSupersetOf. |
| 3636 | template <typename Container> |
| 3637 | class UnorderedElementsAreMatcherImpl |
| 3638 | : public MatcherInterface<Container>, |
| 3639 | public UnorderedElementsAreMatcherImplBase { |
| 3640 | public: |
| 3641 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 3642 | typedef internal::StlContainerView<RawContainer> View; |
| 3643 | typedef typename View::type StlContainer; |
| 3644 | typedef typename View::const_reference StlContainerReference; |
| 3645 | // LLVM local change to support std::begin/std::end. |
| 3646 | // |
| 3647 | // typedef typename StlContainer::value_type Element; |
| 3648 | typedef decltype(std::begin( |
| 3649 | std::declval<StlContainerReference>())) StlContainerConstIterator; |
| 3650 | typedef typename std::remove_reference< |
| 3651 | decltype(*std::declval<StlContainerConstIterator &>())>::type Element; |
| 3652 | // LLVM local change end. |
| 3653 | template <typename InputIter> |
| 3654 | UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
| 3655 | InputIter first, InputIter last) |
| 3656 | : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
| 3657 | for (; first != last; ++first) { |
| 3658 | matchers_.push_back(MatcherCast<const Element&>(*first)); |
| 3659 | } |
| 3660 | for (const auto& m : matchers_) { |
| 3661 | matcher_describers().push_back(m.GetDescriber()); |
| 3662 | } |
| 3663 | } |
| 3664 | |
| 3665 | // Describes what this matcher does. |
| 3666 | void DescribeTo(::std::ostream* os) const override { |
| 3667 | return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
| 3668 | } |
| 3669 | |
| 3670 | // Describes what the negation of this matcher does. |
| 3671 | void DescribeNegationTo(::std::ostream* os) const override { |
| 3672 | return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
| 3673 | } |
| 3674 | |
| 3675 | bool MatchAndExplain(Container container, |
| 3676 | MatchResultListener* listener) const override { |
| 3677 | StlContainerReference stl_container = View::ConstReference(container); |
| 3678 | ::std::vector<std::string> element_printouts; |
| 3679 | MatchMatrix matrix = |
| 3680 | AnalyzeElements(stl_container.begin(), stl_container.end(), |
| 3681 | &element_printouts, listener); |
| 3682 | |
| 3683 | return VerifyMatchMatrix(element_printouts, matrix, listener) && |
| 3684 | FindPairing(matrix, listener); |
| 3685 | } |
| 3686 | |
| 3687 | private: |
| 3688 | template <typename ElementIter> |
| 3689 | MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
| 3690 | ::std::vector<std::string>* element_printouts, |
| 3691 | MatchResultListener* listener) const { |
| 3692 | element_printouts->clear(); |
| 3693 | ::std::vector<char> did_match; |
| 3694 | size_t num_elements = 0; |
| 3695 | DummyMatchResultListener dummy; |
| 3696 | for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
| 3697 | if (listener->IsInterested()) { |
| 3698 | element_printouts->push_back(PrintToString(*elem_first)); |
| 3699 | } |
| 3700 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| 3701 | did_match.push_back( |
| 3702 | matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); |
| 3703 | } |
| 3704 | } |
| 3705 | |
| 3706 | MatchMatrix matrix(num_elements, matchers_.size()); |
| 3707 | ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
| 3708 | for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
| 3709 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
| 3710 | matrix.SetEdge(ilhs, irhs, b: *did_match_iter++ != 0); |
| 3711 | } |
| 3712 | } |
| 3713 | return matrix; |
| 3714 | } |
| 3715 | |
| 3716 | ::std::vector<Matcher<const Element&>> matchers_; |
| 3717 | }; |
| 3718 | |
| 3719 | // Functor for use in TransformTuple. |
| 3720 | // Performs MatcherCast<Target> on an input argument of any type. |
| 3721 | template <typename Target> |
| 3722 | struct CastAndAppendTransform { |
| 3723 | template <typename Arg> |
| 3724 | Matcher<Target> operator()(const Arg& a) const { |
| 3725 | return MatcherCast<Target>(a); |
| 3726 | } |
| 3727 | }; |
| 3728 | |
| 3729 | // Implements UnorderedElementsAre. |
| 3730 | template <typename MatcherTuple> |
| 3731 | class UnorderedElementsAreMatcher { |
| 3732 | public: |
| 3733 | explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
| 3734 | : matchers_(args) {} |
| 3735 | |
| 3736 | template <typename Container> |
| 3737 | operator Matcher<Container>() const { |
| 3738 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 3739 | // LLVM local change to support std::begin/std::end. |
| 3740 | // |
| 3741 | // typedef typename internal::StlContainerView<RawContainer>::type View; |
| 3742 | // typedef typename View::value_type Element; |
| 3743 | // |
| 3744 | typedef internal::StlContainerView<RawContainer> View; |
| 3745 | typedef typename View::const_reference StlContainerReference; |
| 3746 | typedef decltype(std::begin( |
| 3747 | std::declval<StlContainerReference>())) StlContainerConstIterator; |
| 3748 | typedef typename std::remove_reference< |
| 3749 | decltype(*std::declval<StlContainerConstIterator &>())>::type Element; |
| 3750 | // LLVM local change end. |
| 3751 | typedef ::std::vector<Matcher<const Element&>> MatcherVec; |
| 3752 | MatcherVec matchers; |
| 3753 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
| 3754 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| 3755 | ::std::back_inserter(matchers)); |
| 3756 | return Matcher<Container>( |
| 3757 | new UnorderedElementsAreMatcherImpl<const Container&>( |
| 3758 | UnorderedMatcherRequire::ExactMatch, matchers.begin(), |
| 3759 | matchers.end())); |
| 3760 | } |
| 3761 | |
| 3762 | private: |
| 3763 | const MatcherTuple matchers_; |
| 3764 | }; |
| 3765 | |
| 3766 | // Implements ElementsAre. |
| 3767 | template <typename MatcherTuple> |
| 3768 | class ElementsAreMatcher { |
| 3769 | public: |
| 3770 | explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
| 3771 | |
| 3772 | template <typename Container> |
| 3773 | operator Matcher<Container>() const { |
| 3774 | static_assert( |
| 3775 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
| 3776 | ::std::tuple_size<MatcherTuple>::value < 2, |
| 3777 | "use UnorderedElementsAre with hash tables" ); |
| 3778 | |
| 3779 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
| 3780 | // LLVM local change to support std::begin/std::end. |
| 3781 | // |
| 3782 | // typedef typename internal::StlContainerView<RawContainer>::type View; |
| 3783 | // typedef typename View::value_type Element; |
| 3784 | // |
| 3785 | typedef internal::StlContainerView<RawContainer> View; |
| 3786 | typedef typename View::const_reference StlContainerReference; |
| 3787 | typedef decltype(std::begin( |
| 3788 | std::declval<StlContainerReference>())) StlContainerConstIterator; |
| 3789 | typedef typename std::remove_reference< |
| 3790 | decltype(*std::declval<StlContainerConstIterator &>())>::type Element; |
| 3791 | // LLVM local change end. |
| 3792 | typedef ::std::vector<Matcher<const Element&>> MatcherVec; |
| 3793 | MatcherVec matchers; |
| 3794 | matchers.reserve(::std::tuple_size<MatcherTuple>::value); |
| 3795 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
| 3796 | ::std::back_inserter(matchers)); |
| 3797 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
| 3798 | matchers.begin(), matchers.end())); |
| 3799 | } |
| 3800 | |
| 3801 | private: |
| 3802 | const MatcherTuple matchers_; |
| 3803 | }; |
| 3804 | |
| 3805 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
| 3806 | template <typename T> |
| 3807 | class UnorderedElementsAreArrayMatcher { |
| 3808 | public: |
| 3809 | template <typename Iter> |
| 3810 | UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
| 3811 | Iter first, Iter last) |
| 3812 | : match_flags_(match_flags), matchers_(first, last) {} |
| 3813 | |
| 3814 | template <typename Container> |
| 3815 | operator Matcher<Container>() const { |
| 3816 | return Matcher<Container>( |
| 3817 | new UnorderedElementsAreMatcherImpl<const Container&>( |
| 3818 | match_flags_, matchers_.begin(), matchers_.end())); |
| 3819 | } |
| 3820 | |
| 3821 | private: |
| 3822 | UnorderedMatcherRequire::Flags match_flags_; |
| 3823 | ::std::vector<T> matchers_; |
| 3824 | }; |
| 3825 | |
| 3826 | // Implements ElementsAreArray(). |
| 3827 | template <typename T> |
| 3828 | class ElementsAreArrayMatcher { |
| 3829 | public: |
| 3830 | template <typename Iter> |
| 3831 | ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
| 3832 | |
| 3833 | template <typename Container> |
| 3834 | operator Matcher<Container>() const { |
| 3835 | static_assert( |
| 3836 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
| 3837 | "use UnorderedElementsAreArray with hash tables" ); |
| 3838 | |
| 3839 | return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( |
| 3840 | matchers_.begin(), matchers_.end())); |
| 3841 | } |
| 3842 | |
| 3843 | private: |
| 3844 | const ::std::vector<T> matchers_; |
| 3845 | }; |
| 3846 | |
| 3847 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
| 3848 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
| 3849 | // second) is a polymorphic matcher that matches a value x if and only if |
| 3850 | // tm matches tuple (x, second). Useful for implementing |
| 3851 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
| 3852 | // |
| 3853 | // BoundSecondMatcher is copyable and assignable, as we need to put |
| 3854 | // instances of this class in a vector when implementing |
| 3855 | // UnorderedPointwise(). |
| 3856 | template <typename Tuple2Matcher, typename Second> |
| 3857 | class BoundSecondMatcher { |
| 3858 | public: |
| 3859 | BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
| 3860 | : tuple2_matcher_(tm), second_value_(second) {} |
| 3861 | |
| 3862 | BoundSecondMatcher(const BoundSecondMatcher& other) = default; |
| 3863 | |
| 3864 | template <typename T> |
| 3865 | operator Matcher<T>() const { |
| 3866 | return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
| 3867 | } |
| 3868 | |
| 3869 | // We have to define this for UnorderedPointwise() to compile in |
| 3870 | // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
| 3871 | // which requires the elements to be assignable in C++98. The |
| 3872 | // compiler cannot generate the operator= for us, as Tuple2Matcher |
| 3873 | // and Second may not be assignable. |
| 3874 | // |
| 3875 | // However, this should never be called, so the implementation just |
| 3876 | // need to assert. |
| 3877 | void operator=(const BoundSecondMatcher& /*rhs*/) { |
| 3878 | GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned." ; |
| 3879 | } |
| 3880 | |
| 3881 | private: |
| 3882 | template <typename T> |
| 3883 | class Impl : public MatcherInterface<T> { |
| 3884 | public: |
| 3885 | typedef ::std::tuple<T, Second> ArgTuple; |
| 3886 | |
| 3887 | Impl(const Tuple2Matcher& tm, const Second& second) |
| 3888 | : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
| 3889 | second_value_(second) {} |
| 3890 | |
| 3891 | void DescribeTo(::std::ostream* os) const override { |
| 3892 | *os << "and " ; |
| 3893 | UniversalPrint(second_value_, os); |
| 3894 | *os << " " ; |
| 3895 | mono_tuple2_matcher_.DescribeTo(os); |
| 3896 | } |
| 3897 | |
| 3898 | bool MatchAndExplain(T x, MatchResultListener* listener) const override { |
| 3899 | return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
| 3900 | listener); |
| 3901 | } |
| 3902 | |
| 3903 | private: |
| 3904 | const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
| 3905 | const Second second_value_; |
| 3906 | }; |
| 3907 | |
| 3908 | const Tuple2Matcher tuple2_matcher_; |
