1 | //===-- asan_allocator.cpp ------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of AddressSanitizer, an address sanity checker. |
10 | // |
11 | // Implementation of ASan's memory allocator, 2-nd version. |
12 | // This variant uses the allocator from sanitizer_common, i.e. the one shared |
13 | // with ThreadSanitizer and MemorySanitizer. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "asan_allocator.h" |
18 | |
19 | #include "asan_internal.h" |
20 | #include "asan_mapping.h" |
21 | #include "asan_poisoning.h" |
22 | #include "asan_report.h" |
23 | #include "asan_stack.h" |
24 | #include "asan_suppressions.h" |
25 | #include "asan_thread.h" |
26 | #include "lsan/lsan_common.h" |
27 | #include "sanitizer_common/sanitizer_allocator_checks.h" |
28 | #include "sanitizer_common/sanitizer_allocator_interface.h" |
29 | #include "sanitizer_common/sanitizer_common.h" |
30 | #include "sanitizer_common/sanitizer_errno.h" |
31 | #include "sanitizer_common/sanitizer_flags.h" |
32 | #include "sanitizer_common/sanitizer_internal_defs.h" |
33 | #include "sanitizer_common/sanitizer_list.h" |
34 | #include "sanitizer_common/sanitizer_quarantine.h" |
35 | #include "sanitizer_common/sanitizer_stackdepot.h" |
36 | |
37 | namespace __asan { |
38 | |
39 | // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. |
40 | // We use adaptive redzones: for larger allocation larger redzones are used. |
41 | static u32 RZLog2Size(u32 rz_log) { |
42 | CHECK_LT(rz_log, 8); |
43 | return 16 << rz_log; |
44 | } |
45 | |
46 | static u32 RZSize2Log(u32 rz_size) { |
47 | CHECK_GE(rz_size, 16); |
48 | CHECK_LE(rz_size, 2048); |
49 | CHECK(IsPowerOfTwo(rz_size)); |
50 | u32 res = Log2(x: rz_size) - 4; |
51 | CHECK_EQ(rz_size, RZLog2Size(res)); |
52 | return res; |
53 | } |
54 | |
55 | static AsanAllocator &get_allocator(); |
56 | |
57 | static void AtomicContextStore(volatile atomic_uint64_t *atomic_context, |
58 | u32 tid, u32 stack) { |
59 | u64 context = tid; |
60 | context <<= 32; |
61 | context += stack; |
62 | atomic_store(a: atomic_context, v: context, mo: memory_order_relaxed); |
63 | } |
64 | |
65 | static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context, |
66 | u32 &tid, u32 &stack) { |
67 | u64 context = atomic_load(a: atomic_context, mo: memory_order_relaxed); |
68 | stack = context; |
69 | context >>= 32; |
70 | tid = context; |
71 | } |
72 | |
73 | // The memory chunk allocated from the underlying allocator looks like this: |
74 | // L L L L L L H H U U U U U U R R |
75 | // L -- left redzone words (0 or more bytes) |
76 | // H -- ChunkHeader (16 bytes), which is also a part of the left redzone. |
77 | // U -- user memory. |
78 | // R -- right redzone (0 or more bytes) |
79 | // ChunkBase consists of ChunkHeader and other bytes that overlap with user |
80 | // memory. |
81 | |
82 | // If the left redzone is greater than the ChunkHeader size we store a magic |
83 | // value in the first uptr word of the memory block and store the address of |
84 | // ChunkBase in the next uptr. |
85 | // M B L L L L L L L L L H H U U U U U U |
86 | // | ^ |
87 | // ---------------------| |
88 | // M -- magic value kAllocBegMagic |
89 | // B -- address of ChunkHeader pointing to the first 'H' |
90 | |
91 | class { |
92 | public: |
93 | atomic_uint8_t ; |
