1//===-- ClangAttrEmitter.cpp - Generate Clang attribute handling ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// These tablegen backends emit Clang attribute processing code
10//
11//===----------------------------------------------------------------------===//
12
13#include "TableGenBackends.h"
14#include "ASTTableGen.h"
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallString.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/ADT/StringMap.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/StringSwitch.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/TableGen/Error.h"
29#include "llvm/TableGen/Record.h"
30#include "llvm/TableGen/StringMatcher.h"
31#include "llvm/TableGen/TableGenBackend.h"
32#include <cassert>
33#include <cctype>
34#include <cstddef>
35#include <cstdint>
36#include <map>
37#include <memory>
38#include <optional>
39#include <set>
40#include <string>
41#include <utility>
42#include <vector>
43
44using namespace llvm;
45
46namespace {
47
48class FlattenedSpelling {
49 StringRef V, N, NS;
50 bool K = false;
51 const Record &OriginalSpelling;
52
53public:
54 FlattenedSpelling(StringRef Variety, StringRef Name, StringRef Namespace,
55 bool KnownToGCC, const Record &OriginalSpelling)
56 : V(Variety), N(Name), NS(Namespace), K(KnownToGCC),
57 OriginalSpelling(OriginalSpelling) {}
58 explicit FlattenedSpelling(const Record &Spelling)
59 : V(Spelling.getValueAsString(FieldName: "Variety")),
60 N(Spelling.getValueAsString(FieldName: "Name")), OriginalSpelling(Spelling) {
61 assert(V != "GCC" && V != "Clang" &&
62 "Given a GCC spelling, which means this hasn't been flattened!");
63 if (V == "CXX11" || V == "C23" || V == "Pragma")
64 NS = Spelling.getValueAsString(FieldName: "Namespace");
65 }
66
67 StringRef variety() const { return V; }
68 StringRef name() const { return N; }
69 StringRef nameSpace() const { return NS; }
70 bool knownToGCC() const { return K; }
71 const Record &getSpellingRecord() const { return OriginalSpelling; }
72};
73
74struct FlattenedSpellingInfo {
75 FlattenedSpellingInfo(StringRef Syntax, StringRef Scope,
76 const std::string &TargetTest, uint32_t ArgMask)
77 : Syntax(Syntax), Scope(Scope), TargetTest(TargetTest), ArgMask(ArgMask) {
78 }
79 StringRef Syntax;
80 StringRef Scope;
81 std::string TargetTest;
82 uint32_t ArgMask;
83};
84using FSIVecTy = std::vector<FlattenedSpellingInfo>;
85
86} // end anonymous namespace
87
88static bool GenerateTargetSpecificAttrChecks(const Record *R,
89 std::vector<StringRef> &Arches,
90 std::string &Test,
91 std::string *FnName);
92static bool isStringLiteralArgument(const Record *Arg);
93static bool isVariadicStringLiteralArgument(const Record *Arg);
94
95static std::vector<FlattenedSpelling>
96GetFlattenedSpellings(const Record &Attr) {
97 std::vector<FlattenedSpelling> Ret;
98
99 for (const auto &Spelling : Attr.getValueAsListOfDefs(FieldName: "Spellings")) {
100 StringRef Variety = Spelling->getValueAsString(FieldName: "Variety");
101 StringRef Name = Spelling->getValueAsString(FieldName: "Name");
102 if (Variety == "GCC") {
103 Ret.emplace_back(args: "GNU", args&: Name, args: "", args: true, args: *Spelling);
104 Ret.emplace_back(args: "CXX11", args&: Name, args: "gnu", args: true, args: *Spelling);
105 if (Spelling->getValueAsBit(FieldName: "AllowInC"))
106 Ret.emplace_back(args: "C23", args&: Name, args: "gnu", args: true, args: *Spelling);
107 } else if (Variety == "Clang") {
108 Ret.emplace_back(args: "GNU", args&: Name, args: "", args: false, args: *Spelling);
109 Ret.emplace_back(args: "CXX11", args&: Name, args: "clang", args: false, args: *Spelling);
110 if (Spelling->getValueAsBit(FieldName: "AllowInC"))
111 Ret.emplace_back(args: "C23", args&: Name, args: "clang", args: false, args: *Spelling);
112 } else if (Variety == "ClangGCC") {
113 Ret.emplace_back(args: "GNU", args&: Name, args: "", args: false, args: *Spelling);
114 Ret.emplace_back(args: "CXX11", args&: Name, args: "clang", args: false, args: *Spelling);
115 Ret.emplace_back(args: "CXX11", args&: Name, args: "gnu", args: false, args: *Spelling);
116 if (Spelling->getValueAsBit(FieldName: "AllowInC")) {
117 Ret.emplace_back(args: "C23", args&: Name, args: "clang", args: false, args: *Spelling);
118 Ret.emplace_back(args: "C23", args&: Name, args: "gnu", args: false, args: *Spelling);
119 }
120 } else {
121 Ret.push_back(x: FlattenedSpelling(*Spelling));
122 }
123 }
124
125 return Ret;
126}
127
128static std::string ReadPCHRecord(StringRef type) {
129 return StringSwitch<std::string>(type)
130 .EndsWith(S: "Decl *", Value: "Record.readDeclAs<" + type.drop_back().str() + ">()")
131 .Case(S: "TypeSourceInfo *", Value: "Record.readTypeSourceInfo()")
132 .Case(S: "Expr *", Value: "Record.readExpr()")
133 .Case(S: "IdentifierInfo *", Value: "Record.readIdentifier()")
134 .Case(S: "StringRef", Value: "Record.readString()")
135 .Case(S: "ParamIdx", Value: "ParamIdx::deserialize(Record.readInt())")
136 .Case(S: "OMPTraitInfo *", Value: "Record.readOMPTraitInfo()")
137 .Default(Value: "Record.readInt()");
138}
139
140// Get a type that is suitable for storing an object of the specified type.
141static StringRef getStorageType(StringRef type) {
142 return StringSwitch<StringRef>(type)
143 .Case(S: "StringRef", Value: "std::string")
144 .Default(Value: type);
145}
146
147// Assumes that the way to get the value is SA->getname()
148static std::string WritePCHRecord(StringRef type, StringRef name) {
149 return "Record." +
150 StringSwitch<std::string>(type)
151 .EndsWith(S: "Decl *", Value: "AddDeclRef(" + name.str() + ");\n")
152 .Case(S: "TypeSourceInfo *",
153 Value: "AddTypeSourceInfo(" + name.str() + ");\n")
154 .Case(S: "Expr *", Value: "AddStmt(" + name.str() + ");\n")
155 .Case(S: "IdentifierInfo *",
156 Value: "AddIdentifierRef(" + name.str() + ");\n")
157 .Case(S: "StringRef", Value: "AddString(" + name.str() + ");\n")
158 .Case(S: "ParamIdx", Value: "push_back(" + name.str() + ".serialize());\n")
159 .Case(S: "OMPTraitInfo *", Value: "writeOMPTraitInfo(" + name.str() + ");\n")
160 .Default(Value: "push_back(" + name.str() + ");\n");
161}
162
163// Normalize attribute name by removing leading and trailing
164// underscores. For example, __foo, foo__, __foo__ would
165// become foo.
166static StringRef NormalizeAttrName(StringRef AttrName) {
167 AttrName.consume_front(Prefix: "__");
168 AttrName.consume_back(Suffix: "__");
169 return AttrName;
170}
171
172// Normalize the name by removing any and all leading and trailing underscores.
173// This is different from NormalizeAttrName in that it also handles names like
174// _pascal and __pascal.
175static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
176 return Name.trim(Chars: "_");
177}
178
179// Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
180// removing "__" if it appears at the beginning and end of the attribute's name.
181static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
182 if (AttrSpelling.starts_with(Prefix: "__") && AttrSpelling.ends_with(Suffix: "__")) {
183 AttrSpelling = AttrSpelling.substr(Start: 2, N: AttrSpelling.size() - 4);
184 }
185
186 return AttrSpelling;
187}
188
189typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
190
191static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
192 ParsedAttrMap *Dupes = nullptr,
193 bool SemaOnly = true) {
194 std::set<std::string> Seen;
195 ParsedAttrMap R;
196 for (const Record *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
197 if (!SemaOnly || Attr->getValueAsBit(FieldName: "SemaHandler")) {
198 std::string AN;
199 if (Attr->isSubClassOf(Name: "TargetSpecificAttr") &&
200 !Attr->isValueUnset(FieldName: "ParseKind")) {
201 AN = Attr->getValueAsString(FieldName: "ParseKind").str();
202
203 // If this attribute has already been handled, it does not need to be
204 // handled again.
205 if (!Seen.insert(x: AN).second) {
206 if (Dupes)
207 Dupes->push_back(x: std::make_pair(x&: AN, y&: Attr));
208 continue;
209 }
210 } else
211 AN = NormalizeAttrName(AttrName: Attr->getName()).str();
212
213 R.push_back(x: std::make_pair(x&: AN, y&: Attr));
214 }
215 }
216 return R;
217}
218
219namespace {
220
221 class Argument {
222 std::string lowerName, upperName;
223 StringRef attrName;
224 bool isOpt;
225 bool Fake;
226
227 public:
228 Argument(StringRef Arg, StringRef Attr)
229 : lowerName(Arg.str()), upperName(lowerName), attrName(Attr),
230 isOpt(false), Fake(false) {
231 if (!lowerName.empty()) {
232 lowerName[0] = std::tolower(c: lowerName[0]);
233 upperName[0] = std::toupper(c: upperName[0]);
234 }
235 // Work around MinGW's macro definition of 'interface' to 'struct'. We
236 // have an attribute argument called 'Interface', so only the lower case
237 // name conflicts with the macro definition.
238 if (lowerName == "interface")
239 lowerName = "interface_";
240 }
241 Argument(const Record &Arg, StringRef Attr)
242 : Argument(Arg.getValueAsString(FieldName: "Name"), Attr) {}
243 virtual ~Argument() = default;
244
245 StringRef getLowerName() const { return lowerName; }
246 StringRef getUpperName() const { return upperName; }
247 StringRef getAttrName() const { return attrName; }
248
249 bool isOptional() const { return isOpt; }
250 void setOptional(bool set) { isOpt = set; }
251
252 bool isFake() const { return Fake; }
253 void setFake(bool fake) { Fake = fake; }
254
255 // These functions print the argument contents formatted in different ways.
256 virtual void writeAccessors(raw_ostream &OS) const = 0;
257 virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
258 virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
259 virtual void writeCloneArgs(raw_ostream &OS) const = 0;
260 virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
261 virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
262 virtual void writeCtorBody(raw_ostream &OS) const {}
263 virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
264 virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
265 virtual void writeCtorParameters(raw_ostream &OS) const = 0;
266 virtual void writeDeclarations(raw_ostream &OS) const = 0;
267 virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
268 virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
269 virtual void writePCHWrite(raw_ostream &OS) const = 0;
270 virtual std::string getIsOmitted() const { return "false"; }
271 virtual void writeValue(raw_ostream &OS) const = 0;
272 virtual void writeDump(raw_ostream &OS) const = 0;
273 virtual void writeDumpChildren(raw_ostream &OS) const {}
274 virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
275
276 virtual bool isEnumArg() const { return false; }
277 virtual bool isVariadicEnumArg() const { return false; }
278 virtual bool isVariadic() const { return false; }
279
280 virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
281 OS << getUpperName();
282 }
283 };
284
285 class SimpleArgument : public Argument {
286 std::string type;
287
288 public:
289 SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
290 : Argument(Arg, Attr), type(std::move(T)) {}
291
292 std::string getType() const { return type; }
293
294 void writeAccessors(raw_ostream &OS) const override {
295 OS << " " << type << " get" << getUpperName() << "() const {\n";
296 OS << " return " << getLowerName() << ";\n";
297 OS << " }";
298 }
299
300 void writeCloneArgs(raw_ostream &OS) const override {
301 OS << getLowerName();
302 }
303
304 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
305 OS << "A->get" << getUpperName() << "()";
306 }
307
308 void writeCtorInitializers(raw_ostream &OS) const override {
309 OS << getLowerName() << "(" << getUpperName() << ")";
310 }
311
312 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
313 OS << getLowerName() << "()";
314 }
315
316 void writeCtorParameters(raw_ostream &OS) const override {
317 OS << type << " " << getUpperName();
318 }
319
320 void writeDeclarations(raw_ostream &OS) const override {
321 OS << type << " " << getLowerName() << ";";
322 }
323
324 void writePCHReadDecls(raw_ostream &OS) const override {
325 std::string read = ReadPCHRecord(type);
326 OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
327 }
328
329 void writePCHReadArgs(raw_ostream &OS) const override {
330 OS << getLowerName();
331 }
332
333 void writePCHWrite(raw_ostream &OS) const override {
334 OS << " "
335 << WritePCHRecord(type, name: "SA->get" + getUpperName().str() + "()");
336 }
337
338 std::string getIsOmitted() const override {
339 auto IsOneOf = [](StringRef subject, auto... list) {
340 return ((subject == list) || ...);
341 };
342
343 if (IsOneOf(type, "IdentifierInfo *", "Expr *"))
344 return "!get" + getUpperName().str() + "()";
345 if (IsOneOf(type, "TypeSourceInfo *"))
346 return "!get" + getUpperName().str() + "Loc()";
347 if (IsOneOf(type, "ParamIdx"))
348 return "!get" + getUpperName().str() + "().isValid()";
349
350 assert(IsOneOf(type, "unsigned", "int", "bool", "FunctionDecl *",
351 "VarDecl *"));
352 return "false";
353 }
354
355 void writeValue(raw_ostream &OS) const override {
356 if (type == "FunctionDecl *")
357 OS << "\" << get" << getUpperName()
358 << "()->getNameInfo().getAsString() << \"";
359 else if (type == "IdentifierInfo *")
360 // Some non-optional (comma required) identifier arguments can be the
361 // empty string but are then recorded as a nullptr.
362 OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
363 << "()->getName() : \"\") << \"";
364 else if (type == "VarDecl *")
365 OS << "\" << get" << getUpperName() << "()->getName() << \"";
366 else if (type == "TypeSourceInfo *")
367 OS << "\" << get" << getUpperName() << "().getAsString() << \"";
368 else if (type == "ParamIdx")
369 OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
370 else
371 OS << "\" << get" << getUpperName() << "() << \"";
372 }
373
374 void writeDump(raw_ostream &OS) const override {
375 if (StringRef(type).ends_with(Suffix: "Decl *")) {
376 OS << " OS << \" \";\n";
377 OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
378 } else if (type == "IdentifierInfo *") {
379 // Some non-optional (comma required) identifier arguments can be the
380 // empty string but are then recorded as a nullptr.
381 OS << " if (SA->get" << getUpperName() << "())\n"
382 << " OS << \" \" << SA->get" << getUpperName()
383 << "()->getName();\n";
384 } else if (type == "TypeSourceInfo *") {
385 if (isOptional())
386 OS << " if (SA->get" << getUpperName() << "Loc())";
387 OS << " OS << \" \" << SA->get" << getUpperName()
388 << "().getAsString();\n";
389 } else if (type == "bool") {
390 OS << " if (SA->get" << getUpperName() << "()) OS << \" "
391 << getUpperName() << "\";\n";
392 } else if (type == "int" || type == "unsigned") {
393 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
394 } else if (type == "ParamIdx") {
395 if (isOptional())
396 OS << " if (SA->get" << getUpperName() << "().isValid())\n ";
397 OS << " OS << \" \" << SA->get" << getUpperName()
398 << "().getSourceIndex();\n";
399 } else if (type == "OMPTraitInfo *") {
400 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
401 } else {
402 llvm_unreachable("Unknown SimpleArgument type!");
403 }
404 }
405 };
406
407 class DefaultSimpleArgument : public SimpleArgument {
408 int64_t Default;
409
410 public:
411 DefaultSimpleArgument(const Record &Arg, StringRef Attr,
412 std::string T, int64_t Default)
413 : SimpleArgument(Arg, Attr, T), Default(Default) {}
414
415 void writeAccessors(raw_ostream &OS) const override {
416 SimpleArgument::writeAccessors(OS);
417
418 OS << "\n\n static const " << getType() << " Default" << getUpperName()
419 << " = ";
420 if (getType() == "bool")
421 OS << (Default != 0 ? "true" : "false");
422 else
423 OS << Default;
424 OS << ";";
425 }
426 };
427
428 class StringArgument : public Argument {
429 public:
430 StringArgument(const Record &Arg, StringRef Attr)
431 : Argument(Arg, Attr)
432 {}
433
434 void writeAccessors(raw_ostream &OS) const override {
435 OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
436 OS << " return llvm::StringRef(" << getLowerName() << ", "
437 << getLowerName() << "Length);\n";
438 OS << " }\n";
439 OS << " unsigned get" << getUpperName() << "Length() const {\n";
440 OS << " return " << getLowerName() << "Length;\n";
441 OS << " }\n";
442 OS << " void set" << getUpperName()
443 << "(ASTContext &C, llvm::StringRef S) {\n";
444 OS << " " << getLowerName() << "Length = S.size();\n";
445 OS << " this->" << getLowerName() << " = new (C, 1) char ["
446 << getLowerName() << "Length];\n";
447 OS << " if (!S.empty())\n";
448 OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
449 << getLowerName() << "Length);\n";
450 OS << " }";
451 }
452
453 void writeCloneArgs(raw_ostream &OS) const override {
454 OS << "get" << getUpperName() << "()";
455 }
456
457 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
458 OS << "A->get" << getUpperName() << "()";
459 }
460
461 void writeCtorBody(raw_ostream &OS) const override {
462 OS << " if (!" << getUpperName() << ".empty())\n";
463 OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
464 << ".data(), " << getLowerName() << "Length);\n";
465 }
466
467 void writeCtorInitializers(raw_ostream &OS) const override {
468 OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
469 << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
470 << "Length])";
471 }
472
473 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
474 OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
475 }
476
477 void writeCtorParameters(raw_ostream &OS) const override {
478 OS << "llvm::StringRef " << getUpperName();
479 }
480
481 void writeDeclarations(raw_ostream &OS) const override {
482 OS << "unsigned " << getLowerName() << "Length;\n";
483 OS << "char *" << getLowerName() << ";";
484 }
485
486 void writePCHReadDecls(raw_ostream &OS) const override {
487 OS << " std::string " << getLowerName()
488 << "= Record.readString();\n";
489 }
490
491 void writePCHReadArgs(raw_ostream &OS) const override {
492 OS << getLowerName();
493 }
494
495 void writePCHWrite(raw_ostream &OS) const override {
496 OS << " Record.AddString(SA->get" << getUpperName() << "());\n";
497 }
498
499 void writeValue(raw_ostream &OS) const override {
500 OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
501 }
502
503 void writeDump(raw_ostream &OS) const override {
504 OS << " OS << \" \\\"\" << SA->get" << getUpperName()
505 << "() << \"\\\"\";\n";
506 }
507 };
508
509 class AlignedArgument : public Argument {
510 public:
511 AlignedArgument(const Record &Arg, StringRef Attr)
512 : Argument(Arg, Attr)
513 {}
514
515 void writeAccessors(raw_ostream &OS) const override {
516 OS << " bool is" << getUpperName() << "Dependent() const;\n";
517 OS << " bool is" << getUpperName() << "ErrorDependent() const;\n";
518
519 OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
520
521 OS << " bool is" << getUpperName() << "Expr() const {\n";
522 OS << " return is" << getLowerName() << "Expr;\n";
523 OS << " }\n";
524
525 OS << " Expr *get" << getUpperName() << "Expr() const {\n";
526 OS << " assert(is" << getLowerName() << "Expr);\n";
527 OS << " return " << getLowerName() << "Expr;\n";
528 OS << " }\n";
529
530 OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
531 OS << " assert(!is" << getLowerName() << "Expr);\n";
532 OS << " return " << getLowerName() << "Type;\n";
533 OS << " }";
534
535 OS << " std::optional<unsigned> getCached" << getUpperName()
536 << "Value() const {\n";
537 OS << " return " << getLowerName() << "Cache;\n";
538 OS << " }";
539
540 OS << " void setCached" << getUpperName()
541 << "Value(unsigned AlignVal) {\n";
542 OS << " " << getLowerName() << "Cache = AlignVal;\n";
543 OS << " }";
544 }
545
546 void writeAccessorDefinitions(raw_ostream &OS) const override {
547 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
548 << "Dependent() const {\n";
549 OS << " if (is" << getLowerName() << "Expr)\n";
550 OS << " return " << getLowerName() << "Expr && (" << getLowerName()
551 << "Expr->isValueDependent() || " << getLowerName()
552 << "Expr->isTypeDependent());\n";
553 OS << " else\n";
554 OS << " return " << getLowerName()
555 << "Type->getType()->isDependentType();\n";
556 OS << "}\n";
557
558 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
559 << "ErrorDependent() const {\n";
560 OS << " if (is" << getLowerName() << "Expr)\n";
561 OS << " return " << getLowerName() << "Expr && " << getLowerName()
562 << "Expr->containsErrors();\n";
563 OS << " return " << getLowerName()
564 << "Type->getType()->containsErrors();\n";
565 OS << "}\n";
566 }
567
568 void writeASTVisitorTraversal(raw_ostream &OS) const override {
569 StringRef Name = getUpperName();
570 OS << " if (A->is" << Name << "Expr()) {\n"
571 << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
572 << " return false;\n"
573 << " } else if (auto *TSI = A->get" << Name << "Type()) {\n"
574 << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
575 << " return false;\n"
576 << " }\n";
577 }
578
579 void writeCloneArgs(raw_ostream &OS) const override {
580 OS << "is" << getLowerName() << "Expr, is" << getLowerName()
581 << "Expr ? static_cast<void*>(" << getLowerName()
582 << "Expr) : " << getLowerName()
583 << "Type";
584 }
585
586 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
587 // FIXME: move the definition in Sema::InstantiateAttrs to here.
588 // In the meantime, aligned attributes are cloned.
589 }
590
591 void writeCtorBody(raw_ostream &OS) const override {
592 OS << " if (is" << getLowerName() << "Expr)\n";
593 OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
594 << getUpperName() << ");\n";
595 OS << " else\n";
596 OS << " " << getLowerName()
597 << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
598 << ");\n";
599 }
600
601 void writeCtorInitializers(raw_ostream &OS) const override {
602 OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
603 }
604
605 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
606 OS << "is" << getLowerName() << "Expr(false)";
607 }
608
609 void writeCtorParameters(raw_ostream &OS) const override {
610 OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
611 }
612
613 void writeImplicitCtorArgs(raw_ostream &OS) const override {
614 OS << "Is" << getUpperName() << "Expr, " << getUpperName();
615 }
616
617 void writeDeclarations(raw_ostream &OS) const override {
618 OS << "bool is" << getLowerName() << "Expr;\n";
619 OS << "union {\n";
620 OS << "Expr *" << getLowerName() << "Expr;\n";
621 OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
622 OS << "};\n";
623 OS << "std::optional<unsigned> " << getLowerName() << "Cache;\n";
624 }
625
626 void writePCHReadArgs(raw_ostream &OS) const override {
627 OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
628 }
629
630 void writePCHReadDecls(raw_ostream &OS) const override {
631 OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n";
632 OS << " void *" << getLowerName() << "Ptr;\n";
633 OS << " if (is" << getLowerName() << "Expr)\n";
634 OS << " " << getLowerName() << "Ptr = Record.readExpr();\n";
635 OS << " else\n";
636 OS << " " << getLowerName()
637 << "Ptr = Record.readTypeSourceInfo();\n";
638 }
639
640 void writePCHWrite(raw_ostream &OS) const override {
641 OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
642 OS << " if (SA->is" << getUpperName() << "Expr())\n";
643 OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
644 OS << " else\n";
645 OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName()
646 << "Type());\n";
647 }
648
649 std::string getIsOmitted() const override {
650 return "!((is" + getLowerName().str() + "Expr && " +
651 getLowerName().str() + "Expr) || (!is" + getLowerName().str() +
652 "Expr && " + getLowerName().str() + "Type))";
653 }
654
655 void writeValue(raw_ostream &OS) const override {
656 OS << "\";\n";
657 OS << " if (is" << getLowerName() << "Expr && " << getLowerName()
658 << "Expr)";
659 OS << " " << getLowerName()
660 << "Expr->printPretty(OS, nullptr, Policy);\n";
661 OS << " if (!is" << getLowerName() << "Expr && " << getLowerName()
662 << "Type)";
663 OS << " " << getLowerName()
664 << "Type->getType().print(OS, Policy);\n";
665 OS << " OS << \"";
666 }
667
668 void writeDump(raw_ostream &OS) const override {
669 OS << " if (!SA->is" << getUpperName() << "Expr())\n";
670 OS << " dumpType(SA->get" << getUpperName()
671 << "Type()->getType());\n";
672 }
673
674 void writeDumpChildren(raw_ostream &OS) const override {
675 OS << " if (SA->is" << getUpperName() << "Expr())\n";
676 OS << " Visit(SA->get" << getUpperName() << "Expr());\n";
677 }
678
679 void writeHasChildren(raw_ostream &OS) const override {
680 OS << "SA->is" << getUpperName() << "Expr()";
681 }
682 };
683
684 class VariadicArgument : public Argument {
685 std::string Type, ArgName, ArgSizeName, RangeName;
686
687 protected:
688 // Assumed to receive a parameter: raw_ostream OS.
689 virtual void writeValueImpl(raw_ostream &OS) const {
690 OS << " OS << Val;\n";
691 }
692 // Assumed to receive a parameter: raw_ostream OS.
693 virtual void writeDumpImpl(raw_ostream &OS) const {
694 OS << " OS << \" \" << Val;\n";
695 }
696
697 public:
698 VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
699 : Argument(Arg, Attr), Type(std::move(T)),
700 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
701 RangeName(getLowerName().str()) {}
702
703 VariadicArgument(StringRef Arg, StringRef Attr, std::string T)
704 : Argument(Arg, Attr), Type(std::move(T)),
705 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
706 RangeName(getLowerName().str()) {}
707
708 const std::string &getType() const { return Type; }
709 const std::string &getArgName() const { return ArgName; }
710 const std::string &getArgSizeName() const { return ArgSizeName; }
711 bool isVariadic() const override { return true; }
712
713 void writeAccessors(raw_ostream &OS) const override {
714 std::string IteratorType = getLowerName().str() + "_iterator";
715 std::string BeginFn = getLowerName().str() + "_begin()";
716 std::string EndFn = getLowerName().str() + "_end()";
717
718 OS << " typedef " << Type << "* " << IteratorType << ";\n";
719 OS << " " << IteratorType << " " << BeginFn << " const {"
720 << " return " << ArgName << "; }\n";
721 OS << " " << IteratorType << " " << EndFn << " const {"
722 << " return " << ArgName << " + " << ArgSizeName << "; }\n";
723 OS << " unsigned " << getLowerName() << "_size() const {"
724 << " return " << ArgSizeName << "; }\n";
725 OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
726 << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
727 << "); }\n";
728 }
729
730 void writeSetter(raw_ostream &OS) const {
731 OS << " void set" << getUpperName() << "(ASTContext &Ctx, ";
732 writeCtorParameters(OS);
733 OS << ") {\n";
734 OS << " " << ArgSizeName << " = " << getUpperName() << "Size;\n";
735 OS << " " << ArgName << " = new (Ctx, 16) " << getType() << "["
736 << ArgSizeName << "];\n";
737 OS << " ";
738 writeCtorBody(OS);
739 OS << " }\n";
740 }
741
742 void writeCloneArgs(raw_ostream &OS) const override {
743 OS << ArgName << ", " << ArgSizeName;
744 }
745
746 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
747 // This isn't elegant, but we have to go through public methods...