| 3909 | const Second second_value_; |
| 3910 | }; |
| 3911 | |
| 3912 | // Given a 2-tuple matcher tm and a value second, |
| 3913 | // MatcherBindSecond(tm, second) returns a matcher that matches a |
| 3914 | // value x if and only if tm matches tuple (x, second). Useful for |
| 3915 | // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
| 3916 | template <typename Tuple2Matcher, typename Second> |
| 3917 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
| 3918 | const Tuple2Matcher& tm, const Second& second) { |
| 3919 | return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
| 3920 | } |
| 3921 | |
| 3922 | // Returns the description for a matcher defined using the MATCHER*() |
| 3923 | // macro where the user-supplied description string is "", if |
| 3924 | // 'negation' is false; otherwise returns the description of the |
| 3925 | // negation of the matcher. 'param_values' contains a list of strings |
| 3926 | // that are the print-out of the matcher's parameters. |
| 3927 | GTEST_API_ std::string FormatMatcherDescription( |
| 3928 | bool negation, const char* matcher_name, |
| 3929 | const std::vector<const char*>& param_names, const Strings& param_values); |
| 3930 | |
| 3931 | // Implements a matcher that checks the value of a optional<> type variable. |
| 3932 | template <typename ValueMatcher> |
| 3933 | class OptionalMatcher { |
| 3934 | public: |
| 3935 | explicit OptionalMatcher(const ValueMatcher& value_matcher) |
| 3936 | : value_matcher_(value_matcher) {} |
| 3937 | |
| 3938 | template <typename Optional> |
| 3939 | operator Matcher<Optional>() const { |
| 3940 | return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); |
| 3941 | } |
| 3942 | |
| 3943 | template <typename Optional> |
| 3944 | class Impl : public MatcherInterface<Optional> { |
| 3945 | public: |
| 3946 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
| 3947 | typedef typename OptionalView::value_type ValueType; |
| 3948 | explicit Impl(const ValueMatcher& value_matcher) |
| 3949 | : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
| 3950 | |
| 3951 | void DescribeTo(::std::ostream* os) const override { |
| 3952 | *os << "value " ; |
| 3953 | value_matcher_.DescribeTo(os); |
| 3954 | } |
| 3955 | |
| 3956 | void DescribeNegationTo(::std::ostream* os) const override { |
| 3957 | *os << "value " ; |
| 3958 | value_matcher_.DescribeNegationTo(os); |
| 3959 | } |
| 3960 | |
| 3961 | bool MatchAndExplain(Optional optional, |
| 3962 | MatchResultListener* listener) const override { |
| 3963 | if (!optional) { |
| 3964 | *listener << "which is not engaged" ; |
| 3965 | return false; |
| 3966 | } |
| 3967 | const ValueType& value = *optional; |
| 3968 | StringMatchResultListener value_listener; |
| 3969 | const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
| 3970 | *listener << "whose value " << PrintToString(value) |
| 3971 | << (match ? " matches" : " doesn't match" ); |
| 3972 | PrintIfNotEmpty(explanation: value_listener.str(), os: listener->stream()); |
| 3973 | return match; |
| 3974 | } |
| 3975 | |
| 3976 | private: |
| 3977 | const Matcher<ValueType> value_matcher_; |
| 3978 | }; |
| 3979 | |
| 3980 | private: |
| 3981 | const ValueMatcher value_matcher_; |
| 3982 | }; |
| 3983 | |
| 3984 | namespace variant_matcher { |
| 3985 | // Overloads to allow VariantMatcher to do proper ADL lookup. |
| 3986 | template <typename T> |
| 3987 | void holds_alternative() {} |
| 3988 | template <typename T> |
| 3989 | void get() {} |
| 3990 | |
| 3991 | // Implements a matcher that checks the value of a variant<> type variable. |
| 3992 | template <typename T> |
| 3993 | class VariantMatcher { |
| 3994 | public: |
| 3995 | explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
| 3996 | : matcher_(std::move(matcher)) {} |
| 3997 | |
| 3998 | template <typename Variant> |
| 3999 | bool MatchAndExplain(const Variant& value, |
| 4000 | ::testing::MatchResultListener* listener) const { |
| 4001 | using std::get; |
| 4002 | if (!listener->IsInterested()) { |
| 4003 | return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
| 4004 | } |
| 4005 | |
| 4006 | if (!holds_alternative<T>(value)) { |
| 4007 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
| 4008 | return false; |
| 4009 | } |
| 4010 | |
| 4011 | const T& elem = get<T>(value); |
| 4012 | StringMatchResultListener elem_listener; |
| 4013 | const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
| 4014 | *listener << "whose value " << PrintToString(elem) |
| 4015 | << (match ? " matches" : " doesn't match" ); |
| 4016 | PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream()); |
| 4017 | return match; |
| 4018 | } |
| 4019 | |
| 4020 | void DescribeTo(std::ostream* os) const { |
| 4021 | *os << "is a variant<> with value of type '" << GetTypeName() |
| 4022 | << "' and the value " ; |
| 4023 | matcher_.DescribeTo(os); |
| 4024 | } |
| 4025 | |
| 4026 | void DescribeNegationTo(std::ostream* os) const { |
| 4027 | *os << "is a variant<> with value of type other than '" << GetTypeName() |
| 4028 | << "' or the value " ; |
| 4029 | matcher_.DescribeNegationTo(os); |
| 4030 | } |
| 4031 | |
| 4032 | private: |
| 4033 | static std::string GetTypeName() { |
| 4034 | #if GTEST_HAS_RTTI |
| 4035 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
| 4036 | return internal::GetTypeName<T>()); |
| 4037 | #endif |
| 4038 | return "the element type" ; |
| 4039 | } |
| 4040 | |
| 4041 | const ::testing::Matcher<const T&> matcher_; |
| 4042 | }; |
| 4043 | |
| 4044 | } // namespace variant_matcher |
| 4045 | |
| 4046 | namespace any_cast_matcher { |
| 4047 | |
| 4048 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
| 4049 | template <typename T> |
| 4050 | void any_cast() {} |
| 4051 | |
| 4052 | // Implements a matcher that any_casts the value. |
| 4053 | template <typename T> |
| 4054 | class AnyCastMatcher { |
| 4055 | public: |
| 4056 | explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
| 4057 | : matcher_(matcher) {} |
| 4058 | |
| 4059 | template <typename AnyType> |
| 4060 | bool MatchAndExplain(const AnyType& value, |
| 4061 | ::testing::MatchResultListener* listener) const { |
| 4062 | if (!listener->IsInterested()) { |
| 4063 | const T* ptr = any_cast<T>(&value); |
| 4064 | return ptr != nullptr && matcher_.Matches(*ptr); |
| 4065 | } |
| 4066 | |
| 4067 | const T* elem = any_cast<T>(&value); |
| 4068 | if (elem == nullptr) { |
| 4069 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
| 4070 | return false; |
| 4071 | } |
| 4072 | |
| 4073 | StringMatchResultListener elem_listener; |
| 4074 | const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
| 4075 | *listener << "whose value " << PrintToString(*elem) |
| 4076 | << (match ? " matches" : " doesn't match" ); |
| 4077 | PrintIfNotEmpty(explanation: elem_listener.str(), os: listener->stream()); |
| 4078 | return match; |
| 4079 | } |
| 4080 | |
| 4081 | void DescribeTo(std::ostream* os) const { |
| 4082 | *os << "is an 'any' type with value of type '" << GetTypeName() |
| 4083 | << "' and the value " ; |
| 4084 | matcher_.DescribeTo(os); |
| 4085 | } |
| 4086 | |
| 4087 | void DescribeNegationTo(std::ostream* os) const { |
| 4088 | *os << "is an 'any' type with value of type other than '" << GetTypeName() |
| 4089 | << "' or the value " ; |
| 4090 | matcher_.DescribeNegationTo(os); |
| 4091 | } |
| 4092 | |
| 4093 | private: |
| 4094 | static std::string GetTypeName() { |
| 4095 | #if GTEST_HAS_RTTI |
| 4096 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
| 4097 | return internal::GetTypeName<T>()); |
| 4098 | #endif |
| 4099 | return "the element type" ; |
| 4100 | } |
| 4101 | |
| 4102 | const ::testing::Matcher<const T&> matcher_; |
| 4103 | }; |
| 4104 | |
| 4105 | } // namespace any_cast_matcher |
| 4106 | |
| 4107 | // Implements the Args() matcher. |
| 4108 | template <class ArgsTuple, size_t... k> |
| 4109 | class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { |
| 4110 | public: |
| 4111 | using RawArgsTuple = typename std::decay<ArgsTuple>::type; |
| 4112 | using SelectedArgs = |
| 4113 | std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; |
| 4114 | using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; |
| 4115 | |
| 4116 | template <typename InnerMatcher> |
| 4117 | explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) |
| 4118 | : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} |
| 4119 | |
| 4120 | bool MatchAndExplain(ArgsTuple args, |
| 4121 | MatchResultListener* listener) const override { |
| 4122 | // Workaround spurious C4100 on MSVC<=15.7 when k is empty. |
| 4123 | (void)args; |
| 4124 | const SelectedArgs& selected_args = |
| 4125 | std::forward_as_tuple(std::get<k>(args)...); |
| 4126 | if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); |
| 4127 | |
| 4128 | PrintIndices(os: listener->stream()); |
| 4129 | *listener << "are " << PrintToString(selected_args); |
| 4130 | |
| 4131 | StringMatchResultListener inner_listener; |
| 4132 | const bool match = |
| 4133 | inner_matcher_.MatchAndExplain(selected_args, &inner_listener); |
| 4134 | PrintIfNotEmpty(explanation: inner_listener.str(), os: listener->stream()); |
| 4135 | return match; |
| 4136 | } |
| 4137 | |
| 4138 | void DescribeTo(::std::ostream* os) const override { |
| 4139 | *os << "are a tuple " ; |
| 4140 | PrintIndices(os); |
| 4141 | inner_matcher_.DescribeTo(os); |
| 4142 | } |
| 4143 | |
| 4144 | void DescribeNegationTo(::std::ostream* os) const override { |
| 4145 | *os << "are a tuple " ; |
| 4146 | PrintIndices(os); |
| 4147 | inner_matcher_.DescribeNegationTo(os); |
| 4148 | } |
| 4149 | |
| 4150 | private: |
| 4151 | // Prints the indices of the selected fields. |
| 4152 | static void PrintIndices(::std::ostream* os) { |
| 4153 | *os << "whose fields (" ; |
| 4154 | const char* sep = "" ; |
| 4155 | // Workaround spurious C4189 on MSVC<=15.7 when k is empty. |
| 4156 | (void)sep; |
| 4157 | // The static_cast to void is needed to silence Clang's -Wcomma warning. |
| 4158 | // This pattern looks suspiciously like we may have mismatched parentheses |
| 4159 | // and may have been trying to use the first operation of the comma operator |
| 4160 | // as a member of the array, so Clang warns that we may have made a mistake. |
| 4161 | const char* dummy[] = { |
| 4162 | "" , (static_cast<void>(*os << sep << "#" << k), sep = ", " )...}; |
| 4163 | (void)dummy; |
| 4164 | *os << ") " ; |
| 4165 | } |
| 4166 | |
| 4167 | MonomorphicInnerMatcher inner_matcher_; |
| 4168 | }; |
| 4169 | |
| 4170 | template <class InnerMatcher, size_t... k> |
| 4171 | class ArgsMatcher { |
| 4172 | public: |
| 4173 | explicit ArgsMatcher(InnerMatcher inner_matcher) |
| 4174 | : inner_matcher_(std::move(inner_matcher)) {} |
| 4175 | |
| 4176 | template <typename ArgsTuple> |
| 4177 | operator Matcher<ArgsTuple>() const { // NOLINT |
| 4178 | return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); |
| 4179 | } |
| 4180 | |
| 4181 | private: |
| 4182 | InnerMatcher inner_matcher_; |
| 4183 | }; |
| 4184 | |
| 4185 | } // namespace internal |
| 4186 | |
| 4187 | // ElementsAreArray(iterator_first, iterator_last) |
| 4188 | // ElementsAreArray(pointer, count) |
| 4189 | // ElementsAreArray(array) |
| 4190 | // ElementsAreArray(container) |
| 4191 | // ElementsAreArray({ e1, e2, ..., en }) |
| 4192 | // |
| 4193 | // The ElementsAreArray() functions are like ElementsAre(...), except |
| 4194 | // that they are given a homogeneous sequence rather than taking each |
