1 | // Copyright 2005, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | // The Google C++ Testing and Mocking Framework (Google Test) |
31 | // |
32 | // This header file declares functions and macros used internally by |
33 | // Google Test. They are subject to change without notice. |
34 | |
35 | // IWYU pragma: private, include "gtest/gtest.h" |
36 | // IWYU pragma: friend gtest/.* |
37 | // IWYU pragma: friend gmock/.* |
38 | |
39 | #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
40 | #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
41 | |
42 | #include "gtest/internal/gtest-port.h" |
43 | |
44 | #ifdef GTEST_OS_LINUX |
45 | #include <stdlib.h> |
46 | #include <sys/types.h> |
47 | #include <sys/wait.h> |
48 | #include <unistd.h> |
49 | #endif // GTEST_OS_LINUX |
50 | |
51 | #if GTEST_HAS_EXCEPTIONS |
52 | #include <stdexcept> |
53 | #endif |
54 | |
55 | #include <ctype.h> |
56 | #include <float.h> |
57 | #include <string.h> |
58 | |
59 | #include <cstdint> |
60 | #include <functional> |
61 | #include <iomanip> |
62 | #include <limits> |
63 | #include <map> |
64 | #include <set> |
65 | #include <string> |
66 | #include <type_traits> |
67 | #include <utility> |
68 | #include <vector> |
69 | |
70 | #include "gtest/gtest-message.h" |
71 | #include "gtest/internal/gtest-filepath.h" |
72 | #include "gtest/internal/gtest-string.h" |
73 | #include "gtest/internal/gtest-type-util.h" |
74 | |
75 | // Due to C++ preprocessor weirdness, we need double indirection to |
76 | // concatenate two tokens when one of them is __LINE__. Writing |
77 | // |
78 | // foo ## __LINE__ |
79 | // |
80 | // will result in the token foo__LINE__, instead of foo followed by |
81 | // the current line number. For more details, see |
82 | // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 |
83 | #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) |
84 | #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar |
85 | |
86 | // Stringifies its argument. |
87 | // Work around a bug in visual studio which doesn't accept code like this: |
88 | // |
89 | // #define GTEST_STRINGIFY_(name) #name |
90 | // #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ... |
91 | // MACRO(, x, y) |
92 | // |
93 | // Complaining about the argument to GTEST_STRINGIFY_ being empty. |
94 | // This is allowed by the spec. |
95 | #define GTEST_STRINGIFY_HELPER_(name, ...) #name |
96 | #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, ) |
97 | |
98 | namespace proto2 { |
99 | class MessageLite; |
100 | } |
101 | |
102 | namespace testing { |
103 | |
104 | // Forward declarations. |
105 | |
106 | class AssertionResult; // Result of an assertion. |
107 | class Message; // Represents a failure message. |
108 | class Test; // Represents a test. |
109 | class TestInfo; // Information about a test. |
110 | class TestPartResult; // Result of a test part. |
111 | class UnitTest; // A collection of test suites. |
112 | |
113 | template <typename T> |
114 | ::std::string PrintToString(const T& value); |
115 | |
116 | namespace internal { |
117 | |
118 | struct TraceInfo; // Information about a trace point. |
119 | class TestInfoImpl; // Opaque implementation of TestInfo |
120 | class UnitTestImpl; // Opaque implementation of UnitTest |
121 | |
122 | // The text used in failure messages to indicate the start of the |
123 | // stack trace. |
124 | GTEST_API_ extern const char kStackTraceMarker[]; |
125 | |
126 | // An IgnoredValue object can be implicitly constructed from ANY value. |
127 | class IgnoredValue { |
128 | struct Sink {}; |
129 | |
130 | public: |
131 | // This constructor template allows any value to be implicitly |
132 | // converted to IgnoredValue. The object has no data member and |
133 | // doesn't try to remember anything about the argument. We |
134 | // deliberately omit the 'explicit' keyword in order to allow the |
135 | // conversion to be implicit. |
136 | // Disable the conversion if T already has a magical conversion operator. |
137 | // Otherwise we get ambiguity. |
138 | template <typename T, |
139 | typename std::enable_if<!std::is_convertible<T, Sink>::value, |
140 | int>::type = 0> |
141 | IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) |
142 | }; |
143 | |
144 | // Appends the user-supplied message to the Google-Test-generated message. |
145 | GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg, |
146 | const Message& user_msg); |
147 | |
148 | #if GTEST_HAS_EXCEPTIONS |
149 | |
150 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
151 | 4275 /* an exported class was derived from a class that was not exported */) |
152 | |
153 | // This exception is thrown by (and only by) a failed Google Test |
154 | // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions |
155 | // are enabled). We derive it from std::runtime_error, which is for |
156 | // errors presumably detectable only at run time. Since |
157 | // std::runtime_error inherits from std::exception, many testing |
158 | // frameworks know how to extract and print the message inside it. |
159 | class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { |
160 | public: |
161 | explicit GoogleTestFailureException(const TestPartResult& failure); |
162 | }; |
163 | |
164 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275 |
165 | |
166 | #endif // GTEST_HAS_EXCEPTIONS |
167 | |
168 | namespace edit_distance { |
169 | // Returns the optimal edits to go from 'left' to 'right'. |
170 | // All edits cost the same, with replace having lower priority than |
171 | // add/remove. |
172 | // Simple implementation of the Wagner-Fischer algorithm. |
173 | // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm |
174 | enum EditType { kMatch, kAdd, kRemove, kReplace }; |
175 | GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
176 | const std::vector<size_t>& left, const std::vector<size_t>& right); |
177 | |
178 | // Same as above, but the input is represented as strings. |
179 | GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
180 | const std::vector<std::string>& left, |
181 | const std::vector<std::string>& right); |
182 | |
183 | // Create a diff of the input strings in Unified diff format. |
184 | GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, |
185 | const std::vector<std::string>& right, |
186 | size_t context = 2); |
187 | |
188 | } // namespace edit_distance |
189 | |
190 | // Constructs and returns the message for an equality assertion |
191 | // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. |
192 | // |
193 | // The first four parameters are the expressions used in the assertion |
194 | // and their values, as strings. For example, for ASSERT_EQ(foo, bar) |
195 | // where foo is 5 and bar is 6, we have: |
196 | // |
197 | // expected_expression: "foo" |
198 | // actual_expression: "bar" |
199 | // expected_value: "5" |
200 | // actual_value: "6" |
201 | // |
202 | // The ignoring_case parameter is true if and only if the assertion is a |
203 | // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will |
204 | // be inserted into the message. |
205 | GTEST_API_ AssertionResult EqFailure(const char* expected_expression, |
206 | const char* actual_expression, |
207 | const std::string& expected_value, |
208 | const std::string& actual_value, |
209 | bool ignoring_case); |
210 | |
211 | // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. |
212 | GTEST_API_ std::string GetBoolAssertionFailureMessage( |
213 | const AssertionResult& assertion_result, const char* expression_text, |
214 | const char* actual_predicate_value, const char* expected_predicate_value); |
215 | |
216 | // This template class represents an IEEE floating-point number |
217 | // (either single-precision or double-precision, depending on the |
218 | // template parameters). |
219 | // |
220 | // The purpose of this class is to do more sophisticated number |
221 | // comparison. (Due to round-off error, etc, it's very unlikely that |
222 | // two floating-points will be equal exactly. Hence a naive |
223 | // comparison by the == operation often doesn't work.) |