748 OS << "A->" << getLowerName() << "_begin(), "
749 << "A->" << getLowerName() << "_size()";
750 }
751
752 void writeASTVisitorTraversal(raw_ostream &OS) const override {
753 // FIXME: Traverse the elements.
754 }
755
756 void writeCtorBody(raw_ostream &OS) const override {
757 OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + "
758 << ArgSizeName << ", " << ArgName << ");\n";
759 }
760
761 void writeCtorInitializers(raw_ostream &OS) const override {
762 OS << ArgSizeName << "(" << getUpperName() << "Size), "
763 << ArgName << "(new (Ctx, 16) " << getType() << "["
764 << ArgSizeName << "])";
765 }
766
767 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
768 OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
769 }
770
771 void writeCtorParameters(raw_ostream &OS) const override {
772 OS << getType() << " *" << getUpperName() << ", unsigned "
773 << getUpperName() << "Size";
774 }
775
776 void writeImplicitCtorArgs(raw_ostream &OS) const override {
777 OS << getUpperName() << ", " << getUpperName() << "Size";
778 }
779
780 void writeDeclarations(raw_ostream &OS) const override {
781 OS << " unsigned " << ArgSizeName << ";\n";
782 OS << " " << getType() << " *" << ArgName << ";";
783 }
784
785 void writePCHReadDecls(raw_ostream &OS) const override {
786 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
787 OS << " SmallVector<" << getType() << ", 4> "
788 << getLowerName() << ";\n";
789 OS << " " << getLowerName() << ".reserve(" << getLowerName()
790 << "Size);\n";
791
792 // If we can't store the values in the current type (if it's something
793 // like StringRef), store them in a different type and convert the
794 // container afterwards.
795 std::string StorageType = getStorageType(type: getType()).str();
796 std::string StorageName = getLowerName().str();
797 if (StorageType != getType()) {
798 StorageName += "Storage";
799 OS << " SmallVector<" << StorageType << ", 4> "
800 << StorageName << ";\n";
801 OS << " " << StorageName << ".reserve(" << getLowerName()
802 << "Size);\n";
803 }
804
805 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
806 std::string read = ReadPCHRecord(type: Type);
807 OS << " " << StorageName << ".push_back(" << read << ");\n";
808
809 if (StorageType != getType()) {
810 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
811 OS << " " << getLowerName() << ".push_back("
812 << StorageName << "[i]);\n";
813 }
814 }
815
816 void writePCHReadArgs(raw_ostream &OS) const override {
817 OS << getLowerName() << ".data(), " << getLowerName() << "Size";
818 }
819
820 void writePCHWrite(raw_ostream &OS) const override {
821 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
822 OS << " for (auto &Val : SA->" << RangeName << "())\n";
823 OS << " " << WritePCHRecord(type: Type, name: "Val");
824 }
825
826 void writeValue(raw_ostream &OS) const override {
827 OS << "\";\n";
828 OS << " for (const auto &Val : " << RangeName << "()) {\n"
829 << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
830 writeValueImpl(OS);
831 OS << " }\n";
832 OS << " OS << \"";
833 }
834
835 void writeDump(raw_ostream &OS) const override {
836 OS << " for (const auto &Val : SA->" << RangeName << "())\n";
837 writeDumpImpl(OS);
838 }
839 };
840
841 class VariadicOMPInteropInfoArgument : public VariadicArgument {
842 public:
843 VariadicOMPInteropInfoArgument(const Record &Arg, StringRef Attr)
844 : VariadicArgument(Arg, Attr, "OMPInteropInfo") {}
845
846 void writeDump(raw_ostream &OS) const override {
847 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
848 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
849 << getLowerName() << "_end(); I != E; ++I) {\n";
850 OS << " if (I->IsTarget && I->IsTargetSync)\n";
851 OS << " OS << \" Target_TargetSync\";\n";
852 OS << " else if (I->IsTarget)\n";
853 OS << " OS << \" Target\";\n";
854 OS << " else\n";
855 OS << " OS << \" TargetSync\";\n";
856 OS << " }\n";
857 }
858
859 void writePCHReadDecls(raw_ostream &OS) const override {
860 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
861 OS << " SmallVector<OMPInteropInfo, 4> " << getLowerName() << ";\n";
862 OS << " " << getLowerName() << ".reserve(" << getLowerName()
863 << "Size);\n";
864 OS << " for (unsigned I = 0, E = " << getLowerName() << "Size; ";
865 OS << "I != E; ++I) {\n";
866 OS << " bool IsTarget = Record.readBool();\n";
867 OS << " bool IsTargetSync = Record.readBool();\n";
868 OS << " " << getLowerName()
869 << ".emplace_back(IsTarget, IsTargetSync);\n";
870 OS << " }\n";
871 }
872
873 void writePCHWrite(raw_ostream &OS) const override {
874 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
875 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
876 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
877 << getLowerName() << "_end(); I != E; ++I) {\n";
878 OS << " Record.writeBool(I->IsTarget);\n";
879 OS << " Record.writeBool(I->IsTargetSync);\n";
880 OS << " }\n";
881 }
882 };
883
884 class VariadicParamIdxArgument : public VariadicArgument {
885 public:
886 VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
887 : VariadicArgument(Arg, Attr, "ParamIdx") {}
888
889 public:
890 void writeValueImpl(raw_ostream &OS) const override {
891 OS << " OS << Val.getSourceIndex();\n";
892 }
893
894 void writeDumpImpl(raw_ostream &OS) const override {
895 OS << " OS << \" \" << Val.getSourceIndex();\n";
896 }
897 };
898
899 struct VariadicParamOrParamIdxArgument : public VariadicArgument {
900 VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
901 : VariadicArgument(Arg, Attr, "int") {}
902 };
903
904 // Unique the enums, but maintain the original declaration ordering.
905 std::vector<StringRef>
906 uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
907 std::vector<StringRef> uniques;
908 SmallDenseSet<StringRef, 8> unique_set;
909 for (const auto &i : enums) {
910 if (unique_set.insert(V: i).second)
911 uniques.push_back(x: i);
912 }
913 return uniques;
914 }
915
916 class EnumArgument : public Argument {
917 std::string fullType;
918 StringRef shortType;
919 std::vector<StringRef> values, enums, uniques;
920 bool isExternal;
921 bool isCovered;
922
923 public:
924 EnumArgument(const Record &Arg, StringRef Attr)
925 : Argument(Arg, Attr), values(Arg.getValueAsListOfStrings(FieldName: "Values")),
926 enums(Arg.getValueAsListOfStrings(FieldName: "Enums")),
927 uniques(uniqueEnumsInOrder(enums)),
928 isExternal(Arg.getValueAsBit(FieldName: "IsExternalType")),
929 isCovered(Arg.getValueAsBit(FieldName: "IsCovered")) {
930 StringRef Type = Arg.getValueAsString(FieldName: "Type");
931 shortType = isExternal ? Type.rsplit(Separator: "::").second : Type;
932 // If shortType didn't contain :: at all rsplit will give us an empty
933 // string.
934 if (shortType.empty())
935 shortType = Type;
936 fullType = isExternal ? Type : (getAttrName() + "Attr::" + Type).str();
937
938 // FIXME: Emit a proper error
939 assert(!uniques.empty());
940 }
941
942 bool isEnumArg() const override { return true; }
943
944 void writeAccessors(raw_ostream &OS) const override {
945 OS << " " << fullType << " get" << getUpperName() << "() const {\n";
946 OS << " return " << getLowerName() << ";\n";
947 OS << " }";
948 }
949
950 void writeCloneArgs(raw_ostream &OS) const override {
951 OS << getLowerName();
952 }
953
954 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
955 OS << "A->get" << getUpperName() << "()";
956 }
957 void writeCtorInitializers(raw_ostream &OS) const override {
958 OS << getLowerName() << "(" << getUpperName() << ")";
959 }
960 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
961 OS << getLowerName() << "(" << fullType << "(0))";
962 }
963 void writeCtorParameters(raw_ostream &OS) const override {
964 OS << fullType << " " << getUpperName();
965 }
966 void writeDeclarations(raw_ostream &OS) const override {
967 if (!isExternal) {
968 auto i = uniques.cbegin(), e = uniques.cend();
969 // The last one needs to not have a comma.
970 --e;
971
972 OS << "public:\n";
973 OS << " enum " << shortType << " {\n";
974 for (; i != e; ++i)
975 OS << " " << *i << ",\n";
976 OS << " " << *e << "\n";
977 OS << " };\n";
978 }
979
980 OS << "private:\n";
981 OS << " " << fullType << " " << getLowerName() << ";";
982 }
983
984 void writePCHReadDecls(raw_ostream &OS) const override {
985 OS << " " << fullType << " " << getLowerName() << "(static_cast<"
986 << fullType << ">(Record.readInt()));\n";
987 }
988
989 void writePCHReadArgs(raw_ostream &OS) const override {
990 OS << getLowerName();
991 }
992
993 void writePCHWrite(raw_ostream &OS) const override {
994 OS << "Record.push_back(static_cast<uint64_t>(SA->get" << getUpperName()
995 << "()));\n";
996 }
997
998 void writeValue(raw_ostream &OS) const override {
999 // FIXME: this isn't 100% correct -- some enum arguments require printing
1000 // as a string literal, while others require printing as an identifier.
1001 // Tablegen currently does not distinguish between the two forms.
1002 OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << shortType
1003 << "ToStr(get" << getUpperName() << "()) << \"\\\"";
1004 }
1005
1006 void writeDump(raw_ostream &OS) const override {
1007 OS << " switch(SA->get" << getUpperName() << "()) {\n";
1008 for (const auto &I : uniques) {
1009 OS << " case " << fullType << "::" << I << ":\n";
1010 OS << " OS << \" " << I << "\";\n";
1011 OS << " break;\n";
1012 }
1013 if (!isCovered) {
1014 OS << " default:\n";
1015 OS << " llvm_unreachable(\"Invalid attribute value\");\n";
1016 }
1017 OS << " }\n";
1018 }
1019
1020 void writeConversion(raw_ostream &OS, bool Header) const {
1021 if (Header) {
1022 OS << " static bool ConvertStrTo" << shortType << "(StringRef Val, "
1023 << fullType << " &Out);\n";
1024 OS << " static const char *Convert" << shortType << "ToStr("
1025 << fullType << " Val);\n";
1026 return;
1027 }
1028
1029 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
1030 << "(StringRef Val, " << fullType << " &Out) {\n";
1031 OS << " std::optional<" << fullType << "> "
1032 << "R = llvm::StringSwitch<std::optional<" << fullType << ">>(Val)\n";
1033 for (size_t I = 0; I < enums.size(); ++I) {
1034 OS << " .Case(\"" << values[I] << "\", ";
1035 OS << fullType << "::" << enums[I] << ")\n";
1036 }
1037 OS << " .Default(std::optional<" << fullType << ">());\n";
1038 OS << " if (R) {\n";
1039 OS << " Out = *R;\n return true;\n }\n";
1040 OS << " return false;\n";
1041 OS << "}\n\n";
1042
1043 // Mapping from enumeration values back to enumeration strings isn't
1044 // trivial because some enumeration values have multiple named
1045 // enumerators, such as type_visibility(internal) and
1046 // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
1047 OS << "const char *" << getAttrName() << "Attr::Convert" << shortType
1048 << "ToStr(" << fullType << " Val) {\n"
1049 << " switch(Val) {\n";
1050 SmallDenseSet<StringRef, 8> Uniques;
1051 for (size_t I = 0; I < enums.size(); ++I) {
1052 if (Uniques.insert(V: enums[I]).second)
1053 OS << " case " << fullType << "::" << enums[I] << ": return \""
1054 << values[I] << "\";\n";
1055 }
1056 if (!isCovered) {
1057 OS << " default: llvm_unreachable(\"Invalid attribute value\");\n";
1058 }
1059 OS << " }\n"
1060 << " llvm_unreachable(\"No enumerator with that value\");\n"
1061 << "}\n";
1062 }
1063 };
1064
1065 class VariadicEnumArgument: public VariadicArgument {
1066 std::string fullType;
1067 StringRef shortType;
1068 std::vector<StringRef> values, enums, uniques;
1069 bool isExternal;
1070 bool isCovered;
1071
1072 protected:
1073 void writeValueImpl(raw_ostream &OS) const override {
1074 // FIXME: this isn't 100% correct -- some enum arguments require printing
1075 // as a string literal, while others require printing as an identifier.
1076 // Tablegen currently does not distinguish between the two forms.
1077 OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert"
1078 << shortType << "ToStr(Val)"
1079 << "<< \"\\\"\";\n";
1080 }
1081
1082 public:
1083 VariadicEnumArgument(const Record &Arg, StringRef Attr)
1084 : VariadicArgument(Arg, Attr, Arg.getValueAsString(FieldName: "Type").str()),
1085 values(Arg.getValueAsListOfStrings(FieldName: "Values")),
1086 enums(Arg.getValueAsListOfStrings(FieldName: "Enums")),
1087 uniques(uniqueEnumsInOrder(enums)),
1088 isExternal(Arg.getValueAsBit(FieldName: "IsExternalType")),
1089 isCovered(Arg.getValueAsBit(FieldName: "IsCovered")) {
1090 StringRef Type = Arg.getValueAsString(FieldName: "Type");
1091 shortType = isExternal ? Type.rsplit(Separator: "::").second : Type;
1092 // If shortType didn't contain :: at all rsplit will give us an empty
1093 // string.
1094 if (shortType.empty())
1095 shortType = Type;
1096 fullType = isExternal ? Type : (getAttrName() + "Attr::" + Type).str();
1097
1098 // FIXME: Emit a proper error
1099 assert(!uniques.empty());
1100 }
1101
1102 bool isVariadicEnumArg() const override { return true; }
1103
1104 void writeDeclarations(raw_ostream &OS) const override {
1105 if (!isExternal) {
1106 auto i = uniques.cbegin(), e = uniques.cend();
1107 // The last one needs to not have a comma.
1108 --e;
1109
1110 OS << "public:\n";
1111 OS << " enum " << shortType << " {\n";
1112 for (; i != e; ++i)
1113 OS << " " << *i << ",\n";
1114 OS << " " << *e << "\n";
1115 OS << " };\n";
1116 }
1117 OS << "private:\n";
1118
1119 VariadicArgument::writeDeclarations(OS);
1120 }
1121
1122 void writeDump(raw_ostream &OS) const override {
1123 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1124 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1125 << getLowerName() << "_end(); I != E; ++I) {\n";
1126 OS << " switch(*I) {\n";
1127 for (const auto &UI : uniques) {
1128 OS << " case " << fullType << "::" << UI << ":\n";
1129 OS << " OS << \" " << UI << "\";\n";
1130 OS << " break;\n";
1131 }
1132 if (!isCovered) {
1133 OS << " default:\n";
1134 OS << " llvm_unreachable(\"Invalid attribute value\");\n";
1135 }
1136 OS << " }\n";
1137 OS << " }\n";
1138 }
1139
1140 void writePCHReadDecls(raw_ostream &OS) const override {
1141 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
1142 OS << " SmallVector<" << fullType << ", 4> " << getLowerName()
1143 << ";\n";
1144 OS << " " << getLowerName() << ".reserve(" << getLowerName()
1145 << "Size);\n";
1146 OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1147 OS << " " << getLowerName() << ".push_back("
1148 << "static_cast<" << fullType << ">(Record.readInt()));\n";
1149 }
1150
1151 void writePCHWrite(raw_ostream &OS) const override {
1152 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
1153 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1154 << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1155 << getLowerName() << "_end(); i != e; ++i)\n";
1156 OS << " " << WritePCHRecord(type: fullType, name: "(*i)");
1157 }
1158
1159 void writeConversion(raw_ostream &OS, bool Header) const {
1160 if (Header) {
1161 OS << " static bool ConvertStrTo" << shortType << "(StringRef Val, "
1162 << fullType << " &Out);\n";
1163 OS << " static const char *Convert" << shortType << "ToStr("
1164 << fullType << " Val);\n";
1165 return;
1166 }
1167
1168 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
1169 << "(StringRef Val, ";
1170 OS << fullType << " &Out) {\n";
1171 OS << " std::optional<" << fullType
1172 << "> R = llvm::StringSwitch<std::optional<";
1173 OS << fullType << ">>(Val)\n";
1174 for (size_t I = 0; I < enums.size(); ++I) {
1175 OS << " .Case(\"" << values[I] << "\", ";
1176 OS << fullType << "::" << enums[I] << ")\n";
1177 }
1178 OS << " .Default(std::optional<" << fullType << ">());\n";
1179 OS << " if (R) {\n";
1180 OS << " Out = *R;\n return true;\n }\n";
1181 OS << " return false;\n";
1182 OS << "}\n\n";
1183
1184 OS << "const char *" << getAttrName() << "Attr::Convert" << shortType
1185 << "ToStr(" << fullType << " Val) {\n"
1186 << " switch(Val) {\n";
1187 SmallDenseSet<StringRef, 8> Uniques;
1188 for (size_t I = 0; I < enums.size(); ++I) {
1189 if (Uniques.insert(V: enums[I]).second)
1190 OS << " case " << fullType << "::" << enums[I] << ": return \""
1191 << values[I] << "\";\n";
1192 }
1193 if (!isCovered) {
1194 OS << " default: llvm_unreachable(\"Invalid attribute value\");\n";
1195 }
1196 OS << " }\n"
1197 << " llvm_unreachable(\"No enumerator with that value\");\n"
1198 << "}\n";
1199 }
1200 };
1201
1202 class VersionArgument : public Argument {
1203 public:
1204 VersionArgument(const Record &Arg, StringRef Attr)
1205 : Argument(Arg, Attr)
1206 {}
1207
1208 void writeAccessors(raw_ostream &OS) const override {
1209 OS << " VersionTuple get" << getUpperName() << "() const {\n";
1210 OS << " return " << getLowerName() << ";\n";
1211 OS << " }\n";
1212 OS << " void set" << getUpperName()
1213 << "(ASTContext &C, VersionTuple V) {\n";
1214 OS << " " << getLowerName() << " = V;\n";
1215 OS << " }";
1216 }
1217
1218 void writeCloneArgs(raw_ostream &OS) const override {
1219 OS << "get" << getUpperName() << "()";
1220 }
1221
1222 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1223 OS << "A->get" << getUpperName() << "()";
1224 }
1225
1226 void writeCtorInitializers(raw_ostream &OS) const override {
1227 OS << getLowerName() << "(" << getUpperName() << ")";
1228 }
1229
1230 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1231 OS << getLowerName() << "()";
1232 }
1233
1234 void writeCtorParameters(raw_ostream &OS) const override {
1235 OS << "VersionTuple " << getUpperName();
1236 }
1237
1238 void writeDeclarations(raw_ostream &OS) const override {
1239 OS << "VersionTuple " << getLowerName() << ";\n";
1240 }
1241
1242 void writePCHReadDecls(raw_ostream &OS) const override {
1243 OS << " VersionTuple " << getLowerName()
1244 << "= Record.readVersionTuple();\n";
1245 }
1246
1247 void writePCHReadArgs(raw_ostream &OS) const override {
1248 OS << getLowerName();
1249 }
1250
1251 void writePCHWrite(raw_ostream &OS) const override {
1252 OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1253 }
1254
1255 void writeValue(raw_ostream &OS) const override {
1256 OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1257 }
1258
1259 void writeDump(raw_ostream &OS) const override {
1260 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
1261 }
1262 };
1263
1264 class ExprArgument : public SimpleArgument {
1265 public:
1266 ExprArgument(const Record &Arg, StringRef Attr)
1267 : SimpleArgument(Arg, Attr, "Expr *")
1268 {}
1269
1270 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1271 OS << " if (!"
1272 << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1273 OS << " return false;\n";
1274 }
1275
1276 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1277 OS << "tempInst" << getUpperName();
1278 }
1279
1280 void writeTemplateInstantiation(raw_ostream &OS) const override {
1281 OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
1282 OS << " {\n";
1283 OS << " EnterExpressionEvaluationContext "
1284 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1285 OS << " ExprResult " << "Result = S.SubstExpr("
1286 << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1287 OS << " if (Result.isInvalid())\n";
1288 OS << " return nullptr;\n";
1289 OS << " tempInst" << getUpperName() << " = Result.get();\n";
1290 OS << " }\n";
1291 }
1292
1293 void writeValue(raw_ostream &OS) const override {
1294 OS << "\";\n";
1295 OS << " get" << getUpperName()
1296 << "()->printPretty(OS, nullptr, Policy);\n";
1297 OS << " OS << \"";
1298 }
1299
1300 void writeDump(raw_ostream &OS) const override {}
1301
1302 void writeDumpChildren(raw_ostream &OS) const override {
1303 OS << " Visit(SA->get" << getUpperName() << "());\n";
1304 }
1305
1306 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1307 };
1308
1309 class VariadicExprArgument : public VariadicArgument {
1310 public:
1311 VariadicExprArgument(const Record &Arg, StringRef Attr)
1312 : VariadicArgument(Arg, Attr, "Expr *")
1313 {}
1314
1315 VariadicExprArgument(StringRef ArgName, StringRef Attr)
1316 : VariadicArgument(ArgName, Attr, "Expr *") {}
1317
1318 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1319 OS << " {\n";
1320 OS << " " << getType() << " *I = A->" << getLowerName()
1321 << "_begin();\n";
1322 OS << " " << getType() << " *E = A->" << getLowerName()
1323 << "_end();\n";
1324 OS << " for (; I != E; ++I) {\n";
1325 OS << " if (!getDerived().TraverseStmt(*I))\n";
1326 OS << " return false;\n";
1327 OS << " }\n";
1328 OS << " }\n";
1329 }
1330
1331 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1332 OS << "tempInst" << getUpperName() << ", "
1333 << "numTempInst" << getUpperName();
1334 }
1335
1336 void writeTemplateInstantiation(raw_ostream &OS) const override {
1337 OS << " size_t numTempInst" << getUpperName() << ";\n";
1338 OS << " " << getType() << "*tempInst" << getUpperName() << ";\n";
1339 OS << " {\n";
1340 OS << " EnterExpressionEvaluationContext "
1341 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1342 OS << " ArrayRef<" << getType() << "> ArgsToInstantiate(A->"
1343 << getLowerName() << "_begin(), A->" << getLowerName() << "_end());\n";
1344 OS << " SmallVector<" << getType() << ", 4> InstArgs;\n";
1345 OS << " if (S.SubstExprs(ArgsToInstantiate, /*IsCall=*/false, "
1346 "TemplateArgs, InstArgs))\n";
1347 OS << " return nullptr;\n";
1348 OS << " numTempInst" << getUpperName() << " = InstArgs.size();\n";
1349 OS << " tempInst" << getUpperName() << " = new (C, 16) "
1350 << getType() << "[numTempInst" << getUpperName() << "];\n";
1351 OS << " std::copy(InstArgs.begin(), InstArgs.end(), tempInst"
1352 << getUpperName() << ");\n";
1353 OS << " }\n";
1354 }
1355
1356 void writeDump(raw_ostream &OS) const override {}
1357
1358 void writeDumpChildren(raw_ostream &OS) const override {
1359 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1360 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1361 << getLowerName() << "_end(); I != E; ++I)\n";
1362 OS << " Visit(*I);\n";
1363 }
1364
1365 void writeHasChildren(raw_ostream &OS) const override {
1366 OS << "SA->" << getLowerName() << "_begin() != "
1367 << "SA->" << getLowerName() << "_end()";
1368 }
1369 };
1370
1371 class VariadicIdentifierArgument : public VariadicArgument {
1372 public:
1373 VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1374 : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1375 {}
1376 };
1377
1378 class VariadicStringArgument : public VariadicArgument {
1379 public:
1380 VariadicStringArgument(const Record &Arg, StringRef Attr)
1381 : VariadicArgument(Arg, Attr, "StringRef")
1382 {}
1383
1384 void writeCtorBody(raw_ostream &OS) const override {
1385 OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1386 " ++I) {\n"
1387 " StringRef Ref = " << getUpperName() << "[I];\n"
1388 " if (!Ref.empty()) {\n"
1389 " char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1390 " std::memcpy(Mem, Ref.data(), Ref.size());\n"
1391 " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1392 " }\n"
1393 " }\n";
1394 }
1395
1396 void writeValueImpl(raw_ostream &OS) const override {
1397 OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
1398 }
1399 };
1400
1401 class TypeArgument : public SimpleArgument {
1402 public:
1403 TypeArgument(const Record &Arg, StringRef Attr)
1404 : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1405 {}
1406
1407 void writeAccessors(raw_ostream &OS) const override {
1408 OS << " QualType get" << getUpperName() << "() const {\n";
1409 OS << " return " << getLowerName() << "->getType();\n";
1410 OS << " }";
1411 OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
1412 OS << " return " << getLowerName() << ";\n";
1413 OS << " }";
1414 }
1415
1416 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1417 OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1418 OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1419 OS << " return false;\n";
1420 }
1421
1422 void writeTemplateInstantiation(raw_ostream &OS) const override {
1423 OS << " " << getType() << " tempInst" << getUpperName() << " =\n";
1424 OS << " S.SubstType(A->get" << getUpperName() << "Loc(), "
1425 << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1426 OS << " if (!tempInst" << getUpperName() << ")\n";
1427 OS << " return nullptr;\n";
1428 }
1429
1430 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1431 OS << "tempInst" << getUpperName();
1432 }
1433
1434 void writePCHWrite(raw_ostream &OS) const override {
1435 OS << " "
1436 << WritePCHRecord(type: getType(),
1437 name: "SA->get" + getUpperName().str() + "Loc()");
1438 }
1439 };
1440
1441 class WrappedAttr : public SimpleArgument {
1442 public:
1443 WrappedAttr(const Record &Arg, StringRef Attr)
1444 : SimpleArgument(Arg, Attr, "Attr *") {}
1445
1446 void writePCHReadDecls(raw_ostream &OS) const override {
1447 OS << " Attr *" << getLowerName() << " = Record.readAttr();";
1448 }
1449
1450 void writePCHWrite(raw_ostream &OS) const override {
1451 OS << " AddAttr(SA->get" << getUpperName() << "());";
1452 }
1453
1454 void writeDump(raw_ostream &OS) const override {}
1455
1456 void writeDumpChildren(raw_ostream &OS) const override {
1457 OS << " Visit(SA->get" << getUpperName() << "());\n";
1458 }
1459
1460 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1461 };
1462
1463 } // end anonymous namespace
1464
1465static std::unique_ptr<Argument>
1466createArgument(const Record &Arg, StringRef Attr,
1467 const Record *Search = nullptr) {
1468 if (!Search)
1469 Search = &Arg;
1470
1471 std::unique_ptr<Argument> Ptr;
1472 StringRef ArgName = Search->getName();
1473
1474 if (ArgName == "AlignedArgument")
1475 Ptr = std::make_unique<AlignedArgument>(args: Arg, args&: Attr);
1476 else if (ArgName == "EnumArgument")
1477 Ptr = std::make_unique<EnumArgument>(args: Arg, args&: Attr);
1478 else if (ArgName == "ExprArgument")
1479 Ptr = std::make_unique<ExprArgument>(args: Arg, args&: Attr);
1480 else if (ArgName == "DeclArgument")
1481 Ptr = std::make_unique<SimpleArgument>(
1482 args: Arg, args&: Attr, args: (Arg.getValueAsDef(FieldName: "Kind")->getName() + "Decl *").str());
1483 else if (ArgName == "IdentifierArgument")
1484 Ptr = std::make_unique<SimpleArgument>(args: Arg, args&: Attr, args: "IdentifierInfo *");
1485 else if (ArgName == "DefaultBoolArgument")
1486 Ptr = std::make_unique<DefaultSimpleArgument>(
1487 args: Arg, args&: Attr, args: "bool", args: Arg.getValueAsBit(FieldName: "Default"));
1488 else if (ArgName == "BoolArgument")
1489 Ptr = std::make_unique<SimpleArgument>(args: Arg, args&: Attr, args: "bool");
1490 else if (ArgName == "DefaultIntArgument")
1491 Ptr = std::make_unique<DefaultSimpleArgument>(
1492 args: Arg, args&: Attr, args: "int", args: Arg.getValueAsInt(FieldName: "Default"));
1493 else if (ArgName == "IntArgument")
1494 Ptr = std::make_unique<SimpleArgument>(args: Arg, args&: Attr, args: "int");
1495 else if (ArgName == "StringArgument")
1496 Ptr = std::make_unique<StringArgument>(args: Arg, args&: Attr);
1497 else if (ArgName == "TypeArgument")
1498 Ptr = std::make_unique<TypeArgument>(args: Arg, args&: Attr);
1499 else if (ArgName == "UnsignedArgument")
1500 Ptr = std::make_unique<SimpleArgument>(args: Arg, args&: Attr, args: "unsigned");
1501 else if (ArgName == "VariadicUnsignedArgument")
1502 Ptr = std::make_unique<VariadicArgument>(args: Arg, args&: Attr, args: "unsigned");
1503 else if (ArgName == "VariadicStringArgument")
1504 Ptr = std::make_unique<VariadicStringArgument>(args: Arg, args&: Attr);
1505 else if (ArgName == "VariadicEnumArgument")
1506 Ptr = std::make_unique<VariadicEnumArgument>(args: Arg, args&: Attr);
1507 else if (ArgName == "VariadicExprArgument")
1508 Ptr = std::make_unique<VariadicExprArgument>(args: Arg, args&: Attr);
1509 else if (ArgName == "VariadicParamIdxArgument")
1510 Ptr = std::make_unique<VariadicParamIdxArgument>(args: Arg, args&: Attr);
1511 else if (ArgName == "VariadicParamOrParamIdxArgument")
1512 Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(args: Arg, args&: Attr);
1513 else if (ArgName == "ParamIdxArgument")
1514 Ptr = std::make_unique<SimpleArgument>(args: Arg, args&: Attr, args: "ParamIdx");
1515 else if (ArgName == "VariadicIdentifierArgument")
1516 Ptr = std::make_unique<VariadicIdentifierArgument>(args: Arg, args&: Attr);
1517 else if (ArgName == "VersionArgument")
1518 Ptr = std::make_unique<VersionArgument>(args: Arg, args&: Attr);
1519 else if (ArgName == "WrappedAttr")
1520 Ptr = std::make_unique<WrappedAttr>(args: Arg, args&: Attr);
1521 else if (ArgName == "OMPTraitInfoArgument")
1522 Ptr = std::make_unique<SimpleArgument>(args: Arg, args&: Attr, args: "OMPTraitInfo *");
1523 else if (ArgName == "VariadicOMPInteropInfoArgument")
1524 Ptr = std::make_unique<VariadicOMPInteropInfoArgument>(args: Arg, args&: Attr);
1525
1526 if (!Ptr) {
1527 // Search in reverse order so that the most-derived type is handled first.