| 4195 | // element as a function argument. The sequence can be specified as an |
| 4196 | // array, a pointer and count, a vector, an initializer list, or an |
| 4197 | // STL iterator range. In each of these cases, the underlying sequence |
| 4198 | // can be either a sequence of values or a sequence of matchers. |
| 4199 | // |
| 4200 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
| 4201 | |
| 4202 | template <typename Iter> |
| 4203 | inline internal::ElementsAreArrayMatcher< |
| 4204 | typename ::std::iterator_traits<Iter>::value_type> |
| 4205 | ElementsAreArray(Iter first, Iter last) { |
| 4206 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
| 4207 | return internal::ElementsAreArrayMatcher<T>(first, last); |
| 4208 | } |
| 4209 | |
| 4210 | template <typename T> |
| 4211 | inline auto ElementsAreArray(const T* pointer, size_t count) |
| 4212 | -> decltype(ElementsAreArray(pointer, pointer + count)) { |
| 4213 | return ElementsAreArray(pointer, pointer + count); |
| 4214 | } |
| 4215 | |
| 4216 | template <typename T, size_t N> |
| 4217 | inline auto ElementsAreArray(const T (&array)[N]) |
| 4218 | -> decltype(ElementsAreArray(array, N)) { |
| 4219 | return ElementsAreArray(array, N); |
| 4220 | } |
| 4221 | |
| 4222 | template <typename Container> |
| 4223 | inline auto ElementsAreArray(const Container& container) |
| 4224 | -> decltype(ElementsAreArray(container.begin(), container.end())) { |
| 4225 | return ElementsAreArray(container.begin(), container.end()); |
| 4226 | } |
| 4227 | |
| 4228 | template <typename T> |
| 4229 | inline auto ElementsAreArray(::std::initializer_list<T> xs) |
| 4230 | -> decltype(ElementsAreArray(xs.begin(), xs.end())) { |
| 4231 | return ElementsAreArray(xs.begin(), xs.end()); |
| 4232 | } |
| 4233 | |
| 4234 | // UnorderedElementsAreArray(iterator_first, iterator_last) |
| 4235 | // UnorderedElementsAreArray(pointer, count) |
| 4236 | // UnorderedElementsAreArray(array) |
| 4237 | // UnorderedElementsAreArray(container) |
| 4238 | // UnorderedElementsAreArray({ e1, e2, ..., en }) |
| 4239 | // |
| 4240 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
| 4241 | // collection of matchers exists. |
| 4242 | // |
| 4243 | // The matchers can be specified as an array, a pointer and count, a container, |
| 4244 | // an initializer list, or an STL iterator range. In each of these cases, the |
| 4245 | // underlying matchers can be either values or matchers. |
| 4246 | |
| 4247 | template <typename Iter> |
| 4248 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4249 | typename ::std::iterator_traits<Iter>::value_type> |
| 4250 | UnorderedElementsAreArray(Iter first, Iter last) { |
| 4251 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
| 4252 | return internal::UnorderedElementsAreArrayMatcher<T>( |
| 4253 | internal::UnorderedMatcherRequire::ExactMatch, first, last); |
| 4254 | } |
| 4255 | |
| 4256 | template <typename T> |
| 4257 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
| 4258 | const T* pointer, size_t count) { |
| 4259 | return UnorderedElementsAreArray(pointer, pointer + count); |
| 4260 | } |
| 4261 | |
| 4262 | template <typename T, size_t N> |
| 4263 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
| 4264 | const T (&array)[N]) { |
| 4265 | return UnorderedElementsAreArray(array, N); |
| 4266 | } |
| 4267 | |
| 4268 | template <typename Container> |
| 4269 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4270 | typename Container::value_type> |
| 4271 | UnorderedElementsAreArray(const Container& container) { |
| 4272 | return UnorderedElementsAreArray(container.begin(), container.end()); |
| 4273 | } |
| 4274 | |
| 4275 | template <typename T> |
| 4276 | inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray( |
| 4277 | ::std::initializer_list<T> xs) { |
| 4278 | return UnorderedElementsAreArray(xs.begin(), xs.end()); |
| 4279 | } |
| 4280 | |
| 4281 | // _ is a matcher that matches anything of any type. |
| 4282 | // |
| 4283 | // This definition is fine as: |
| 4284 | // |
| 4285 | // 1. The C++ standard permits using the name _ in a namespace that |
| 4286 | // is not the global namespace or ::std. |
| 4287 | // 2. The AnythingMatcher class has no data member or constructor, |
| 4288 | // so it's OK to create global variables of this type. |
| 4289 | // 3. c-style has approved of using _ in this case. |
| 4290 | const internal::AnythingMatcher _ = {}; |
| 4291 | // Creates a matcher that matches any value of the given type T. |
| 4292 | template <typename T> |
| 4293 | inline Matcher<T> A() { |
| 4294 | return _; |
| 4295 | } |
| 4296 | |
| 4297 | // Creates a matcher that matches any value of the given type T. |
| 4298 | template <typename T> |
| 4299 | inline Matcher<T> An() { |
| 4300 | return _; |
| 4301 | } |
| 4302 | |
| 4303 | template <typename T, typename M> |
| 4304 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
| 4305 | const M& value, std::false_type /* convertible_to_matcher */, |
| 4306 | std::false_type /* convertible_to_T */) { |
| 4307 | return Eq(value); |
| 4308 | } |
| 4309 | |
| 4310 | // Creates a polymorphic matcher that matches any NULL pointer. |
| 4311 | inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() { |
| 4312 | return MakePolymorphicMatcher(impl: internal::IsNullMatcher()); |
| 4313 | } |
| 4314 | |
| 4315 | // Creates a polymorphic matcher that matches any non-NULL pointer. |
| 4316 | // This is convenient as Not(NULL) doesn't compile (the compiler |
| 4317 | // thinks that that expression is comparing a pointer with an integer). |
| 4318 | inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() { |
| 4319 | return MakePolymorphicMatcher(impl: internal::NotNullMatcher()); |
| 4320 | } |
| 4321 | |
| 4322 | // Creates a polymorphic matcher that matches any argument that |
| 4323 | // references variable x. |
| 4324 | template <typename T> |
| 4325 | inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
| 4326 | return internal::RefMatcher<T&>(x); |
| 4327 | } |
| 4328 | |
| 4329 | // Creates a polymorphic matcher that matches any NaN floating point. |
| 4330 | inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { |
| 4331 | return MakePolymorphicMatcher(impl: internal::IsNanMatcher()); |
| 4332 | } |
| 4333 | |
| 4334 | // Creates a matcher that matches any double argument approximately |
| 4335 | // equal to rhs, where two NANs are considered unequal. |
| 4336 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
| 4337 | return internal::FloatingEqMatcher<double>(rhs, false); |
| 4338 | } |
| 4339 | |
| 4340 | // Creates a matcher that matches any double argument approximately |
| 4341 | // equal to rhs, including NaN values when rhs is NaN. |
| 4342 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
| 4343 | return internal::FloatingEqMatcher<double>(rhs, true); |
| 4344 | } |
| 4345 | |
| 4346 | // Creates a matcher that matches any double argument approximately equal to |
| 4347 | // rhs, up to the specified max absolute error bound, where two NANs are |
| 4348 | // considered unequal. The max absolute error bound must be non-negative. |
| 4349 | inline internal::FloatingEqMatcher<double> DoubleNear(double rhs, |
| 4350 | double max_abs_error) { |
| 4351 | return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
| 4352 | } |
| 4353 | |
| 4354 | // Creates a matcher that matches any double argument approximately equal to |
| 4355 | // rhs, up to the specified max absolute error bound, including NaN values when |
| 4356 | // rhs is NaN. The max absolute error bound must be non-negative. |
| 4357 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
| 4358 | double rhs, double max_abs_error) { |
| 4359 | return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
| 4360 | } |
| 4361 | |
| 4362 | // Creates a matcher that matches any float argument approximately |
| 4363 | // equal to rhs, where two NANs are considered unequal. |
| 4364 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
| 4365 | return internal::FloatingEqMatcher<float>(rhs, false); |
| 4366 | } |
| 4367 | |
| 4368 | // Creates a matcher that matches any float argument approximately |
| 4369 | // equal to rhs, including NaN values when rhs is NaN. |
| 4370 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
| 4371 | return internal::FloatingEqMatcher<float>(rhs, true); |
| 4372 | } |
| 4373 | |
| 4374 | // Creates a matcher that matches any float argument approximately equal to |
| 4375 | // rhs, up to the specified max absolute error bound, where two NANs are |
| 4376 | // considered unequal. The max absolute error bound must be non-negative. |
| 4377 | inline internal::FloatingEqMatcher<float> FloatNear(float rhs, |
| 4378 | float max_abs_error) { |
| 4379 | return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
| 4380 | } |
| 4381 | |
| 4382 | // Creates a matcher that matches any float argument approximately equal to |
| 4383 | // rhs, up to the specified max absolute error bound, including NaN values when |
| 4384 | // rhs is NaN. The max absolute error bound must be non-negative. |
| 4385 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
| 4386 | float rhs, float max_abs_error) { |
| 4387 | return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
| 4388 | } |
| 4389 | |
| 4390 | // Creates a matcher that matches a pointer (raw or smart) that points |
| 4391 | // to a value that matches inner_matcher. |
| 4392 | template <typename InnerMatcher> |
| 4393 | inline internal::PointeeMatcher<InnerMatcher> Pointee( |
| 4394 | const InnerMatcher& inner_matcher) { |
| 4395 | return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
| 4396 | } |
| 4397 | |
| 4398 | #if GTEST_HAS_RTTI |
| 4399 | // Creates a matcher that matches a pointer or reference that matches |
| 4400 | // inner_matcher when dynamic_cast<To> is applied. |
| 4401 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
| 4402 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
| 4403 | // If To is a reference and the cast fails, this matcher returns false |
| 4404 | // immediately. |
| 4405 | template <typename To> |
| 4406 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>> |
| 4407 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
| 4408 | return MakePolymorphicMatcher( |
| 4409 | internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
| 4410 | } |
| 4411 | #endif // GTEST_HAS_RTTI |
| 4412 | |
| 4413 | // Creates a matcher that matches an object whose given field matches |
| 4414 | // 'matcher'. For example, |
| 4415 | // Field(&Foo::number, Ge(5)) |
| 4416 | // matches a Foo object x if and only if x.number >= 5. |
| 4417 | template <typename Class, typename FieldType, typename FieldMatcher> |
| 4418 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( |
| 4419 | FieldType Class::*field, const FieldMatcher& matcher) { |
| 4420 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
| 4421 | field, MatcherCast<const FieldType&>(matcher))); |
| 4422 | // The call to MatcherCast() is required for supporting inner |
| 4423 | // matchers of compatible types. For example, it allows |
| 4424 | // Field(&Foo::bar, m) |
| 4425 | // to compile where bar is an int32 and m is a matcher for int64. |
| 4426 | } |
| 4427 | |
| 4428 | // Same as Field() but also takes the name of the field to provide better error |
| 4429 | // messages. |
| 4430 | template <typename Class, typename FieldType, typename FieldMatcher> |
| 4431 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field( |
| 4432 | const std::string& field_name, FieldType Class::*field, |
| 4433 | const FieldMatcher& matcher) { |