224 | // |
225 | // Format of IEEE floating-point: |
226 | // |
227 | // The most-significant bit being the leftmost, an IEEE |
228 | // floating-point looks like |
229 | // |
230 | // sign_bit exponent_bits fraction_bits |
231 | // |
232 | // Here, sign_bit is a single bit that designates the sign of the |
233 | // number. |
234 | // |
235 | // For float, there are 8 exponent bits and 23 fraction bits. |
236 | // |
237 | // For double, there are 11 exponent bits and 52 fraction bits. |
238 | // |
239 | // More details can be found at |
240 | // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. |
241 | // |
242 | // Template parameter: |
243 | // |
244 | // RawType: the raw floating-point type (either float or double) |
245 | template <typename RawType> |
246 | class FloatingPoint { |
247 | public: |
248 | // Defines the unsigned integer type that has the same size as the |
249 | // floating point number. |
250 | typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; |
251 | |
252 | // Constants. |
253 | |
254 | // # of bits in a number. |
255 | static const size_t kBitCount = 8 * sizeof(RawType); |
256 | |
257 | // # of fraction bits in a number. |
258 | static const size_t kFractionBitCount = |
259 | std::numeric_limits<RawType>::digits - 1; |
260 | |
261 | // # of exponent bits in a number. |
262 | static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; |
263 | |
264 | // The mask for the sign bit. |
265 | static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); |
266 | |
267 | // The mask for the fraction bits. |
268 | static const Bits kFractionBitMask = ~static_cast<Bits>(0) >> |
269 | (kExponentBitCount + 1); |
270 | |
271 | // The mask for the exponent bits. |
272 | static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); |
273 | |
274 | // How many ULP's (Units in the Last Place) we want to tolerate when |
275 | // comparing two numbers. The larger the value, the more error we |
276 | // allow. A 0 value means that two numbers must be exactly the same |
277 | // to be considered equal. |
278 | // |
279 | // The maximum error of a single floating-point operation is 0.5 |
280 | // units in the last place. On Intel CPU's, all floating-point |
281 | // calculations are done with 80-bit precision, while double has 64 |
282 | // bits. Therefore, 4 should be enough for ordinary use. |
283 | // |
284 | // See the following article for more details on ULP: |
285 | // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
286 | static const uint32_t kMaxUlps = 4; |
287 | |
288 | // Constructs a FloatingPoint from a raw floating-point number. |
289 | // |
290 | // On an Intel CPU, passing a non-normalized NAN (Not a Number) |
291 | // around may change its bits, although the new value is guaranteed |
292 | // to be also a NAN. Therefore, don't expect this constructor to |
293 | // preserve the bits in x when x is a NAN. |
294 | explicit FloatingPoint(const RawType& x) { u_.value_ = x; } |
295 | |
296 | // Static methods |
297 | |
298 | // Reinterprets a bit pattern as a floating-point number. |
299 | // |
300 | // This function is needed to test the AlmostEquals() method. |
301 | static RawType ReinterpretBits(const Bits bits) { |
302 | FloatingPoint fp(0); |
303 | fp.u_.bits_ = bits; |
304 | return fp.u_.value_; |
305 | } |
306 | |
307 | // Returns the floating-point number that represent positive infinity. |
308 | static RawType Infinity() { return ReinterpretBits(bits: kExponentBitMask); } |
309 | |
310 | // Non-static methods |
311 | |
312 | // Returns the bits that represents this number. |
313 | const Bits& bits() const { return u_.bits_; } |
314 | |
315 | // Returns the exponent bits of this number. |
316 | Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } |
317 | |
318 | // Returns the fraction bits of this number. |
319 | Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } |
320 | |
321 | // Returns the sign bit of this number. |
322 | Bits sign_bit() const { return kSignBitMask & u_.bits_; } |
323 | |
324 | // Returns true if and only if this is NAN (not a number). |
325 | bool is_nan() const { |
326 | // It's a NAN if the exponent bits are all ones and the fraction |
327 | // bits are not entirely zeros. |
328 | return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); |
329 | } |
330 | |
331 | // Returns true if and only if this number is at most kMaxUlps ULP's away |
332 | // from rhs. In particular, this function: |
333 | // |
334 | // - returns false if either number is (or both are) NAN. |
335 | // - treats really large numbers as almost equal to infinity. |
336 | // - thinks +0.0 and -0.0 are 0 DLP's apart. |
337 | bool AlmostEquals(const FloatingPoint& rhs) const { |
338 | // The IEEE standard says that any comparison operation involving |
339 | // a NAN must return false. |
340 | if (is_nan() || rhs.is_nan()) return false; |
341 | |
342 | return DistanceBetweenSignAndMagnitudeNumbers(sam1: u_.bits_, sam2: rhs.u_.bits_) <= |
343 | kMaxUlps; |
344 | } |
345 | |
346 | private: |
347 | // The data type used to store the actual floating-point number. |
348 | union FloatingPointUnion { |
349 | RawType value_; // The raw floating-point number. |
350 | Bits bits_; // The bits that represent the number. |
351 | }; |
352 | |
353 | // Converts an integer from the sign-and-magnitude representation to |
354 | // the biased representation. More precisely, let N be 2 to the |
355 | // power of (kBitCount - 1), an integer x is represented by the |
356 | // unsigned number x + N. |
357 | // |
358 | // For instance, |
359 | // |
360 | // -N + 1 (the most negative number representable using |
361 | // sign-and-magnitude) is represented by 1; |
362 | // 0 is represented by N; and |
363 | // N - 1 (the biggest number representable using |
364 | // sign-and-magnitude) is represented by 2N - 1. |
365 | // |
366 | // Read http://en.wikipedia.org/wiki/Signed_number_representations |
367 | // for more details on signed number representations. |
368 | static Bits SignAndMagnitudeToBiased(const Bits& sam) { |
369 | if (kSignBitMask & sam) { |
370 | // sam represents a negative number. |
371 | return ~sam + 1; |
372 | } else { |
373 | // sam represents a positive number. |
374 | return kSignBitMask | sam; |
375 | } |
376 | } |
377 | |
378 | // Given two numbers in the sign-and-magnitude representation, |
379 | // returns the distance between them as an unsigned number. |
380 | static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1, |
381 | const Bits& sam2) { |
382 | const Bits biased1 = SignAndMagnitudeToBiased(sam: sam1); |
383 | const Bits biased2 = SignAndMagnitudeToBiased(sam: sam2); |
384 | return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); |
385 | } |
386 | |
387 | FloatingPointUnion u_; |
388 | }; |
389 | |
390 | // Typedefs the instances of the FloatingPoint template class that we |
391 | // care to use. |
392 | typedef FloatingPoint<float> Float; |
393 | typedef FloatingPoint<double> Double; |
394 | |
395 | // In order to catch the mistake of putting tests that use different |
396 | // test fixture classes in the same test suite, we need to assign |
397 | // unique IDs to fixture classes and compare them. The TypeId type is |
398 | // used to hold such IDs. The user should treat TypeId as an opaque |
399 | // type: the only operation allowed on TypeId values is to compare |
400 | // them for equality using the == operator. |
401 | typedef const void* TypeId; |
402 | |
403 | template <typename T> |
404 | class TypeIdHelper { |
405 | public: |
406 | // dummy_ must not have a const type. Otherwise an overly eager |
407 | // compiler (e.g. MSVC 7.1 & 8.0) may try to merge |
408 | // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". |
409 | static bool dummy_; |
410 | }; |
411 | |
412 | template <typename T> |
413 | bool TypeIdHelper<T>::dummy_ = false; |
414 | |
415 | // GetTypeId<T>() returns the ID of type T. Different values will be |
416 | // returned for different types. Calling the function twice with the |
417 | // same type argument is guaranteed to return the same ID. |