1528 std::vector<const Record *> SCs = Search->getSuperClasses();
1529 for (const Record *Base : reverse(C&: SCs)) {
1530 if ((Ptr = createArgument(Arg, Attr, Search: Base)))
1531 break;
1532 }
1533 }
1534
1535 if (Ptr && Arg.getValueAsBit(FieldName: "Optional"))
1536 Ptr->setOptional(true);
1537
1538 if (Ptr && Arg.getValueAsBit(FieldName: "Fake"))
1539 Ptr->setFake(true);
1540
1541 return Ptr;
1542}
1543
1544static void writeAvailabilityValue(raw_ostream &OS) {
1545 OS << "\" << getPlatform()->getName();\n"
1546 << " if (getStrict()) OS << \", strict\";\n"
1547 << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1548 << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1549 << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1550 << " if (getUnavailable()) OS << \", unavailable\";\n"
1551 << " OS << \"";
1552}
1553
1554static void writeDeprecatedAttrValue(raw_ostream &OS, StringRef Variety) {
1555 OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1556 // Only GNU deprecated has an optional fixit argument at the second position.
1557 if (Variety == "GNU")
1558 OS << " if (!getReplacement().empty()) OS << \", \\\"\""
1559 " << getReplacement() << \"\\\"\";\n";
1560 OS << " OS << \"";
1561}
1562
1563static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1564 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: R);
1565
1566 OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1567 if (Spellings.empty()) {
1568 OS << " return \"(No spelling)\";\n}\n\n";
1569 return;
1570 }
1571
1572 OS << " switch (getAttributeSpellingListIndex()) {\n"
1573 " default:\n"
1574 " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1575 " return \"(No spelling)\";\n";
1576
1577 for (const auto &[Idx, S] : enumerate(First&: Spellings)) {
1578 // clang-format off
1579 OS << " case " << Idx << ":\n"
1580 " return \"" << S.name() << "\";\n";
1581 // clang-format on
1582 }
1583 // End of the switch statement.
1584 OS << " }\n";
1585 // End of the getSpelling function.
1586 OS << "}\n\n";
1587}
1588
1589static void
1590writePrettyPrintFunction(const Record &R,
1591 const std::vector<std::unique_ptr<Argument>> &Args,
1592 raw_ostream &OS) {
1593 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: R);
1594
1595 OS << "void " << R.getName() << "Attr::printPretty("
1596 << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1597
1598 if (Spellings.empty()) {
1599 OS << "}\n\n";
1600 return;
1601 }
1602
1603 OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1604 << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1605 << " switch (getAttributeSpellingListIndex()) {\n"
1606 << " default:\n"
1607 << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1608 << " break;\n";
1609
1610 for (const auto &[Idx, S] : enumerate(First&: Spellings)) {
1611 SmallString<16> Prefix;
1612 SmallString<8> Suffix;
1613 // The actual spelling of the name and namespace (if applicable)
1614 // of an attribute without considering prefix and suffix.
1615 SmallString<64> Spelling;
1616 StringRef Name = S.name();
1617 StringRef Variety = S.variety();
1618
1619 if (Variety == "GNU") {
1620 Prefix = "__attribute__((";
1621 Suffix = "))";
1622 } else if (Variety == "CXX11" || Variety == "C23") {
1623 Prefix = "[[";
1624 Suffix = "]]";
1625 StringRef Namespace = S.nameSpace();
1626 if (!Namespace.empty()) {
1627 Spelling += Namespace;
1628 Spelling += "::";
1629 }
1630 } else if (Variety == "Declspec") {
1631 Prefix = "__declspec(";
1632 Suffix = ")";
1633 } else if (Variety == "Microsoft") {
1634 Prefix = "[";
1635 Suffix = "]";
1636 } else if (Variety == "Keyword") {
1637 Prefix = "";
1638 Suffix = "";
1639 } else if (Variety == "Pragma") {
1640 Prefix = "#pragma ";
1641 Suffix = "\n";
1642 StringRef Namespace = S.nameSpace();
1643 if (!Namespace.empty()) {
1644 Spelling += Namespace;
1645 Spelling += " ";
1646 }
1647 } else if (Variety == "HLSLAnnotation") {
1648 Prefix = ":";
1649 Suffix = "";
1650 } else {
1651 llvm_unreachable("Unknown attribute syntax variety!");
1652 }
1653
1654 Spelling += Name;
1655
1656 OS << " case " << Idx << " : {\n"
1657 << " OS << \"" << Prefix << Spelling << "\";\n";
1658
1659 if (Variety == "Pragma") {
1660 OS << " printPrettyPragma(OS, Policy);\n";
1661 OS << " OS << \"\\n\";";
1662 OS << " break;\n";
1663 OS << " }\n";
1664 continue;
1665 }
1666
1667 if (Spelling == "availability") {
1668 OS << " OS << \"(";
1669 writeAvailabilityValue(OS);
1670 OS << ")\";\n";
1671 } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1672 OS << " OS << \"(";
1673 writeDeprecatedAttrValue(OS, Variety);
1674 OS << ")\";\n";
1675 } else {
1676 // To avoid printing parentheses around an empty argument list or
1677 // printing spurious commas at the end of an argument list, we need to
1678 // determine where the last provided non-fake argument is.
1679 bool FoundNonOptArg = false;
1680 for (const auto &arg : reverse(C: Args)) {
1681 if (arg->isFake())
1682 continue;
1683 if (FoundNonOptArg)
1684 continue;
1685 // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1686 // any way to detect whether the argument was omitted.
1687 if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1688 FoundNonOptArg = true;
1689 continue;
1690 }
1691 OS << " if (" << arg->getIsOmitted() << ")\n"
1692 << " ++TrailingOmittedArgs;\n";
1693 }
1694 unsigned ArgIndex = 0;
1695 for (const auto &arg : Args) {
1696 if (arg->isFake())
1697 continue;
1698 std::string IsOmitted = arg->getIsOmitted();
1699 if (arg->isOptional() && IsOmitted != "false")
1700 OS << " if (!(" << IsOmitted << ")) {\n";
1701 // Variadic arguments print their own leading comma.
1702 if (!arg->isVariadic())
1703 OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
1704 OS << " OS << \"";
1705 arg->writeValue(OS);
1706 OS << "\";\n";
1707 if (arg->isOptional() && IsOmitted != "false")
1708 OS << " }\n";
1709 ++ArgIndex;
1710 }
1711 if (ArgIndex != 0)
1712 OS << " if (!IsFirstArgument)\n"
1713 << " OS << \")\";\n";
1714 }
1715 OS << " OS << \"" << Suffix << "\";\n"
1716 << " break;\n"
1717 << " }\n";
1718 }
1719
1720 // End of the switch statement.
1721 OS << "}\n";
1722 // End of the print function.
1723 OS << "}\n\n";
1724}
1725
1726/// Return the index of a spelling in a spelling list.
1727static unsigned getSpellingListIndex(ArrayRef<FlattenedSpelling> SpellingList,
1728 const FlattenedSpelling &Spelling) {
1729 assert(!SpellingList.empty() && "Spelling list is empty!");
1730
1731 for (const auto &[Index, S] : enumerate(First&: SpellingList)) {
1732 if (S.variety() == Spelling.variety() &&
1733 S.nameSpace() == Spelling.nameSpace() && S.name() == Spelling.name())
1734 return Index;
1735 }
1736
1737 PrintFatalError(Msg: "Unknown spelling: " + Spelling.name());
1738}
1739
1740static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1741 std::vector<const Record *> Accessors = R.getValueAsListOfDefs(FieldName: "Accessors");
1742 if (Accessors.empty())
1743 return;
1744
1745 const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(Attr: R);
1746 assert(!SpellingList.empty() &&
1747 "Attribute with empty spelling list can't have accessors!");
1748 for (const auto *Accessor : Accessors) {
1749 const StringRef Name = Accessor->getValueAsString(FieldName: "Name");
1750 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: *Accessor);
1751
1752 OS << " bool " << Name
1753 << "() const { return getAttributeSpellingListIndex() == ";
1754 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1755 OS << getSpellingListIndex(SpellingList, Spelling: Spellings[Index]);
1756 if (Index != Spellings.size() - 1)
1757 OS << " ||\n getAttributeSpellingListIndex() == ";
1758 else
1759 OS << "; }\n";
1760 }
1761 }
1762}
1763
1764static bool
1765SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1766 assert(!Spellings.empty() && "An empty list of spellings was provided");
1767 StringRef FirstName =
1768 NormalizeNameForSpellingComparison(Name: Spellings.front().name());
1769 for (const auto &Spelling : drop_begin(RangeOrContainer: Spellings)) {
1770 StringRef Name = NormalizeNameForSpellingComparison(Name: Spelling.name());
1771 if (Name != FirstName)
1772 return false;
1773 }
1774 return true;
1775}
1776
1777typedef std::map<unsigned, std::string> SemanticSpellingMap;
1778static std::string
1779CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1780 SemanticSpellingMap &Map) {
1781 // The enumerants are automatically generated based on the variety,
1782 // namespace (if present) and name for each attribute spelling. However,
1783 // care is taken to avoid trampling on the reserved namespace due to
1784 // underscores.
1785 std::string Ret(" enum Spelling {\n");
1786 std::set<std::string> Uniques;
1787 unsigned Idx = 0;
1788
1789 // If we have a need to have this many spellings we likely need to add an
1790 // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1791 // value of SpellingNotCalculated there and here.
1792 assert(Spellings.size() < 15 &&
1793 "Too many spellings, would step on SpellingNotCalculated in "
1794 "AttributeCommonInfo");
1795 for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1796 const FlattenedSpelling &S = *I;
1797 StringRef Variety = S.variety();
1798 StringRef Spelling = S.name();
1799 StringRef Namespace = S.nameSpace();
1800 std::string EnumName;
1801
1802 EnumName += Variety;
1803 EnumName += "_";
1804 if (!Namespace.empty())
1805 EnumName += NormalizeNameForSpellingComparison(Name: Namespace).str() + "_";
1806 EnumName += NormalizeNameForSpellingComparison(Name: Spelling);
1807
1808 // Even if the name is not unique, this spelling index corresponds to a
1809 // particular enumerant name that we've calculated.
1810 Map[Idx] = EnumName;
1811
1812 // Since we have been stripping underscores to avoid trampling on the
1813 // reserved namespace, we may have inadvertently created duplicate
1814 // enumerant names. These duplicates are not considered part of the
1815 // semantic spelling, and can be elided.
1816 if (!Uniques.insert(x: EnumName).second)
1817 continue;
1818
1819 if (I != Spellings.begin())
1820 Ret += ",\n";
1821 // Duplicate spellings are not considered part of the semantic spelling
1822 // enumeration, but the spelling index and semantic spelling values are
1823 // meant to be equivalent, so we must specify a concrete value for each
1824 // enumerator.
1825 Ret += " " + EnumName + " = " + utostr(X: Idx);
1826 }
1827 Ret += ",\n SpellingNotCalculated = 15\n";
1828 Ret += "\n };\n\n";
1829 return Ret;
1830}
1831
1832static void WriteSemanticSpellingSwitch(StringRef VarName,
1833 const SemanticSpellingMap &Map,
1834 raw_ostream &OS) {
1835 OS << " switch (" << VarName << ") {\n default: "
1836 << "llvm_unreachable(\"Unknown spelling list index\");\n";
1837 for (const auto &I : Map)
1838 OS << " case " << I.first << ": return " << I.second << ";\n";
1839 OS << " }\n";
1840}
1841
1842// Note: these values need to match the values used by LateAttrParseKind in
1843// `Attr.td`
1844enum class LateAttrParseKind { Never = 0, Standard = 1, ExperimentalExt = 2 };
1845
1846static LateAttrParseKind getLateAttrParseKind(const Record *Attr) {
1847 // This function basically does
1848 // `Attr->getValueAsDef("LateParsed")->getValueAsInt("Kind")` but does a bunch
1849 // of sanity checking to ensure that `LateAttrParseMode` in `Attr.td` is in
1850 // sync with the `LateAttrParseKind` enum in this source file.
1851
1852 static constexpr StringRef LateParsedStr = "LateParsed";
1853 static constexpr StringRef LateAttrParseKindStr = "LateAttrParseKind";
1854 static constexpr StringRef KindFieldStr = "Kind";
1855
1856 auto *LAPK = Attr->getValueAsDef(FieldName: LateParsedStr);
1857
1858 // Typecheck the `LateParsed` field.
1859 if (LAPK->getDirectSuperClasses().size() != 1)
1860 PrintFatalError(Rec: Attr, Msg: "Field `" + Twine(LateParsedStr) +
1861 "`should only have one super class");
1862
1863 const Record *SuperClass = LAPK->getDirectSuperClasses()[0].first;
1864 if (SuperClass->getName() != LateAttrParseKindStr)
1865 PrintFatalError(
1866 Rec: Attr, Msg: "Field `" + Twine(LateParsedStr) + "`should only have type `" +
1867 Twine(LateAttrParseKindStr) + "` but found type `" +
1868 SuperClass->getName() + "`");
1869
1870 // Get Kind and verify the enum name matches the name in `Attr.td`.
1871 unsigned Kind = LAPK->getValueAsInt(FieldName: KindFieldStr);
1872 switch (LateAttrParseKind(Kind)) {
1873#define CASE(X) \
1874 case LateAttrParseKind::X: \
1875 if (LAPK->getName().compare("LateAttrParse" #X) != 0) { \
1876 PrintFatalError( \
1877 Attr, \
1878 "Field `" + Twine(LateParsedStr) + "` set to `" + LAPK->getName() + \
1879 "` but this converts to `LateAttrParseKind::" + Twine(#X) + \
1880 "`"); \
1881 } \
1882 return LateAttrParseKind::X;
1883
1884 CASE(Never)
1885 CASE(Standard)
1886 CASE(ExperimentalExt)
1887#undef CASE
1888 }
1889
1890 // The Kind value is completely invalid
1891 auto KindValueStr = utostr(X: Kind);
1892 PrintFatalError(Rec: Attr, Msg: "Field `" + Twine(LateParsedStr) + "` set to `" +
1893 LAPK->getName() + "` has unexpected `" +
1894 Twine(KindFieldStr) + "` value of " + KindValueStr);
1895}
1896
1897// Emits the LateParsed property for attributes.
1898static void emitClangAttrLateParsedListImpl(const RecordKeeper &Records,
1899 raw_ostream &OS,
1900 LateAttrParseKind LateParseMode) {
1901 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
1902 if (LateAttrParseKind LateParsed = getLateAttrParseKind(Attr);
1903 LateParsed != LateParseMode)
1904 continue;
1905
1906 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: *Attr);
1907
1908 // FIXME: Handle non-GNU attributes
1909 for (const auto &I : Spellings) {
1910 if (I.variety() != "GNU")
1911 continue;
1912 OS << ".Case(\"" << I.name() << "\", 1)\n";
1913 }
1914 }
1915}
1916
1917static void emitClangAttrLateParsedList(const RecordKeeper &Records,
1918 raw_ostream &OS) {
1919 OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1920 emitClangAttrLateParsedListImpl(Records, OS, LateParseMode: LateAttrParseKind::Standard);
1921 OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1922}
1923
1924static void emitClangAttrLateParsedExperimentalList(const RecordKeeper &Records,
1925 raw_ostream &OS) {
1926 OS << "#if defined(CLANG_ATTR_LATE_PARSED_EXPERIMENTAL_EXT_LIST)\n";
1927 emitClangAttrLateParsedListImpl(Records, OS,
1928 LateParseMode: LateAttrParseKind::ExperimentalExt);
1929 OS << "#endif // CLANG_ATTR_LATE_PARSED_EXPERIMENTAL_EXT_LIST\n\n";
1930}
1931
1932static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1933 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: Attribute);
1934 for (const auto &I : Spellings) {
1935 if (I.variety() == "GNU" || I.variety() == "CXX11")
1936 return true;
1937 }
1938 return false;
1939}
1940
1941namespace {
1942
1943struct AttributeSubjectMatchRule {
1944 const Record *MetaSubject;
1945 const Record *Constraint;
1946
1947 AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1948 : MetaSubject(MetaSubject), Constraint(Constraint) {
1949 assert(MetaSubject && "Missing subject");
1950 }
1951
1952 bool isSubRule() const { return Constraint != nullptr; }
1953
1954 std::vector<const Record *> getSubjects() const {
1955 return (Constraint ? Constraint : MetaSubject)
1956 ->getValueAsListOfDefs(FieldName: "Subjects");
1957 }
1958
1959 std::vector<const Record *> getLangOpts() const {
1960 if (Constraint) {
1961 // Lookup the options in the sub-rule first, in case the sub-rule
1962 // overrides the rules options.
1963 std::vector<const Record *> Opts =
1964 Constraint->getValueAsListOfDefs(FieldName: "LangOpts");
1965 if (!Opts.empty())
1966 return Opts;
1967 }
1968 return MetaSubject->getValueAsListOfDefs(FieldName: "LangOpts");
1969 }
1970
1971 // Abstract rules are used only for sub-rules
1972 bool isAbstractRule() const { return getSubjects().empty(); }
1973
1974 StringRef getName() const {
1975 return (Constraint ? Constraint : MetaSubject)->getValueAsString(FieldName: "Name");
1976 }
1977
1978 bool isNegatedSubRule() const {
1979 assert(isSubRule() && "Not a sub-rule");
1980 return Constraint->getValueAsBit(FieldName: "Negated");
1981 }
1982
1983 std::string getSpelling() const {
1984 std::string Result = MetaSubject->getValueAsString(FieldName: "Name").str();
1985 if (isSubRule()) {
1986 Result += '(';
1987 if (isNegatedSubRule())
1988 Result += "unless(";
1989 Result += getName();
1990 if (isNegatedSubRule())
1991 Result += ')';
1992 Result += ')';
1993 }
1994 return Result;
1995 }
1996
1997 std::string getEnumValueName() const {
1998 SmallString<128> Result;
1999 Result += "SubjectMatchRule_";
2000 Result += MetaSubject->getValueAsString(FieldName: "Name");
2001 if (isSubRule()) {
2002 Result += "_";
2003 if (isNegatedSubRule())
2004 Result += "not_";
2005 Result += Constraint->getValueAsString(FieldName: "Name");
2006 }
2007 if (isAbstractRule())
2008 Result += "_abstract";
2009 return std::string(Result);
2010 }
2011
2012 std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
2013
2014 static const char *EnumName;
2015};
2016
2017const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
2018
2019struct PragmaClangAttributeSupport {
2020 std::vector<AttributeSubjectMatchRule> Rules;
2021
2022 class RuleOrAggregateRuleSet {
2023 std::vector<AttributeSubjectMatchRule> Rules;
2024 bool IsRule;
2025 RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
2026 bool IsRule)
2027 : Rules(Rules), IsRule(IsRule) {}
2028
2029 public:
2030 bool isRule() const { return IsRule; }
2031
2032 const AttributeSubjectMatchRule &getRule() const {
2033 assert(IsRule && "not a rule!");
2034 return Rules[0];
2035 }
2036
2037 ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
2038 return Rules;
2039 }
2040
2041 static RuleOrAggregateRuleSet
2042 getRule(const AttributeSubjectMatchRule &Rule) {
2043 return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
2044 }
2045 static RuleOrAggregateRuleSet
2046 getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
2047 return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
2048 }
2049 };
2050 DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
2051
2052 PragmaClangAttributeSupport(const RecordKeeper &Records);
2053
2054 bool isAttributedSupported(const Record &Attribute);
2055
2056 void emitMatchRuleList(raw_ostream &OS);
2057
2058 void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
2059
2060 void generateParsingHelpers(raw_ostream &OS);
2061};
2062
2063} // end anonymous namespace
2064
2065static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
2066 // FIXME: #pragma clang attribute does not currently support statement
2067 // attributes, so test whether the subject is one that appertains to a
2068 // declaration node. However, it may be reasonable for support for statement
2069 // attributes to be added.
2070 if (Subject.isSubClassOf(Name: "DeclNode") || Subject.isSubClassOf(Name: "DeclBase") ||
2071 Subject.getName() == "DeclBase")
2072 return true;
2073
2074 if (Subject.isSubClassOf(Name: "SubsetSubject"))
2075 return isSupportedPragmaClangAttributeSubject(
2076 Subject: *Subject.getValueAsDef(FieldName: "Base"));
2077
2078 return false;
2079}
2080
2081static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
2082 const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
2083 if (!CurrentBase)
2084 return false;
2085 if (CurrentBase == Base)
2086 return true;
2087 return doesDeclDeriveFrom(D: CurrentBase, Base);
2088}
2089
2090PragmaClangAttributeSupport::PragmaClangAttributeSupport(
2091 const RecordKeeper &Records) {
2092 auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
2093 const Record *MetaSubject,
2094 const Record *Constraint) {
2095 Rules.emplace_back(args&: MetaSubject, args&: Constraint);
2096 for (const Record *Subject :
2097 SubjectContainer->getValueAsListOfDefs(FieldName: "Subjects")) {
2098 bool Inserted =
2099 SubjectsToRules
2100 .try_emplace(Key: Subject, Args: RuleOrAggregateRuleSet::getRule(
2101 Rule: AttributeSubjectMatchRule(MetaSubject,
2102 Constraint)))
2103 .second;
2104 if (!Inserted) {
2105 PrintFatalError(Msg: "Attribute subject match rules should not represent"
2106 "same attribute subjects.");
2107 }
2108 }
2109 };
2110 for (const auto *MetaSubject :
2111 Records.getAllDerivedDefinitions(ClassName: "AttrSubjectMatcherRule")) {
2112 MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
2113 for (const Record *Constraint :
2114 MetaSubject->getValueAsListOfDefs(FieldName: "Constraints"))
2115 MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
2116 }
2117
2118 ArrayRef<const Record *> DeclNodes =
2119 Records.getAllDerivedDefinitions(DeclNodeClassName);
2120 for (const auto *Aggregate :
2121 Records.getAllDerivedDefinitions(ClassName: "AttrSubjectMatcherAggregateRule")) {
2122 const Record *SubjectDecl = Aggregate->getValueAsDef(FieldName: "Subject");
2123
2124 // Gather sub-classes of the aggregate subject that act as attribute
2125 // subject rules.
2126 std::vector<AttributeSubjectMatchRule> Rules;
2127 for (const auto *D : DeclNodes) {
2128 if (doesDeclDeriveFrom(D, Base: SubjectDecl)) {
2129 auto It = SubjectsToRules.find(Val: D);
2130 if (It == SubjectsToRules.end())
2131 continue;
2132 if (!It->second.isRule() || It->second.getRule().isSubRule())
2133 continue; // Assume that the rule will be included as well.
2134 Rules.push_back(x: It->second.getRule());
2135 }
2136 }
2137
2138 bool Inserted =
2139 SubjectsToRules
2140 .try_emplace(Key: SubjectDecl,
2141 Args: RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
2142 .second;
2143 if (!Inserted) {
2144 PrintFatalError(Msg: "Attribute subject match rules should not represent"
2145 "same attribute subjects.");
2146 }
2147 }
2148}
2149
2150static PragmaClangAttributeSupport &
2151getPragmaAttributeSupport(const RecordKeeper &Records) {
2152 static PragmaClangAttributeSupport Instance(Records);
2153 return Instance;
2154}
2155
2156void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
2157 OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
2158 OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
2159 "IsNegated) "
2160 << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
2161 OS << "#endif\n";
2162 for (const auto &Rule : Rules) {
2163 OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
2164 OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
2165 << Rule.isAbstractRule();
2166 if (Rule.isSubRule())
2167 OS << ", "
2168 << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
2169 << ", " << Rule.isNegatedSubRule();
2170 OS << ")\n";
2171 }
2172 OS << "#undef ATTR_MATCH_SUB_RULE\n";
2173}
2174
2175bool PragmaClangAttributeSupport::isAttributedSupported(
2176 const Record &Attribute) {
2177 // If the attribute explicitly specified whether to support #pragma clang
2178 // attribute, use that setting.
2179 bool Unset;
2180 bool SpecifiedResult =
2181 Attribute.getValueAsBitOrUnset(FieldName: "PragmaAttributeSupport", Unset);
2182 if (!Unset)
2183 return SpecifiedResult;
2184
2185 // Opt-out rules:
2186
2187 // An attribute requires delayed parsing (LateParsed is on).
2188 switch (getLateAttrParseKind(Attr: &Attribute)) {
2189 case LateAttrParseKind::Never:
2190 break;
2191 case LateAttrParseKind::Standard:
2192 return false;
2193 case LateAttrParseKind::ExperimentalExt:
2194 // This is only late parsed in certain parsing contexts when
2195 // `LangOpts.ExperimentalLateParseAttributes` is true. Information about the
2196 // parsing context and `LangOpts` is not available in this method so just
2197 // opt this attribute out.
2198 return false;
2199 }
2200
2201 // An attribute has no GNU/CXX11 spelling
2202 if (!hasGNUorCXX11Spelling(Attribute))
2203 return false;
2204 // An attribute subject list has a subject that isn't covered by one of the
2205 // subject match rules or has no subjects at all.