| 4434 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
| 4435 | field_name, field, MatcherCast<const FieldType&>(matcher))); |
| 4436 | } |
| 4437 | |
| 4438 | // Creates a matcher that matches an object whose given property |
| 4439 | // matches 'matcher'. For example, |
| 4440 | // Property(&Foo::str, StartsWith("hi")) |
| 4441 | // matches a Foo object x if and only if x.str() starts with "hi". |
| 4442 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
| 4443 | inline PolymorphicMatcher<internal::PropertyMatcher< |
| 4444 | Class, PropertyType, PropertyType (Class::*)() const>> |
| 4445 | Property(PropertyType (Class::*property)() const, |
| 4446 | const PropertyMatcher& matcher) { |
| 4447 | return MakePolymorphicMatcher( |
| 4448 | internal::PropertyMatcher<Class, PropertyType, |
| 4449 | PropertyType (Class::*)() const>( |
| 4450 | property, MatcherCast<const PropertyType&>(matcher))); |
| 4451 | // The call to MatcherCast() is required for supporting inner |
| 4452 | // matchers of compatible types. For example, it allows |
| 4453 | // Property(&Foo::bar, m) |
| 4454 | // to compile where bar() returns an int32 and m is a matcher for int64. |
| 4455 | } |
| 4456 | |
| 4457 | // Same as Property() above, but also takes the name of the property to provide |
| 4458 | // better error messages. |
| 4459 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
| 4460 | inline PolymorphicMatcher<internal::PropertyMatcher< |
| 4461 | Class, PropertyType, PropertyType (Class::*)() const>> |
| 4462 | Property(const std::string& property_name, |
| 4463 | PropertyType (Class::*property)() const, |
| 4464 | const PropertyMatcher& matcher) { |
| 4465 | return MakePolymorphicMatcher( |
| 4466 | internal::PropertyMatcher<Class, PropertyType, |
| 4467 | PropertyType (Class::*)() const>( |
| 4468 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
| 4469 | } |
| 4470 | |
| 4471 | // The same as above but for reference-qualified member functions. |
| 4472 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
| 4473 | inline PolymorphicMatcher<internal::PropertyMatcher< |
| 4474 | Class, PropertyType, PropertyType (Class::*)() const&>> |
| 4475 | Property(PropertyType (Class::*property)() const&, |
| 4476 | const PropertyMatcher& matcher) { |
| 4477 | return MakePolymorphicMatcher( |
| 4478 | internal::PropertyMatcher<Class, PropertyType, |
| 4479 | PropertyType (Class::*)() const&>( |
| 4480 | property, MatcherCast<const PropertyType&>(matcher))); |
| 4481 | } |
| 4482 | |
| 4483 | // Three-argument form for reference-qualified member functions. |
| 4484 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
| 4485 | inline PolymorphicMatcher<internal::PropertyMatcher< |
| 4486 | Class, PropertyType, PropertyType (Class::*)() const&>> |
| 4487 | Property(const std::string& property_name, |
| 4488 | PropertyType (Class::*property)() const&, |
| 4489 | const PropertyMatcher& matcher) { |
| 4490 | return MakePolymorphicMatcher( |
| 4491 | internal::PropertyMatcher<Class, PropertyType, |
| 4492 | PropertyType (Class::*)() const&>( |
| 4493 | property_name, property, MatcherCast<const PropertyType&>(matcher))); |
| 4494 | } |
| 4495 | |
| 4496 | // Creates a matcher that matches an object if and only if the result of |
| 4497 | // applying a callable to x matches 'matcher'. For example, |
| 4498 | // ResultOf(f, StartsWith("hi")) |
| 4499 | // matches a Foo object x if and only if f(x) starts with "hi". |
| 4500 | // `callable` parameter can be a function, function pointer, or a functor. It is |
| 4501 | // required to keep no state affecting the results of the calls on it and make |
| 4502 | // no assumptions about how many calls will be made. Any state it keeps must be |
| 4503 | // protected from the concurrent access. |
| 4504 | template <typename Callable, typename InnerMatcher> |
| 4505 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
| 4506 | Callable callable, InnerMatcher matcher) { |
| 4507 | return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable), |
| 4508 | std::move(matcher)); |
| 4509 | } |
| 4510 | |
| 4511 | // Same as ResultOf() above, but also takes a description of the `callable` |
| 4512 | // result to provide better error messages. |
| 4513 | template <typename Callable, typename InnerMatcher> |
| 4514 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
| 4515 | const std::string& result_description, Callable callable, |
| 4516 | InnerMatcher matcher) { |
| 4517 | return internal::ResultOfMatcher<Callable, InnerMatcher>( |
| 4518 | result_description, std::move(callable), std::move(matcher)); |
| 4519 | } |
| 4520 | |
| 4521 | // String matchers. |
| 4522 | |
| 4523 | // Matches a string equal to str. |
| 4524 | template <typename T = std::string> |
| 4525 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq( |
| 4526 | const internal::StringLike<T>& str) { |
| 4527 | return MakePolymorphicMatcher( |
| 4528 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); |
| 4529 | } |
| 4530 | |
| 4531 | // Matches a string not equal to str. |
| 4532 | template <typename T = std::string> |
| 4533 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe( |
| 4534 | const internal::StringLike<T>& str) { |
| 4535 | return MakePolymorphicMatcher( |
| 4536 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); |
| 4537 | } |
| 4538 | |
| 4539 | // Matches a string equal to str, ignoring case. |
| 4540 | template <typename T = std::string> |
| 4541 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq( |
| 4542 | const internal::StringLike<T>& str) { |
| 4543 | return MakePolymorphicMatcher( |
| 4544 | impl: internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); |
| 4545 | } |
| 4546 | |
| 4547 | // Matches a string not equal to str, ignoring case. |
| 4548 | template <typename T = std::string> |
| 4549 | PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe( |
| 4550 | const internal::StringLike<T>& str) { |
| 4551 | return MakePolymorphicMatcher(impl: internal::StrEqualityMatcher<std::string>( |
| 4552 | std::string(str), false, false)); |
| 4553 | } |
| 4554 | |
| 4555 | // Creates a matcher that matches any string, std::string, or C string |
| 4556 | // that contains the given substring. |
| 4557 | template <typename T = std::string> |
| 4558 | PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr( |
| 4559 | const internal::StringLike<T>& substring) { |
| 4560 | return MakePolymorphicMatcher( |
| 4561 | impl: internal::HasSubstrMatcher<std::string>(std::string(substring))); |
| 4562 | } |
| 4563 | |
| 4564 | // Matches a string that starts with 'prefix' (case-sensitive). |
| 4565 | template <typename T = std::string> |
| 4566 | PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith( |
| 4567 | const internal::StringLike<T>& prefix) { |
| 4568 | return MakePolymorphicMatcher( |
| 4569 | impl: internal::StartsWithMatcher<std::string>(std::string(prefix))); |
| 4570 | } |
| 4571 | |
| 4572 | // Matches a string that ends with 'suffix' (case-sensitive). |
| 4573 | template <typename T = std::string> |
| 4574 | PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith( |
| 4575 | const internal::StringLike<T>& suffix) { |
| 4576 | return MakePolymorphicMatcher( |
| 4577 | impl: internal::EndsWithMatcher<std::string>(std::string(suffix))); |
| 4578 | } |
| 4579 | |
| 4580 | #if GTEST_HAS_STD_WSTRING |
| 4581 | // Wide string matchers. |
| 4582 | |
| 4583 | // Matches a string equal to str. |
| 4584 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq( |
| 4585 | const std::wstring& str) { |
| 4586 | return MakePolymorphicMatcher( |
| 4587 | impl: internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
| 4588 | } |
| 4589 | |
| 4590 | // Matches a string not equal to str. |
| 4591 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe( |
| 4592 | const std::wstring& str) { |
| 4593 | return MakePolymorphicMatcher( |
| 4594 | impl: internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
| 4595 | } |
| 4596 | |
| 4597 | // Matches a string equal to str, ignoring case. |
| 4598 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq( |
| 4599 | const std::wstring& str) { |
| 4600 | return MakePolymorphicMatcher( |
| 4601 | impl: internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
| 4602 | } |
| 4603 | |
| 4604 | // Matches a string not equal to str, ignoring case. |
| 4605 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe( |
| 4606 | const std::wstring& str) { |
| 4607 | return MakePolymorphicMatcher( |
| 4608 | impl: internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
| 4609 | } |
| 4610 | |
| 4611 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
| 4612 | // that contains the given substring. |
| 4613 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr( |
| 4614 | const std::wstring& substring) { |
| 4615 | return MakePolymorphicMatcher( |
| 4616 | impl: internal::HasSubstrMatcher<std::wstring>(substring)); |
| 4617 | } |
| 4618 | |
| 4619 | // Matches a string that starts with 'prefix' (case-sensitive). |
| 4620 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith( |
| 4621 | const std::wstring& prefix) { |
| 4622 | return MakePolymorphicMatcher( |
| 4623 | impl: internal::StartsWithMatcher<std::wstring>(prefix)); |
| 4624 | } |
| 4625 | |
| 4626 | // Matches a string that ends with 'suffix' (case-sensitive). |
| 4627 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith( |
| 4628 | const std::wstring& suffix) { |
| 4629 | return MakePolymorphicMatcher( |
| 4630 | impl: internal::EndsWithMatcher<std::wstring>(suffix)); |
| 4631 | } |
| 4632 | |
| 4633 | #endif // GTEST_HAS_STD_WSTRING |
| 4634 | |
| 4635 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 4636 | // first field == the second field. |
| 4637 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
| 4638 | |
| 4639 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 4640 | // first field >= the second field. |
| 4641 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
| 4642 | |
| 4643 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 4644 | // first field > the second field. |
| 4645 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
| 4646 | |
| 4647 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 4648 | // first field <= the second field. |
| 4649 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
| 4650 | |
| 4651 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 4652 | // first field < the second field. |
| 4653 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
| 4654 | |
| 4655 | // Creates a polymorphic matcher that matches a 2-tuple where the |
| 4656 | // first field != the second field. |
| 4657 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
| 4658 | |
| 4659 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 4660 | // FloatEq(first field) matches the second field. |
| 4661 | inline internal::FloatingEq2Matcher<float> FloatEq() { |
| 4662 | return internal::FloatingEq2Matcher<float>(); |
| 4663 | } |
| 4664 | |
| 4665 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 4666 | // DoubleEq(first field) matches the second field. |
| 4667 | inline internal::FloatingEq2Matcher<double> DoubleEq() { |
| 4668 | return internal::FloatingEq2Matcher<double>(); |
| 4669 | } |
| 4670 | |
| 4671 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 4672 | // FloatEq(first field) matches the second field with NaN equality. |
| 4673 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
| 4674 | return internal::FloatingEq2Matcher<float>(true); |
| 4675 | } |
| 4676 | |