418 | template <typename T> |
419 | TypeId GetTypeId() { |
420 | // The compiler is required to allocate a different |
421 | // TypeIdHelper<T>::dummy_ variable for each T used to instantiate |
422 | // the template. Therefore, the address of dummy_ is guaranteed to |
423 | // be unique. |
424 | return &(TypeIdHelper<T>::dummy_); |
425 | } |
426 | |
427 | // Returns the type ID of ::testing::Test. Always call this instead |
428 | // of GetTypeId< ::testing::Test>() to get the type ID of |
429 | // ::testing::Test, as the latter may give the wrong result due to a |
430 | // suspected linker bug when compiling Google Test as a Mac OS X |
431 | // framework. |
432 | GTEST_API_ TypeId GetTestTypeId(); |
433 | |
434 | // Defines the abstract factory interface that creates instances |
435 | // of a Test object. |
436 | class TestFactoryBase { |
437 | public: |
438 | virtual ~TestFactoryBase() = default; |
439 | |
440 | // Creates a test instance to run. The instance is both created and destroyed |
441 | // within TestInfoImpl::Run() |
442 | virtual Test* CreateTest() = 0; |
443 | |
444 | protected: |
445 | TestFactoryBase() {} |
446 | |
447 | private: |
448 | TestFactoryBase(const TestFactoryBase&) = delete; |
449 | TestFactoryBase& operator=(const TestFactoryBase&) = delete; |
450 | }; |
451 | |
452 | // This class provides implementation of TestFactoryBase interface. |
453 | // It is used in TEST and TEST_F macros. |
454 | template <class TestClass> |
455 | class TestFactoryImpl : public TestFactoryBase { |
456 | public: |
457 | Test* CreateTest() override { return new TestClass; } |
458 | }; |
459 | |
460 | #ifdef GTEST_OS_WINDOWS |
461 | |
462 | // Predicate-formatters for implementing the HRESULT checking macros |
463 | // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} |
464 | // We pass a long instead of HRESULT to avoid causing an |
465 | // include dependency for the HRESULT type. |
466 | GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, |
467 | long hr); // NOLINT |
468 | GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, |
469 | long hr); // NOLINT |
470 | |
471 | #endif // GTEST_OS_WINDOWS |
472 | |
473 | // Types of SetUpTestSuite() and TearDownTestSuite() functions. |
474 | using SetUpTestSuiteFunc = void (*)(); |
475 | using TearDownTestSuiteFunc = void (*)(); |
476 | |
477 | struct CodeLocation { |
478 | CodeLocation(const std::string& a_file, int a_line) |
479 | : file(a_file), line(a_line) {} |
480 | |
481 | std::string file; |
482 | int line; |
483 | }; |
484 | |
485 | // Helper to identify which setup function for TestCase / TestSuite to call. |
486 | // Only one function is allowed, either TestCase or TestSute but not both. |
487 | |
488 | // Utility functions to help SuiteApiResolver |
489 | using SetUpTearDownSuiteFuncType = void (*)(); |
490 | |
491 | inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull( |
492 | SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) { |
493 | return a == def ? nullptr : a; |
494 | } |
495 | |
496 | template <typename T> |
497 | // Note that SuiteApiResolver inherits from T because |
498 | // SetUpTestSuite()/TearDownTestSuite() could be protected. This way |
499 | // SuiteApiResolver can access them. |
500 | struct SuiteApiResolver : T { |
501 | // testing::Test is only forward declared at this point. So we make it a |
502 | // dependent class for the compiler to be OK with it. |
503 | using Test = |
504 | typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type; |
505 | |
506 | static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename, |
507 | int line_num) { |
508 | #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
509 | SetUpTearDownSuiteFuncType test_case_fp = |
510 | GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase); |
511 | SetUpTearDownSuiteFuncType test_suite_fp = |
512 | GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite); |
513 | |
514 | GTEST_CHECK_(!test_case_fp || !test_suite_fp) |
515 | << "Test can not provide both SetUpTestSuite and SetUpTestCase, please " |
516 | "make sure there is only one present at " |
517 | << filename << ":" << line_num; |
518 | |
519 | return test_case_fp != nullptr ? test_case_fp : test_suite_fp; |
520 | #else |
521 | (void)(filename); |
522 | (void)(line_num); |
523 | return &T::SetUpTestSuite; |
524 | #endif |
525 | } |
526 | |
527 | static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename, |
528 | int line_num) { |
529 | #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
530 | SetUpTearDownSuiteFuncType test_case_fp = |
531 | GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase); |
532 | SetUpTearDownSuiteFuncType test_suite_fp = |
533 | GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite); |
534 | |
535 | GTEST_CHECK_(!test_case_fp || !test_suite_fp) |
536 | << "Test can not provide both TearDownTestSuite and TearDownTestCase," |
537 | " please make sure there is only one present at" |
538 | << filename << ":" << line_num; |
539 | |
540 | return test_case_fp != nullptr ? test_case_fp : test_suite_fp; |
541 | #else |
542 | (void)(filename); |
543 | (void)(line_num); |
544 | return &T::TearDownTestSuite; |
545 | #endif |
546 | } |
547 | }; |
548 | |
549 | // Creates a new TestInfo object and registers it with Google Test; |
550 | // returns the created object. |
551 | // |
552 | // Arguments: |
553 | // |
554 | // test_suite_name: name of the test suite |
555 | // name: name of the test |
556 | // type_param: the name of the test's type parameter, or NULL if |
557 | // this is not a typed or a type-parameterized test. |
558 | // value_param: text representation of the test's value parameter, |
559 | // or NULL if this is not a type-parameterized test. |
560 | // code_location: code location where the test is defined |
561 | // fixture_class_id: ID of the test fixture class |
562 | // set_up_tc: pointer to the function that sets up the test suite |
563 | // tear_down_tc: pointer to the function that tears down the test suite |
564 | // factory: pointer to the factory that creates a test object. |
565 | // The newly created TestInfo instance will assume |
566 | // ownership of the factory object. |
567 | GTEST_API_ TestInfo* MakeAndRegisterTestInfo( |
568 | const char* test_suite_name, const char* name, const char* type_param, |
569 | const char* value_param, CodeLocation code_location, |
570 | TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, |
571 | TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory); |
572 | |
573 | // If *pstr starts with the given prefix, modifies *pstr to be right |
574 | // past the prefix and returns true; otherwise leaves *pstr unchanged |
575 | // and returns false. None of pstr, *pstr, and prefix can be NULL. |
576 | GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); |
577 | |
578 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ |
579 | /* class A needs to have dll-interface to be used by clients of class B */) |
580 | |
581 | // State of the definition of a type-parameterized test suite. |
582 | class GTEST_API_ TypedTestSuitePState { |
583 | public: |
584 | TypedTestSuitePState() : registered_(false) {} |
585 | |
586 | // Adds the given test name to defined_test_names_ and return true |
587 | // if the test suite hasn't been registered; otherwise aborts the |
588 | // program. |
589 | bool AddTestName(const char* file, int line, const char* case_name, |
590 | const char* test_name) { |
591 | if (registered_) { |
592 | fprintf(stderr, |
593 | format: "%s Test %s must be defined before " |
594 | "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n" , |
595 | FormatFileLocation(file, line).c_str(), test_name, case_name); |
596 | fflush(stderr); |
597 | posix::Abort(); |
598 | } |
599 | registered_tests_.insert( |
600 | x: ::std::make_pair(x&: test_name, y: CodeLocation(file, line))); |
601 | return true; |
602 | } |
603 | |
604 | bool TestExists(const std::string& test_name) const { |
605 | return registered_tests_.count(x: test_name) > 0; |
606 | } |
607 | |
608 | const CodeLocation& GetCodeLocation(const std::string& test_name) const { |