2206 if (Attribute.isValueUnset(FieldName: "Subjects"))
2207 return false;
2208 const Record *SubjectObj = Attribute.getValueAsDef(FieldName: "Subjects");
2209 bool HasAtLeastOneValidSubject = false;
2210 for (const auto *Subject : SubjectObj->getValueAsListOfDefs(FieldName: "Subjects")) {
2211 if (!isSupportedPragmaClangAttributeSubject(Subject: *Subject))
2212 continue;
2213 if (!SubjectsToRules.contains(Val: Subject))
2214 return false;
2215 HasAtLeastOneValidSubject = true;
2216 }
2217 return HasAtLeastOneValidSubject;
2218}
2219
2220static std::string GenerateTestExpression(ArrayRef<const Record *> LangOpts) {
2221 std::string Test;
2222
2223 for (auto *E : LangOpts) {
2224 if (!Test.empty())
2225 Test += " || ";
2226
2227 const StringRef Code = E->getValueAsString(FieldName: "CustomCode");
2228 if (!Code.empty()) {
2229 Test += "(";
2230 Test += Code;
2231 Test += ")";
2232 if (!E->getValueAsString(FieldName: "Name").empty()) {
2233 PrintWarning(
2234 WarningLoc: E->getLoc(),
2235 Msg: "non-empty 'Name' field ignored because 'CustomCode' was supplied");
2236 }
2237 } else {
2238 Test += "LangOpts.";
2239 Test += E->getValueAsString(FieldName: "Name");
2240 }
2241 }
2242
2243 if (Test.empty())
2244 return "true";
2245
2246 return Test;
2247}
2248
2249void
2250PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2251 raw_ostream &OS) {
2252 if (!isAttributedSupported(Attribute: Attr) || Attr.isValueUnset(FieldName: "Subjects"))
2253 return;
2254 // Generate a function that constructs a set of matching rules that describe
2255 // to which declarations the attribute should apply to.
2256 OS << "void getPragmaAttributeMatchRules("
2257 << "llvm::SmallVectorImpl<std::pair<"
2258 << AttributeSubjectMatchRule::EnumName
2259 << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2260 const Record *SubjectObj = Attr.getValueAsDef(FieldName: "Subjects");
2261 for (const auto *Subject : SubjectObj->getValueAsListOfDefs(FieldName: "Subjects")) {
2262 if (!isSupportedPragmaClangAttributeSubject(Subject: *Subject))
2263 continue;
2264 auto It = SubjectsToRules.find(Val: Subject);
2265 assert(It != SubjectsToRules.end() &&
2266 "This attribute is unsupported by #pragma clang attribute");
2267 for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2268 // The rule might be language specific, so only subtract it from the given
2269 // rules if the specific language options are specified.
2270 std::vector<const Record *> LangOpts = Rule.getLangOpts();
2271 OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2272 << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2273 << "));\n";
2274 }
2275 }
2276 OS << "}\n\n";
2277}
2278
2279void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2280 // Generate routines that check the names of sub-rules.
2281 OS << "std::optional<attr::SubjectMatchRule> "
2282 "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2283 OS << " return std::nullopt;\n";
2284 OS << "}\n\n";
2285
2286 MapVector<const Record *, std::vector<AttributeSubjectMatchRule>>
2287 SubMatchRules;
2288 for (const auto &Rule : Rules) {
2289 if (!Rule.isSubRule())
2290 continue;
2291 SubMatchRules[Rule.MetaSubject].push_back(x: Rule);
2292 }
2293
2294 for (const auto &SubMatchRule : SubMatchRules) {
2295 OS << "std::optional<attr::SubjectMatchRule> "
2296 "isAttributeSubjectMatchSubRuleFor_"
2297 << SubMatchRule.first->getValueAsString(FieldName: "Name")
2298 << "(StringRef Name, bool IsUnless) {\n";
2299 OS << " if (IsUnless)\n";
2300 OS << " return "
2301 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2302 for (const auto &Rule : SubMatchRule.second) {
2303 if (Rule.isNegatedSubRule())
2304 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2305 << ").\n";
2306 }
2307 OS << " Default(std::nullopt);\n";
2308 OS << " return "
2309 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2310 for (const auto &Rule : SubMatchRule.second) {
2311 if (!Rule.isNegatedSubRule())
2312 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2313 << ").\n";
2314 }
2315 OS << " Default(std::nullopt);\n";
2316 OS << "}\n\n";
2317 }
2318
2319 // Generate the function that checks for the top-level rules.
2320 OS << "std::pair<std::optional<attr::SubjectMatchRule>, "
2321 "std::optional<attr::SubjectMatchRule> (*)(StringRef, "
2322 "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2323 OS << " return "
2324 "llvm::StringSwitch<std::pair<std::optional<attr::SubjectMatchRule>, "
2325 "std::optional<attr::SubjectMatchRule> (*) (StringRef, "
2326 "bool)>>(Name).\n";
2327 for (const auto &Rule : Rules) {
2328 if (Rule.isSubRule())
2329 continue;
2330 std::string SubRuleFunction;
2331 if (SubMatchRules.count(Key: Rule.MetaSubject))
2332 SubRuleFunction =
2333 ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2334 else
2335 SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2336 OS << " Case(\"" << Rule.getName() << "\", std::make_pair("
2337 << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2338 }
2339 OS << " Default(std::make_pair(std::nullopt, "
2340 "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2341 OS << "}\n\n";
2342
2343 // Generate the function that checks for the submatch rules.
2344 OS << "const char *validAttributeSubjectMatchSubRules("
2345 << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2346 OS << " switch (Rule) {\n";
2347 for (const auto &SubMatchRule : SubMatchRules) {
2348 OS << " case "
2349 << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2350 << ":\n";
2351 OS << " return \"'";
2352 bool IsFirst = true;
2353 for (const auto &Rule : SubMatchRule.second) {
2354 if (!IsFirst)
2355 OS << ", '";
2356 IsFirst = false;
2357 if (Rule.isNegatedSubRule())
2358 OS << "unless(";
2359 OS << Rule.getName();
2360 if (Rule.isNegatedSubRule())
2361 OS << ')';
2362 OS << "'";
2363 }
2364 OS << "\";\n";
2365 }
2366 OS << " default: return nullptr;\n";
2367 OS << " }\n";
2368 OS << "}\n\n";
2369}
2370
2371template <typename Fn> static void forEachSpelling(const Record &Attr, Fn &&F) {
2372 for (const FlattenedSpelling &S : GetFlattenedSpellings(Attr)) {
2373 F(S);
2374 }
2375}
2376
2377static std::map<StringRef, std::vector<const Record *>> NameToAttrsMap;
2378
2379/// Build a map from the attribute name to the Attrs that use that name. If more
2380/// than one Attr use a name, the arguments could be different so a more complex
2381/// check is needed in the generated switch.
2382static void generateNameToAttrsMap(const RecordKeeper &Records) {
2383 for (const auto *A : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
2384 for (const FlattenedSpelling &S : GetFlattenedSpellings(Attr: *A)) {
2385 auto [It, Inserted] = NameToAttrsMap.try_emplace(k: S.name());
2386 if (Inserted || !is_contained(Range&: It->second, Element: A))
2387 It->second.emplace_back(args&: A);
2388 }
2389 }
2390}
2391
2392/// Generate the info needed to produce the case values in case more than one
2393/// attribute has the same name. Store the info in a map that can be processed
2394/// after all attributes are seen.
2395static void generateFlattenedSpellingInfo(const Record &Attr,
2396 std::map<StringRef, FSIVecTy> &Map,
2397 uint32_t ArgMask = 0) {
2398 std::string TargetTest;
2399 if (Attr.isSubClassOf(Name: "TargetSpecificAttr") &&
2400 !Attr.isValueUnset(FieldName: "ParseKind")) {
2401 const Record *T = Attr.getValueAsDef(FieldName: "Target");
2402 std::vector<StringRef> Arches = T->getValueAsListOfStrings(FieldName: "Arches");
2403 (void)GenerateTargetSpecificAttrChecks(R: T, Arches, Test&: TargetTest, FnName: nullptr);
2404 }
2405
2406 forEachSpelling(Attr, F: [&](const FlattenedSpelling &S) {
2407 Map[S.name()].emplace_back(args: S.variety(), args: S.nameSpace(), args&: TargetTest, args&: ArgMask);
2408 });
2409}
2410
2411static bool nameAppliesToOneAttribute(StringRef Name) {
2412 auto It = NameToAttrsMap.find(x: Name);
2413 assert(It != NameToAttrsMap.end());
2414 return It->second.size() == 1;
2415}
2416
2417static bool emitIfSimpleValue(StringRef Name, uint32_t ArgMask,
2418 raw_ostream &OS) {
2419 if (nameAppliesToOneAttribute(Name)) {
2420 OS << ".Case(\"" << Name << "\", ";
2421 if (ArgMask != 0)
2422 OS << ArgMask << ")\n";
2423 else
2424 OS << "true)\n";
2425 return true;
2426 }
2427 return false;
2428}
2429
2430static void emitSingleCondition(const FlattenedSpellingInfo &FSI,
2431 raw_ostream &OS) {
2432 OS << "(Syntax==AttributeCommonInfo::AS_" << FSI.Syntax << " && ";
2433 if (!FSI.Scope.empty())
2434 OS << "ScopeName && ScopeName->getName()==\"" << FSI.Scope << "\"";
2435 else
2436 OS << "!ScopeName";
2437 if (!FSI.TargetTest.empty())
2438 OS << " && " << FSI.TargetTest;
2439 OS << ")";
2440}
2441
2442static void emitStringSwitchCases(std::map<StringRef, FSIVecTy> &Map,
2443 raw_ostream &OS) {
2444 for (const auto &[Name, Vec] : Map) {
2445 if (emitIfSimpleValue(Name, ArgMask: Vec[0].ArgMask, OS))
2446 continue;
2447
2448 // Not simple, build expressions for each case.
2449 OS << ".Case(\"" << Name << "\", ";
2450 for (unsigned I = 0, E = Vec.size(); I < E; ++I) {
2451 emitSingleCondition(FSI: Vec[I], OS);
2452 uint32_t ArgMask = Vec[I].ArgMask;
2453 if (E == 1 && ArgMask == 0)
2454 continue;
2455
2456 // More than one or it's the Mask form. Create a conditional expression.
2457 uint32_t SuccessValue = ArgMask != 0 ? ArgMask : 1;
2458 OS << " ? " << SuccessValue << " : ";
2459 if (I == E - 1)
2460 OS << 0;
2461 }
2462 OS << ")\n";
2463 }
2464}
2465
2466static bool isTypeArgument(const Record *Arg) {
2467 return !Arg->getDirectSuperClasses().empty() &&
2468 Arg->getDirectSuperClasses().back().first->getName() == "TypeArgument";
2469}
2470
2471/// Emits the first-argument-is-type property for attributes.
2472static void emitClangAttrTypeArgList(const RecordKeeper &Records,
2473 raw_ostream &OS) {
2474 OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2475 std::map<StringRef, FSIVecTy> FSIMap;
2476 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
2477 // Determine whether the first argument is a type.
2478 std::vector<const Record *> Args = Attr->getValueAsListOfDefs(FieldName: "Args");
2479 if (Args.empty())
2480 continue;
2481
2482 if (!isTypeArgument(Arg: Args[0]))
2483 continue;
2484 generateFlattenedSpellingInfo(Attr: *Attr, Map&: FSIMap);
2485 }
2486 emitStringSwitchCases(Map&: FSIMap, OS);
2487 OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2488}
2489
2490/// Emits the parse-arguments-in-unevaluated-context property for
2491/// attributes.
2492static void emitClangAttrArgContextList(const RecordKeeper &Records,
2493 raw_ostream &OS) {
2494 OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2495 std::map<StringRef, FSIVecTy> FSIMap;
2496 ParsedAttrMap Attrs = getParsedAttrList(Records);
2497 for (const auto &I : Attrs) {
2498 const Record &Attr = *I.second;
2499
2500 if (!Attr.getValueAsBit(FieldName: "ParseArgumentsAsUnevaluated"))
2501 continue;
2502 generateFlattenedSpellingInfo(Attr, Map&: FSIMap);
2503 }
2504 emitStringSwitchCases(Map&: FSIMap, OS);
2505 OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2506}
2507
2508static bool isIdentifierArgument(const Record *Arg) {
2509 return !Arg->getDirectSuperClasses().empty() &&
2510 StringSwitch<bool>(
2511 Arg->getDirectSuperClasses().back().first->getName())
2512 .Case(S: "IdentifierArgument", Value: true)
2513 .Case(S: "EnumArgument", Value: true)
2514 .Case(S: "VariadicEnumArgument", Value: true)
2515 .Default(Value: false);
2516}
2517
2518static bool isVariadicIdentifierArgument(const Record *Arg) {
2519 return !Arg->getDirectSuperClasses().empty() &&
2520 StringSwitch<bool>(
2521 Arg->getDirectSuperClasses().back().first->getName())
2522 .Case(S: "VariadicIdentifierArgument", Value: true)
2523 .Case(S: "VariadicParamOrParamIdxArgument", Value: true)
2524 .Default(Value: false);
2525}
2526
2527static bool isVariadicExprArgument(const Record *Arg) {
2528 return !Arg->getDirectSuperClasses().empty() &&
2529 StringSwitch<bool>(
2530 Arg->getDirectSuperClasses().back().first->getName())
2531 .Case(S: "VariadicExprArgument", Value: true)
2532 .Default(Value: false);
2533}
2534
2535static bool isStringLiteralArgument(const Record *Arg) {
2536 if (Arg->getDirectSuperClasses().empty())
2537 return false;
2538 StringRef ArgKind = Arg->getDirectSuperClasses().back().first->getName();
2539 if (ArgKind == "EnumArgument")
2540 return Arg->getValueAsBit(FieldName: "IsString");
2541 return ArgKind == "StringArgument";
2542}
2543
2544static bool isVariadicStringLiteralArgument(const Record *Arg) {
2545 if (Arg->getDirectSuperClasses().empty())
2546 return false;
2547 StringRef ArgKind = Arg->getDirectSuperClasses().back().first->getName();
2548 if (ArgKind == "VariadicEnumArgument")
2549 return Arg->getValueAsBit(FieldName: "IsString");
2550 return ArgKind == "VariadicStringArgument";
2551}
2552
2553static void emitClangAttrVariadicIdentifierArgList(const RecordKeeper &Records,
2554 raw_ostream &OS) {
2555 OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2556 std::map<StringRef, FSIVecTy> FSIMap;
2557 for (const auto *A : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
2558 // Determine whether the first argument is a variadic identifier.
2559 std::vector<const Record *> Args = A->getValueAsListOfDefs(FieldName: "Args");
2560 if (Args.empty() || !isVariadicIdentifierArgument(Arg: Args[0]))
2561 continue;
2562 generateFlattenedSpellingInfo(Attr: *A, Map&: FSIMap);
2563 }
2564 emitStringSwitchCases(Map&: FSIMap, OS);
2565 OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2566}
2567
2568// Emits the list of arguments that should be parsed as unevaluated string
2569// literals for each attribute.
2570static void
2571emitClangAttrUnevaluatedStringLiteralList(const RecordKeeper &Records,
2572 raw_ostream &OS) {
2573 OS << "#if defined(CLANG_ATTR_STRING_LITERAL_ARG_LIST)\n";
2574
2575 auto MakeMask = [](ArrayRef<const Record *> Args) {
2576 uint32_t Bits = 0;
2577 assert(Args.size() <= 32 && "unsupported number of arguments in attribute");
2578 for (uint32_t N = 0; N < Args.size(); ++N) {
2579 Bits |= (isStringLiteralArgument(Arg: Args[N]) << N);
2580 // If we have a variadic string argument, set all the remaining bits to 1
2581 if (isVariadicStringLiteralArgument(Arg: Args[N])) {
2582 Bits |= maskTrailingZeros<decltype(Bits)>(N);
2583 break;
2584 }
2585 }
2586 return Bits;
2587 };
2588
2589 std::map<StringRef, FSIVecTy> FSIMap;
2590 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
2591 // Determine whether there are any string arguments.
2592 uint32_t ArgMask = MakeMask(Attr->getValueAsListOfDefs(FieldName: "Args"));
2593 if (!ArgMask)
2594 continue;
2595 generateFlattenedSpellingInfo(Attr: *Attr, Map&: FSIMap, ArgMask);
2596 }
2597 emitStringSwitchCases(Map&: FSIMap, OS);
2598 OS << "#endif // CLANG_ATTR_STRING_LITERAL_ARG_LIST\n\n";
2599}
2600
2601// Emits the first-argument-is-identifier property for attributes.
2602static void emitClangAttrIdentifierArgList(const RecordKeeper &Records,
2603 raw_ostream &OS) {
2604 OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2605 std::map<StringRef, FSIVecTy> FSIMap;
2606 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
2607 // Determine whether the first argument is an identifier.
2608 std::vector<const Record *> Args = Attr->getValueAsListOfDefs(FieldName: "Args");
2609 if (Args.empty() || !isIdentifierArgument(Arg: Args[0]))
2610 continue;
2611 generateFlattenedSpellingInfo(Attr: *Attr, Map&: FSIMap);
2612 }
2613 emitStringSwitchCases(Map&: FSIMap, OS);
2614 OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2615}
2616
2617// Emits the list for attributes having StrictEnumParameters.
2618static void emitClangAttrStrictIdentifierArgList(const RecordKeeper &Records,
2619 raw_ostream &OS) {
2620 OS << "#if defined(CLANG_ATTR_STRICT_IDENTIFIER_ARG_LIST)\n";
2621 std::map<StringRef, FSIVecTy> FSIMap;
2622 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
2623 if (!Attr->getValueAsBit(FieldName: "StrictEnumParameters"))
2624 continue;
2625 // Check that there is really an identifier argument.
2626 std::vector<const Record *> Args = Attr->getValueAsListOfDefs(FieldName: "Args");
2627 if (none_of(Range&: Args, P: [&](const Record *R) { return isIdentifierArgument(Arg: R); }))
2628 continue;
2629 generateFlattenedSpellingInfo(Attr: *Attr, Map&: FSIMap);
2630 }
2631 emitStringSwitchCases(Map&: FSIMap, OS);
2632 OS << "#endif // CLANG_ATTR_STRICT_IDENTIFIER_ARG_LIST\n\n";
2633}
2634
2635static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2636 return !Arg->getDirectSuperClasses().empty() &&
2637 StringSwitch<bool>(
2638 Arg->getDirectSuperClasses().back().first->getName())
2639 .Case(S: "VariadicParamOrParamIdxArgument", Value: true)
2640 .Default(Value: false);
2641}
2642
2643static void emitClangAttrThisIsaIdentifierArgList(const RecordKeeper &Records,
2644 raw_ostream &OS) {
2645 OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2646 std::map<StringRef, FSIVecTy> FSIMap;
2647 for (const auto *A : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
2648 // Determine whether the first argument is a variadic identifier.
2649 std::vector<const Record *> Args = A->getValueAsListOfDefs(FieldName: "Args");
2650 if (Args.empty() || !keywordThisIsaIdentifierInArgument(Arg: Args[0]))
2651 continue;
2652 generateFlattenedSpellingInfo(Attr: *A, Map&: FSIMap);
2653 }
2654 emitStringSwitchCases(Map&: FSIMap, OS);
2655 OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2656}
2657
2658static void emitClangAttrAcceptsExprPack(const RecordKeeper &Records,
2659 raw_ostream &OS) {
2660 OS << "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n";
2661 ParsedAttrMap Attrs = getParsedAttrList(Records);
2662 std::map<StringRef, FSIVecTy> FSIMap;
2663 for (const auto &I : Attrs) {
2664 const Record &Attr = *I.second;
2665
2666 if (!Attr.getValueAsBit(FieldName: "AcceptsExprPack"))
2667 continue;
2668 generateFlattenedSpellingInfo(Attr, Map&: FSIMap);
2669 }
2670 emitStringSwitchCases(Map&: FSIMap, OS);
2671 OS << "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n";
2672}
2673
2674static bool isRegularKeywordAttribute(const FlattenedSpelling &S) {
2675 return (S.variety() == "Keyword" &&
2676 !S.getSpellingRecord().getValueAsBit(FieldName: "HasOwnParseRules"));
2677}
2678
2679static void emitFormInitializer(raw_ostream &OS,
2680 const FlattenedSpelling &Spelling,
2681 StringRef SpellingIndex) {
2682 bool IsAlignas =
2683 (Spelling.variety() == "Keyword" && Spelling.name() == "alignas");
2684 OS << "{AttributeCommonInfo::AS_" << Spelling.variety() << ", "
2685 << SpellingIndex << ", " << (IsAlignas ? "true" : "false")
2686 << " /*IsAlignas*/, "
2687 << (isRegularKeywordAttribute(S: Spelling) ? "true" : "false")
2688 << " /*IsRegularKeywordAttribute*/}";
2689}
2690
2691static void emitAttributes(const RecordKeeper &Records, raw_ostream &OS,
2692 bool Header) {
2693 ParsedAttrMap AttrMap = getParsedAttrList(Records);
2694
2695 // Helper to print the starting character of an attribute argument. If there
2696 // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2697 // prints a comma.
2698 OS << "static inline void DelimitAttributeArgument("
2699 << "raw_ostream& OS, bool& IsFirst) {\n"
2700 << " if (IsFirst) {\n"
2701 << " IsFirst = false;\n"
2702 << " OS << \"(\";\n"
2703 << " } else\n"
2704 << " OS << \", \";\n"
2705 << "}\n";
2706
2707 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
2708 const Record &R = *Attr;
2709
2710 // FIXME: Currently, documentation is generated as-needed due to the fact
2711 // that there is no way to allow a generated project "reach into" the docs
2712 // directory (for instance, it may be an out-of-tree build). However, we want
2713 // to ensure that every attribute has a Documentation field, and produce an
2714 // error if it has been neglected. Otherwise, the on-demand generation which
2715 // happens server-side will fail. This code is ensuring that functionality,
2716 // even though this Emitter doesn't technically need the documentation.
2717 // When attribute documentation can be generated as part of the build
2718 // itself, this code can be removed.
2719 (void)R.getValueAsListOfDefs(FieldName: "Documentation");
2720
2721 if (!R.getValueAsBit(FieldName: "ASTNode"))
2722 continue;
2723
2724 std::vector<const Record *> Supers = R.getSuperClasses();
2725 assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2726 std::string SuperName;
2727 bool Inheritable = false;
2728 for (const Record *R : reverse(C&: Supers)) {
2729 if (R->getName() != "TargetSpecificAttr" &&
2730 R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2731 SuperName = R->getName().str();
2732 if (R->getName() == "InheritableAttr")
2733 Inheritable = true;
2734 }
2735
2736 if (Header)
2737 OS << "class CLANG_ABI " << R.getName() << "Attr : public " << SuperName
2738 << " {\n";
2739 else
2740 OS << "\n// " << R.getName() << "Attr implementation\n\n";
2741
2742 std::vector<const Record *> ArgRecords = R.getValueAsListOfDefs(FieldName: "Args");
2743 std::vector<std::unique_ptr<Argument>> Args;
2744 Args.reserve(n: ArgRecords.size());
2745
2746 bool AttrAcceptsExprPack = Attr->getValueAsBit(FieldName: "AcceptsExprPack");
2747 if (AttrAcceptsExprPack) {
2748 for (size_t I = 0; I < ArgRecords.size(); ++I) {
2749 const Record *ArgR = ArgRecords[I];
2750 if (isIdentifierArgument(Arg: ArgR) || isVariadicIdentifierArgument(Arg: ArgR) ||
2751 isTypeArgument(Arg: ArgR))
2752 PrintFatalError(ErrorLoc: Attr->getLoc(),
2753 Msg: "Attributes accepting packs cannot also "
2754 "have identifier or type arguments.");
2755 // When trying to determine if value-dependent expressions can populate
2756 // the attribute without prior instantiation, the decision is made based
2757 // on the assumption that only the last argument is ever variadic.
2758 if (I < (ArgRecords.size() - 1) && isVariadicExprArgument(Arg: ArgR))
2759 PrintFatalError(ErrorLoc: Attr->getLoc(),
2760 Msg: "Attributes accepting packs can only have the last "
2761 "argument be variadic.");
2762 }
2763 }
2764
2765 bool HasOptArg = false;
2766 bool HasFakeArg = false;
2767 for (const auto *ArgRecord : ArgRecords) {
2768 Args.emplace_back(args: createArgument(Arg: *ArgRecord, Attr: R.getName()));
2769 if (Header) {
2770 Args.back()->writeDeclarations(OS);
2771 OS << "\n\n";
2772 }
2773
2774 // For these purposes, fake takes priority over optional.
2775 if (Args.back()->isFake()) {
2776 HasFakeArg = true;
2777 } else if (Args.back()->isOptional()) {
2778 HasOptArg = true;
2779 }
2780 }
2781
2782 std::unique_ptr<VariadicExprArgument> DelayedArgs = nullptr;
2783 if (AttrAcceptsExprPack) {
2784 DelayedArgs =
2785 std::make_unique<VariadicExprArgument>(args: "DelayedArgs", args: R.getName());
2786 if (Header) {
2787 DelayedArgs->writeDeclarations(OS);
2788 OS << "\n\n";
2789 }
2790 }
2791
2792 if (Header)
2793 OS << "public:\n";
2794
2795 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: R);
2796
2797 // If there are zero or one spellings, all spelling-related functionality
2798 // can be elided. If all of the spellings share the same name, the spelling
2799 // functionality can also be elided.
2800 bool ElideSpelling = (Spellings.size() <= 1) ||
2801 SpellingNamesAreCommon(Spellings);
2802
2803 // This maps spelling index values to semantic Spelling enumerants.
2804 SemanticSpellingMap SemanticToSyntacticMap;
2805
2806 std::string SpellingEnum;
2807 if (Spellings.size() > 1)
2808 SpellingEnum = CreateSemanticSpellings(Spellings, Map&: SemanticToSyntacticMap);
2809 if (Header)
2810 OS << SpellingEnum;
2811
2812 const auto &ParsedAttrSpellingItr =
2813 find_if(Range&: AttrMap, P: [R](const std::pair<std::string, const Record *> &P) {
2814 return &R == P.second;
2815 });
2816
2817 // Emit CreateImplicit factory methods.