| 4677 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 4678 | // DoubleEq(first field) matches the second field with NaN equality. |
| 4679 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
| 4680 | return internal::FloatingEq2Matcher<double>(true); |
| 4681 | } |
| 4682 | |
| 4683 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 4684 | // FloatNear(first field, max_abs_error) matches the second field. |
| 4685 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
| 4686 | return internal::FloatingEq2Matcher<float>(max_abs_error); |
| 4687 | } |
| 4688 | |
| 4689 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 4690 | // DoubleNear(first field, max_abs_error) matches the second field. |
| 4691 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
| 4692 | return internal::FloatingEq2Matcher<double>(max_abs_error); |
| 4693 | } |
| 4694 | |
| 4695 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 4696 | // FloatNear(first field, max_abs_error) matches the second field with NaN |
| 4697 | // equality. |
| 4698 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
| 4699 | float max_abs_error) { |
| 4700 | return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
| 4701 | } |
| 4702 | |
| 4703 | // Creates a polymorphic matcher that matches a 2-tuple where |
| 4704 | // DoubleNear(first field, max_abs_error) matches the second field with NaN |
| 4705 | // equality. |
| 4706 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
| 4707 | double max_abs_error) { |
| 4708 | return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
| 4709 | } |
| 4710 | |
| 4711 | // Creates a matcher that matches any value of type T that m doesn't |
| 4712 | // match. |
| 4713 | template <typename InnerMatcher> |
| 4714 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
| 4715 | return internal::NotMatcher<InnerMatcher>(m); |
| 4716 | } |
| 4717 | |
| 4718 | // Returns a matcher that matches anything that satisfies the given |
| 4719 | // predicate. The predicate can be any unary function or functor |
| 4720 | // whose return type can be implicitly converted to bool. |
| 4721 | template <typename Predicate> |
| 4722 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly( |
| 4723 | Predicate pred) { |
| 4724 | return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
| 4725 | } |
| 4726 | |
| 4727 | // Returns a matcher that matches the container size. The container must |
| 4728 | // support both size() and size_type which all STL-like containers provide. |
| 4729 | // Note that the parameter 'size' can be a value of type size_type as well as |
| 4730 | // matcher. For instance: |
| 4731 | // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
| 4732 | // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
| 4733 | template <typename SizeMatcher> |
| 4734 | inline internal::SizeIsMatcher<SizeMatcher> SizeIs( |
| 4735 | const SizeMatcher& size_matcher) { |
| 4736 | return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
| 4737 | } |
| 4738 | |
| 4739 | // Returns a matcher that matches the distance between the container's begin() |
| 4740 | // iterator and its end() iterator, i.e. the size of the container. This matcher |
| 4741 | // can be used instead of SizeIs with containers such as std::forward_list which |
| 4742 | // do not implement size(). The container must provide const_iterator (with |
| 4743 | // valid iterator_traits), begin() and end(). |
| 4744 | template <typename DistanceMatcher> |
| 4745 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs( |
| 4746 | const DistanceMatcher& distance_matcher) { |
| 4747 | return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
| 4748 | } |
| 4749 | |
| 4750 | // Returns a matcher that matches an equal container. |
| 4751 | // This matcher behaves like Eq(), but in the event of mismatch lists the |
| 4752 | // values that are included in one container but not the other. (Duplicate |
| 4753 | // values and order differences are not explained.) |
| 4754 | template <typename Container> |
| 4755 | inline PolymorphicMatcher< |
| 4756 | internal::ContainerEqMatcher<typename std::remove_const<Container>::type>> |
| 4757 | ContainerEq(const Container& rhs) { |
| 4758 | return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); |
| 4759 | } |
| 4760 | |
| 4761 | // Returns a matcher that matches a container that, when sorted using |
| 4762 | // the given comparator, matches container_matcher. |
| 4763 | template <typename Comparator, typename ContainerMatcher> |
| 4764 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy( |
| 4765 | const Comparator& comparator, const ContainerMatcher& container_matcher) { |
| 4766 | return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
| 4767 | comparator, container_matcher); |
| 4768 | } |
| 4769 | |
| 4770 | // Returns a matcher that matches a container that, when sorted using |
| 4771 | // the < operator, matches container_matcher. |
| 4772 | template <typename ContainerMatcher> |
| 4773 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
| 4774 | WhenSorted(const ContainerMatcher& container_matcher) { |
| 4775 | return internal::WhenSortedByMatcher<internal::LessComparator, |
| 4776 | ContainerMatcher>( |
| 4777 | internal::LessComparator(), container_matcher); |
| 4778 | } |
| 4779 | |
| 4780 | // Matches an STL-style container or a native array that contains the |
| 4781 | // same number of elements as in rhs, where its i-th element and rhs's |
| 4782 | // i-th element (as a pair) satisfy the given pair matcher, for all i. |
| 4783 | // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const |
| 4784 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
| 4785 | // LHS container and the RHS container respectively. |
| 4786 | template <typename TupleMatcher, typename Container> |
| 4787 | inline internal::PointwiseMatcher<TupleMatcher, |
| 4788 | typename std::remove_const<Container>::type> |
| 4789 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
| 4790 | return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, |
| 4791 | rhs); |
| 4792 | } |
| 4793 | |
| 4794 | // Supports the Pointwise(m, {a, b, c}) syntax. |
| 4795 | template <typename TupleMatcher, typename T> |
| 4796 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise( |
| 4797 | const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
| 4798 | return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
| 4799 | } |
| 4800 | |
| 4801 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
| 4802 | // container or a native array that contains the same number of |
| 4803 | // elements as in rhs, where in some permutation of the container, its |
| 4804 | // i-th element and rhs's i-th element (as a pair) satisfy the given |
| 4805 | // pair matcher, for all i. Tuple2Matcher must be able to be safely |
| 4806 | // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are |
| 4807 | // the types of elements in the LHS container and the RHS container |
| 4808 | // respectively. |
| 4809 | // |
| 4810 | // This is like Pointwise(pair_matcher, rhs), except that the element |
| 4811 | // order doesn't matter. |
| 4812 | template <typename Tuple2Matcher, typename RhsContainer> |
| 4813 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4814 | typename internal::BoundSecondMatcher< |
| 4815 | Tuple2Matcher, |
| 4816 | typename internal::StlContainerView< |
| 4817 | typename std::remove_const<RhsContainer>::type>::type::value_type>> |
| 4818 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
| 4819 | const RhsContainer& rhs_container) { |
| 4820 | // RhsView allows the same code to handle RhsContainer being a |
| 4821 | // STL-style container and it being a native C-style array. |
| 4822 | typedef typename internal::StlContainerView<RhsContainer> RhsView; |
| 4823 | typedef typename RhsView::type RhsStlContainer; |
| 4824 | typedef typename RhsStlContainer::value_type Second; |
| 4825 | const RhsStlContainer& rhs_stl_container = |
| 4826 | RhsView::ConstReference(rhs_container); |
| 4827 | |
| 4828 | // Create a matcher for each element in rhs_container. |
| 4829 | ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers; |
| 4830 | for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end(); |
| 4831 | ++it) { |
| 4832 | matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it)); |
| 4833 | } |
| 4834 | |
| 4835 | // Delegate the work to UnorderedElementsAreArray(). |
| 4836 | return UnorderedElementsAreArray(matchers); |
| 4837 | } |
| 4838 | |
| 4839 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
| 4840 | template <typename Tuple2Matcher, typename T> |
| 4841 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4842 | typename internal::BoundSecondMatcher<Tuple2Matcher, T>> |
| 4843 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
| 4844 | std::initializer_list<T> rhs) { |
| 4845 | return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
| 4846 | } |
| 4847 | |
| 4848 | // Matches an STL-style container or a native array that contains at |
| 4849 | // least one element matching the given value or matcher. |
| 4850 | // |
| 4851 | // Examples: |
| 4852 | // ::std::set<int> page_ids; |
| 4853 | // page_ids.insert(3); |
| 4854 | // page_ids.insert(1); |
| 4855 | // EXPECT_THAT(page_ids, Contains(1)); |
| 4856 | // EXPECT_THAT(page_ids, Contains(Gt(2))); |
| 4857 | // EXPECT_THAT(page_ids, Not(Contains(4))); // See below for Times(0) |
| 4858 | // |
| 4859 | // ::std::map<int, size_t> page_lengths; |
| 4860 | // page_lengths[1] = 100; |
| 4861 | // EXPECT_THAT(page_lengths, |
| 4862 | // Contains(::std::pair<const int, size_t>(1, 100))); |
| 4863 | // |
| 4864 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
| 4865 | // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
| 4866 | // |
| 4867 | // The matcher supports a modifier `Times` that allows to check for arbitrary |
| 4868 | // occurrences including testing for absence with Times(0). |
| 4869 | // |
| 4870 | // Examples: |
| 4871 | // ::std::vector<int> ids; |
| 4872 | // ids.insert(1); |
| 4873 | // ids.insert(1); |
| 4874 | // ids.insert(3); |
| 4875 | // EXPECT_THAT(ids, Contains(1).Times(2)); // 1 occurs 2 times |
| 4876 | // EXPECT_THAT(ids, Contains(2).Times(0)); // 2 is not present |
| 4877 | // EXPECT_THAT(ids, Contains(3).Times(Ge(1))); // 3 occurs at least once |
| 4878 | |
| 4879 | template <typename M> |
| 4880 | inline internal::ContainsMatcher<M> Contains(M matcher) { |
| 4881 | return internal::ContainsMatcher<M>(matcher); |
| 4882 | } |
| 4883 | |
| 4884 | // IsSupersetOf(iterator_first, iterator_last) |
| 4885 | // IsSupersetOf(pointer, count) |
| 4886 | // IsSupersetOf(array) |
| 4887 | // IsSupersetOf(container) |
| 4888 | // IsSupersetOf({e1, e2, ..., en}) |
| 4889 | // |
| 4890 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
| 4891 | // of matchers exists. In other words, a container matches |
| 4892 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
| 4893 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
| 4894 | // ..., and yn matches en. Obviously, the size of the container must be >= n |
| 4895 | // in order to have a match. Examples: |
| 4896 | // |
| 4897 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
| 4898 | // 1 matches Ne(0). |
| 4899 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
| 4900 | // both Eq(1) and Lt(2). The reason is that different matchers must be used |
| 4901 | // for elements in different slots of the container. |
| 4902 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
| 4903 | // Eq(1) and (the second) 1 matches Lt(2). |