609 | RegisteredTestsMap::const_iterator it = registered_tests_.find(x: test_name); |
610 | GTEST_CHECK_(it != registered_tests_.end()); |
611 | return it->second; |
612 | } |
613 | |
614 | // Verifies that registered_tests match the test names in |
615 | // defined_test_names_; returns registered_tests if successful, or |
616 | // aborts the program otherwise. |
617 | const char* VerifyRegisteredTestNames(const char* test_suite_name, |
618 | const char* file, int line, |
619 | const char* registered_tests); |
620 | |
621 | private: |
622 | typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap; |
623 | |
624 | bool registered_; |
625 | RegisteredTestsMap registered_tests_; |
626 | }; |
627 | |
628 | // Legacy API is deprecated but still available |
629 | #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
630 | using TypedTestCasePState = TypedTestSuitePState; |
631 | #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
632 | |
633 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 |
634 | |
635 | // Skips to the first non-space char after the first comma in 'str'; |
636 | // returns NULL if no comma is found in 'str'. |
637 | inline const char* SkipComma(const char* str) { |
638 | const char* comma = strchr(s: str, c: ','); |
639 | if (comma == nullptr) { |
640 | return nullptr; |
641 | } |
642 | while (IsSpace(ch: *(++comma))) { |
643 | } |
644 | return comma; |
645 | } |
646 | |
647 | // Returns the prefix of 'str' before the first comma in it; returns |
648 | // the entire string if it contains no comma. |
649 | inline std::string GetPrefixUntilComma(const char* str) { |
650 | const char* comma = strchr(s: str, c: ','); |
651 | return comma == nullptr ? str : std::string(str, comma); |
652 | } |
653 | |
654 | // Splits a given string on a given delimiter, populating a given |
655 | // vector with the fields. |
656 | void SplitString(const ::std::string& str, char delimiter, |
657 | ::std::vector<::std::string>* dest); |
658 | |
659 | // The default argument to the template below for the case when the user does |
660 | // not provide a name generator. |
661 | struct DefaultNameGenerator { |
662 | template <typename T> |
663 | static std::string GetName(int i) { |
664 | return StreamableToString(streamable: i); |
665 | } |
666 | }; |
667 | |
668 | template <typename Provided = DefaultNameGenerator> |
669 | struct NameGeneratorSelector { |
670 | typedef Provided type; |
671 | }; |
672 | |
673 | template <typename NameGenerator> |
674 | void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {} |
675 | |
676 | template <typename NameGenerator, typename Types> |
677 | void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) { |
678 | result->push_back(NameGenerator::template GetName<typename Types::Head>(i)); |
679 | GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result, |
680 | i + 1); |
681 | } |
682 | |
683 | template <typename NameGenerator, typename Types> |
684 | std::vector<std::string> GenerateNames() { |
685 | std::vector<std::string> result; |
686 | GenerateNamesRecursively<NameGenerator>(Types(), &result, 0); |
687 | return result; |
688 | } |
689 | |
690 | // TypeParameterizedTest<Fixture, TestSel, Types>::Register() |
691 | // registers a list of type-parameterized tests with Google Test. The |
692 | // return value is insignificant - we just need to return something |
693 | // such that we can call this function in a namespace scope. |
694 | // |
695 | // Implementation note: The GTEST_TEMPLATE_ macro declares a template |
696 | // template parameter. It's defined in gtest-type-util.h. |
697 | template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> |
698 | class TypeParameterizedTest { |
699 | public: |
700 | // 'index' is the index of the test in the type list 'Types' |
701 | // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite, |
702 | // Types). Valid values for 'index' are [0, N - 1] where N is the |
703 | // length of Types. |
704 | static bool Register(const char* prefix, const CodeLocation& code_location, |
705 | const char* case_name, const char* test_names, int index, |
706 | const std::vector<std::string>& type_names = |
707 | GenerateNames<DefaultNameGenerator, Types>()) { |
708 | typedef typename Types::Head Type; |
709 | typedef Fixture<Type> FixtureClass; |
710 | typedef typename GTEST_BIND_(TestSel, Type) TestClass; |
711 | |
712 | // First, registers the first type-parameterized test in the type |
713 | // list. |
714 | MakeAndRegisterTestInfo( |
715 | (std::string(prefix) + (prefix[0] == '\0' ? "" : "/" ) + case_name + |
716 | "/" + type_names[static_cast<size_t>(index)]) |
717 | .c_str(), |
718 | StripTrailingSpaces(str: GetPrefixUntilComma(str: test_names)).c_str(), |
719 | GetTypeName<Type>().c_str(), |
720 | nullptr, // No value parameter. |
721 | code_location, GetTypeId<FixtureClass>(), |
722 | SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite( |
723 | code_location.file.c_str(), code_location.line), |
724 | SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite( |
725 | code_location.file.c_str(), code_location.line), |
726 | new TestFactoryImpl<TestClass>); |
727 | |
728 | // Next, recurses (at compile time) with the tail of the type list. |
729 | return TypeParameterizedTest<Fixture, TestSel, |
730 | typename Types::Tail>::Register(prefix, |
731 | code_location, |
732 | case_name, |
733 | test_names, |
734 | index + 1, |
735 | type_names); |
736 | } |
737 | }; |
738 | |
739 | // The base case for the compile time recursion. |
740 | template <GTEST_TEMPLATE_ Fixture, class TestSel> |
741 | class TypeParameterizedTest<Fixture, TestSel, internal::None> { |
742 | public: |
743 | static bool Register(const char* /*prefix*/, const CodeLocation&, |
744 | const char* /*case_name*/, const char* /*test_names*/, |
745 | int /*index*/, |
746 | const std::vector<std::string>& = |
747 | std::vector<std::string>() /*type_names*/) { |
748 | return true; |
749 | } |
750 | }; |
751 | |
752 | GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name, |
753 | CodeLocation code_location); |
754 | GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation( |
755 | const char* case_name); |
756 | |
757 | // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register() |
758 | // registers *all combinations* of 'Tests' and 'Types' with Google |
759 | // Test. The return value is insignificant - we just need to return |
760 | // something such that we can call this function in a namespace scope. |
761 | template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> |
762 | class TypeParameterizedTestSuite { |
763 | public: |
764 | static bool Register(const char* prefix, CodeLocation code_location, |
765 | const TypedTestSuitePState* state, const char* case_name, |
766 | const char* test_names, |
767 | const std::vector<std::string>& type_names = |
768 | GenerateNames<DefaultNameGenerator, Types>()) { |
769 | RegisterTypeParameterizedTestSuiteInstantiation(case_name); |
770 | std::string test_name = |
771 | StripTrailingSpaces(str: GetPrefixUntilComma(str: test_names)); |
772 | if (!state->TestExists(test_name)) { |
773 | fprintf(stderr, format: "Failed to get code location for test %s.%s at %s." , |
774 | case_name, test_name.c_str(), |
775 | FormatFileLocation(file: code_location.file.c_str(), line: code_location.line) |
776 | .c_str()); |
777 | fflush(stderr); |
778 | posix::Abort(); |
779 | } |
780 | const CodeLocation& test_location = state->GetCodeLocation(test_name); |
781 | |
782 | typedef typename Tests::Head Head; |
783 | |
784 | // First, register the first test in 'Test' for each type in 'Types'. |
785 | TypeParameterizedTest<Fixture, Head, Types>::Register( |
786 | prefix, test_location, case_name, test_names, 0, type_names); |
787 | |
788 | // Next, recurses (at compile time) with the tail of the test list. |
789 | return TypeParameterizedTestSuite<Fixture, typename Tests::Tail, |
790 | Types>::Register(prefix, code_location, |
791 | state, case_name, |
792 | SkipComma(str: test_names), |
793 | type_names); |
794 | } |
795 | }; |