2818 auto emitCreate = [&](bool Implicit, bool DelayedArgsOnly, bool emitFake) {
2819 if (Header)
2820 OS << " static ";
2821 OS << R.getName() << "Attr *";
2822 if (!Header)
2823 OS << R.getName() << "Attr::";
2824 OS << "Create";
2825 if (Implicit)
2826 OS << "Implicit";
2827 if (DelayedArgsOnly)
2828 OS << "WithDelayedArgs";
2829 OS << "(";
2830 OS << "ASTContext &Ctx";
2831 if (!DelayedArgsOnly) {
2832 for (auto const &ai : Args) {
2833 if (ai->isFake() && !emitFake)
2834 continue;
2835 OS << ", ";
2836 ai->writeCtorParameters(OS);
2837 }
2838 } else {
2839 OS << ", ";
2840 DelayedArgs->writeCtorParameters(OS);
2841 }
2842 OS << ", const AttributeCommonInfo &CommonInfo";
2843 OS << ")";
2844 if (Header) {
2845 OS << ";\n";
2846 return;
2847 }
2848
2849 OS << " {\n";
2850 OS << " auto *A = new (Ctx) " << R.getName();
2851 OS << "Attr(Ctx, CommonInfo";
2852
2853 if (!DelayedArgsOnly) {
2854 for (auto const &ai : Args) {
2855 if (ai->isFake() && !emitFake)
2856 continue;
2857 OS << ", ";
2858 ai->writeImplicitCtorArgs(OS);
2859 }
2860 }
2861 OS << ");\n";
2862 if (Implicit) {
2863 OS << " A->setImplicit(true);\n";
2864 }
2865 if (Implicit || ElideSpelling) {
2866 OS << " if (!A->isAttributeSpellingListCalculated() && "
2867 "!A->getAttrName())\n";
2868 OS << " A->setAttributeSpellingListIndex(0);\n";
2869 }
2870 if (DelayedArgsOnly) {
2871 OS << " A->setDelayedArgs(Ctx, ";
2872 DelayedArgs->writeImplicitCtorArgs(OS);
2873 OS << ");\n";
2874 }
2875 OS << " return A;\n}\n\n";
2876 };
2877
2878 auto emitCreateNoCI = [&](bool Implicit, bool DelayedArgsOnly,
2879 bool emitFake) {
2880 if (Header)
2881 OS << " static ";
2882 OS << R.getName() << "Attr *";
2883 if (!Header)
2884 OS << R.getName() << "Attr::";
2885 OS << "Create";
2886 if (Implicit)
2887 OS << "Implicit";
2888 if (DelayedArgsOnly)
2889 OS << "WithDelayedArgs";
2890 OS << "(";
2891 OS << "ASTContext &Ctx";
2892 if (!DelayedArgsOnly) {
2893 for (auto const &ai : Args) {
2894 if (ai->isFake() && !emitFake)
2895 continue;
2896 OS << ", ";
2897 ai->writeCtorParameters(OS);
2898 }
2899 } else {
2900 OS << ", ";
2901 DelayedArgs->writeCtorParameters(OS);
2902 }
2903 OS << ", SourceRange Range";
2904 if (Header)
2905 OS << " = {}";
2906 if (Spellings.size() > 1) {
2907 OS << ", Spelling S";
2908 if (Header)
2909 OS << " = " << SemanticToSyntacticMap[0];
2910 }
2911 OS << ")";
2912 if (Header) {
2913 OS << ";\n";
2914 return;
2915 }
2916
2917 OS << " {\n";
2918 OS << " AttributeCommonInfo I(Range, ";
2919
2920 if (ParsedAttrSpellingItr != std::end(cont&: AttrMap))
2921 OS << "AT_" << ParsedAttrSpellingItr->first;
2922 else
2923 OS << "NoSemaHandlerAttribute";
2924
2925 if (Spellings.size() == 0) {
2926 OS << ", AttributeCommonInfo::Form::Implicit()";
2927 } else if (Spellings.size() == 1) {
2928 OS << ", ";
2929 emitFormInitializer(OS, Spelling: Spellings[0], SpellingIndex: "0");
2930 } else {
2931 OS << ", [&]() {\n";
2932 OS << " switch (S) {\n";
2933 std::set<std::string> Uniques;
2934 unsigned Idx = 0;
2935 for (auto I = Spellings.begin(), E = Spellings.end(); I != E;
2936 ++I, ++Idx) {
2937 const FlattenedSpelling &S = *I;
2938 const auto &Name = SemanticToSyntacticMap[Idx];
2939 if (Uniques.insert(x: Name).second) {
2940 OS << " case " << Name << ":\n";
2941 OS << " return AttributeCommonInfo::Form";
2942 emitFormInitializer(OS, Spelling: S, SpellingIndex: Name);
2943 OS << ";\n";
2944 }
2945 }
2946 OS << " default:\n";
2947 OS << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
2948 << " return AttributeCommonInfo::Form";
2949 emitFormInitializer(OS, Spelling: Spellings[0], SpellingIndex: "0");
2950 OS << ";\n"
2951 << " }\n"
2952 << " }()";
2953 }
2954
2955 OS << ");\n";
2956 OS << " return Create";
2957 if (Implicit)
2958 OS << "Implicit";
2959 if (DelayedArgsOnly)
2960 OS << "WithDelayedArgs";
2961 OS << "(Ctx";
2962 if (!DelayedArgsOnly) {
2963 for (auto const &ai : Args) {
2964 if (ai->isFake() && !emitFake)
2965 continue;
2966 OS << ", ";
2967 ai->writeImplicitCtorArgs(OS);
2968 }
2969 } else {
2970 OS << ", ";
2971 DelayedArgs->writeImplicitCtorArgs(OS);
2972 }
2973 OS << ", I);\n";
2974 OS << "}\n\n";
2975 };
2976
2977 auto emitCreates = [&](bool DelayedArgsOnly, bool emitFake) {
2978 emitCreate(true, DelayedArgsOnly, emitFake);
2979 emitCreate(false, DelayedArgsOnly, emitFake);
2980 emitCreateNoCI(true, DelayedArgsOnly, emitFake);
2981 emitCreateNoCI(false, DelayedArgsOnly, emitFake);
2982 };
2983
2984 if (Header)
2985 OS << " // Factory methods\n";
2986
2987 // Emit a CreateImplicit that takes all the arguments.
2988 emitCreates(false, true);
2989
2990 // Emit a CreateImplicit that takes all the non-fake arguments.
2991 if (HasFakeArg)
2992 emitCreates(false, false);
2993
2994 // Emit a CreateWithDelayedArgs that takes only the dependent argument
2995 // expressions.
2996 if (DelayedArgs)
2997 emitCreates(true, false);
2998
2999 // Emit constructors.
3000 auto emitCtor = [&](bool emitOpt, bool emitFake, bool emitNoArgs) {
3001 auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
3002 if (emitNoArgs)
3003 return false;
3004 if (arg->isFake())
3005 return emitFake;
3006 if (arg->isOptional())
3007 return emitOpt;
3008 return true;
3009 };
3010 if (Header)
3011 OS << " ";
3012 else
3013 OS << R.getName() << "Attr::";
3014 OS << R.getName()
3015 << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
3016 OS << '\n';
3017 for (auto const &ai : Args) {
3018 if (!shouldEmitArg(ai))
3019 continue;
3020 OS << " , ";
3021 ai->writeCtorParameters(OS);
3022 OS << "\n";
3023 }
3024
3025 OS << " )";
3026 if (Header) {
3027 OS << ";\n";
3028 return;
3029 }
3030 OS << "\n : " << SuperName << "(Ctx, CommonInfo, ";
3031 OS << "attr::" << R.getName() << ", ";
3032
3033 // Handle different late parsing modes.
3034 OS << "/*IsLateParsed=*/";
3035 switch (getLateAttrParseKind(Attr: &R)) {
3036 case LateAttrParseKind::Never:
3037 OS << "false";
3038 break;
3039 case LateAttrParseKind::ExperimentalExt:
3040 // Currently no clients need to know the distinction between `Standard`
3041 // and `ExperimentalExt` so treat `ExperimentalExt` just like
3042 // `Standard` for now.
3043 case LateAttrParseKind::Standard:
3044 // Note: This is misleading. `IsLateParsed` doesn't mean the
3045 // attribute was actually late parsed. Instead it means the attribute in
3046 // `Attr.td` is marked as being late parsed. Maybe it should be called
3047 // `IsLateParseable`?
3048 OS << "true";
3049 break;
3050 }
3051
3052 if (Inheritable) {
3053 OS << ", "
3054 << (R.getValueAsBit(FieldName: "InheritEvenIfAlreadyPresent") ? "true"
3055 : "false");
3056 }
3057 OS << ")\n";
3058
3059 for (auto const &ai : Args) {
3060 OS << " , ";
3061 if (!shouldEmitArg(ai)) {
3062 ai->writeCtorDefaultInitializers(OS);
3063 } else {
3064 ai->writeCtorInitializers(OS);
3065 }
3066 OS << "\n";
3067 }
3068 if (DelayedArgs) {
3069 OS << " , ";
3070 DelayedArgs->writeCtorDefaultInitializers(OS);
3071 OS << "\n";
3072 }
3073
3074 OS << " {\n";
3075
3076 for (auto const &ai : Args) {
3077 if (!shouldEmitArg(ai))
3078 continue;
3079 ai->writeCtorBody(OS);
3080 }
3081 OS << "}\n\n";
3082 };
3083
3084 if (Header)
3085 OS << "\n // Constructors\n";
3086
3087 // Emit a constructor that includes all the arguments.
3088 // This is necessary for cloning.
3089 emitCtor(true, true, false);
3090
3091 // Emit a constructor that takes all the non-fake arguments.
3092 if (HasFakeArg)
3093 emitCtor(true, false, false);
3094
3095 // Emit a constructor that takes all the non-fake, non-optional arguments.
3096 if (HasOptArg)
3097 emitCtor(false, false, false);
3098
3099 // Emit constructors that takes no arguments if none already exists.
3100 // This is used for delaying arguments.
3101 bool HasRequiredArgs =
3102 count_if(Range&: Args, P: [=](const std::unique_ptr<Argument> &arg) {
3103 return !arg->isFake() && !arg->isOptional();
3104 });
3105 if (DelayedArgs && HasRequiredArgs)
3106 emitCtor(false, false, true);
3107
3108 if (Header) {
3109 OS << '\n';
3110 OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
3111 OS << " void printPretty(raw_ostream &OS,\n"
3112 << " const PrintingPolicy &Policy) const;\n";
3113 OS << " const char *getSpelling() const;\n";
3114 }
3115
3116 if (!ElideSpelling) {
3117 assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
3118 if (Header)
3119 OS << " Spelling getSemanticSpelling() const;\n";
3120 else {
3121 OS << R.getName() << "Attr::Spelling " << R.getName()
3122 << "Attr::getSemanticSpelling() const {\n";
3123 WriteSemanticSpellingSwitch(VarName: "getAttributeSpellingListIndex()",
3124 Map: SemanticToSyntacticMap, OS);
3125 OS << "}\n";
3126 }
3127 }
3128
3129 if (Header)
3130 writeAttrAccessorDefinition(R, OS);
3131
3132 for (auto const &ai : Args) {
3133 if (Header) {
3134 ai->writeAccessors(OS);
3135 } else {
3136 ai->writeAccessorDefinitions(OS);
3137 }
3138 OS << "\n\n";
3139
3140 // Don't write conversion routines for fake arguments.
3141 if (ai->isFake()) continue;
3142
3143 if (ai->isEnumArg())
3144 static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
3145 Header);
3146 else if (ai->isVariadicEnumArg())
3147 static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
3148 OS, Header);
3149 }
3150
3151 if (Header) {
3152 if (DelayedArgs) {
3153 DelayedArgs->writeAccessors(OS);
3154 DelayedArgs->writeSetter(OS);
3155 }
3156
3157 OS << R.getValueAsString(FieldName: "AdditionalMembers");
3158 OS << "\n\n";
3159
3160 OS << " static bool classof(const Attr *A) { return A->getKind() == "
3161 << "attr::" << R.getName() << "; }\n";
3162
3163 OS << "};\n\n";
3164 } else {
3165 if (DelayedArgs)
3166 DelayedArgs->writeAccessorDefinitions(OS);
3167
3168 OS << R.getName() << "Attr *" << R.getName()
3169 << "Attr::clone(ASTContext &C) const {\n";
3170 OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this";
3171 for (auto const &ai : Args) {
3172 OS << ", ";
3173 ai->writeCloneArgs(OS);
3174 }
3175 OS << ");\n";
3176 OS << " A->Inherited = Inherited;\n";
3177 OS << " A->IsPackExpansion = IsPackExpansion;\n";
3178 OS << " A->setImplicit(Implicit);\n";
3179 if (DelayedArgs) {
3180 OS << " A->setDelayedArgs(C, ";
3181 DelayedArgs->writeCloneArgs(OS);
3182 OS << ");\n";
3183 }
3184 OS << " return A;\n}\n\n";
3185
3186 writePrettyPrintFunction(R, Args, OS);
3187 writeGetSpellingFunction(R, OS);
3188 }
3189 }
3190}
3191// Emits the class definitions for attributes.
3192void clang::EmitClangAttrClass(const RecordKeeper &Records, raw_ostream &OS) {
3193 emitSourceFileHeader(Desc: "Attribute classes' definitions", OS, Record: Records);
3194
3195 OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
3196 OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n";
3197
3198 emitAttributes(Records, OS, Header: true);
3199
3200 OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
3201}
3202
3203// Emits the class method definitions for attributes.
3204void clang::EmitClangAttrImpl(const RecordKeeper &Records, raw_ostream &OS) {
3205 emitSourceFileHeader(Desc: "Attribute classes' member function definitions", OS,
3206 Record: Records);
3207
3208 emitAttributes(Records, OS, Header: false);
3209
3210 // Instead of relying on virtual dispatch we just create a huge dispatch
3211 // switch. This is both smaller and faster than virtual functions.
3212 auto EmitFunc = [&](const char *Method) {
3213 OS << " switch (getKind()) {\n";
3214 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
3215 const Record &R = *Attr;
3216 if (!R.getValueAsBit(FieldName: "ASTNode"))
3217 continue;
3218
3219 OS << " case attr::" << R.getName() << ":\n";
3220 OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
3221 << ";\n";
3222 }
3223 OS << " }\n";
3224 OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
3225 OS << "}\n\n";
3226 };
3227
3228 OS << "const char *Attr::getSpelling() const {\n";
3229 EmitFunc("getSpelling()");
3230
3231 OS << "Attr *Attr::clone(ASTContext &C) const {\n";
3232 EmitFunc("clone(C)");
3233
3234 OS << "void Attr::printPretty(raw_ostream &OS, "
3235 "const PrintingPolicy &Policy) const {\n";
3236 EmitFunc("printPretty(OS, Policy)");
3237}
3238
3239static void emitAttrList(raw_ostream &OS, StringRef Class,
3240 ArrayRef<const Record *> AttrList) {
3241 for (auto Cur : AttrList) {
3242 OS << Class << "(" << Cur->getName() << ")\n";
3243 }
3244}
3245
3246// Determines if an attribute has a Pragma spelling.
3247static bool AttrHasPragmaSpelling(const Record *R) {
3248 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: *R);
3249 return any_of(Range&: Spellings, P: [](const FlattenedSpelling &S) {
3250 return S.variety() == "Pragma";
3251 });
3252}
3253
3254namespace {
3255
3256 struct AttrClassDescriptor {
3257 const char * const MacroName;
3258 const char * const TableGenName;
3259 };
3260
3261} // end anonymous namespace
3262
3263static const AttrClassDescriptor AttrClassDescriptors[] = {
3264 {.MacroName: "ATTR", .TableGenName: "Attr"},
3265 {.MacroName: "TYPE_ATTR", .TableGenName: "TypeAttr"},
3266 {.MacroName: "STMT_ATTR", .TableGenName: "StmtAttr"},
3267 {.MacroName: "DECL_OR_STMT_ATTR", .TableGenName: "DeclOrStmtAttr"},
3268 {.MacroName: "INHERITABLE_ATTR", .TableGenName: "InheritableAttr"},
3269 {.MacroName: "DECL_OR_TYPE_ATTR", .TableGenName: "DeclOrTypeAttr"},
3270 {.MacroName: "INHERITABLE_PARAM_ATTR", .TableGenName: "InheritableParamAttr"},
3271 {.MacroName: "INHERITABLE_PARAM_OR_STMT_ATTR", .TableGenName: "InheritableParamOrStmtAttr"},
3272 {.MacroName: "PARAMETER_ABI_ATTR", .TableGenName: "ParameterABIAttr"},
3273 {.MacroName: "HLSL_ANNOTATION_ATTR", .TableGenName: "HLSLAnnotationAttr"}};
3274
3275static void emitDefaultDefine(raw_ostream &OS, StringRef name,
3276 const char *superName) {
3277 OS << "#ifndef " << name << "\n";
3278 OS << "#define " << name << "(NAME) ";
3279 if (superName) OS << superName << "(NAME)";
3280 OS << "\n#endif\n\n";
3281}
3282
3283namespace {
3284
3285 /// A class of attributes.
3286 struct AttrClass {
3287 const AttrClassDescriptor &Descriptor;
3288 const Record *TheRecord;
3289 AttrClass *SuperClass = nullptr;
3290 std::vector<AttrClass*> SubClasses;
3291 std::vector<const Record *> Attrs;
3292
3293 AttrClass(const AttrClassDescriptor &Descriptor, const Record *R)
3294 : Descriptor(Descriptor), TheRecord(R) {}
3295
3296 void emitDefaultDefines(raw_ostream &OS) const {
3297 // Default the macro unless this is a root class (i.e. Attr).
3298 if (SuperClass) {
3299 emitDefaultDefine(OS, name: Descriptor.MacroName,
3300 superName: SuperClass->Descriptor.MacroName);
3301 }
3302 }
3303
3304 void emitUndefs(raw_ostream &OS) const {
3305 OS << "#undef " << Descriptor.MacroName << "\n";
3306 }
3307
3308 void emitAttrList(raw_ostream &OS) const {
3309 for (auto SubClass : SubClasses) {
3310 SubClass->emitAttrList(OS);
3311 }
3312
3313 ::emitAttrList(OS, Class: Descriptor.MacroName, AttrList: Attrs);
3314 }
3315
3316 void classifyAttrOnRoot(const Record *Attr) {
3317 bool result = classifyAttr(Attr);
3318 assert(result && "failed to classify on root"); (void) result;
3319 }
3320
3321 void emitAttrRange(raw_ostream &OS) const {
3322 OS << "ATTR_RANGE(" << Descriptor.TableGenName
3323 << ", " << getFirstAttr()->getName()
3324 << ", " << getLastAttr()->getName() << ")\n";
3325 }
3326
3327 private:
3328 bool classifyAttr(const Record *Attr) {
3329 // Check all the subclasses.
3330 for (auto SubClass : SubClasses) {
3331 if (SubClass->classifyAttr(Attr))
3332 return true;
3333 }
3334
3335 // It's not more specific than this class, but it might still belong here.
3336 if (Attr->isSubClassOf(R: TheRecord)) {
3337 Attrs.push_back(x: Attr);
3338 return true;
3339 }
3340
3341 return false;
3342 }
3343
3344 const Record *getFirstAttr() const {
3345 if (!SubClasses.empty())
3346 return SubClasses.front()->getFirstAttr();
3347 return Attrs.front();
3348 }
3349
3350 const Record *getLastAttr() const {
3351 if (!Attrs.empty())
3352 return Attrs.back();
3353 return SubClasses.back()->getLastAttr();
3354 }
3355 };
3356
3357 /// The entire hierarchy of attribute classes.
3358 class AttrClassHierarchy {
3359 std::vector<std::unique_ptr<AttrClass>> Classes;
3360
3361 public:
3362 AttrClassHierarchy(const RecordKeeper &Records) {
3363 // Find records for all the classes.
3364 for (auto &Descriptor : AttrClassDescriptors) {
3365 const Record *ClassRecord = Records.getClass(Name: Descriptor.TableGenName);
3366 AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
3367 Classes.emplace_back(args&: Class);
3368 }
3369
3370 // Link up the hierarchy.
3371 for (auto &Class : Classes) {
3372 if (AttrClass *SuperClass = findSuperClass(R: Class->TheRecord)) {
3373 Class->SuperClass = SuperClass;
3374 SuperClass->SubClasses.push_back(x: Class.get());
3375 }
3376 }
3377
3378#ifndef NDEBUG
3379 for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
3380 assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
3381 "only the first class should be a root class!");
3382 }
3383#endif
3384 }
3385
3386 void emitDefaultDefines(raw_ostream &OS) const {
3387 for (auto &Class : Classes) {
3388 Class->emitDefaultDefines(OS);
3389 }
3390 }
3391
3392 void emitUndefs(raw_ostream &OS) const {
3393 for (auto &Class : Classes) {
3394 Class->emitUndefs(OS);
3395 }
3396 }
3397
3398 void emitAttrLists(raw_ostream &OS) const {
3399 // Just start from the root class.
3400 Classes[0]->emitAttrList(OS);
3401 }
3402
3403 void emitAttrRanges(raw_ostream &OS) const {
3404 for (auto &Class : Classes)
3405 Class->emitAttrRange(OS);
3406 }
3407
3408 void classifyAttr(const Record *Attr) {
3409 // Add the attribute to the root class.
3410 Classes[0]->classifyAttrOnRoot(Attr);
3411 }
3412
3413 private:
3414 AttrClass *findClassByRecord(const Record *R) const {
3415 for (auto &Class : Classes) {
3416 if (Class->TheRecord == R)
3417 return Class.get();
3418 }
3419 return nullptr;
3420 }
3421
3422 AttrClass *findSuperClass(const Record *R) const {
3423 // TableGen flattens the superclass list, so we just need to walk it
3424 // in reverse.
3425 std::vector<const Record *> SuperClasses = R->getSuperClasses();
3426 for (const Record *R : reverse(C&: SuperClasses)) {
3427 if (AttrClass *SuperClass = findClassByRecord(R))
3428 return SuperClass;
3429 }
3430 return nullptr;
3431 }
3432 };
3433
3434} // end anonymous namespace
3435
3436namespace clang {
3437
3438// Emits the enumeration list for attributes.
3439void EmitClangAttrList(const RecordKeeper &Records, raw_ostream &OS) {
3440 emitSourceFileHeader(Desc: "List of all attributes that Clang recognizes", OS,
3441 Record: Records);
3442
3443 AttrClassHierarchy Hierarchy(Records);
3444
3445 // Add defaulting macro definitions.
3446 Hierarchy.emitDefaultDefines(OS);
3447 emitDefaultDefine(OS, name: "PRAGMA_SPELLING_ATTR", superName: nullptr);
3448
3449 std::vector<const Record *> PragmaAttrs;
3450 for (auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
3451 if (!Attr->getValueAsBit(FieldName: "ASTNode"))
3452 continue;
3453
3454 // Add the attribute to the ad-hoc groups.
3455 if (AttrHasPragmaSpelling(R: Attr))
3456 PragmaAttrs.push_back(x: Attr);
3457
3458 // Place it in the hierarchy.
3459 Hierarchy.classifyAttr(Attr);
3460 }
3461
3462 // Emit the main attribute list.
3463 Hierarchy.emitAttrLists(OS);
3464
3465 // Emit the ad hoc groups.
3466 emitAttrList(OS, Class: "PRAGMA_SPELLING_ATTR", AttrList: PragmaAttrs);
3467
3468 // Emit the attribute ranges.
3469 OS << "#ifdef ATTR_RANGE\n";
3470 Hierarchy.emitAttrRanges(OS);
3471 OS << "#undef ATTR_RANGE\n";
3472 OS << "#endif\n";
3473
3474 Hierarchy.emitUndefs(OS);
3475 OS << "#undef PRAGMA_SPELLING_ATTR\n";
3476}
3477
3478// Emits the enumeration list for attributes.
3479void EmitClangAttrSubjectMatchRuleList(const RecordKeeper &Records,
3480 raw_ostream &OS) {
3481 emitSourceFileHeader(
3482 Desc: "List of all attribute subject matching rules that Clang recognizes", OS,
3483 Record: Records);
3484 PragmaClangAttributeSupport &PragmaAttributeSupport =
3485 getPragmaAttributeSupport(Records);
3486 emitDefaultDefine(OS, name: "ATTR_MATCH_RULE", superName: nullptr);
3487 PragmaAttributeSupport.emitMatchRuleList(OS);
3488 OS << "#undef ATTR_MATCH_RULE\n";
3489}
3490
3491// Emits the code to read an attribute from a precompiled header.
3492void EmitClangAttrPCHRead(const RecordKeeper &Records, raw_ostream &OS) {
3493 emitSourceFileHeader(Desc: "Attribute deserialization code", OS, Record: Records);
3494
3495 const Record *InhClass = Records.getClass(Name: "InheritableAttr");
3496 std::vector<const Record *> ArgRecords;
3497 std::vector<std::unique_ptr<Argument>> Args;
3498 std::unique_ptr<VariadicExprArgument> DelayedArgs;
3499
3500 OS << " switch (Kind) {\n";
3501 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
3502 const Record &R = *Attr;
3503 if (!R.getValueAsBit(FieldName: "ASTNode"))
3504 continue;
3505
3506 OS << " case attr::" << R.getName() << ": {\n";
3507 if (R.isSubClassOf(R: InhClass))
3508 OS << " bool isInherited = Record.readInt();\n";
3509 OS << " bool isImplicit = Record.readInt();\n";
3510 OS << " bool isPackExpansion = Record.readInt();\n";
3511 DelayedArgs = nullptr;
3512 if (Attr->getValueAsBit(FieldName: "AcceptsExprPack")) {
3513 DelayedArgs =
3514 std::make_unique<VariadicExprArgument>(args: "DelayedArgs", args: R.getName());
3515 DelayedArgs->writePCHReadDecls(OS);
3516 }
3517 ArgRecords = R.getValueAsListOfDefs(FieldName: "Args");
3518 Args.clear();
3519 for (const auto *Arg : ArgRecords) {
3520 Args.emplace_back(args: createArgument(Arg: *Arg, Attr: R.getName()));
3521 Args.back()->writePCHReadDecls(OS);
3522 }
3523 OS << " New = new (Context) " << R.getName() << "Attr(Context, Info";
3524 for (auto const &ri : Args) {
3525 OS << ", ";
3526 ri->writePCHReadArgs(OS);
3527 }
3528 OS << ");\n";
3529 if (R.isSubClassOf(R: InhClass))
3530 OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
3531 OS << " New->setImplicit(isImplicit);\n";
3532 OS << " New->setPackExpansion(isPackExpansion);\n";
3533 if (DelayedArgs) {
3534 OS << " cast<" << R.getName()
3535 << "Attr>(New)->setDelayedArgs(Context, ";
3536 DelayedArgs->writePCHReadArgs(OS);
3537 OS << ");\n";
3538 }
3539
3540 if (Attr->getValueAsBit(FieldName: "HasCustomSerialization"))
3541 OS << " read" << R.getName() << "Attr(cast<" << R.getName()
3542 << "Attr>(New));\n";
3543
3544 OS << " break;\n";
3545 OS << " }\n";
3546 }
3547 OS << " }\n";
3548}
3549
3550// Emits the code to write an attribute to a precompiled header.
3551void EmitClangAttrPCHWrite(const RecordKeeper &Records, raw_ostream &OS) {
3552 emitSourceFileHeader(Desc: "Attribute serialization code", OS, Record: Records);
3553
3554 const Record *InhClass = Records.getClass(Name: "InheritableAttr");
3555 OS << " switch (A->getKind()) {\n";
3556 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
3557 const Record &R = *Attr;
3558 if (!R.getValueAsBit(FieldName: "ASTNode"))
3559 continue;
3560 OS << " case attr::" << R.getName() << ": {\n";
3561 std::vector<const Record *> Args = R.getValueAsListOfDefs(FieldName: "Args");
3562 if (R.isSubClassOf(R: InhClass) || !Args.empty())
3563 OS << " const auto *SA = cast<" << R.getName()
3564 << "Attr>(A);\n";
3565 if (R.isSubClassOf(R: InhClass))
3566 OS << " Record.push_back(SA->isInherited());\n";
3567 OS << " Record.push_back(A->isImplicit());\n";
3568 OS << " Record.push_back(A->isPackExpansion());\n";
3569 if (Attr->getValueAsBit(FieldName: "AcceptsExprPack"))
3570 VariadicExprArgument("DelayedArgs", R.getName()).writePCHWrite(OS);
3571
3572 for (const auto *Arg : Args)
3573 createArgument(Arg: *Arg, Attr: R.getName())->writePCHWrite(OS);
3574
3575 if (Attr->getValueAsBit(FieldName: "HasCustomSerialization"))
3576 OS << " Record.Add" << R.getName() << "Attr(SA);\n";
3577
3578 OS << " break;\n";
3579 OS << " }\n";
3580 }
3581 OS << " }\n";
3582}
3583
3584} // namespace clang
3585
3586// Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
3587// parameter with only a single check type, if applicable.