| 4904 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
| 4905 | // Gt(1) and 3 matches (the second) Gt(1). |
| 4906 | // |
| 4907 | // The matchers can be specified as an array, a pointer and count, a container, |
| 4908 | // an initializer list, or an STL iterator range. In each of these cases, the |
| 4909 | // underlying matchers can be either values or matchers. |
| 4910 | |
| 4911 | template <typename Iter> |
| 4912 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4913 | typename ::std::iterator_traits<Iter>::value_type> |
| 4914 | IsSupersetOf(Iter first, Iter last) { |
| 4915 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
| 4916 | return internal::UnorderedElementsAreArrayMatcher<T>( |
| 4917 | internal::UnorderedMatcherRequire::Superset, first, last); |
| 4918 | } |
| 4919 | |
| 4920 | template <typename T> |
| 4921 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| 4922 | const T* pointer, size_t count) { |
| 4923 | return IsSupersetOf(pointer, pointer + count); |
| 4924 | } |
| 4925 | |
| 4926 | template <typename T, size_t N> |
| 4927 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| 4928 | const T (&array)[N]) { |
| 4929 | return IsSupersetOf(array, N); |
| 4930 | } |
| 4931 | |
| 4932 | template <typename Container> |
| 4933 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4934 | typename Container::value_type> |
| 4935 | IsSupersetOf(const Container& container) { |
| 4936 | return IsSupersetOf(container.begin(), container.end()); |
| 4937 | } |
| 4938 | |
| 4939 | template <typename T> |
| 4940 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
| 4941 | ::std::initializer_list<T> xs) { |
| 4942 | return IsSupersetOf(xs.begin(), xs.end()); |
| 4943 | } |
| 4944 | |
| 4945 | // IsSubsetOf(iterator_first, iterator_last) |
| 4946 | // IsSubsetOf(pointer, count) |
| 4947 | // IsSubsetOf(array) |
| 4948 | // IsSubsetOf(container) |
| 4949 | // IsSubsetOf({e1, e2, ..., en}) |
| 4950 | // |
| 4951 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
| 4952 | // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
| 4953 | // only if there is a subset of matchers {m1, ..., mk} which would match the |
| 4954 | // container using UnorderedElementsAre. Obviously, the size of the container |
| 4955 | // must be <= n in order to have a match. Examples: |
| 4956 | // |
| 4957 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
| 4958 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
| 4959 | // matches Lt(0). |
| 4960 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
| 4961 | // match Gt(0). The reason is that different matchers must be used for |
| 4962 | // elements in different slots of the container. |
| 4963 | // |
| 4964 | // The matchers can be specified as an array, a pointer and count, a container, |
| 4965 | // an initializer list, or an STL iterator range. In each of these cases, the |
| 4966 | // underlying matchers can be either values or matchers. |
| 4967 | |
| 4968 | template <typename Iter> |
| 4969 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4970 | typename ::std::iterator_traits<Iter>::value_type> |
| 4971 | IsSubsetOf(Iter first, Iter last) { |
| 4972 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
| 4973 | return internal::UnorderedElementsAreArrayMatcher<T>( |
| 4974 | internal::UnorderedMatcherRequire::Subset, first, last); |
| 4975 | } |
| 4976 | |
| 4977 | template <typename T> |
| 4978 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| 4979 | const T* pointer, size_t count) { |
| 4980 | return IsSubsetOf(pointer, pointer + count); |
| 4981 | } |
| 4982 | |
| 4983 | template <typename T, size_t N> |
| 4984 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| 4985 | const T (&array)[N]) { |
| 4986 | return IsSubsetOf(array, N); |
| 4987 | } |
| 4988 | |
| 4989 | template <typename Container> |
| 4990 | inline internal::UnorderedElementsAreArrayMatcher< |
| 4991 | typename Container::value_type> |
| 4992 | IsSubsetOf(const Container& container) { |
| 4993 | return IsSubsetOf(container.begin(), container.end()); |
| 4994 | } |
| 4995 | |
| 4996 | template <typename T> |
| 4997 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
| 4998 | ::std::initializer_list<T> xs) { |
| 4999 | return IsSubsetOf(xs.begin(), xs.end()); |
| 5000 | } |
| 5001 | |
| 5002 | // Matches an STL-style container or a native array that contains only |
| 5003 | // elements matching the given value or matcher. |
| 5004 | // |
| 5005 | // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only |
| 5006 | // the messages are different. |
| 5007 | // |
| 5008 | // Examples: |
| 5009 | // ::std::set<int> page_ids; |
| 5010 | // // Each(m) matches an empty container, regardless of what m is. |
| 5011 | // EXPECT_THAT(page_ids, Each(Eq(1))); |
| 5012 | // EXPECT_THAT(page_ids, Each(Eq(77))); |
| 5013 | // |
| 5014 | // page_ids.insert(3); |
| 5015 | // EXPECT_THAT(page_ids, Each(Gt(0))); |
| 5016 | // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
| 5017 | // page_ids.insert(1); |
| 5018 | // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
| 5019 | // |
| 5020 | // ::std::map<int, size_t> page_lengths; |
| 5021 | // page_lengths[1] = 100; |
| 5022 | // page_lengths[2] = 200; |
| 5023 | // page_lengths[3] = 300; |
| 5024 | // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
| 5025 | // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
| 5026 | // |
| 5027 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
| 5028 | // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
| 5029 | template <typename M> |
| 5030 | inline internal::EachMatcher<M> Each(M matcher) { |
| 5031 | return internal::EachMatcher<M>(matcher); |
| 5032 | } |
| 5033 | |
| 5034 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
| 5035 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
| 5036 | // std::map that contains at least one element whose key is >= 5. |
| 5037 | template <typename M> |
| 5038 | inline internal::KeyMatcher<M> Key(M inner_matcher) { |
| 5039 | return internal::KeyMatcher<M>(inner_matcher); |
| 5040 | } |
| 5041 | |
| 5042 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
| 5043 | // matches first_matcher and whose 'second' field matches second_matcher. For |
| 5044 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
| 5045 | // to match a std::map<int, string> that contains exactly one element whose key |
| 5046 | // is >= 5 and whose value equals "foo". |
| 5047 | template <typename FirstMatcher, typename SecondMatcher> |
| 5048 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair( |
| 5049 | FirstMatcher first_matcher, SecondMatcher second_matcher) { |
| 5050 | return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher, |
| 5051 | second_matcher); |
| 5052 | } |
| 5053 | |
| 5054 | namespace no_adl { |
| 5055 | // Conditional() creates a matcher that conditionally uses either the first or |
| 5056 | // second matcher provided. For example, we could create an `equal if, and only |
| 5057 | // if' matcher using the Conditional wrapper as follows: |
| 5058 | // |
| 5059 | // EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected))); |
| 5060 | template <typename MatcherTrue, typename MatcherFalse> |
| 5061 | internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional( |
| 5062 | bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) { |
| 5063 | return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>( |
| 5064 | condition, std::move(matcher_true), std::move(matcher_false)); |
| 5065 | } |
| 5066 | |
| 5067 | // FieldsAre(matchers...) matches piecewise the fields of compatible structs. |
| 5068 | // These include those that support `get<I>(obj)`, and when structured bindings |
| 5069 | // are enabled any class that supports them. |
| 5070 | // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. |
| 5071 | template <typename... M> |
| 5072 | internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( |
| 5073 | M&&... matchers) { |
| 5074 | return internal::FieldsAreMatcher<typename std::decay<M>::type...>( |
| 5075 | std::forward<M>(matchers)...); |
| 5076 | } |
| 5077 | |
| 5078 | // Creates a matcher that matches a pointer (raw or smart) that matches |
| 5079 | // inner_matcher. |
| 5080 | template <typename InnerMatcher> |
| 5081 | inline internal::PointerMatcher<InnerMatcher> Pointer( |
| 5082 | const InnerMatcher& inner_matcher) { |
| 5083 | return internal::PointerMatcher<InnerMatcher>(inner_matcher); |
| 5084 | } |
| 5085 | |
| 5086 | // Creates a matcher that matches an object that has an address that matches |
| 5087 | // inner_matcher. |
| 5088 | template <typename InnerMatcher> |
| 5089 | inline internal::AddressMatcher<InnerMatcher> Address( |
| 5090 | const InnerMatcher& inner_matcher) { |
| 5091 | return internal::AddressMatcher<InnerMatcher>(inner_matcher); |
| 5092 | } |
| 5093 | |
| 5094 | // Matches a base64 escaped string, when the unescaped string matches the |
| 5095 | // internal matcher. |
| 5096 | template <typename MatcherType> |
| 5097 | internal::WhenBase64UnescapedMatcher WhenBase64Unescaped( |
| 5098 | const MatcherType& internal_matcher) { |
| 5099 | return internal::WhenBase64UnescapedMatcher(internal_matcher); |
| 5100 | } |
| 5101 | } // namespace no_adl |
| 5102 | |
| 5103 | // Returns a predicate that is satisfied by anything that matches the |
| 5104 | // given matcher. |
| 5105 | template <typename M> |
| 5106 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
| 5107 | return internal::MatcherAsPredicate<M>(matcher); |
| 5108 | } |
| 5109 | |
| 5110 | // Returns true if and only if the value matches the matcher. |
| 5111 | template <typename T, typename M> |
| 5112 | inline bool Value(const T& value, M matcher) { |
| 5113 | return testing::Matches(matcher)(value); |
| 5114 | } |
| 5115 | |
| 5116 | // Matches the value against the given matcher and explains the match |
| 5117 | // result to listener. |
| 5118 | template <typename T, typename M> |
| 5119 | inline bool ExplainMatchResult(M matcher, const T& value, |
| 5120 | MatchResultListener* listener) { |
| 5121 | return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
| 5122 | } |
| 5123 | |
| 5124 | // Returns a string representation of the given matcher. Useful for description |
| 5125 | // strings of matchers defined using MATCHER_P* macros that accept matchers as |
| 5126 | // their arguments. For example: |
| 5127 | // |
| 5128 | // MATCHER_P(XAndYThat, matcher, |
| 5129 | // "X that " + DescribeMatcher<int>(matcher, negation) + |
| 5130 | // (negation ? " or" : " and") + " Y that " + |
| 5131 | // DescribeMatcher<double>(matcher, negation)) { |
| 5132 | // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
| 5133 | // ExplainMatchResult(matcher, arg.y(), result_listener); |
| 5134 | // } |
| 5135 | template <typename T, typename M> |
| 5136 | std::string DescribeMatcher(const M& matcher, bool negation = false) { |
| 5137 | ::std::stringstream ss; |
| 5138 | Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
| 5139 | if (negation) { |
| 5140 | monomorphic_matcher.DescribeNegationTo(&ss); |
| 5141 | } else { |
| 5142 | monomorphic_matcher.DescribeTo(&ss); |
| 5143 | } |
| 5144 | return ss.str(); |
| 5145 | } |
| 5146 | |
| 5147 | template <typename... Args> |
| 5148 | internal::ElementsAreMatcher< |
| 5149 | std::tuple<typename std::decay<const Args&>::type...>> |
| 5150 | ElementsAre(const Args&... matchers) { |
| 5151 | return internal::ElementsAreMatcher< |
| 5152 | std::tuple<typename std::decay<const Args&>::type...>>( |
| 5153 | std::make_tuple(matchers...)); |
| 5154 | } |