796 | |
797 | // The base case for the compile time recursion. |
798 | template <GTEST_TEMPLATE_ Fixture, typename Types> |
799 | class TypeParameterizedTestSuite<Fixture, internal::None, Types> { |
800 | public: |
801 | static bool Register(const char* /*prefix*/, const CodeLocation&, |
802 | const TypedTestSuitePState* /*state*/, |
803 | const char* /*case_name*/, const char* /*test_names*/, |
804 | const std::vector<std::string>& = |
805 | std::vector<std::string>() /*type_names*/) { |
806 | return true; |
807 | } |
808 | }; |
809 | |
810 | // Returns the current OS stack trace as an std::string. |
811 | // |
812 | // The maximum number of stack frames to be included is specified by |
813 | // the gtest_stack_trace_depth flag. The skip_count parameter |
814 | // specifies the number of top frames to be skipped, which doesn't |
815 | // count against the number of frames to be included. |
816 | // |
817 | // For example, if Foo() calls Bar(), which in turn calls |
818 | // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in |
819 | // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. |
820 | GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count); |
821 | |
822 | // Helpers for suppressing warnings on unreachable code or constant |
823 | // condition. |
824 | |
825 | // Always returns true. |
826 | GTEST_API_ bool AlwaysTrue(); |
827 | |
828 | // Always returns false. |
829 | inline bool AlwaysFalse() { return !AlwaysTrue(); } |
830 | |
831 | // Helper for suppressing false warning from Clang on a const char* |
832 | // variable declared in a conditional expression always being NULL in |
833 | // the else branch. |
834 | struct GTEST_API_ ConstCharPtr { |
835 | ConstCharPtr(const char* str) : value(str) {} |
836 | operator bool() const { return true; } |
837 | const char* value; |
838 | }; |
839 | |
840 | // Helper for declaring std::string within 'if' statement |
841 | // in pre C++17 build environment. |
842 | struct TrueWithString { |
843 | TrueWithString() = default; |
844 | explicit TrueWithString(const char* str) : value(str) {} |
845 | explicit TrueWithString(const std::string& str) : value(str) {} |
846 | explicit operator bool() const { return true; } |
847 | std::string value; |
848 | }; |
849 | |
850 | // A simple Linear Congruential Generator for generating random |
851 | // numbers with a uniform distribution. Unlike rand() and srand(), it |
852 | // doesn't use global state (and therefore can't interfere with user |
853 | // code). Unlike rand_r(), it's portable. An LCG isn't very random, |
854 | // but it's good enough for our purposes. |
855 | class GTEST_API_ Random { |
856 | public: |
857 | static const uint32_t kMaxRange = 1u << 31; |
858 | |
859 | explicit Random(uint32_t seed) : state_(seed) {} |
860 | |
861 | void Reseed(uint32_t seed) { state_ = seed; } |
862 | |
863 | // Generates a random number from [0, range). Crashes if 'range' is |
864 | // 0 or greater than kMaxRange. |
865 | uint32_t Generate(uint32_t range); |
866 | |
867 | private: |
868 | uint32_t state_; |
869 | Random(const Random&) = delete; |
870 | Random& operator=(const Random&) = delete; |
871 | }; |
872 | |
873 | // Turns const U&, U&, const U, and U all into U. |
874 | #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ |
875 | typename std::remove_const<typename std::remove_reference<T>::type>::type |
876 | |
877 | // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant |
878 | // that's true if and only if T has methods DebugString() and ShortDebugString() |
879 | // that return std::string. |
880 | template <typename T> |
881 | class HasDebugStringAndShortDebugString { |
882 | private: |
883 | template <typename C> |
884 | static auto CheckDebugString(C*) -> typename std::is_same< |
885 | std::string, decltype(std::declval<const C>().DebugString())>::type; |
886 | template <typename> |
887 | static std::false_type CheckDebugString(...); |
888 | |
889 | template <typename C> |
890 | static auto CheckShortDebugString(C*) -> typename std::is_same< |
891 | std::string, decltype(std::declval<const C>().ShortDebugString())>::type; |
892 | template <typename> |
893 | static std::false_type CheckShortDebugString(...); |
894 | |
895 | using HasDebugStringType = decltype(CheckDebugString<T>(nullptr)); |
896 | using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr)); |
897 | |
898 | public: |
899 | static constexpr bool value = |
900 | HasDebugStringType::value && HasShortDebugStringType::value; |
901 | }; |
902 | |
903 | #ifdef GTEST_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL |
904 | template <typename T> |
905 | constexpr bool HasDebugStringAndShortDebugString<T>::value; |
906 | #endif |
907 | |
908 | // When the compiler sees expression IsContainerTest<C>(0), if C is an |
909 | // STL-style container class, the first overload of IsContainerTest |
910 | // will be viable (since both C::iterator* and C::const_iterator* are |
911 | // valid types and NULL can be implicitly converted to them). It will |
912 | // be picked over the second overload as 'int' is a perfect match for |
913 | // the type of argument 0. If C::iterator or C::const_iterator is not |
914 | // a valid type, the first overload is not viable, and the second |
915 | // overload will be picked. Therefore, we can determine whether C is |
916 | // a container class by checking the type of IsContainerTest<C>(0). |
917 | // The value of the expression is insignificant. |
918 | // |
919 | // In C++11 mode we check the existence of a const_iterator and that an |
920 | // iterator is properly implemented for the container. |
921 | // |
922 | // For pre-C++11 that we look for both C::iterator and C::const_iterator. |
923 | // The reason is that C++ injects the name of a class as a member of the |
924 | // class itself (e.g. you can refer to class iterator as either |
925 | // 'iterator' or 'iterator::iterator'). If we look for C::iterator |
926 | // only, for example, we would mistakenly think that a class named |
927 | // iterator is an STL container. |
928 | // |
929 | // Also note that the simpler approach of overloading |
930 | // IsContainerTest(typename C::const_iterator*) and |
931 | // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. |
932 | typedef int IsContainer; |
933 | template <class C, |
934 | class Iterator = decltype(::std::declval<const C&>().begin()), |
935 | class = decltype(::std::declval<const C&>().end()), |
936 | class = decltype(++::std::declval<Iterator&>()), |
937 | class = decltype(*::std::declval<Iterator>()), |
938 | class = typename C::const_iterator> |
939 | IsContainer IsContainerTest(int /* dummy */) { |
940 | return 0; |
941 | } |
942 | |
943 | typedef char IsNotContainer; |
944 | template <class C> |
945 | IsNotContainer IsContainerTest(long /* dummy */) { |
946 | return '\0'; |
947 | } |
948 | |
949 | // Trait to detect whether a type T is a hash table. |
950 | // The heuristic used is that the type contains an inner type `hasher` and does |
951 | // not contain an inner type `reverse_iterator`. |
952 | // If the container is iterable in reverse, then order might actually matter. |
953 | template <typename T> |
954 | struct IsHashTable { |
955 | private: |
956 | template <typename U> |
957 | static char test(typename U::hasher*, typename U::reverse_iterator*); |
958 | template <typename U> |
959 | static int test(typename U::hasher*, ...); |
960 | template <typename U> |
961 | static char test(...); |
962 | |
963 | public: |
964 | static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int); |
965 | }; |
966 | |
967 | template <typename T> |
968 | const bool IsHashTable<T>::value; |
969 | |
970 | template <typename C, |
971 | bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)> |
972 | struct IsRecursiveContainerImpl; |
973 | |
974 | template <typename C> |
975 | struct IsRecursiveContainerImpl<C, false> : public std::false_type {}; |
976 | |
977 | // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to |
978 | // obey the same inconsistencies as the IsContainerTest, namely check if |