3588static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
3589 std::string *FnName,
3590 StringRef ListName,
3591 StringRef CheckAgainst,
3592 StringRef Scope) {
3593 if (!R->isValueUnset(FieldName: ListName)) {
3594 Test += " && (";
3595 std::vector<StringRef> Items = R->getValueAsListOfStrings(FieldName: ListName);
3596 for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
3597 StringRef Part = *I;
3598 Test += CheckAgainst;
3599 Test += " == ";
3600 Test += Scope;
3601 Test += Part;
3602 if (I + 1 != E)
3603 Test += " || ";
3604 if (FnName)
3605 *FnName += Part;
3606 }
3607 Test += ")";
3608 return true;
3609 }
3610 return false;
3611}
3612
3613// Generate a conditional expression to check if the current target satisfies
3614// the conditions for a TargetSpecificAttr record, and append the code for
3615// those checks to the Test string. If the FnName string pointer is non-null,
3616// append a unique suffix to distinguish this set of target checks from other
3617// TargetSpecificAttr records.
3618static bool GenerateTargetSpecificAttrChecks(const Record *R,
3619 std::vector<StringRef> &Arches,
3620 std::string &Test,
3621 std::string *FnName) {
3622 bool AnyTargetChecks = false;
3623
3624 // It is assumed that there will be an Triple object
3625 // named "T" and a TargetInfo object named "Target" within
3626 // scope that can be used to determine whether the attribute exists in
3627 // a given target.
3628 Test += "true";
3629 // If one or more architectures is specified, check those. Arches are handled
3630 // differently because GenerateTargetRequirements needs to combine the list
3631 // with ParseKind.
3632 if (!Arches.empty()) {
3633 AnyTargetChecks = true;
3634 Test += " && (";
3635 for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3636 StringRef Part = *I;
3637 Test += "T.getArch() == llvm::Triple::";
3638 Test += Part;
3639 if (I + 1 != E)
3640 Test += " || ";
3641 if (FnName)
3642 *FnName += Part;
3643 }
3644 Test += ")";
3645 }
3646
3647 // If the attribute is specific to particular OSes, check those.
3648 AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3649 R, Test, FnName, ListName: "OSes", CheckAgainst: "T.getOS()", Scope: "llvm::Triple::");
3650
3651 // If one or more object formats is specified, check those.
3652 AnyTargetChecks |=
3653 GenerateTargetSpecificAttrCheck(R, Test, FnName, ListName: "ObjectFormats",
3654 CheckAgainst: "T.getObjectFormat()", Scope: "llvm::Triple::");
3655
3656 // If custom code is specified, emit it.
3657 StringRef Code = R->getValueAsString(FieldName: "CustomCode");
3658 if (!Code.empty()) {
3659 AnyTargetChecks = true;
3660 Test += " && (";
3661 Test += Code;
3662 Test += ")";
3663 }
3664
3665 return AnyTargetChecks;
3666}
3667
3668static void GenerateHasAttrSpellingStringSwitch(
3669 ArrayRef<std::pair<const Record *, FlattenedSpelling>> Attrs,
3670 raw_ostream &OS, StringRef Variety, StringRef Scope = "") {
3671
3672 // It turns out that there are duplicate records for a given spelling. This
3673 // map combines matching test strings using '||'. For example, if there are
3674 // three conditions A, B, and C, the final result will be: A || B || C.
3675 llvm::StringMap<std::string> TestStringMap;
3676
3677 for (const auto &[Attr, Spelling] : Attrs) {
3678 // C++11-style attributes have specific version information associated with
3679 // them. If the attribute has no scope, the version information must not
3680 // have the default value (1), as that's incorrect. Instead, the unscoped
3681 // attribute version information should be taken from the SD-6 standing
3682 // document, which can be found at:
3683 // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3684 //
3685 // C23-style attributes have the same kind of version information
3686 // associated with them. The unscoped attribute version information should
3687 // be taken from the specification of the attribute in the C Standard.
3688 //
3689 // Clang-specific attributes have the same kind of version information
3690 // associated with them. This version is typically the default value (1).
3691 // These version values are clang-specific and should typically be
3692 // incremented once the attribute changes its syntax and/or semantics in a
3693 // a way that is impactful to the end user.
3694 int Version = 1;
3695
3696 assert(Spelling.variety() == Variety);
3697 std::string Name = "";
3698 if (Spelling.nameSpace().empty() || Scope == Spelling.nameSpace()) {
3699 Name = Spelling.name();
3700 Version = static_cast<int>(
3701 Spelling.getSpellingRecord().getValueAsInt(FieldName: "Version"));
3702 // Verify that explicitly specified CXX11 and C23 spellings (i.e.
3703 // not inferred from Clang/GCC spellings) have a version that's
3704 // different from the default (1).
3705 bool RequiresValidVersion =
3706 (Variety == "CXX11" || Variety == "C23") &&
3707 Spelling.getSpellingRecord().getValueAsString(FieldName: "Variety") == Variety;
3708 if (RequiresValidVersion && Scope.empty() && Version == 1)
3709 PrintError(ErrorLoc: Spelling.getSpellingRecord().getLoc(),
3710 Msg: "Standard attributes must have "
3711 "valid version information.");
3712 }
3713
3714 std::string Test;
3715 if (Attr->isSubClassOf(Name: "TargetSpecificAttr")) {
3716 const Record *R = Attr->getValueAsDef(FieldName: "Target");
3717 std::vector<StringRef> Arches = R->getValueAsListOfStrings(FieldName: "Arches");
3718 GenerateTargetSpecificAttrChecks(R, Arches, Test, FnName: nullptr);
3719 } else if (!Attr->getValueAsListOfDefs(FieldName: "TargetSpecificSpellings").empty()) {
3720 // Add target checks if this spelling is target-specific.
3721 for (const auto &TargetSpelling :
3722 Attr->getValueAsListOfDefs(FieldName: "TargetSpecificSpellings")) {
3723 // Find spelling that matches current scope and name.
3724 for (const auto &Spelling : GetFlattenedSpellings(Attr: *TargetSpelling)) {
3725 if (Scope == Spelling.nameSpace() && Name == Spelling.name()) {
3726 const Record *Target = TargetSpelling->getValueAsDef(FieldName: "Target");
3727 std::vector<StringRef> Arches =
3728 Target->getValueAsListOfStrings(FieldName: "Arches");
3729 GenerateTargetSpecificAttrChecks(R: Target, Arches, Test,
3730 /*FnName=*/nullptr);
3731 break;
3732 }
3733 }
3734 }
3735 }
3736
3737 std::string TestStr =
3738 !Test.empty() ? '(' + Test + " ? " + itostr(X: Version) + " : 0" + ')'
3739 : '(' + itostr(X: Version) + ')';
3740
3741 if (Scope.empty() || Scope == Spelling.nameSpace()) {
3742 if (TestStringMap.contains(Key: Spelling.name()))
3743 TestStringMap[Spelling.name()] += " || " + TestStr;
3744 else
3745 TestStringMap[Spelling.name()] = TestStr;
3746 }
3747 }
3748
3749 // Create the actual string switch statement after all the attributes have
3750 // been parsed.
3751 for (auto &Entry : TestStringMap) {
3752 OS << " .Case(\"" << Entry.getKey() << "\", " << Entry.getValue()
3753 << ")\n";
3754 }
3755
3756 OS << " .Default(0);\n";
3757}
3758
3759namespace clang {
3760
3761// Emits list of regular keyword attributes with info about their arguments.
3762void EmitClangRegularKeywordAttributeInfo(const RecordKeeper &Records,
3763 raw_ostream &OS) {
3764 emitSourceFileHeader(
3765 Desc: "A list of regular keyword attributes generated from the attribute"
3766 " definitions",
3767 OS);
3768 // Assume for now that the same token is not used in multiple regular
3769 // keyword attributes.
3770 for (auto *R : Records.getAllDerivedDefinitions(ClassName: "Attr"))
3771 for (const auto &S : GetFlattenedSpellings(Attr: *R)) {
3772 if (!isRegularKeywordAttribute(S))
3773 continue;
3774 std::vector<const Record *> Args = R->getValueAsListOfDefs(FieldName: "Args");
3775 bool HasArgs = any_of(
3776 Range&: Args, P: [](const Record *Arg) { return !Arg->getValueAsBit(FieldName: "Fake"); });
3777
3778 OS << "KEYWORD_ATTRIBUTE("
3779 << S.getSpellingRecord().getValueAsString(FieldName: "Name") << ", "
3780 << (HasArgs ? "true" : "false") << ", )\n";
3781 }
3782 OS << "#undef KEYWORD_ATTRIBUTE\n";
3783}
3784
3785void EmitCXX11AttributeInfo(const RecordKeeper &Records, raw_ostream &OS) {
3786 OS << "#if defined(CXX11_ATTR_ARGS_INFO)\n";
3787 for (auto *R : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
3788 for (const FlattenedSpelling &SI : GetFlattenedSpellings(Attr: *R)) {
3789 if (SI.variety() == "CXX11" && SI.nameSpace().empty()) {
3790 unsigned RequiredArgs = 0;
3791 unsigned OptionalArgs = 0;
3792 for (const auto *Arg : R->getValueAsListOfDefs(FieldName: "Args")) {
3793 if (Arg->getValueAsBit(FieldName: "Fake"))
3794 continue;
3795
3796 if (Arg->getValueAsBit(FieldName: "Optional"))
3797 OptionalArgs++;
3798 else
3799 RequiredArgs++;
3800 }
3801 OS << ".Case(\"" << SI.getSpellingRecord().getValueAsString(FieldName: "Name")
3802 << "\","
3803 << "AttributeCommonInfo::AttrArgsInfo::"
3804 << (RequiredArgs ? "Required"
3805 : OptionalArgs ? "Optional"
3806 : "None")
3807 << ")"
3808 << "\n";
3809 }
3810 }
3811 }
3812 OS << "#endif // CXX11_ATTR_ARGS_INFO\n";
3813}
3814
3815// Emits the list of spellings for attributes.
3816void EmitClangAttrHasAttrImpl(const RecordKeeper &Records, raw_ostream &OS) {
3817 emitSourceFileHeader(Desc: "Code to implement the __has_attribute logic", OS,
3818 Record: Records);
3819
3820 // Separate all of the attributes out into four group: generic, C++11, GNU,
3821 // and declspecs. Then generate a big switch statement for each of them.
3822 using PairTy = std::pair<const Record *, FlattenedSpelling>;
3823 std::vector<PairTy> Declspec, Microsoft, GNU, Pragma, HLSLAnnotation;
3824 std::map<StringRef, std::vector<PairTy>> CXX, C23;
3825
3826 // Walk over the list of all attributes, and split them out based on the
3827 // spelling variety.
3828 for (auto *R : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
3829 for (const FlattenedSpelling &SI : GetFlattenedSpellings(Attr: *R)) {
3830 StringRef Variety = SI.variety();
3831 if (Variety == "GNU")
3832 GNU.emplace_back(args&: R, args: SI);
3833 else if (Variety == "Declspec")
3834 Declspec.emplace_back(args&: R, args: SI);
3835 else if (Variety == "Microsoft")
3836 Microsoft.emplace_back(args&: R, args: SI);
3837 else if (Variety == "CXX11")
3838 CXX[SI.nameSpace()].emplace_back(args&: R, args: SI);
3839 else if (Variety == "C23")
3840 C23[SI.nameSpace()].emplace_back(args&: R, args: SI);
3841 else if (Variety == "Pragma")
3842 Pragma.emplace_back(args&: R, args: SI);
3843 else if (Variety == "HLSLAnnotation")
3844 HLSLAnnotation.emplace_back(args&: R, args: SI);
3845 }
3846 }
3847
3848 OS << "const llvm::Triple &T = Target.getTriple();\n";
3849 OS << "switch (Syntax) {\n";
3850 OS << "case AttributeCommonInfo::Syntax::AS_GNU:\n";
3851 OS << " return llvm::StringSwitch<int>(Name)\n";
3852 GenerateHasAttrSpellingStringSwitch(Attrs: GNU, OS, Variety: "GNU");
3853 OS << "case AttributeCommonInfo::Syntax::AS_Declspec:\n";
3854 OS << " return llvm::StringSwitch<int>(Name)\n";
3855 GenerateHasAttrSpellingStringSwitch(Attrs: Declspec, OS, Variety: "Declspec");
3856 OS << "case AttributeCommonInfo::Syntax::AS_Microsoft:\n";
3857 OS << " return llvm::StringSwitch<int>(Name)\n";
3858 GenerateHasAttrSpellingStringSwitch(Attrs: Microsoft, OS, Variety: "Microsoft");
3859 OS << "case AttributeCommonInfo::Syntax::AS_Pragma:\n";
3860 OS << " return llvm::StringSwitch<int>(Name)\n";
3861 GenerateHasAttrSpellingStringSwitch(Attrs: Pragma, OS, Variety: "Pragma");
3862 OS << "case AttributeCommonInfo::Syntax::AS_HLSLAnnotation:\n";
3863 OS << " return llvm::StringSwitch<int>(Name)\n";
3864 GenerateHasAttrSpellingStringSwitch(Attrs: HLSLAnnotation, OS, Variety: "HLSLAnnotation");
3865 auto fn = [&OS](StringRef Spelling,
3866 const std::map<StringRef, std::vector<PairTy>> &Map) {
3867 OS << "case AttributeCommonInfo::Syntax::AS_" << Spelling << ": {\n";
3868 // C++11-style attributes are further split out based on the Scope.
3869 ListSeparator LS(" else ");
3870 for (const auto &[Scope, List] : Map) {
3871 OS << LS;
3872 OS << "if (ScopeName == \"" << Scope << "\") {\n";
3873 OS << " return llvm::StringSwitch<int>(Name)\n";
3874 GenerateHasAttrSpellingStringSwitch(Attrs: List, OS, Variety: Spelling, Scope);
3875 OS << "}";
3876 }
3877 OS << "\n} break;\n";
3878 };
3879 fn("CXX11", CXX);
3880 fn("C23", C23);
3881 OS << "case AttributeCommonInfo::Syntax::AS_Keyword:\n";
3882 OS << "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n";
3883 OS << " llvm_unreachable(\"hasAttribute not supported for keyword\");\n";
3884 OS << " return 0;\n";
3885 OS << "case AttributeCommonInfo::Syntax::AS_Implicit:\n";
3886 OS << " llvm_unreachable (\"hasAttribute not supported for "
3887 "AS_Implicit\");\n";
3888 OS << " return 0;\n";
3889
3890 OS << "}\n";
3891}
3892
3893void EmitClangAttrSpellingListIndex(const RecordKeeper &Records,
3894 raw_ostream &OS) {
3895 emitSourceFileHeader(Desc: "Code to translate different attribute spellings into "
3896 "internal identifiers",
3897 OS, Record: Records);
3898
3899 OS << " switch (getParsedKind()) {\n";
3900 OS << " case IgnoredAttribute:\n";
3901 OS << " case UnknownAttribute:\n";
3902 OS << " case NoSemaHandlerAttribute:\n";
3903 OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3904
3905 ParsedAttrMap Attrs = getParsedAttrList(Records);
3906 for (const auto &I : Attrs) {
3907 const Record &R = *I.second;
3908 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: R);
3909 OS << " case AT_" << I.first << ": {\n";
3910
3911 // If there are none or one spelling to check, resort to the default
3912 // behavior of returning index as 0.
3913 if (Spellings.size() <= 1) {
3914 OS << " return 0;\n"
3915 << " break;\n"
3916 << " }\n";
3917 continue;
3918 }
3919
3920 std::vector<StringRef> Names;
3921 llvm::transform(Range&: Spellings, d_first: std::back_inserter(x&: Names),
3922 F: [](const FlattenedSpelling &FS) { return FS.name(); });
3923 llvm::sort(C&: Names);
3924 Names.erase(first: llvm::unique(R&: Names), last: Names.end());
3925
3926 for (const auto &[Idx, FS] : enumerate(First&: Spellings)) {
3927 OS << " if (";
3928 if (Names.size() > 1) {
3929 SmallVector<StringRef, 6> SameLenNames;
3930 StringRef FSName = FS.name();
3931 llvm::copy_if(
3932 Range&: Names, Out: std::back_inserter(x&: SameLenNames),
3933 P: [&](StringRef N) { return N.size() == FSName.size(); });
3934
3935 if (SameLenNames.size() == 1) {
3936 OS << "Name.size() == " << FS.name().size() << " && ";
3937 } else {
3938 // FIXME: We currently fall back to comparing entire strings if there
3939 // are 2 or more spelling names with the same length. This can be
3940 // optimized to check only for the the first differing character
3941 // between them instead.
3942 OS << "Name == \"" << FS.name() << "\""
3943 << " && ";
3944 }
3945 }
3946
3947 OS << "getSyntax() == AttributeCommonInfo::AS_" << FS.variety()
3948 << " && ComputedScope == ";
3949 if (FS.nameSpace() == "")
3950 OS << "AttributeCommonInfo::Scope::NONE";
3951 else
3952 OS << "AttributeCommonInfo::Scope::" + FS.nameSpace().upper();
3953
3954 OS << ")\n"
3955 << " return " << Idx << ";\n";
3956 }
3957
3958 OS << " break;\n"
3959 << " }\n";
3960 }
3961
3962 OS << " }\n"
3963 << " return 0;\n";
3964}
3965
3966// Emits code used by RecursiveASTVisitor to visit attributes
3967void EmitClangAttrASTVisitor(const RecordKeeper &Records, raw_ostream &OS) {
3968 emitSourceFileHeader(Desc: "Used by RecursiveASTVisitor to visit attributes.", OS,
3969 Record: Records);
3970 // Write method declarations for Traverse* methods.
3971 // We emit this here because we only generate methods for attributes that
3972 // are declared as ASTNodes.
3973 OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3974 ArrayRef<const Record *> Attrs = Records.getAllDerivedDefinitions(ClassName: "Attr");
3975 for (const auto *Attr : Attrs) {
3976 const Record &R = *Attr;
3977 if (!R.getValueAsBit(FieldName: "ASTNode"))
3978 continue;
3979 OS << " bool Traverse"
3980 << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3981 OS << " bool Visit"
3982 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3983 << " return true; \n"
3984 << " }\n";
3985 }
3986 OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3987
3988 // Write individual Traverse* methods for each attribute class.
3989 for (const auto *Attr : Attrs) {
3990 const Record &R = *Attr;
3991 if (!R.getValueAsBit(FieldName: "ASTNode"))
3992 continue;
3993
3994 OS << "template <typename Derived>\n"
3995 << "bool VISITORCLASS<Derived>::Traverse"
3996 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3997 << " if (!getDerived().VisitAttr(A))\n"
3998 << " return false;\n"
3999 << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
4000 << " return false;\n";
4001
4002 for (const auto *Arg : R.getValueAsListOfDefs(FieldName: "Args"))
4003 createArgument(Arg: *Arg, Attr: R.getName())->writeASTVisitorTraversal(OS);
4004
4005 if (Attr->getValueAsBit(FieldName: "AcceptsExprPack"))
4006 VariadicExprArgument("DelayedArgs", R.getName())
4007 .writeASTVisitorTraversal(OS);
4008
4009 OS << " return true;\n";
4010 OS << "}\n\n";
4011 }
4012
4013 // Write generic Traverse routine
4014 OS << "template <typename Derived>\n"
4015 << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
4016 << " if (!A)\n"
4017 << " return true;\n"
4018 << "\n"
4019 << " switch (A->getKind()) {\n";
4020
4021 for (const auto *Attr : Attrs) {
4022 const Record &R = *Attr;
4023 if (!R.getValueAsBit(FieldName: "ASTNode"))
4024 continue;
4025
4026 OS << " case attr::" << R.getName() << ":\n"
4027 << " return getDerived().Traverse" << R.getName() << "Attr("
4028 << "cast<" << R.getName() << "Attr>(A));\n";
4029 }
4030 OS << " }\n"; // end switch
4031 OS << " llvm_unreachable(\"bad attribute kind\");\n";
4032 OS << "}\n"; // end function
4033 OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
4034}
4035
4036static void
4037EmitClangAttrTemplateInstantiateHelper(ArrayRef<const Record *> Attrs,
4038 raw_ostream &OS, bool AppliesToDecl) {
4039
4040 OS << " switch (At->getKind()) {\n";
4041 for (const auto *Attr : Attrs) {
4042 const Record &R = *Attr;
4043 if (!R.getValueAsBit(FieldName: "ASTNode"))
4044 continue;
4045 OS << " case attr::" << R.getName() << ": {\n";
4046 bool ShouldClone = R.getValueAsBit(FieldName: "Clone") &&
4047 (!AppliesToDecl ||
4048 R.getValueAsBit(FieldName: "MeaningfulToClassTemplateDefinition"));
4049
4050 if (!ShouldClone) {
4051 OS << " return nullptr;\n";
4052 OS << " }\n";
4053 continue;
4054 }
4055
4056 OS << " const auto *A = cast<"
4057 << R.getName() << "Attr>(At);\n";
4058 bool TDependent = R.getValueAsBit(FieldName: "TemplateDependent");
4059
4060 if (!TDependent) {
4061 OS << " return A->clone(C);\n";
4062 OS << " }\n";
4063 continue;
4064 }
4065
4066 std::vector<const Record *> ArgRecords = R.getValueAsListOfDefs(FieldName: "Args");
4067 std::vector<std::unique_ptr<Argument>> Args;
4068 Args.reserve(n: ArgRecords.size());
4069
4070 for (const auto *ArgRecord : ArgRecords)
4071 Args.emplace_back(args: createArgument(Arg: *ArgRecord, Attr: R.getName()));
4072
4073 for (auto const &ai : Args)
4074 ai->writeTemplateInstantiation(OS);
4075
4076 OS << " return new (C) " << R.getName() << "Attr(C, *A";
4077 for (auto const &ai : Args) {
4078 OS << ", ";
4079 ai->writeTemplateInstantiationArgs(OS);
4080 }
4081 OS << ");\n"
4082 << " }\n";
4083 }
4084 OS << " } // end switch\n"
4085 << " llvm_unreachable(\"Unknown attribute!\");\n"
4086 << " return nullptr;\n";
4087}
4088
4089// Emits code to instantiate dependent attributes on templates.
4090void EmitClangAttrTemplateInstantiate(const RecordKeeper &Records,
4091 raw_ostream &OS) {
4092 emitSourceFileHeader(Desc: "Template instantiation code for attributes", OS,
4093 Record: Records);
4094
4095 ArrayRef<const Record *> Attrs = Records.getAllDerivedDefinitions(ClassName: "Attr");
4096
4097 OS << "namespace clang {\n"
4098 << "namespace sema {\n\n"
4099 << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
4100 << "Sema &S,\n"
4101 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
4102 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
4103 OS << "}\n\n"
4104 << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
4105 << " ASTContext &C, Sema &S,\n"
4106 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
4107 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
4108 OS << "}\n\n"
4109 << "} // end namespace sema\n"
4110 << "} // end namespace clang\n";
4111}
4112
4113// Emits the list of parsed attributes.
4114void EmitClangAttrParsedAttrList(const RecordKeeper &Records, raw_ostream &OS) {
4115 emitSourceFileHeader(Desc: "List of all attributes that Clang recognizes", OS,
4116 Record: Records);
4117
4118 OS << "#ifndef PARSED_ATTR\n";
4119 OS << "#define PARSED_ATTR(NAME) NAME\n";
4120 OS << "#endif\n\n";
4121
4122 ParsedAttrMap Names = getParsedAttrList(Records);
4123 for (const auto &I : Names) {
4124 OS << "PARSED_ATTR(" << I.first << ")\n";
4125 }
4126}
4127
4128void EmitAttributeSpellingList(const RecordKeeper &Records, raw_ostream &OS) {
4129 emitSourceFileHeader(Desc: "List of attribute names", OS, Record: Records);
4130
4131 std::set<StringRef> AttrSpellingList;
4132 std::set<StringRef> AttrScopeSpellingList;
4133
4134 for (const auto *A : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
4135 for (const auto &S : GetFlattenedSpellings(Attr: *A)) {
4136 AttrSpellingList.insert(x: S.name());
4137 if (S.nameSpace().size())
4138 AttrScopeSpellingList.insert(x: S.nameSpace());
4139 }
4140 }
4141
4142 OS << "#ifndef ATTR_NAME" << "\n";
4143 OS << "#define ATTR_NAME(NAME) NAME" << "\n";
4144 OS << "#endif" << "\n" << "\n";
4145 for (const auto &AttrName : AttrSpellingList) {
4146 OS << "ATTR_NAME(\"" << AttrName << "\")\n";
4147 }
4148 OS << "\n";
4149 OS << "#undef ATTR_NAME" << "\n";
4150 OS << "\n";
4151
4152 OS << "#ifndef ATTR_SCOPE_NAME" << "\n";
4153 OS << "#define ATTR_SCOPE_NAME(SCOPE_NAME) SCOPE_NAME" << "\n";
4154 OS << "#endif" << "\n" << "\n";
4155 for (const auto &AttrScopeName : AttrScopeSpellingList) {
4156 OS << "ATTR_SCOPE_NAME(\"" << AttrScopeName << "\")\n";
4157 }
4158 OS << "\n";
4159 OS << "#undef ATTR_SCOPE_NAME" << "\n";
4160 OS << "\n";
4161}
4162
4163static bool isArgVariadic(const Record &R, StringRef AttrName) {
4164 return createArgument(Arg: R, Attr: AttrName)->isVariadic();
4165}
4166
4167static void emitArgInfo(const Record &R, raw_ostream &OS) {
4168 // This function will count the number of arguments specified for the
4169 // attribute and emit the number of required arguments followed by the
4170 // number of optional arguments.
4171 unsigned ArgCount = 0, OptCount = 0, ArgMemberCount = 0;
4172 bool HasVariadic = false;
4173 for (const auto *Arg : R.getValueAsListOfDefs(FieldName: "Args")) {
4174 // If the arg is fake, it's the user's job to supply it: general parsing
4175 // logic shouldn't need to know anything about it.
4176 if (Arg->getValueAsBit(FieldName: "Fake"))
4177 continue;
4178 Arg->getValueAsBit(FieldName: "Optional") ? ++OptCount : ++ArgCount;
4179 ++ArgMemberCount;
4180 if (!HasVariadic && isArgVariadic(R: *Arg, AttrName: R.getName()))
4181 HasVariadic = true;
4182 }
4183
4184 // If there is a variadic argument, we will set the optional argument count
4185 // to its largest value. Since it's currently a 4-bit number, we set it to 15.
4186 OS << " /*NumArgs=*/" << ArgCount << ",\n";
4187 OS << " /*OptArgs=*/" << (HasVariadic ? 15 : OptCount) << ",\n";
4188 OS << " /*NumArgMembers=*/" << ArgMemberCount << ",\n";
4189}
4190
4191static std::string GetDiagnosticSpelling(const Record &R) {
4192 StringRef Ret = R.getValueAsString(FieldName: "DiagSpelling");
4193 if (!Ret.empty())
4194 return Ret.str();
4195
4196 // If we couldn't find the DiagSpelling in this object, we can check to see
4197 // if the object is one that has a base, and if it is, loop up to the Base
4198 // member recursively.
4199 if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
4200 return GetDiagnosticSpelling(R: *Base);
4201
4202 return "";
4203}
4204
4205static std::string CalculateDiagnostic(const Record &S) {
4206 // If the SubjectList object has a custom diagnostic associated with it,
4207 // return that directly.
4208 const StringRef CustomDiag = S.getValueAsString(FieldName: "CustomDiag");
4209 if (!CustomDiag.empty())
4210 return ("\"" + Twine(CustomDiag) + "\"").str();
4211
4212 std::vector<std::string> DiagList;
4213 for (const auto *Subject : S.getValueAsListOfDefs(FieldName: "Subjects")) {
4214 const Record &R = *Subject;
4215 // Get the diagnostic text from the Decl or Stmt node given.