| 5155 | |
| 5156 | template <typename... Args> |
| 5157 | internal::UnorderedElementsAreMatcher< |
| 5158 | std::tuple<typename std::decay<const Args&>::type...>> |
| 5159 | UnorderedElementsAre(const Args&... matchers) { |
| 5160 | return internal::UnorderedElementsAreMatcher< |
| 5161 | std::tuple<typename std::decay<const Args&>::type...>>( |
| 5162 | std::make_tuple(matchers...)); |
| 5163 | } |
| 5164 | |
| 5165 | // Define variadic matcher versions. |
| 5166 | template <typename... Args> |
| 5167 | internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
| 5168 | const Args&... matchers) { |
| 5169 | return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
| 5170 | matchers...); |
| 5171 | } |
| 5172 | |
| 5173 | template <typename... Args> |
| 5174 | internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
| 5175 | const Args&... matchers) { |
| 5176 | return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
| 5177 | matchers...); |
| 5178 | } |
| 5179 | |
| 5180 | // AnyOfArray(array) |
| 5181 | // AnyOfArray(pointer, count) |
| 5182 | // AnyOfArray(container) |
| 5183 | // AnyOfArray({ e1, e2, ..., en }) |
| 5184 | // AnyOfArray(iterator_first, iterator_last) |
| 5185 | // |
| 5186 | // AnyOfArray() verifies whether a given value matches any member of a |
| 5187 | // collection of matchers. |
| 5188 | // |
| 5189 | // AllOfArray(array) |
| 5190 | // AllOfArray(pointer, count) |
| 5191 | // AllOfArray(container) |
| 5192 | // AllOfArray({ e1, e2, ..., en }) |
| 5193 | // AllOfArray(iterator_first, iterator_last) |
| 5194 | // |
| 5195 | // AllOfArray() verifies whether a given value matches all members of a |
| 5196 | // collection of matchers. |
| 5197 | // |
| 5198 | // The matchers can be specified as an array, a pointer and count, a container, |
| 5199 | // an initializer list, or an STL iterator range. In each of these cases, the |
| 5200 | // underlying matchers can be either values or matchers. |
| 5201 | |
| 5202 | template <typename Iter> |
| 5203 | inline internal::AnyOfArrayMatcher< |
| 5204 | typename ::std::iterator_traits<Iter>::value_type> |
| 5205 | AnyOfArray(Iter first, Iter last) { |
| 5206 | return internal::AnyOfArrayMatcher< |
| 5207 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
| 5208 | } |
| 5209 | |
| 5210 | template <typename Iter> |
| 5211 | inline internal::AllOfArrayMatcher< |
| 5212 | typename ::std::iterator_traits<Iter>::value_type> |
| 5213 | AllOfArray(Iter first, Iter last) { |
| 5214 | return internal::AllOfArrayMatcher< |
| 5215 | typename ::std::iterator_traits<Iter>::value_type>(first, last); |
| 5216 | } |
| 5217 | |
| 5218 | template <typename T> |
| 5219 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { |
| 5220 | return AnyOfArray(ptr, ptr + count); |
| 5221 | } |
| 5222 | |
| 5223 | template <typename T> |
| 5224 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { |
| 5225 | return AllOfArray(ptr, ptr + count); |
| 5226 | } |
| 5227 | |
| 5228 | template <typename T, size_t N> |
| 5229 | inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { |
| 5230 | return AnyOfArray(array, N); |
| 5231 | } |
| 5232 | |
| 5233 | template <typename T, size_t N> |
| 5234 | inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { |
| 5235 | return AllOfArray(array, N); |
| 5236 | } |
| 5237 | |
| 5238 | template <typename Container> |
| 5239 | inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( |
| 5240 | const Container& container) { |
| 5241 | return AnyOfArray(container.begin(), container.end()); |
| 5242 | } |
| 5243 | |
| 5244 | template <typename Container> |
| 5245 | inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( |
| 5246 | const Container& container) { |
| 5247 | return AllOfArray(container.begin(), container.end()); |
| 5248 | } |
| 5249 | |
| 5250 | template <typename T> |
| 5251 | inline internal::AnyOfArrayMatcher<T> AnyOfArray( |
| 5252 | ::std::initializer_list<T> xs) { |
| 5253 | return AnyOfArray(xs.begin(), xs.end()); |
| 5254 | } |
| 5255 | |
| 5256 | template <typename T> |
| 5257 | inline internal::AllOfArrayMatcher<T> AllOfArray( |
| 5258 | ::std::initializer_list<T> xs) { |
| 5259 | return AllOfArray(xs.begin(), xs.end()); |
| 5260 | } |
| 5261 | |
| 5262 | // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected |
| 5263 | // fields of it matches a_matcher. C++ doesn't support default |
| 5264 | // arguments for function templates, so we have to overload it. |
| 5265 | template <size_t... k, typename InnerMatcher> |
| 5266 | internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( |
| 5267 | InnerMatcher&& matcher) { |
| 5268 | return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( |
| 5269 | std::forward<InnerMatcher>(matcher)); |
| 5270 | } |
| 5271 | |
| 5272 | // AllArgs(m) is a synonym of m. This is useful in |
| 5273 | // |
| 5274 | // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
| 5275 | // |
| 5276 | // which is easier to read than |
| 5277 | // |
| 5278 | // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
| 5279 | template <typename InnerMatcher> |
| 5280 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { |
| 5281 | return matcher; |
| 5282 | } |
| 5283 | |
| 5284 | // Returns a matcher that matches the value of an optional<> type variable. |
| 5285 | // The matcher implementation only uses '!arg' and requires that the optional<> |
| 5286 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
| 5287 | // and is printable using 'PrintToString'. It is compatible with |
| 5288 | // std::optional/std::experimental::optional. |
| 5289 | // Note that to compare an optional type variable against nullopt you should |
| 5290 | // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the |
| 5291 | // optional value contains an optional itself. |
| 5292 | template <typename ValueMatcher> |
| 5293 | inline internal::OptionalMatcher<ValueMatcher> Optional( |
| 5294 | const ValueMatcher& value_matcher) { |
| 5295 | return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
| 5296 | } |
| 5297 | |
| 5298 | // Returns a matcher that matches the value of a absl::any type variable. |
| 5299 | template <typename T> |
| 5300 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith( |
| 5301 | const Matcher<const T&>& matcher) { |
| 5302 | return MakePolymorphicMatcher( |
| 5303 | internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
| 5304 | } |
| 5305 | |
| 5306 | // Returns a matcher that matches the value of a variant<> type variable. |
| 5307 | // The matcher implementation uses ADL to find the holds_alternative and get |
| 5308 | // functions. |
| 5309 | // It is compatible with std::variant. |
| 5310 | template <typename T> |
| 5311 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith( |
| 5312 | const Matcher<const T&>& matcher) { |
| 5313 | return MakePolymorphicMatcher( |
| 5314 | internal::variant_matcher::VariantMatcher<T>(matcher)); |
| 5315 | } |
| 5316 | |
| 5317 | #if GTEST_HAS_EXCEPTIONS |
| 5318 | |
| 5319 | // Anything inside the `internal` namespace is internal to the implementation |
| 5320 | // and must not be used in user code! |
| 5321 | namespace internal { |
| 5322 | |
| 5323 | class WithWhatMatcherImpl { |
| 5324 | public: |
| 5325 | WithWhatMatcherImpl(Matcher<std::string> matcher) |
| 5326 | : matcher_(std::move(matcher)) {} |
| 5327 | |
| 5328 | void DescribeTo(std::ostream* os) const { |
| 5329 | *os << "contains .what() that " ; |
| 5330 | matcher_.DescribeTo(os); |
| 5331 | } |
| 5332 | |
| 5333 | void DescribeNegationTo(std::ostream* os) const { |
| 5334 | *os << "contains .what() that does not " ; |
| 5335 | matcher_.DescribeTo(os); |
| 5336 | } |
| 5337 | |
| 5338 | template <typename Err> |
| 5339 | bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { |
| 5340 | *listener << "which contains .what() (of value = " << err.what() |
| 5341 | << ") that " ; |
| 5342 | return matcher_.MatchAndExplain(err.what(), listener); |
| 5343 | } |
| 5344 | |
| 5345 | private: |
| 5346 | const Matcher<std::string> matcher_; |
| 5347 | }; |
| 5348 | |
| 5349 | inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( |
| 5350 | Matcher<std::string> m) { |
| 5351 | return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); |
| 5352 | } |
| 5353 | |
| 5354 | template <typename Err> |
| 5355 | class ExceptionMatcherImpl { |
| 5356 | class NeverThrown { |
| 5357 | public: |
| 5358 | const char* what() const noexcept { |
| 5359 | return "this exception should never be thrown" ; |
| 5360 | } |
| 5361 | }; |
| 5362 | |
| 5363 | // If the matchee raises an exception of a wrong type, we'd like to |
| 5364 | // catch it and print its message and type. To do that, we add an additional |
| 5365 | // catch clause: |
| 5366 | // |
| 5367 | // try { ... } |
| 5368 | // catch (const Err&) { /* an expected exception */ } |
| 5369 | // catch (const std::exception&) { /* exception of a wrong type */ } |
| 5370 | // |
| 5371 | // However, if the `Err` itself is `std::exception`, we'd end up with two |
| 5372 | // identical `catch` clauses: |
| 5373 | // |
| 5374 | // try { ... } |
| 5375 | // catch (const std::exception&) { /* an expected exception */ } |
| 5376 | // catch (const std::exception&) { /* exception of a wrong type */ } |
| 5377 | // |
| 5378 | // This can cause a warning or an error in some compilers. To resolve |
| 5379 | // the issue, we use a fake error type whenever `Err` is `std::exception`: |
| 5380 | // |
| 5381 | // try { ... } |
| 5382 | // catch (const std::exception&) { /* an expected exception */ } |
| 5383 | // catch (const NeverThrown&) { /* exception of a wrong type */ } |
| 5384 | using DefaultExceptionType = typename std::conditional< |
| 5385 | std::is_same<typename std::remove_cv< |
| 5386 | typename std::remove_reference<Err>::type>::type, |
| 5387 | std::exception>::value, |
| 5388 | const NeverThrown&, const std::exception&>::type; |
| 5389 | |
| 5390 | public: |
| 5391 | ExceptionMatcherImpl(Matcher<const Err&> matcher) |
| 5392 | : matcher_(std::move(matcher)) {} |
| 5393 | |
| 5394 | void DescribeTo(std::ostream* os) const { |
| 5395 | *os << "throws an exception which is a " << GetTypeName<Err>(); |
| 5396 | *os << " which " ; |
| 5397 | matcher_.DescribeTo(os); |
| 5398 | } |
| 5399 | |
| 5400 | void DescribeNegationTo(std::ostream* os) const { |
| 5401 | *os << "throws an exception which is not a " << GetTypeName<Err>(); |
| 5402 | *os << " which " ; |
| 5403 | matcher_.DescribeNegationTo(os); |
| 5404 | } |
| 5405 | |
| 5406 | template <typename T> |
| 5407 | bool MatchAndExplain(T&& x, MatchResultListener* listener) const { |
| 5408 | try { |
| 5409 | (void)(std::forward<T>(x)()); |
| 5410 | } catch (const Err& err) { |
| 5411 | *listener << "throws an exception which is a " << GetTypeName<Err>(); |
| 5412 | *listener << " " ; |
| 5413 | return matcher_.MatchAndExplain(err, listener); |
| 5414 | } catch (DefaultExceptionType err) { |
| 5415 | #if GTEST_HAS_RTTI |
| 5416 | *listener << "throws an exception of type " << GetTypeName(typeid(err)); |
| 5417 | *listener << " " ; |
| 5418 | #else |
| 5419 | *listener << "throws an std::exception-derived type " ; |
| 5420 | #endif |
| 5421 | *listener << "with description \"" << err.what() << "\"" ; |
| 5422 | return false; |
| 5423 | } catch (...) { |
| 5424 | *listener << "throws an exception of an unknown type" ; |
| 5425 | return false; |
| 5426 | } |
| 5427 | |
| 5428 | *listener << "does not throw any exception" ; |
| 5429 | return false; |
| 5430 | } |
| 5431 | |
| 5432 | private: |
| 5433 | const Matcher<const Err&> matcher_; |