979 | // something is a container is relying on only const_iterator in C++11 and |
980 | // is relying on both const_iterator and iterator otherwise |
981 | template <typename C> |
982 | struct IsRecursiveContainerImpl<C, true> { |
983 | using value_type = decltype(*std::declval<typename C::const_iterator>()); |
984 | using type = |
985 | std::is_same<typename std::remove_const< |
986 | typename std::remove_reference<value_type>::type>::type, |
987 | C>; |
988 | }; |
989 | |
990 | // IsRecursiveContainer<Type> is a unary compile-time predicate that |
991 | // evaluates whether C is a recursive container type. A recursive container |
992 | // type is a container type whose value_type is equal to the container type |
993 | // itself. An example for a recursive container type is |
994 | // boost::filesystem::path, whose iterator has a value_type that is equal to |
995 | // boost::filesystem::path. |
996 | template <typename C> |
997 | struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {}; |
998 | |
999 | // Utilities for native arrays. |
1000 | |
1001 | // ArrayEq() compares two k-dimensional native arrays using the |
1002 | // elements' operator==, where k can be any integer >= 0. When k is |
1003 | // 0, ArrayEq() degenerates into comparing a single pair of values. |
1004 | |
1005 | template <typename T, typename U> |
1006 | bool ArrayEq(const T* lhs, size_t size, const U* rhs); |
1007 | |
1008 | // This generic version is used when k is 0. |
1009 | template <typename T, typename U> |
1010 | inline bool ArrayEq(const T& lhs, const U& rhs) { |
1011 | return lhs == rhs; |
1012 | } |
1013 | |
1014 | // This overload is used when k >= 1. |
1015 | template <typename T, typename U, size_t N> |
1016 | inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) { |
1017 | return internal::ArrayEq(lhs, N, rhs); |
1018 | } |
1019 | |
1020 | // This helper reduces code bloat. If we instead put its logic inside |
1021 | // the previous ArrayEq() function, arrays with different sizes would |
1022 | // lead to different copies of the template code. |
1023 | template <typename T, typename U> |
1024 | bool ArrayEq(const T* lhs, size_t size, const U* rhs) { |
1025 | for (size_t i = 0; i != size; i++) { |
1026 | if (!internal::ArrayEq(lhs[i], rhs[i])) return false; |
1027 | } |
1028 | return true; |
1029 | } |
1030 | |
1031 | // Finds the first element in the iterator range [begin, end) that |
1032 | // equals elem. Element may be a native array type itself. |
1033 | template <typename Iter, typename Element> |
1034 | Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { |
1035 | for (Iter it = begin; it != end; ++it) { |
1036 | if (internal::ArrayEq(*it, elem)) return it; |
1037 | } |
1038 | return end; |
1039 | } |
1040 | |
1041 | // CopyArray() copies a k-dimensional native array using the elements' |
1042 | // operator=, where k can be any integer >= 0. When k is 0, |
1043 | // CopyArray() degenerates into copying a single value. |
1044 | |
1045 | template <typename T, typename U> |
1046 | void CopyArray(const T* from, size_t size, U* to); |
1047 | |
1048 | // This generic version is used when k is 0. |
1049 | template <typename T, typename U> |
1050 | inline void CopyArray(const T& from, U* to) { |
1051 | *to = from; |
1052 | } |
1053 | |
1054 | // This overload is used when k >= 1. |
1055 | template <typename T, typename U, size_t N> |
1056 | inline void CopyArray(const T (&from)[N], U (*to)[N]) { |
1057 | internal::CopyArray(from, N, *to); |
1058 | } |
1059 | |
1060 | // This helper reduces code bloat. If we instead put its logic inside |
1061 | // the previous CopyArray() function, arrays with different sizes |
1062 | // would lead to different copies of the template code. |
1063 | template <typename T, typename U> |
1064 | void CopyArray(const T* from, size_t size, U* to) { |
1065 | for (size_t i = 0; i != size; i++) { |
1066 | internal::CopyArray(from[i], to + i); |
1067 | } |
1068 | } |
1069 | |
1070 | // The relation between an NativeArray object (see below) and the |
1071 | // native array it represents. |
1072 | // We use 2 different structs to allow non-copyable types to be used, as long |
1073 | // as RelationToSourceReference() is passed. |
1074 | struct RelationToSourceReference {}; |
1075 | struct RelationToSourceCopy {}; |
1076 | |
1077 | // Adapts a native array to a read-only STL-style container. Instead |
1078 | // of the complete STL container concept, this adaptor only implements |
1079 | // members useful for Google Mock's container matchers. New members |
1080 | // should be added as needed. To simplify the implementation, we only |
1081 | // support Element being a raw type (i.e. having no top-level const or |
1082 | // reference modifier). It's the client's responsibility to satisfy |
1083 | // this requirement. Element can be an array type itself (hence |
1084 | // multi-dimensional arrays are supported). |
1085 | template <typename Element> |
1086 | class NativeArray { |
1087 | public: |
1088 | // STL-style container typedefs. |
1089 | typedef Element value_type; |
1090 | typedef Element* iterator; |
1091 | typedef const Element* const_iterator; |
1092 | |
1093 | // Constructs from a native array. References the source. |
1094 | NativeArray(const Element* array, size_t count, RelationToSourceReference) { |
1095 | InitRef(array, a_size: count); |
1096 | } |
1097 | |
1098 | // Constructs from a native array. Copies the source. |
1099 | NativeArray(const Element* array, size_t count, RelationToSourceCopy) { |
1100 | InitCopy(array, a_size: count); |
1101 | } |
1102 | |
1103 | // Copy constructor. |
1104 | NativeArray(const NativeArray& rhs) { |
1105 | (this->*rhs.clone_)(rhs.array_, rhs.size_); |
1106 | } |
1107 | |
1108 | ~NativeArray() { |
1109 | if (clone_ != &NativeArray::InitRef) delete[] array_; |
1110 | } |
1111 | |
1112 | // STL-style container methods. |
1113 | size_t size() const { return size_; } |
1114 | const_iterator begin() const { return array_; } |
1115 | const_iterator end() const { return array_ + size_; } |
1116 | bool operator==(const NativeArray& rhs) const { |
1117 | return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin()); |
1118 | } |
1119 | |
1120 | private: |
1121 | static_assert(!std::is_const<Element>::value, "Type must not be const" ); |
1122 | static_assert(!std::is_reference<Element>::value, |
1123 | "Type must not be a reference" ); |
1124 | |
1125 | // Initializes this object with a copy of the input. |
1126 | void InitCopy(const Element* array, size_t a_size) { |
1127 | Element* const copy = new Element[a_size]; |
1128 | CopyArray(array, a_size, copy); |
1129 | array_ = copy; |
1130 | size_ = a_size; |
1131 | clone_ = &NativeArray::InitCopy; |
1132 | } |
1133 | |
1134 | // Initializes this object with a reference of the input. |
1135 | void InitRef(const Element* array, size_t a_size) { |
1136 | array_ = array; |
1137 | size_ = a_size; |
1138 | clone_ = &NativeArray::InitRef; |
1139 | } |
1140 | |
1141 | const Element* array_; |
1142 | size_t size_; |
1143 | void (NativeArray::*clone_)(const Element*, size_t); |
1144 | }; |
1145 | |
1146 | // Backport of std::index_sequence. |
1147 | template <size_t... Is> |
1148 | struct IndexSequence { |
1149 | using type = IndexSequence; |
1150 | }; |
1151 | |
1152 | // Double the IndexSequence, and one if plus_one is true. |
1153 | template <bool plus_one, typename T, size_t sizeofT> |
1154 | struct DoubleSequence; |
1155 | template <size_t... I, size_t sizeofT> |
1156 | struct DoubleSequence<true, IndexSequence<I...>, sizeofT> { |
1157 | using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>; |
1158 | }; |
1159 | template <size_t... I, size_t sizeofT> |
1160 | struct DoubleSequence<false, IndexSequence<I...>, sizeofT> { |
1161 | using type = IndexSequence<I..., (sizeofT + I)...>; |
1162 | }; |
1163 | |
1164 | // Backport of std::make_index_sequence. |
1165 | // It uses O(ln(N)) instantiation depth. |
1166 | template <size_t N> |
1167 | struct MakeIndexSequenceImpl |
1168 | : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type, |
1169 | N / 2>::type {}; |