4216 std::string V = GetDiagnosticSpelling(R);
4217 if (V.empty()) {
4218 PrintError(ErrorLoc: R.getLoc(),
4219 Msg: "Could not determine diagnostic spelling for the node: " +
4220 R.getName() + "; please add one to DeclNodes.td");
4221 } else {
4222 // The node may contain a list of elements itself, so split the elements
4223 // by a comma, and trim any whitespace.
4224 SmallVector<StringRef, 2> Frags;
4225 SplitString(Source: V, OutFragments&: Frags, Delimiters: ",");
4226 for (auto Str : Frags) {
4227 DiagList.push_back(x: Str.trim().str());
4228 }
4229 }
4230 }
4231
4232 if (DiagList.empty()) {
4233 PrintFatalError(ErrorLoc: S.getLoc(),
4234 Msg: "Could not deduce diagnostic argument for Attr subjects");
4235 return "";
4236 }
4237
4238 // FIXME: this is not particularly good for localization purposes and ideally
4239 // should be part of the diagnostics engine itself with some sort of list
4240 // specifier.
4241
4242 // A single member of the list can be returned directly.
4243 if (DiagList.size() == 1)
4244 return '"' + DiagList.front() + '"';
4245
4246 if (DiagList.size() == 2)
4247 return '"' + DiagList[0] + " and " + DiagList[1] + '"';
4248
4249 // If there are more than two in the list, we serialize the first N - 1
4250 // elements with a comma. This leaves the string in the state: foo, bar,
4251 // baz (but misses quux). We can then add ", and " for the last element
4252 // manually.
4253 std::string Diag = join(Begin: DiagList.begin(), End: DiagList.end() - 1, Separator: ", ");
4254 return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
4255}
4256
4257static std::string GetSubjectWithSuffix(const Record *R) {
4258 const std::string B = R->getName().str();
4259 if (B == "DeclBase")
4260 return "Decl";
4261 return B + "Decl";
4262}
4263
4264static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
4265 return "is" + Subject.getName().str();
4266}
4267
4268static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
4269 std::string FnName = functionNameForCustomAppertainsTo(Subject);
4270
4271 // If this code has already been generated, we don't need to do anything.
4272 static std::set<std::string> CustomSubjectSet;
4273 auto I = CustomSubjectSet.find(x: FnName);
4274 if (I != CustomSubjectSet.end())
4275 return;
4276
4277 // This only works with non-root Decls.
4278 const Record *Base = Subject.getValueAsDef(BaseFieldName);
4279
4280 // Not currently support custom subjects within custom subjects.
4281 if (Base->isSubClassOf(Name: "SubsetSubject")) {
4282 PrintFatalError(ErrorLoc: Subject.getLoc(),
4283 Msg: "SubsetSubjects within SubsetSubjects is not supported");
4284 return;
4285 }
4286
4287 OS << "static bool " << FnName << "(const Decl *D) {\n";
4288 OS << " if (const auto *S = dyn_cast<";
4289 OS << GetSubjectWithSuffix(R: Base);
4290 OS << ">(D))\n";
4291 OS << " return " << Subject.getValueAsString(FieldName: "CheckCode") << ";\n";
4292 OS << " return false;\n";
4293 OS << "}\n\n";
4294
4295 CustomSubjectSet.insert(x: FnName);
4296}
4297
4298static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
4299 // If the attribute does not contain a Subjects definition, then use the
4300 // default appertainsTo logic.
4301 if (Attr.isValueUnset(FieldName: "Subjects"))
4302 return;
4303
4304 const Record *SubjectObj = Attr.getValueAsDef(FieldName: "Subjects");
4305 std::vector<const Record *> Subjects =
4306 SubjectObj->getValueAsListOfDefs(FieldName: "Subjects");
4307
4308 // If the list of subjects is empty, it is assumed that the attribute
4309 // appertains to everything.
4310 if (Subjects.empty())
4311 return;
4312
4313 bool Warn = SubjectObj->getValueAsDef(FieldName: "Diag")->getValueAsBit(FieldName: "Warn");
4314
4315 // Split the subjects into declaration subjects and statement subjects.
4316 // FIXME: subset subjects are added to the declaration list until there are
4317 // enough statement attributes with custom subject needs to warrant
4318 // the implementation effort.
4319 std::vector<const Record *> DeclSubjects, StmtSubjects;
4320 copy_if(Range&: Subjects, Out: std::back_inserter(x&: DeclSubjects), P: [](const Record *R) {
4321 return R->isSubClassOf(Name: "SubsetSubject") || !R->isSubClassOf(Name: "StmtNode");
4322 });
4323 copy_if(Range&: Subjects, Out: std::back_inserter(x&: StmtSubjects),
4324 P: [](const Record *R) { return R->isSubClassOf(Name: "StmtNode"); });
4325
4326 // We should have sorted all of the subjects into two lists.
4327 // FIXME: this assertion will be wrong if we ever add type attribute subjects.
4328 assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
4329
4330 if (DeclSubjects.empty()) {
4331 // If there are no decl subjects but there are stmt subjects, diagnose
4332 // trying to apply a statement attribute to a declaration.
4333 if (!StmtSubjects.empty()) {
4334 OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
4335 OS << "const Decl *D) const override {\n";
4336 OS << " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n";
4337 OS << " << AL << AL.isRegularKeywordAttribute() << "
4338 "D->getLocation();\n";
4339 OS << " return false;\n";
4340 OS << "}\n\n";
4341 }
4342 } else {
4343 // Otherwise, generate an appertainsTo check specific to this attribute
4344 // which checks all of the given subjects against the Decl passed in.
4345 OS << "bool diagAppertainsToDecl(Sema &S, ";
4346 OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
4347 OS << " if (";
4348 for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
4349 // If the subject has custom code associated with it, use the generated
4350 // function for it. The function cannot be inlined into this check (yet)
4351 // because it requires the subject to be of a specific type, and were that
4352 // information inlined here, it would not support an attribute with
4353 // multiple custom subjects.
4354 if ((*I)->isSubClassOf(Name: "SubsetSubject"))
4355 OS << "!" << functionNameForCustomAppertainsTo(Subject: **I) << "(D)";
4356 else
4357 OS << "!isa<" << GetSubjectWithSuffix(R: *I) << ">(D)";
4358
4359 if (I + 1 != E)
4360 OS << " && ";
4361 }
4362 OS << ") {\n";
4363 OS << " S.Diag(Attr.getLoc(), diag::";
4364 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
4365 : "err_attribute_wrong_decl_type_str");
4366 OS << ")\n";
4367 OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
4368 OS << CalculateDiagnostic(S: *SubjectObj) << ";\n";
4369 OS << " return false;\n";
4370 OS << " }\n";
4371 OS << " return true;\n";
4372 OS << "}\n\n";
4373 }
4374
4375 if (StmtSubjects.empty()) {
4376 // If there are no stmt subjects but there are decl subjects, diagnose
4377 // trying to apply a declaration attribute to a statement.
4378 if (!DeclSubjects.empty()) {
4379 OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
4380 OS << "const Stmt *St) const override {\n";
4381 OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
4382 OS << " << AL << AL.isRegularKeywordAttribute() << "
4383 "St->getBeginLoc();\n";
4384 OS << " return false;\n";
4385 OS << "}\n\n";
4386 }
4387 } else {
4388 // Now, do the same for statements.
4389 OS << "bool diagAppertainsToStmt(Sema &S, ";
4390 OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
4391 OS << " if (";
4392 for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
4393 OS << "!isa<" << (*I)->getName() << ">(St)";
4394 if (I + 1 != E)
4395 OS << " && ";
4396 }
4397 OS << ") {\n";
4398 OS << " S.Diag(Attr.getLoc(), diag::";
4399 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
4400 : "err_attribute_wrong_decl_type_str");
4401 OS << ")\n";
4402 OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
4403 OS << CalculateDiagnostic(S: *SubjectObj) << ";\n";
4404 OS << " return false;\n";
4405 OS << " }\n";
4406 OS << " return true;\n";
4407 OS << "}\n\n";
4408 }
4409}
4410
4411// Generates the mutual exclusion checks. The checks for parsed attributes are
4412// written into OS and the checks for merging declaration attributes are
4413// written into MergeOS.
4414static void GenerateMutualExclusionsChecks(const Record &Attr,
4415 const RecordKeeper &Records,
4416 raw_ostream &OS,
4417 raw_ostream &MergeDeclOS,
4418 raw_ostream &MergeStmtOS) {
4419 // We don't do any of this magic for type attributes yet.
4420 if (Attr.isSubClassOf(Name: "TypeAttr"))
4421 return;
4422
4423 // This means the attribute is either a statement attribute, a decl
4424 // attribute, or both; find out which.
4425 bool CurAttrIsStmtAttr = Attr.isSubClassOf(Name: "StmtAttr") ||
4426 Attr.isSubClassOf(Name: "DeclOrStmtAttr") ||
4427 Attr.isSubClassOf(Name: "InheritableParamOrStmtAttr");
4428 bool CurAttrIsDeclAttr = !CurAttrIsStmtAttr ||
4429 Attr.isSubClassOf(Name: "DeclOrStmtAttr") ||
4430 Attr.isSubClassOf(Name: "InheritableParamOrStmtAttr");
4431
4432 std::vector<std::string> DeclAttrs, StmtAttrs;
4433
4434 // Find all of the definitions that inherit from MutualExclusions and include
4435 // the given attribute in the list of exclusions to generate the
4436 // diagMutualExclusion() check.
4437 for (const Record *Exclusion :
4438 Records.getAllDerivedDefinitions(ClassName: "MutualExclusions")) {
4439 std::vector<const Record *> MutuallyExclusiveAttrs =
4440 Exclusion->getValueAsListOfDefs(FieldName: "Exclusions");
4441 auto IsCurAttr = [Attr](const Record *R) {
4442 return R->getName() == Attr.getName();
4443 };
4444 if (any_of(Range&: MutuallyExclusiveAttrs, P: IsCurAttr)) {
4445 // This list of exclusions includes the attribute we're looking for, so
4446 // add the exclusive attributes to the proper list for checking.
4447 for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
4448 if (IsCurAttr(AttrToExclude))
4449 continue;
4450
4451 if (CurAttrIsStmtAttr)
4452 StmtAttrs.push_back(x: (AttrToExclude->getName() + "Attr").str());
4453 if (CurAttrIsDeclAttr)
4454 DeclAttrs.push_back(x: (AttrToExclude->getName() + "Attr").str());
4455 }
4456 }
4457 }
4458
4459 // If there are any decl or stmt attributes, silence -Woverloaded-virtual
4460 // warnings for them both.
4461 if (!DeclAttrs.empty() || !StmtAttrs.empty())
4462 OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n";
4463
4464 // If we discovered any decl or stmt attributes to test for, generate the
4465 // predicates for them now.
4466 if (!DeclAttrs.empty()) {
4467 // Generate the ParsedAttrInfo subclass logic for declarations.
4468 OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
4469 << "const Decl *D) const override {\n";
4470 for (const std::string &A : DeclAttrs) {
4471 OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n";
4472 OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
4473 << " << AL << A << (AL.isRegularKeywordAttribute() ||"
4474 << " A->isRegularKeywordAttribute());\n";
4475 OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
4476 OS << " \nreturn false;\n";
4477 OS << " }\n";
4478 }
4479 OS << " return true;\n";
4480 OS << " }\n\n";
4481
4482 // Also generate the declaration attribute merging logic if the current
4483 // attribute is one that can be inheritted on a declaration. It is assumed
4484 // this code will be executed in the context of a function with parameters:
4485 // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
4486 // true on success).
4487 if (Attr.isSubClassOf(Name: "InheritableAttr")) {
4488 MergeDeclOS << " if (const auto *Second = dyn_cast<"
4489 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
4490 for (const std::string &A : DeclAttrs) {
4491 MergeDeclOS << " if (const auto *First = D->getAttr<" << A
4492 << ">()) {\n";
4493 MergeDeclOS << " S.Diag(First->getLocation(), "
4494 << "diag::err_attributes_are_not_compatible) << First << "
4495 << "Second << (First->isRegularKeywordAttribute() || "
4496 << "Second->isRegularKeywordAttribute());\n";
4497 MergeDeclOS << " S.Diag(Second->getLocation(), "
4498 << "diag::note_conflicting_attribute);\n";
4499 MergeDeclOS << " return false;\n";
4500 MergeDeclOS << " }\n";
4501 }
4502 MergeDeclOS << " return true;\n";
4503 MergeDeclOS << " }\n";
4504 }
4505 }
4506
4507 // Statement attributes are a bit different from declarations. With
4508 // declarations, each attribute is added to the declaration as it is
4509 // processed, and so you can look on the Decl * itself to see if there is a
4510 // conflicting attribute. Statement attributes are processed as a group
4511 // because AttributedStmt needs to tail-allocate all of the attribute nodes
4512 // at once. This means we cannot check whether the statement already contains
4513 // an attribute to check for the conflict. Instead, we need to check whether
4514 // the given list of semantic attributes contain any conflicts. It is assumed
4515 // this code will be executed in the context of a function with parameters:
4516 // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
4517 // loop which loops over the container C with a loop variable named A to
4518 // represent the current attribute to check for conflicts.
4519 //
4520 // FIXME: it would be nice not to walk over the list of potential attributes
4521 // to apply to the statement more than once, but statements typically don't
4522 // have long lists of attributes on them, so re-walking the list should not
4523 // be an expensive operation.
4524 if (!StmtAttrs.empty()) {
4525 MergeStmtOS << " if (const auto *Second = dyn_cast<"
4526 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
4527 MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) "
4528 << "{ return isa<";
4529 interleave(
4530 c: StmtAttrs, each_fn: [&](StringRef Name) { MergeStmtOS << Name; },
4531 between_fn: [&] { MergeStmtOS << ", "; });
4532 MergeStmtOS << ">(Check); });\n";
4533 MergeStmtOS << " if (Iter != C.end()) {\n";
4534 MergeStmtOS << " S.Diag((*Iter)->getLocation(), "
4535 << "diag::err_attributes_are_not_compatible) << *Iter << "
4536 << "Second << ((*Iter)->isRegularKeywordAttribute() || "
4537 << "Second->isRegularKeywordAttribute());\n";
4538 MergeStmtOS << " S.Diag(Second->getLocation(), "
4539 << "diag::note_conflicting_attribute);\n";
4540 MergeStmtOS << " return false;\n";
4541 MergeStmtOS << " }\n";
4542 MergeStmtOS << " }\n";
4543 }
4544}
4545
4546static void
4547emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
4548 raw_ostream &OS) {
4549 OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
4550 << AttributeSubjectMatchRule::EnumName << " rule) {\n";
4551 OS << " switch (rule) {\n";
4552 for (const auto &Rule : PragmaAttributeSupport.Rules) {
4553 if (Rule.isAbstractRule()) {
4554 OS << " case " << Rule.getEnumValue() << ":\n";
4555 OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n";
4556 OS << " return false;\n";
4557 continue;
4558 }
4559 std::vector<const Record *> Subjects = Rule.getSubjects();
4560 assert(!Subjects.empty() && "Missing subjects");
4561 OS << " case " << Rule.getEnumValue() << ":\n";
4562 OS << " return ";
4563 for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
4564 // If the subject has custom code associated with it, use the function
4565 // that was generated for GenerateAppertainsTo to check if the declaration
4566 // is valid.
4567 if ((*I)->isSubClassOf(Name: "SubsetSubject"))
4568 OS << functionNameForCustomAppertainsTo(Subject: **I) << "(D)";
4569 else
4570 OS << "isa<" << GetSubjectWithSuffix(R: *I) << ">(D)";
4571
4572 if (I + 1 != E)
4573 OS << " || ";
4574 }
4575 OS << ";\n";
4576 }
4577 OS << " }\n";
4578 OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
4579 OS << "}\n\n";
4580}
4581
4582static void GenerateLangOptRequirements(const Record &R,
4583 raw_ostream &OS) {
4584 // If the attribute has an empty or unset list of language requirements,
4585 // use the default handler.
4586 std::vector<const Record *> LangOpts = R.getValueAsListOfDefs(FieldName: "LangOpts");
4587 if (LangOpts.empty())
4588 return;
4589
4590 OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
4591 OS << " return " << GenerateTestExpression(LangOpts) << ";\n";
4592 OS << "}\n\n";
4593}
4594
4595static void GenerateTargetRequirements(const Record &Attr,
4596 const ParsedAttrMap &Dupes,
4597 raw_ostream &OS) {
4598 // If the attribute is not a target specific attribute, use the default
4599 // target handler.
4600 if (!Attr.isSubClassOf(Name: "TargetSpecificAttr"))
4601 return;
4602
4603 // Get the list of architectures to be tested for.
4604 const Record *R = Attr.getValueAsDef(FieldName: "Target");
4605 std::vector<StringRef> Arches = R->getValueAsListOfStrings(FieldName: "Arches");
4606
4607 // If there are other attributes which share the same parsed attribute kind,
4608 // such as target-specific attributes with a shared spelling, collapse the
4609 // duplicate architectures. This is required because a shared target-specific
4610 // attribute has only one ParsedAttr::Kind enumeration value, but it
4611 // applies to multiple target architectures. In order for the attribute to be
4612 // considered valid, all of its architectures need to be included.
4613 if (!Attr.isValueUnset(FieldName: "ParseKind")) {
4614 const StringRef APK = Attr.getValueAsString(FieldName: "ParseKind");
4615 for (const auto &I : Dupes) {
4616 if (I.first == APK) {
4617 std::vector<StringRef> DA =
4618 I.second->getValueAsDef(FieldName: "Target")->getValueAsListOfStrings(
4619 FieldName: "Arches");
4620 llvm::append_range(C&: Arches, R&: DA);
4621 }
4622 }
4623 }
4624
4625 std::string FnName = "isTarget";
4626 std::string Test;
4627 bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, FnName: &FnName);
4628
4629 OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
4630 if (UsesT)
4631 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4632 OS << " return " << Test << ";\n";
4633 OS << "}\n\n";
4634}
4635
4636static void
4637GenerateSpellingTargetRequirements(const Record &Attr,
4638 ArrayRef<const Record *> TargetSpellings,
4639 raw_ostream &OS) {
4640 // If there are no target specific spellings, use the default target handler.
4641 if (TargetSpellings.empty())
4642 return;
4643
4644 std::string Test;
4645 bool UsesT = false;
4646 const std::vector<FlattenedSpelling> SpellingList =
4647 GetFlattenedSpellings(Attr);
4648 for (unsigned TargetIndex = 0; TargetIndex < TargetSpellings.size();
4649 ++TargetIndex) {
4650 const auto &TargetSpelling = TargetSpellings[TargetIndex];
4651 std::vector<FlattenedSpelling> Spellings =
4652 GetFlattenedSpellings(Attr: *TargetSpelling);
4653
4654 Test += "((SpellingListIndex == ";
4655 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
4656 Test += itostr(X: getSpellingListIndex(SpellingList, Spelling: Spellings[Index]));
4657 if (Index != Spellings.size() - 1)
4658 Test += " ||\n SpellingListIndex == ";
4659 else
4660 Test += ") && ";
4661 }
4662
4663 const Record *Target = TargetSpelling->getValueAsDef(FieldName: "Target");
4664 std::vector<StringRef> Arches = Target->getValueAsListOfStrings(FieldName: "Arches");
4665 std::string FnName = "isTargetSpelling";
4666 UsesT |= GenerateTargetSpecificAttrChecks(R: Target, Arches, Test, FnName: &FnName);
4667 Test += ")";
4668 if (TargetIndex != TargetSpellings.size() - 1)
4669 Test += " || ";
4670 }
4671
4672 OS << "bool spellingExistsInTarget(const TargetInfo &Target,\n";
4673 OS << " const unsigned SpellingListIndex) const "
4674 "override {\n";
4675 if (UsesT)
4676 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4677 OS << " return " << Test << ";\n", OS << "}\n\n";
4678}
4679
4680static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
4681 raw_ostream &OS) {
4682 // If the attribute does not have a semantic form, we can bail out early.
4683 if (!Attr.getValueAsBit(FieldName: "ASTNode"))
4684 return;
4685
4686 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4687
4688 // If there are zero or one spellings, or all of the spellings share the same
4689 // name, we can also bail out early.
4690 if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
4691 return;
4692
4693 // Generate the enumeration we will use for the mapping.
4694 SemanticSpellingMap SemanticToSyntacticMap;
4695 std::string Enum = CreateSemanticSpellings(Spellings, Map&: SemanticToSyntacticMap);
4696
4697 OS << "unsigned spellingIndexToSemanticSpelling(";
4698 OS << "const ParsedAttr &Attr) const override {\n";
4699 OS << Enum;
4700 OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
4701 WriteSemanticSpellingSwitch(VarName: "Idx", Map: SemanticToSyntacticMap, OS);
4702 OS << "}\n\n";
4703}
4704
4705static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
4706 // Only generate if Attr can be handled simply.
4707 if (!Attr.getValueAsBit(FieldName: "SimpleHandler"))
4708 return;
4709
4710 // Generate a function which just converts from ParsedAttr to the Attr type.
4711 OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
4712 OS << "const ParsedAttr &Attr) const override {\n";
4713 OS << " D->addAttr(::new (S.Context) " << Attr.getName();
4714 OS << "Attr(S.Context, Attr));\n";
4715 OS << " return AttributeApplied;\n";
4716 OS << "}\n\n";
4717}
4718
4719static bool isParamExpr(const Record *Arg) {
4720 return !Arg->getDirectSuperClasses().empty() &&
4721 StringSwitch<bool>(
4722 Arg->getDirectSuperClasses().back().first->getName())
4723 .Case(S: "ExprArgument", Value: true)
4724 .Case(S: "VariadicExprArgument", Value: true)
4725 .Default(Value: false);
4726}
4727
4728static void GenerateIsParamExpr(const Record &Attr, raw_ostream &OS) {
4729 OS << "bool isParamExpr(size_t N) const override {\n";
4730 OS << " return ";
4731 auto Args = Attr.getValueAsListOfDefs(FieldName: "Args");
4732 for (size_t I = 0; I < Args.size(); ++I)
4733 if (isParamExpr(Arg: Args[I]))
4734 OS << "(N == " << I << ") || ";
4735 OS << "false;\n";
4736 OS << "}\n\n";
4737}
4738
4739static void GenerateHandleAttrWithDelayedArgs(const RecordKeeper &Records,
4740 raw_ostream &OS) {
4741 OS << "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, ";
4742 OS << "const ParsedAttr &Attr) {\n";
4743 OS << " SmallVector<Expr *, 4> ArgExprs;\n";
4744 OS << " ArgExprs.reserve(Attr.getNumArgs());\n";
4745 OS << " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n";
4746 OS << " assert(!Attr.isArgIdent(I));\n";
4747 OS << " ArgExprs.push_back(Attr.getArgAsExpr(I));\n";
4748 OS << " }\n";
4749 OS << " clang::Attr *CreatedAttr = nullptr;\n";
4750 OS << " switch (Attr.getKind()) {\n";
4751 OS << " default:\n";
4752 OS << " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n";
4753 ParsedAttrMap Attrs = getParsedAttrList(Records);
4754 for (const auto &I : Attrs) {
4755 const Record &R = *I.second;
4756 if (!R.getValueAsBit(FieldName: "AcceptsExprPack"))
4757 continue;
4758 OS << " case ParsedAttr::AT_" << I.first << ": {\n";
4759 OS << " CreatedAttr = " << R.getName() << "Attr::CreateWithDelayedArgs";
4760 OS << "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n";
4761 OS << " break;\n";
4762 OS << " }\n";
4763 }
4764 OS << " }\n";
4765 OS << " D->addAttr(CreatedAttr);\n";
4766 OS << "}\n\n";
4767}
4768
4769static bool IsKnownToGCC(const Record &Attr) {
4770 // Look at the spellings for this subject; if there are any spellings which
4771 // claim to be known to GCC, the attribute is known to GCC.
4772 return any_of(Range: GetFlattenedSpellings(Attr),
4773 P: [](const FlattenedSpelling &S) { return S.knownToGCC(); });
4774}
4775
4776/// Emits the parsed attribute helpers
4777void EmitClangAttrParsedAttrImpl(const RecordKeeper &Records, raw_ostream &OS) {
4778 emitSourceFileHeader(Desc: "Parsed attribute helpers", OS, Record: Records);
4779
4780 OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
4781 << "!defined(WANT_STMT_MERGE_LOGIC)\n";
4782 PragmaClangAttributeSupport &PragmaAttributeSupport =
4783 getPragmaAttributeSupport(Records);
4784
4785 // Get the list of parsed attributes, and accept the optional list of
4786 // duplicates due to the ParseKind.
4787 ParsedAttrMap Dupes;
4788 ParsedAttrMap Attrs = getParsedAttrList(Records, Dupes: &Dupes);
4789
4790 // Generate all of the custom appertainsTo functions that the attributes
4791 // will be using.
4792 for (const auto &I : Attrs) {
4793 const Record &Attr = *I.second;
4794 if (Attr.isValueUnset(FieldName: "Subjects"))
4795 continue;
4796 const Record *SubjectObj = Attr.getValueAsDef(FieldName: "Subjects");
4797 for (const Record *Subject : SubjectObj->getValueAsListOfDefs(FieldName: "Subjects"))
4798 if (Subject->isSubClassOf(Name: "SubsetSubject"))
4799 GenerateCustomAppertainsTo(Subject: *Subject, OS);
4800 }
4801
4802 // This stream is used to collect all of the declaration attribute merging
4803 // logic for performing mutual exclusion checks. This gets emitted at the
4804 // end of the file in a helper function of its own.
4805 std::string DeclMergeChecks, StmtMergeChecks;
4806 raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
4807
4808 // Generate a ParsedAttrInfo struct for each of the attributes.
4809 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4810 // TODO: If the attribute's kind appears in the list of duplicates, that is
4811 // because it is a target-specific attribute that appears multiple times.
4812 // It would be beneficial to test whether the duplicates are "similar
4813 // enough" to each other to not cause problems. For instance, check that
4814 // the spellings are identical, and custom parsing rules match, etc.
4815
4816 // We need to generate struct instances based off ParsedAttrInfo from
4817 // ParsedAttr.cpp.