| 5434 | }; |
| 5435 | |
| 5436 | } // namespace internal |
| 5437 | |
| 5438 | // Throws() |
| 5439 | // Throws(exceptionMatcher) |
| 5440 | // ThrowsMessage(messageMatcher) |
| 5441 | // |
| 5442 | // This matcher accepts a callable and verifies that when invoked, it throws |
| 5443 | // an exception with the given type and properties. |
| 5444 | // |
| 5445 | // Examples: |
| 5446 | // |
| 5447 | // EXPECT_THAT( |
| 5448 | // []() { throw std::runtime_error("message"); }, |
| 5449 | // Throws<std::runtime_error>()); |
| 5450 | // |
| 5451 | // EXPECT_THAT( |
| 5452 | // []() { throw std::runtime_error("message"); }, |
| 5453 | // ThrowsMessage<std::runtime_error>(HasSubstr("message"))); |
| 5454 | // |
| 5455 | // EXPECT_THAT( |
| 5456 | // []() { throw std::runtime_error("message"); }, |
| 5457 | // Throws<std::runtime_error>( |
| 5458 | // Property(&std::runtime_error::what, HasSubstr("message")))); |
| 5459 | |
| 5460 | template <typename Err> |
| 5461 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { |
| 5462 | return MakePolymorphicMatcher( |
| 5463 | internal::ExceptionMatcherImpl<Err>(A<const Err&>())); |
| 5464 | } |
| 5465 | |
| 5466 | template <typename Err, typename ExceptionMatcher> |
| 5467 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( |
| 5468 | const ExceptionMatcher& exception_matcher) { |
| 5469 | // Using matcher cast allows users to pass a matcher of a more broad type. |
| 5470 | // For example user may want to pass Matcher<std::exception> |
| 5471 | // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. |
| 5472 | return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( |
| 5473 | SafeMatcherCast<const Err&>(exception_matcher))); |
| 5474 | } |
| 5475 | |
| 5476 | template <typename Err, typename MessageMatcher> |
| 5477 | PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( |
| 5478 | MessageMatcher&& message_matcher) { |
| 5479 | static_assert(std::is_base_of<std::exception, Err>::value, |
| 5480 | "expected an std::exception-derived type" ); |
| 5481 | return Throws<Err>(internal::WithWhat( |
| 5482 | MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); |
| 5483 | } |
| 5484 | |
| 5485 | #endif // GTEST_HAS_EXCEPTIONS |
| 5486 | |
| 5487 | // These macros allow using matchers to check values in Google Test |
| 5488 | // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
| 5489 | // succeed if and only if the value matches the matcher. If the assertion |
| 5490 | // fails, the value and the description of the matcher will be printed. |
| 5491 | #define ASSERT_THAT(value, matcher) \ |
| 5492 | ASSERT_PRED_FORMAT1( \ |
| 5493 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| 5494 | #define EXPECT_THAT(value, matcher) \ |
| 5495 | EXPECT_PRED_FORMAT1( \ |
| 5496 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
| 5497 | |
| 5498 | // MATCHER* macros itself are listed below. |
| 5499 | #define MATCHER(name, description) \ |
| 5500 | class name##Matcher \ |
| 5501 | : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ |
| 5502 | public: \ |
| 5503 | template <typename arg_type> \ |
| 5504 | class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
| 5505 | public: \ |
| 5506 | gmock_Impl() {} \ |
| 5507 | bool MatchAndExplain( \ |
| 5508 | const arg_type& arg, \ |
| 5509 | ::testing::MatchResultListener* result_listener) const override; \ |
| 5510 | void DescribeTo(::std::ostream* gmock_os) const override { \ |
| 5511 | *gmock_os << FormatDescription(false); \ |
| 5512 | } \ |
| 5513 | void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
| 5514 | *gmock_os << FormatDescription(true); \ |
| 5515 | } \ |
| 5516 | \ |
| 5517 | private: \ |
| 5518 | ::std::string FormatDescription(bool negation) const { \ |
| 5519 | /* NOLINTNEXTLINE readability-redundant-string-init */ \ |
| 5520 | ::std::string gmock_description = (description); \ |
| 5521 | if (!gmock_description.empty()) { \ |
| 5522 | return gmock_description; \ |
| 5523 | } \ |
| 5524 | return ::testing::internal::FormatMatcherDescription(negation, #name, \ |
| 5525 | {}, {}); \ |
| 5526 | } \ |
| 5527 | }; \ |
| 5528 | }; \ |
| 5529 | inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH() \ |
| 5530 | GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function") \ |
| 5531 | GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function") \ |
| 5532 | name GMOCK_INTERNAL_WARNING_POP()() { \ |
| 5533 | return {}; \ |
| 5534 | } \ |
| 5535 | template <typename arg_type> \ |
| 5536 | bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ |
| 5537 | const arg_type& arg, \ |
| 5538 | ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
| 5539 | const |
| 5540 | |
| 5541 | #define MATCHER_P(name, p0, description) \ |
| 5542 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0)) |
| 5543 | #define MATCHER_P2(name, p0, p1, description) \ |
| 5544 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \ |
| 5545 | (p0, p1)) |
| 5546 | #define MATCHER_P3(name, p0, p1, p2, description) \ |
| 5547 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \ |
| 5548 | (p0, p1, p2)) |
| 5549 | #define MATCHER_P4(name, p0, p1, p2, p3, description) \ |
| 5550 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \ |
| 5551 | (#p0, #p1, #p2, #p3), (p0, p1, p2, p3)) |
| 5552 | #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ |
| 5553 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ |
| 5554 | (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4)) |
| 5555 | #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ |
| 5556 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ |
| 5557 | (#p0, #p1, #p2, #p3, #p4, #p5), \ |
| 5558 | (p0, p1, p2, p3, p4, p5)) |
| 5559 | #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ |
| 5560 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ |
| 5561 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6), \ |
| 5562 | (p0, p1, p2, p3, p4, p5, p6)) |
| 5563 | #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ |
| 5564 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ |
| 5565 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7), \ |
| 5566 | (p0, p1, p2, p3, p4, p5, p6, p7)) |
| 5567 | #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ |
| 5568 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ |
| 5569 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8), \ |
| 5570 | (p0, p1, p2, p3, p4, p5, p6, p7, p8)) |
| 5571 | #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ |
| 5572 | GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ |
| 5573 | (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9), \ |
| 5574 | (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) |
| 5575 | |
| 5576 | #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args) \ |
| 5577 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| 5578 | class full_name : public ::testing::internal::MatcherBaseImpl< \ |
| 5579 | full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ |
| 5580 | public: \ |
| 5581 | using full_name::MatcherBaseImpl::MatcherBaseImpl; \ |
| 5582 | template <typename arg_type> \ |
| 5583 | class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ |
| 5584 | public: \ |
| 5585 | explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ |
| 5586 | : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ |
| 5587 | bool MatchAndExplain( \ |
| 5588 | const arg_type& arg, \ |
| 5589 | ::testing::MatchResultListener* result_listener) const override; \ |
| 5590 | void DescribeTo(::std::ostream* gmock_os) const override { \ |
| 5591 | *gmock_os << FormatDescription(false); \ |
| 5592 | } \ |
| 5593 | void DescribeNegationTo(::std::ostream* gmock_os) const override { \ |
| 5594 | *gmock_os << FormatDescription(true); \ |
| 5595 | } \ |
| 5596 | GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
| 5597 | \ |
| 5598 | private: \ |
| 5599 | ::std::string FormatDescription(bool negation) const { \ |
| 5600 | ::std::string gmock_description; \ |
| 5601 | gmock_description = (description); \ |
| 5602 | if (!gmock_description.empty()) { \ |
| 5603 | return gmock_description; \ |
| 5604 | } \ |
| 5605 | return ::testing::internal::FormatMatcherDescription( \ |
| 5606 | negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)}, \ |
| 5607 | ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ |
| 5608 | ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
| 5609 | GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ |
| 5610 | } \ |
| 5611 | }; \ |
| 5612 | }; \ |
| 5613 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| 5614 | inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ |
| 5615 | GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ |
| 5616 | return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ |
| 5617 | GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ |
| 5618 | } \ |
| 5619 | template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ |
| 5620 | template <typename arg_type> \ |
| 5621 | bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ |
| 5622 | arg_type>::MatchAndExplain(const arg_type& arg, \ |
| 5623 | ::testing::MatchResultListener* \ |
| 5624 | result_listener GTEST_ATTRIBUTE_UNUSED_) \ |
| 5625 | const |
| 5626 | |
| 5627 | #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ |
| 5628 | GMOCK_PP_TAIL( \ |
| 5629 | GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) |
| 5630 | #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ |
| 5631 | , typename arg##_type |
| 5632 | |
| 5633 | #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ |
| 5634 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) |
| 5635 | #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ |
| 5636 | , arg##_type |
| 5637 | |
| 5638 | #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ |
| 5639 | GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ |
| 5640 | GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) |
| 5641 | #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ |
| 5642 | , arg##_type gmock_p##i |
| 5643 | |
| 5644 | #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ |
| 5645 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) |
| 5646 | #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ |
| 5647 | , arg(::std::forward<arg##_type>(gmock_p##i)) |
| 5648 | |
| 5649 | #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ |
| 5650 | GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) |
| 5651 | #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ |
| 5652 | const arg##_type arg; |
| 5653 | |
| 5654 | #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ |
| 5655 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) |
| 5656 | #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg |
| 5657 | |
| 5658 | #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ |
| 5659 | GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) |
| 5660 | #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ |
| 5661 | , gmock_p##i |
| 5662 | |
| 5663 | // To prevent ADL on certain functions we put them on a separate namespace. |
| 5664 | using namespace no_adl; // NOLINT |
| 5665 | |
| 5666 | } // namespace testing |
| 5667 | |
| 5668 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
| 5669 | |
| 5670 | // Include any custom callback matchers added by the local installation. |
| 5671 | // We must include this header at the end to make sure it can use the |
| 5672 | // declarations from this file. |
| 5673 | #include "gmock/internal/custom/gmock-matchers.h" |
| 5674 | |
| 5675 | #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
| 5676 | |