1170 | |
1171 | template <> |
1172 | struct MakeIndexSequenceImpl<0> : IndexSequence<> {}; |
1173 | |
1174 | template <size_t N> |
1175 | using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type; |
1176 | |
1177 | template <typename... T> |
1178 | using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type; |
1179 | |
1180 | template <size_t> |
1181 | struct Ignore { |
1182 | Ignore(...); // NOLINT |
1183 | }; |
1184 | |
1185 | template <typename> |
1186 | struct ElemFromListImpl; |
1187 | template <size_t... I> |
1188 | struct ElemFromListImpl<IndexSequence<I...>> { |
1189 | // We make Ignore a template to solve a problem with MSVC. |
1190 | // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but |
1191 | // MSVC doesn't understand how to deal with that pack expansion. |
1192 | // Use `0 * I` to have a single instantiation of Ignore. |
1193 | template <typename R> |
1194 | static R Apply(Ignore<0 * I>..., R (*)(), ...); |
1195 | }; |
1196 | |
1197 | template <size_t N, typename... T> |
1198 | struct ElemFromList { |
1199 | using type = |
1200 | decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply( |
1201 | static_cast<T (*)()>(nullptr)...)); |
1202 | }; |
1203 | |
1204 | struct FlatTupleConstructTag {}; |
1205 | |
1206 | template <typename... T> |
1207 | class FlatTuple; |
1208 | |
1209 | template <typename Derived, size_t I> |
1210 | struct FlatTupleElemBase; |
1211 | |
1212 | template <typename... T, size_t I> |
1213 | struct FlatTupleElemBase<FlatTuple<T...>, I> { |
1214 | using value_type = typename ElemFromList<I, T...>::type; |
1215 | FlatTupleElemBase() = default; |
1216 | template <typename Arg> |
1217 | explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t) |
1218 | : value(std::forward<Arg>(t)) {} |
1219 | value_type value; |
1220 | }; |
1221 | |
1222 | template <typename Derived, typename Idx> |
1223 | struct FlatTupleBase; |
1224 | |
1225 | template <size_t... Idx, typename... T> |
1226 | struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>> |
1227 | : FlatTupleElemBase<FlatTuple<T...>, Idx>... { |
1228 | using Indices = IndexSequence<Idx...>; |
1229 | FlatTupleBase() = default; |
1230 | template <typename... Args> |
1231 | explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args) |
1232 | : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{}, |
1233 | std::forward<Args>(args))... {} |
1234 | |
1235 | template <size_t I> |
1236 | const typename ElemFromList<I, T...>::type& Get() const { |
1237 | return FlatTupleElemBase<FlatTuple<T...>, I>::value; |
1238 | } |
1239 | |
1240 | template <size_t I> |
1241 | typename ElemFromList<I, T...>::type& Get() { |
1242 | return FlatTupleElemBase<FlatTuple<T...>, I>::value; |
1243 | } |
1244 | |
1245 | template <typename F> |
1246 | auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) { |
1247 | return std::forward<F>(f)(Get<Idx>()...); |
1248 | } |
1249 | |
1250 | template <typename F> |
1251 | auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) { |
1252 | return std::forward<F>(f)(Get<Idx>()...); |
1253 | } |
1254 | }; |
1255 | |
1256 | // Analog to std::tuple but with different tradeoffs. |
1257 | // This class minimizes the template instantiation depth, thus allowing more |
1258 | // elements than std::tuple would. std::tuple has been seen to require an |
1259 | // instantiation depth of more than 10x the number of elements in some |
1260 | // implementations. |
1261 | // FlatTuple and ElemFromList are not recursive and have a fixed depth |
1262 | // regardless of T... |
1263 | // MakeIndexSequence, on the other hand, it is recursive but with an |
1264 | // instantiation depth of O(ln(N)). |
1265 | template <typename... T> |
1266 | class FlatTuple |
1267 | : private FlatTupleBase<FlatTuple<T...>, |
1268 | typename MakeIndexSequence<sizeof...(T)>::type> { |
1269 | using Indices = typename FlatTupleBase< |
1270 | FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices; |
1271 | |
1272 | public: |
1273 | FlatTuple() = default; |
1274 | template <typename... Args> |
1275 | explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args) |
1276 | : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {} |
1277 | |
1278 | using FlatTuple::FlatTupleBase::Apply; |
1279 | using FlatTuple::FlatTupleBase::Get; |
1280 | }; |
1281 | |
1282 | // Utility functions to be called with static_assert to induce deprecation |
1283 | // warnings. |
1284 | GTEST_INTERNAL_DEPRECATED( |
1285 | "INSTANTIATE_TEST_CASE_P is deprecated, please use " |
1286 | "INSTANTIATE_TEST_SUITE_P" ) |
1287 | constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; } |
1288 | |
1289 | GTEST_INTERNAL_DEPRECATED( |
1290 | "TYPED_TEST_CASE_P is deprecated, please use " |
1291 | "TYPED_TEST_SUITE_P" ) |
1292 | constexpr bool TypedTestCase_P_IsDeprecated() { return true; } |
1293 | |
1294 | GTEST_INTERNAL_DEPRECATED( |
1295 | "TYPED_TEST_CASE is deprecated, please use " |
1296 | "TYPED_TEST_SUITE" ) |
1297 | constexpr bool TypedTestCaseIsDeprecated() { return true; } |
1298 | |
1299 | GTEST_INTERNAL_DEPRECATED( |
1300 | "REGISTER_TYPED_TEST_CASE_P is deprecated, please use " |
1301 | "REGISTER_TYPED_TEST_SUITE_P" ) |
1302 | constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; } |
1303 | |
1304 | GTEST_INTERNAL_DEPRECATED( |
1305 | "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use " |
1306 | "INSTANTIATE_TYPED_TEST_SUITE_P" ) |
1307 | constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; } |
1308 | |
1309 | } // namespace internal |
1310 | } // namespace testing |
1311 | |
1312 | namespace std { |
1313 | // Some standard library implementations use `struct tuple_size` and some use |
1314 | // `class tuple_size`. Clang warns about the mismatch. |
1315 | // https://reviews.llvm.org/D55466 |
1316 | #ifdef __clang__ |
1317 | #pragma clang diagnostic push |
1318 | #pragma clang diagnostic ignored "-Wmismatched-tags" |
1319 | #endif |
1320 | template <typename... Ts> |
1321 | struct tuple_size<testing::internal::FlatTuple<Ts...>> |
1322 | : std::integral_constant<size_t, sizeof...(Ts)> {}; |
1323 | #ifdef __clang__ |
1324 | #pragma clang diagnostic pop |
1325 | #endif |
1326 | } // namespace std |
1327 | |
1328 | #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ |
1329 | ::testing::internal::AssertHelper(result_type, file, line, message) = \ |
1330 | ::testing::Message() |
1331 | |
1332 | #define GTEST_MESSAGE_(message, result_type) \ |
1333 | GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) |
1334 | |
1335 | #define GTEST_FATAL_FAILURE_(message) \ |
1336 | return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) |
1337 | |
1338 | #define GTEST_NONFATAL_FAILURE_(message) \ |
1339 | GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) |
1340 | |
1341 | #define GTEST_SUCCESS_(message) \ |
1342 | GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) |
1343 | |
1344 | #define GTEST_SKIP_(message) \ |
1345 | return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip) |
1346 | |
1347 | // Suppress MSVC warning 4072 (unreachable code) for the code following |
1348 | // statement if it returns or throws (or doesn't return or throw in some |
1349 | // situations). |
1350 | // NOTE: The "else" is important to keep this expansion to prevent a top-level |
1351 | // "else" from attaching to our "if". |
1352 | #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ |
1353 | if (::testing::internal::AlwaysTrue()) { \ |
1354 | statement; \ |
1355 | } else /* NOLINT */ \ |
1356 | static_assert(true, "") // User must have a semicolon after expansion. |
1357 | |
1358 | #if GTEST_HAS_EXCEPTIONS |
1359 | |
1360 | namespace testing { |
1361 | namespace internal { |
1362 | |
1363 | class NeverThrown { |
1364 | public: |
1365 | const char* what() const noexcept { |
1366 | return "this exception should never be thrown" ; |
1367 | } |
1368 | }; |
1369 | |
1370 | } // namespace internal |
1371 | } // namespace testing |
1372 | |
1373 | #if GTEST_HAS_RTTI |
1374 | |
1375 | #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e)) |
1376 | |
1377 | #else // GTEST_HAS_RTTI |