4818 const std::string &AttrName = I->first;
4819 const Record &Attr = *I->second;
4820 auto Spellings = GetFlattenedSpellings(Attr);
4821 if (!Spellings.empty()) {
4822 OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
4823 << "Spellings[] = {\n";
4824 for (const auto &S : Spellings) {
4825 StringRef RawSpelling = S.name();
4826 std::string Spelling;
4827 if (!S.nameSpace().empty())
4828 Spelling += S.nameSpace().str() + "::";
4829 if (S.variety() == "GNU")
4830 Spelling += NormalizeGNUAttrSpelling(AttrSpelling: RawSpelling);
4831 else
4832 Spelling += RawSpelling;
4833 OS << " {AttributeCommonInfo::AS_" << S.variety();
4834 OS << ", \"" << Spelling << "\"},\n";
4835 }
4836 OS << "};\n";
4837 }
4838
4839 std::vector<std::string> ArgNames;
4840 for (const auto *Arg : Attr.getValueAsListOfDefs(FieldName: "Args")) {
4841 bool UnusedUnset;
4842 if (Arg->getValueAsBitOrUnset(FieldName: "Fake", Unset&: UnusedUnset))
4843 continue;
4844 ArgNames.push_back(x: Arg->getValueAsString(FieldName: "Name").str());
4845 for (const Record *Class : Arg->getSuperClasses()) {
4846 if (Class->getName().starts_with(Prefix: "Variadic")) {
4847 ArgNames.back().append(s: "...");
4848 break;
4849 }
4850 }
4851 }
4852 if (!ArgNames.empty()) {
4853 OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n";
4854 for (const auto &N : ArgNames)
4855 OS << '"' << N << "\",";
4856 OS << "};\n";
4857 }
4858
4859 OS << "struct ParsedAttrInfo" << I->first
4860 << " final : public ParsedAttrInfo {\n";
4861 OS << " constexpr ParsedAttrInfo" << I->first << "() : ParsedAttrInfo(\n";
4862 OS << " /*AttrKind=*/ParsedAttr::AT_" << AttrName << ",\n";
4863 emitArgInfo(R: Attr, OS);
4864 OS << " /*HasCustomParsing=*/";
4865 OS << Attr.getValueAsBit(FieldName: "HasCustomParsing") << ",\n";
4866 OS << " /*AcceptsExprPack=*/";
4867 OS << Attr.getValueAsBit(FieldName: "AcceptsExprPack") << ",\n";
4868 OS << " /*IsTargetSpecific=*/";
4869 OS << Attr.isSubClassOf(Name: "TargetSpecificAttr") << ",\n";
4870 OS << " /*IsType=*/";
4871 OS << (Attr.isSubClassOf(Name: "TypeAttr") || Attr.isSubClassOf(Name: "DeclOrTypeAttr"))
4872 << ",\n";
4873 OS << " /*IsStmt=*/";
4874 OS << (Attr.isSubClassOf(Name: "StmtAttr") || Attr.isSubClassOf(Name: "DeclOrStmtAttr"))
4875 << ",\n";
4876 OS << " /*IsKnownToGCC=*/";
4877 OS << IsKnownToGCC(Attr) << ",\n";
4878 OS << " /*IsSupportedByPragmaAttribute=*/";
4879 OS << PragmaAttributeSupport.isAttributedSupported(Attribute: *I->second) << ",\n";
4880 if (!Spellings.empty())
4881 OS << " /*Spellings=*/" << I->first << "Spellings,\n";
4882 else
4883 OS << " /*Spellings=*/{},\n";
4884 if (!ArgNames.empty())
4885 OS << " /*ArgNames=*/" << I->first << "ArgNames";
4886 else
4887 OS << " /*ArgNames=*/{}";
4888 OS << ") {}\n";
4889 GenerateAppertainsTo(Attr, OS);
4890 GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
4891 GenerateLangOptRequirements(R: Attr, OS);
4892 GenerateTargetRequirements(Attr, Dupes, OS);
4893 GenerateSpellingTargetRequirements(
4894 Attr, TargetSpellings: Attr.getValueAsListOfDefs(FieldName: "TargetSpecificSpellings"), OS);
4895 GenerateSpellingIndexToSemanticSpelling(Attr, OS);
4896 PragmaAttributeSupport.generateStrictConformsTo(Attr: *I->second, OS);
4897 GenerateHandleDeclAttribute(Attr, OS);
4898 GenerateIsParamExpr(Attr, OS);
4899 OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
4900 OS << "};\n";
4901 OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
4902 << "::Instance;\n";
4903 }
4904
4905 OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4906 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4907 OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
4908 }
4909 OS << "};\n\n";
4910
4911 // Generate function for handling attributes with delayed arguments
4912 GenerateHandleAttrWithDelayedArgs(Records, OS);
4913
4914 // Generate the attribute match rules.
4915 emitAttributeMatchRules(PragmaAttributeSupport, OS);
4916
4917 OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4918
4919 // Write out the declaration merging check logic.
4920 OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4921 << "const Attr *A) {\n";
4922 OS << DeclMergeChecks;
4923 OS << " return true;\n";
4924 OS << "}\n\n";
4925
4926 OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4927
4928 // Write out the statement merging check logic.
4929 OS << "static bool DiagnoseMutualExclusions(Sema &S, "
4930 << "const SmallVectorImpl<const Attr *> &C) {\n";
4931 OS << " for (const Attr *A : C) {\n";
4932 OS << StmtMergeChecks;
4933 OS << " }\n";
4934 OS << " return true;\n";
4935 OS << "}\n\n";
4936
4937 OS << "#endif\n";
4938}
4939
4940// Emits the kind list of parsed attributes
4941void EmitClangAttrParsedAttrKinds(const RecordKeeper &Records,
4942 raw_ostream &OS) {
4943 emitSourceFileHeader(Desc: "Attribute name matcher", OS, Record: Records);
4944
4945 std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
4946 Keywords, Pragma, C23, HLSLAnnotation;
4947 std::set<StringRef> Seen;
4948 for (const auto *A : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
4949 const Record &Attr = *A;
4950
4951 bool SemaHandler = Attr.getValueAsBit(FieldName: "SemaHandler");
4952 bool Ignored = Attr.getValueAsBit(FieldName: "Ignored");
4953 if (SemaHandler || Ignored) {
4954 // Attribute spellings can be shared between target-specific attributes,
4955 // and can be shared between syntaxes for the same attribute. For
4956 // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4957 // specific attribute, or MSP430-specific attribute. Additionally, an
4958 // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4959 // for the same semantic attribute. Ultimately, we need to map each of
4960 // these to a single AttributeCommonInfo::Kind value, but the
4961 // StringMatcher class cannot handle duplicate match strings. So we
4962 // generate a list of string to match based on the syntax, and emit
4963 // multiple string matchers depending on the syntax used.
4964 std::string AttrName;
4965 if (Attr.isSubClassOf(Name: "TargetSpecificAttr") &&
4966 !Attr.isValueUnset(FieldName: "ParseKind")) {
4967 StringRef ParseKind = Attr.getValueAsString(FieldName: "ParseKind");
4968 if (!Seen.insert(x: ParseKind).second)
4969 continue;
4970 AttrName = ParseKind.str();
4971 } else {
4972 AttrName = NormalizeAttrName(AttrName: Attr.getName()).str();
4973 }
4974
4975 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4976 for (const auto &S : Spellings) {
4977 StringRef RawSpelling = S.name();
4978 std::vector<StringMatcher::StringPair> *Matches = nullptr;
4979 std::string Spelling;
4980 StringRef Variety = S.variety();
4981 if (Variety == "CXX11") {
4982 Matches = &CXX11;
4983 if (!S.nameSpace().empty())
4984 Spelling += S.nameSpace().str() + "::";
4985 } else if (Variety == "C23") {
4986 Matches = &C23;
4987 if (!S.nameSpace().empty())
4988 Spelling += S.nameSpace().str() + "::";
4989 } else if (Variety == "GNU") {
4990 Matches = &GNU;
4991 } else if (Variety == "Declspec") {
4992 Matches = &Declspec;
4993 } else if (Variety == "Microsoft") {
4994 Matches = &Microsoft;
4995 } else if (Variety == "Keyword") {
4996 Matches = &Keywords;
4997 } else if (Variety == "Pragma") {
4998 Matches = &Pragma;
4999 } else if (Variety == "HLSLAnnotation") {
5000 Matches = &HLSLAnnotation;
5001 if (RawSpelling.compare(RHS: RawSpelling.lower()) != 0)
5002 PrintError(ErrorLoc: S.getSpellingRecord().getLoc(),
5003 Msg: "HLSLAnnotation Attribute must be lower case.");
5004 }
5005
5006 assert(Matches && "Unsupported spelling variety found");
5007
5008 if (Variety == "GNU")
5009 Spelling += NormalizeGNUAttrSpelling(AttrSpelling: RawSpelling);
5010 else
5011 Spelling += RawSpelling;
5012
5013 if (SemaHandler)
5014 Matches->push_back(x: StringMatcher::StringPair(
5015 Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
5016 else
5017 Matches->push_back(x: StringMatcher::StringPair(
5018 Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
5019 }
5020 }
5021 }
5022
5023 OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
5024 OS << "AttributeCommonInfo::Syntax Syntax) {\n";
5025 OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
5026 StringMatcher("Name", GNU, OS).Emit();
5027 OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
5028 StringMatcher("Name", Declspec, OS).Emit();
5029 OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
5030 StringMatcher("Name", Microsoft, OS).Emit();
5031 OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
5032 StringMatcher("Name", CXX11, OS).Emit();
5033 OS << " } else if (AttributeCommonInfo::AS_C23 == Syntax) {\n";
5034 StringMatcher("Name", C23, OS).Emit();
5035 OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
5036 OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
5037 StringMatcher("Name", Keywords, OS).Emit();
5038 OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
5039 StringMatcher("Name", Pragma, OS).Emit();
5040 OS << " } else if (AttributeCommonInfo::AS_HLSLAnnotation == Syntax) {\n";
5041 StringMatcher("Name", HLSLAnnotation, OS).Emit();
5042 OS << " }\n";
5043 OS << " return AttributeCommonInfo::UnknownAttribute;\n"
5044 << "}\n";
5045}
5046
5047// Emits the code to dump an attribute.
5048void EmitClangAttrTextNodeDump(const RecordKeeper &Records, raw_ostream &OS) {
5049 emitSourceFileHeader(Desc: "Attribute text node dumper", OS, Record: Records);
5050
5051 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
5052 const Record &R = *Attr;
5053 if (!R.getValueAsBit(FieldName: "ASTNode"))
5054 continue;
5055
5056 // If the attribute has a semantically-meaningful name (which is determined
5057 // by whether there is a Spelling enumeration for it), then write out the
5058 // spelling used for the attribute.
5059
5060 std::string FunctionContent;
5061 raw_string_ostream SS(FunctionContent);
5062
5063 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: R);
5064 if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
5065 SS << " OS << \" \" << A->getSpelling();\n";
5066
5067 std::vector<const Record *> Args = R.getValueAsListOfDefs(FieldName: "Args");
5068 for (const auto *Arg : Args)
5069 createArgument(Arg: *Arg, Attr: R.getName())->writeDump(OS&: SS);
5070
5071 if (Attr->getValueAsBit(FieldName: "AcceptsExprPack"))
5072 VariadicExprArgument("DelayedArgs", R.getName()).writeDump(OS);
5073
5074 if (SS.tell()) {
5075 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
5076 << "Attr *A) {\n";
5077 if (!Args.empty())
5078 OS << " const auto *SA = cast<" << R.getName()
5079 << "Attr>(A); (void)SA;\n";
5080 OS << FunctionContent;
5081 OS << " }\n";
5082 }
5083 }
5084}
5085
5086void EmitClangAttrNodeTraverse(const RecordKeeper &Records, raw_ostream &OS) {
5087 emitSourceFileHeader(Desc: "Attribute text node traverser", OS, Record: Records);
5088
5089 for (const auto *Attr : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
5090 const Record &R = *Attr;
5091 if (!R.getValueAsBit(FieldName: "ASTNode"))
5092 continue;
5093
5094 std::string FunctionContent;
5095 raw_string_ostream SS(FunctionContent);
5096
5097 std::vector<const Record *> Args = R.getValueAsListOfDefs(FieldName: "Args");
5098 for (const auto *Arg : Args)
5099 createArgument(Arg: *Arg, Attr: R.getName())->writeDumpChildren(OS&: SS);
5100 if (Attr->getValueAsBit(FieldName: "AcceptsExprPack"))
5101 VariadicExprArgument("DelayedArgs", R.getName()).writeDumpChildren(OS&: SS);
5102 if (SS.tell()) {
5103 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
5104 << "Attr *A) {\n";
5105 if (!Args.empty())
5106 OS << " const auto *SA = cast<" << R.getName()
5107 << "Attr>(A); (void)SA;\n";
5108 OS << FunctionContent;
5109 OS << " }\n";
5110 }
5111 }
5112}
5113
5114void EmitClangAttrParserStringSwitches(const RecordKeeper &Records,
5115 raw_ostream &OS) {
5116 generateNameToAttrsMap(Records);
5117 emitSourceFileHeader(Desc: "Parser-related llvm::StringSwitch cases", OS, Record: Records);
5118 emitClangAttrArgContextList(Records, OS);
5119 emitClangAttrIdentifierArgList(Records, OS);
5120 emitClangAttrUnevaluatedStringLiteralList(Records, OS);
5121 emitClangAttrVariadicIdentifierArgList(Records, OS);
5122 emitClangAttrThisIsaIdentifierArgList(Records, OS);
5123 emitClangAttrAcceptsExprPack(Records, OS);
5124 emitClangAttrTypeArgList(Records, OS);
5125 emitClangAttrLateParsedList(Records, OS);
5126 emitClangAttrLateParsedExperimentalList(Records, OS);
5127 emitClangAttrStrictIdentifierArgList(Records, OS);
5128}
5129
5130void EmitClangAttrSubjectMatchRulesParserStringSwitches(
5131 const RecordKeeper &Records, raw_ostream &OS) {
5132 getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
5133}
5134
5135void EmitClangAttrDocTable(const RecordKeeper &Records, raw_ostream &OS) {
5136 emitSourceFileHeader(Desc: "Clang attribute documentation", OS, Record: Records);
5137
5138 for (const auto *A : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
5139 if (!A->getValueAsBit(FieldName: "ASTNode"))
5140 continue;
5141 std::vector<const Record *> Docs = A->getValueAsListOfDefs(FieldName: "Documentation");
5142 assert(!Docs.empty());
5143 // Only look at the first documentation if there are several.
5144 // (Currently there's only one such attr, revisit if this becomes common).
5145 StringRef Text =
5146 Docs.front()->getValueAsOptionalString(FieldName: "Content").value_or(u: "");
5147 OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = "
5148 << "R\"reST(" << Text.trim() << ")reST\";\n";
5149 }
5150}
5151
5152enum class SpellingKind : size_t {
5153 GNU,
5154 CXX11,
5155 C23,
5156 Declspec,
5157 Microsoft,
5158 Keyword,
5159 Pragma,
5160 HLSLAnnotation,
5161 NumSpellingKinds
5162};
5163static const size_t NumSpellingKinds = (size_t)SpellingKind::NumSpellingKinds;
5164
5165class SpellingList {
5166 std::vector<std::string> Spellings[NumSpellingKinds];
5167
5168public:
5169 ArrayRef<std::string> operator[](SpellingKind K) const {
5170 return Spellings[(size_t)K];
5171 }
5172
5173 void add(const Record &Attr, FlattenedSpelling Spelling) {
5174 SpellingKind Kind =
5175 StringSwitch<SpellingKind>(Spelling.variety())
5176 .Case(S: "GNU", Value: SpellingKind::GNU)
5177 .Case(S: "CXX11", Value: SpellingKind::CXX11)
5178 .Case(S: "C23", Value: SpellingKind::C23)
5179 .Case(S: "Declspec", Value: SpellingKind::Declspec)
5180 .Case(S: "Microsoft", Value: SpellingKind::Microsoft)
5181 .Case(S: "Keyword", Value: SpellingKind::Keyword)
5182 .Case(S: "Pragma", Value: SpellingKind::Pragma)
5183 .Case(S: "HLSLAnnotation", Value: SpellingKind::HLSLAnnotation);
5184 std::string Name;
5185 StringRef NameSpace = Spelling.nameSpace();
5186 if (!NameSpace.empty()) {
5187 Name = NameSpace;
5188 switch (Kind) {
5189 case SpellingKind::CXX11:
5190 case SpellingKind::C23:
5191 Name += "::";
5192 break;
5193 case SpellingKind::Pragma:
5194 Name = " ";
5195 break;
5196 default:
5197 PrintFatalError(ErrorLoc: Attr.getLoc(), Msg: "Unexpected namespace in spelling");
5198 }
5199 }
5200 Name += Spelling.name();
5201
5202 Spellings[(size_t)Kind].push_back(x: Name);
5203 }
5204
5205 void merge(const SpellingList &Other) {
5206 for (size_t Kind = 0; Kind < NumSpellingKinds; ++Kind) {
5207 Spellings[Kind].insert(position: Spellings[Kind].end(),
5208 first: Other.Spellings[Kind].begin(),
5209 last: Other.Spellings[Kind].end());
5210 }
5211 }
5212};
5213
5214class DocumentationData {
5215public:
5216 const Record *Documentation;
5217 const Record *Attribute;
5218 std::string Heading;
5219 SpellingList SupportedSpellings;
5220
5221 DocumentationData(const Record &Documentation, const Record &Attribute,
5222 std::pair<std::string, SpellingList> HeadingAndSpellings)
5223 : Documentation(&Documentation), Attribute(&Attribute),
5224 Heading(std::move(HeadingAndSpellings.first)),
5225 SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
5226};
5227
5228static void WriteCategoryHeader(const Record *DocCategory,
5229 raw_ostream &OS) {
5230 const StringRef Name = DocCategory->getValueAsString(FieldName: "Name");
5231 OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
5232
5233 // If there is content, print that as well.
5234 const StringRef ContentStr = DocCategory->getValueAsString(FieldName: "Content");
5235 // Trim leading and trailing newlines and spaces.
5236 OS << ContentStr.trim();
5237
5238 OS << "\n\n";
5239}
5240
5241static std::pair<std::string, SpellingList>
5242GetAttributeHeadingAndSpellings(const Record &Documentation,
5243 const Record &Attribute,
5244 StringRef Cat) {
5245 // FIXME: there is no way to have a per-spelling category for the attribute
5246 // documentation. This may not be a limiting factor since the spellings
5247 // should generally be consistently applied across the category.
5248
5249 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr: Attribute);
5250 if (Spellings.empty())
5251 PrintFatalError(ErrorLoc: Attribute.getLoc(),
5252 Msg: "Attribute has no supported spellings; cannot be "
5253 "documented");
5254
5255 // Determine the heading to be used for this attribute.
5256 std::string Heading = Documentation.getValueAsString(FieldName: "Heading").str();
5257 if (Heading.empty()) {
5258 // If there's only one spelling, we can simply use that.
5259 if (Spellings.size() == 1)
5260 Heading = Spellings.begin()->name();
5261 else {
5262 std::set<std::string> Uniques;
5263 for (auto I = Spellings.begin(), E = Spellings.end();
5264 I != E; ++I) {
5265 std::string Spelling =
5266 NormalizeNameForSpellingComparison(Name: I->name()).str();
5267 Uniques.insert(x: Spelling);
5268 }
5269 // If the semantic map has only one spelling, that is sufficient for our
5270 // needs.
5271 if (Uniques.size() == 1)
5272 Heading = *Uniques.begin();
5273 // If it's in the undocumented category, just construct a header by
5274 // concatenating all the spellings. Might not be great, but better than
5275 // nothing.
5276 else if (Cat == "Undocumented")
5277 Heading = join(Begin: Uniques.begin(), End: Uniques.end(), Separator: ", ");
5278 }
5279 }
5280
5281 // If the heading is still empty, it is an error.
5282 if (Heading.empty())
5283 PrintFatalError(ErrorLoc: Attribute.getLoc(),
5284 Msg: "This attribute requires a heading to be specified");
5285
5286 SpellingList SupportedSpellings;
5287 for (const auto &I : Spellings)
5288 SupportedSpellings.add(Attr: Attribute, Spelling: I);
5289
5290 return std::make_pair(x: std::move(Heading), y: std::move(SupportedSpellings));
5291}
5292
5293static void WriteDocumentation(const RecordKeeper &Records,
5294 const DocumentationData &Doc, raw_ostream &OS) {
5295 if (StringRef Label = Doc.Documentation->getValueAsString(FieldName: "Label");
5296 !Label.empty())
5297 OS << ".. _" << Label << ":\n\n";
5298 OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
5299
5300 // List what spelling syntaxes the attribute supports.
5301 // Note: "#pragma clang attribute" is handled outside the spelling kinds loop
5302 // so it must be last.
5303 OS << ".. csv-table:: Supported Syntaxes\n";
5304 OS << " :header: \"GNU\", \"C++11\", \"C23\", \"``__declspec``\",";
5305 OS << " \"Keyword\", \"``#pragma``\", \"HLSL Annotation\", \"``#pragma "
5306 "clang ";
5307 OS << "attribute``\"\n\n \"";
5308 for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
5309 SpellingKind K = (SpellingKind)Kind;
5310 // TODO: List Microsoft (IDL-style attribute) spellings once we fully
5311 // support them.
5312 if (K == SpellingKind::Microsoft)
5313 continue;
5314
5315 bool PrintedAny = false;
5316 for (StringRef Spelling : Doc.SupportedSpellings[K]) {
5317 if (PrintedAny)
5318 OS << " |br| ";
5319 OS << "``" << Spelling << "``";
5320 PrintedAny = true;
5321 }
5322
5323 OS << "\",\"";
5324 }
5325
5326 if (getPragmaAttributeSupport(Records).isAttributedSupported(
5327 Attribute: *Doc.Attribute))
5328 OS << "Yes";
5329 OS << "\"\n\n";
5330
5331 // If the attribute is deprecated, print a message about it, and possibly
5332 // provide a replacement attribute.
5333 if (!Doc.Documentation->isValueUnset(FieldName: "Deprecated")) {
5334 OS << "This attribute has been deprecated, and may be removed in a future "
5335 << "version of Clang.";
5336 const Record &Deprecated = *Doc.Documentation->getValueAsDef(FieldName: "Deprecated");
5337 const StringRef Replacement = Deprecated.getValueAsString(FieldName: "Replacement");
5338 if (!Replacement.empty())
5339 OS << " This attribute has been superseded by ``" << Replacement
5340 << "``.";
5341 OS << "\n\n";
5342 }
5343
5344 const StringRef ContentStr = Doc.Documentation->getValueAsString(FieldName: "Content");
5345 // Trim leading and trailing newlines and spaces.
5346 OS << ContentStr.trim();
5347
5348 OS << "\n\n\n";
5349}
5350
5351void EmitClangAttrDocs(const RecordKeeper &Records, raw_ostream &OS) {
5352 // Get the documentation introduction paragraph.
5353 const Record *Documentation = Records.getDef(Name: "GlobalDocumentation");
5354 if (!Documentation) {
5355 PrintFatalError(Msg: "The Documentation top-level definition is missing, "
5356 "no documentation will be generated.");
5357 return;
5358 }
5359
5360 OS << Documentation->getValueAsString(FieldName: "Intro") << "\n";
5361
5362 // Gather the Documentation lists from each of the attributes, based on the
5363 // category provided.
5364 struct CategoryLess {
5365 bool operator()(const Record *L, const Record *R) const {
5366 return L->getValueAsString(FieldName: "Name") < R->getValueAsString(FieldName: "Name");
5367 }
5368 };
5369
5370 std::map<const Record *, std::map<uint32_t, DocumentationData>, CategoryLess>
5371 MergedDocs;
5372
5373 std::vector<DocumentationData> UndocumentedDocs;
5374 const Record *UndocumentedCategory = nullptr;
5375
5376 // Collect documentation data, grouping by category and heading.
5377 for (const auto *A : Records.getAllDerivedDefinitions(ClassName: "Attr")) {
5378 const Record &Attr = *A;
5379 std::vector<const Record *> Docs =
5380 Attr.getValueAsListOfDefs(FieldName: "Documentation");
5381
5382 for (const auto *D : Docs) {
5383 const Record &Doc = *D;
5384 const Record *Category = Doc.getValueAsDef(FieldName: "Category");
5385 // If the category is "InternalOnly", then there cannot be any other
5386 // documentation categories (otherwise, the attribute would be
5387 // emitted into the docs).
5388 StringRef Cat = Category->getValueAsString(FieldName: "Name");
5389 if (Cat == "InternalOnly" && Docs.size() > 1)
5390 PrintFatalError(ErrorLoc: Doc.getLoc(),
5391 Msg: "Attribute is \"InternalOnly\", but has multiple "
5392 "documentation categories");
5393
5394 if (Cat == "InternalOnly")
5395 continue;
5396
5397 // Track the Undocumented category Record for later grouping
5398 if (Cat == "Undocumented" && !UndocumentedCategory)
5399 UndocumentedCategory = Category;
5400
5401 // Generate Heading and Spellings.
5402 auto HeadingAndSpellings =
5403 GetAttributeHeadingAndSpellings(Documentation: Doc, Attribute: Attr, Cat);
5404
5405 // Handle Undocumented category separately - no content merging
5406 if (Cat == "Undocumented" && UndocumentedCategory) {
5407 UndocumentedDocs.push_back(
5408 x: DocumentationData(Doc, Attr, std::move(HeadingAndSpellings)));
5409 continue;
5410 }
5411
5412 auto &CategoryDocs = MergedDocs[Category];
5413
5414 std::string key = Doc.getValueAsString(FieldName: "Content").str();
5415 uint32_t keyHash = llvm::hash_value(arg: key);
5416
5417 // If the content already exists, merge the documentation.
5418 auto It = CategoryDocs.find(x: keyHash);
5419 if (It != CategoryDocs.end()) {
5420 // Merge heading
5421 if (It->second.Heading != HeadingAndSpellings.first)
5422 It->second.Heading += ", " + HeadingAndSpellings.first;
5423 // Merge spellings
5424 It->second.SupportedSpellings.merge(Other: HeadingAndSpellings.second);
5425 // Merge content
5426 It->second.Documentation = &Doc; // Update reference
5427 } else {
5428 // Create new entry for unique content
5429 CategoryDocs.emplace(args&: keyHash,
5430 args: DocumentationData(Doc, Attr, HeadingAndSpellings));
5431 }
5432 }
5433 }
5434
5435 std::map<const Record *, std::vector<DocumentationData>, CategoryLess>
5436 SplitDocs;
5437
5438 for (auto &CategoryPair : MergedDocs) {
5439
5440 std::vector<DocumentationData> MD;
5441 for (auto &DocPair : CategoryPair.second)
5442 MD.push_back(x: std::move(DocPair.second));
5443
5444 SplitDocs.emplace(args: CategoryPair.first, args&: MD);
5445 }
5446
5447 // Append Undocumented category entries
5448 if (!UndocumentedDocs.empty() && UndocumentedCategory) {
5449 SplitDocs.emplace(args&: UndocumentedCategory, args&: UndocumentedDocs);
5450 }
5451
5452 // Having split the attributes out based on what documentation goes where,
5453 // we can begin to generate sections of documentation.
5454 for (auto &I : SplitDocs) {
5455 WriteCategoryHeader(DocCategory: I.first, OS);
5456
5457 sort(C&: I.second,
5458 Comp: [](const DocumentationData &D1, const DocumentationData &D2) {
5459 return D1.Heading < D2.Heading;
5460 });
5461
5462 // Walk over each of the attributes in the category and write out their
5463 // documentation.
5464 for (const auto &Doc : I.second)
5465 WriteDocumentation(Records, Doc, OS);
5466 }
5467}
5468
5469void EmitTestPragmaAttributeSupportedAttributes(const RecordKeeper &Records,
5470 raw_ostream &OS) {
5471 PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
5472 ParsedAttrMap Attrs = getParsedAttrList(Records);
5473 OS << "#pragma clang attribute supports the following attributes:\n";
5474 for (const auto &I : Attrs) {
5475 if (!Support.isAttributedSupported(Attribute: *I.second))
5476 continue;
5477 OS << I.first;
5478 if (I.second->isValueUnset(FieldName: "Subjects")) {
5479 OS << " ()\n";
5480 continue;
5481 }
5482 const Record *SubjectObj = I.second->getValueAsDef(FieldName: "Subjects");
5483 OS << " (";
5484 bool PrintComma = false;
5485 for (const auto &Subject :
5486 enumerate(First: SubjectObj->getValueAsListOfDefs(FieldName: "Subjects"))) {
5487 if (!isSupportedPragmaClangAttributeSubject(Subject: *Subject.value()))
5488 continue;
5489 if (PrintComma)
5490 OS << ", ";
5491 PrintComma = true;
5492 PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
5493 Support.SubjectsToRules.find(Val: Subject.value())->getSecond();
5494 if (RuleSet.isRule()) {
5495 OS << RuleSet.getRule().getEnumValueName();
5496 continue;
5497 }
5498 OS << "(";
5499 for (const auto &Rule : enumerate(First: RuleSet.getAggregateRuleSet())) {
5500 if (Rule.index())
5501 OS << ", ";
5502 OS << Rule.value().getEnumValueName();
5503 }
5504 OS << ")";
5505 }
5506 OS << ")\n";
5507 }
5508 OS << "End of supported attributes.\n";
5509}
5510
5511} // end namespace clang
5512

Provided by KDAB

Privacy Policy
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more

source code of clang/utils/TableGen/ClangAttrEmitter.cpp