1378 | |
1379 | #define GTEST_EXCEPTION_TYPE_(e) \ |
1380 | std::string { "an std::exception-derived error" } |
1381 | |
1382 | #endif // GTEST_HAS_RTTI |
1383 | |
1384 | #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \ |
1385 | catch (typename std::conditional< \ |
1386 | std::is_same<typename std::remove_cv<typename std::remove_reference< \ |
1387 | expected_exception>::type>::type, \ |
1388 | std::exception>::value, \ |
1389 | const ::testing::internal::NeverThrown&, const std::exception&>::type \ |
1390 | e) { \ |
1391 | gtest_msg.value = "Expected: " #statement \ |
1392 | " throws an exception of type " #expected_exception \ |
1393 | ".\n Actual: it throws "; \ |
1394 | gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \ |
1395 | gtest_msg.value += " with description \""; \ |
1396 | gtest_msg.value += e.what(); \ |
1397 | gtest_msg.value += "\"."; \ |
1398 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
1399 | } |
1400 | |
1401 | #else // GTEST_HAS_EXCEPTIONS |
1402 | |
1403 | #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) |
1404 | |
1405 | #endif // GTEST_HAS_EXCEPTIONS |
1406 | |
1407 | #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ |
1408 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1409 | if (::testing::internal::TrueWithString gtest_msg{}) { \ |
1410 | bool gtest_caught_expected = false; \ |
1411 | try { \ |
1412 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1413 | } catch (expected_exception const&) { \ |
1414 | gtest_caught_expected = true; \ |
1415 | } \ |
1416 | GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \ |
1417 | catch (...) { \ |
1418 | gtest_msg.value = "Expected: " #statement \ |
1419 | " throws an exception of type " #expected_exception \ |
1420 | ".\n Actual: it throws a different type."; \ |
1421 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
1422 | } \ |
1423 | if (!gtest_caught_expected) { \ |
1424 | gtest_msg.value = "Expected: " #statement \ |
1425 | " throws an exception of type " #expected_exception \ |
1426 | ".\n Actual: it throws nothing."; \ |
1427 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
1428 | } \ |
1429 | } else /*NOLINT*/ \ |
1430 | GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \ |
1431 | : fail(gtest_msg.value.c_str()) |
1432 | |
1433 | #if GTEST_HAS_EXCEPTIONS |
1434 | |
1435 | #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \ |
1436 | catch (std::exception const& e) { \ |
1437 | gtest_msg.value = "it throws "; \ |
1438 | gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \ |
1439 | gtest_msg.value += " with description \""; \ |
1440 | gtest_msg.value += e.what(); \ |
1441 | gtest_msg.value += "\"."; \ |
1442 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ |
1443 | } |
1444 | |
1445 | #else // GTEST_HAS_EXCEPTIONS |
1446 | |
1447 | #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() |
1448 | |
1449 | #endif // GTEST_HAS_EXCEPTIONS |
1450 | |
1451 | #define GTEST_TEST_NO_THROW_(statement, fail) \ |
1452 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1453 | if (::testing::internal::TrueWithString gtest_msg{}) { \ |
1454 | try { \ |
1455 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1456 | } \ |
1457 | GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \ |
1458 | catch (...) { \ |
1459 | gtest_msg.value = "it throws."; \ |
1460 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ |
1461 | } \ |
1462 | } else \ |
1463 | GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) \ |
1464 | : fail(("Expected: " #statement " doesn't throw an exception.\n" \ |
1465 | " Actual: " + \ |
1466 | gtest_msg.value) \ |
1467 | .c_str()) |
1468 | |
1469 | #define GTEST_TEST_ANY_THROW_(statement, fail) \ |
1470 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1471 | if (::testing::internal::AlwaysTrue()) { \ |
1472 | bool gtest_caught_any = false; \ |
1473 | try { \ |
1474 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1475 | } catch (...) { \ |
1476 | gtest_caught_any = true; \ |
1477 | } \ |
1478 | if (!gtest_caught_any) { \ |
1479 | goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ |
1480 | } \ |
1481 | } else \ |
1482 | GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) \ |
1483 | : fail("Expected: " #statement \ |
1484 | " throws an exception.\n" \ |
1485 | " Actual: it doesn't.") |
1486 | |
1487 | // Implements Boolean test assertions such as EXPECT_TRUE. expression can be |
1488 | // either a boolean expression or an AssertionResult. text is a textual |
1489 | // representation of expression as it was passed into the EXPECT_TRUE. |
1490 | #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ |
1491 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1492 | if (const ::testing::AssertionResult gtest_ar_ = \ |
1493 | ::testing::AssertionResult(expression)) \ |
1494 | ; \ |
1495 | else \ |
1496 | fail(::testing::internal::GetBoolAssertionFailureMessage( \ |
1497 | gtest_ar_, text, #actual, #expected) \ |
1498 | .c_str()) |
1499 | |
1500 | #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ |
1501 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1502 | if (::testing::internal::AlwaysTrue()) { \ |
1503 | const ::testing::internal::HasNewFatalFailureHelper \ |
1504 | gtest_fatal_failure_checker; \ |
1505 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1506 | if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ |
1507 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ |
1508 | } \ |
1509 | } else /* NOLINT */ \ |
1510 | GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) \ |
1511 | : fail("Expected: " #statement \ |
1512 | " doesn't generate new fatal " \ |
1513 | "failures in the current thread.\n" \ |
1514 | " Actual: it does.") |
1515 | |
1516 | // Expands to the name of the class that implements the given test. |
1517 | #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
1518 | test_suite_name##_##test_name##_Test |
1519 | |
1520 | // Helper macro for defining tests. |
1521 | #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \ |
1522 | static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \ |
1523 | "test_suite_name must not be empty"); \ |
1524 | static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \ |
1525 | "test_name must not be empty"); \ |
1526 | class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
1527 | : public parent_class { \ |
1528 | public: \ |
1529 | GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \ |
1530 | ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \ |
1531 | GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
1532 | (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \ |
1533 | GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \ |
1534 | const GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
1535 | test_name) &) = delete; /* NOLINT */ \ |
1536 | GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
1537 | (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \ |
1538 | GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \ |
1539 | GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
1540 | test_name) &&) noexcept = delete; /* NOLINT */ \ |
1541 | \ |
1542 | private: \ |
1543 | void TestBody() override; \ |
1544 | static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \ |
1545 | }; \ |
1546 | \ |
1547 | ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
1548 | test_name)::test_info_ = \ |
1549 | ::testing::internal::MakeAndRegisterTestInfo( \ |
1550 | #test_suite_name, #test_name, nullptr, nullptr, \ |
1551 | ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \ |
1552 | ::testing::internal::SuiteApiResolver< \ |
1553 | parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \ |
1554 | ::testing::internal::SuiteApiResolver< \ |
1555 | parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \ |
1556 | new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \ |
1557 | test_suite_name, test_name)>); \ |
1558 | void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() |
1559 | |
1560 | #endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
1561 | |