94 | u8 : 2; |
95 | u8 : 2; |
96 | |
97 | // align < 8 -> 0 |
98 | // else -> log2(min(align, 512)) - 2 |
99 | u8 : 3; |
100 | |
101 | private: |
102 | u16 ; |
103 | u32 ; |
104 | atomic_uint64_t ; |
105 | |
106 | public: |
107 | uptr () const { |
108 | static_assert(sizeof(user_requested_size_lo) == 4, |
109 | "Expression below requires this" ); |
110 | return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) + |
111 | user_requested_size_lo; |
112 | } |
113 | |
114 | void (uptr size) { |
115 | user_requested_size_lo = size; |
116 | static_assert(sizeof(user_requested_size_lo) == 4, |
117 | "Expression below requires this" ); |
118 | user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32); |
119 | CHECK_EQ(UsedSize(), size); |
120 | } |
121 | |
122 | void (u32 tid, u32 stack) { |
123 | AtomicContextStore(atomic_context: &alloc_context_id, tid, stack); |
124 | } |
125 | |
126 | void (u32 &tid, u32 &stack) const { |
127 | AtomicContextLoad(atomic_context: &alloc_context_id, tid, stack); |
128 | } |
129 | }; |
130 | |
131 | class ChunkBase : public ChunkHeader { |
132 | atomic_uint64_t free_context_id; |
133 | |
134 | public: |
135 | void SetFreeContext(u32 tid, u32 stack) { |
136 | AtomicContextStore(atomic_context: &free_context_id, tid, stack); |
137 | } |
138 | |
139 | void GetFreeContext(u32 &tid, u32 &stack) const { |
140 | AtomicContextLoad(atomic_context: &free_context_id, tid, stack); |
141 | } |
142 | }; |
143 | |
144 | static const uptr = sizeof(ChunkHeader); |
145 | static const uptr = sizeof(ChunkBase) - kChunkHeaderSize; |
146 | COMPILER_CHECK(kChunkHeaderSize == 16); |
147 | COMPILER_CHECK(kChunkHeader2Size <= 16); |
148 | |
149 | enum { |
150 | // Either just allocated by underlying allocator, but AsanChunk is not yet |
151 | // ready, or almost returned to undelying allocator and AsanChunk is already |
152 | // meaningless. |
153 | CHUNK_INVALID = 0, |
154 | // The chunk is allocated and not yet freed. |
155 | CHUNK_ALLOCATED = 2, |
156 | // The chunk was freed and put into quarantine zone. |
157 | CHUNK_QUARANTINE = 3, |
158 | }; |
159 | |
160 | class AsanChunk : public ChunkBase { |
161 | public: |
162 | uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } |
163 | bool AddrIsInside(uptr addr) { |
164 | return (addr >= Beg()) && (addr < Beg() + UsedSize()); |
165 | } |
166 | }; |
167 | |
168 | class { |
169 | static constexpr uptr = |
170 | FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); |
171 | atomic_uintptr_t ; |
172 | AsanChunk *; |
173 | |
174 | public: |
175 | AsanChunk *() const { |
176 | return atomic_load(a: &magic, mo: memory_order_acquire) == kAllocBegMagic |
177 | ? chunk_header |
178 | : nullptr; |
179 | } |
180 | |
181 | void (AsanChunk *p) { |
182 | if (p) { |
183 | chunk_header = p; |
184 | atomic_store(a: &magic, v: kAllocBegMagic, mo: memory_order_release); |
185 | return; |
186 | } |
187 | |
188 | uptr old = kAllocBegMagic; |
189 | if (!atomic_compare_exchange_strong(a: &magic, cmp: &old, xchg: 0, |
190 | mo: memory_order_release)) { |
191 | CHECK_EQ(old, kAllocBegMagic); |
192 | } |
193 | } |
194 | }; |
195 | |
196 | static void FillChunk(AsanChunk *m) { |
197 | // FIXME: Use ReleaseMemoryPagesToOS. |
198 | Flags &fl = *flags(); |
199 | |
200 | if (fl.max_free_fill_size > 0) { |
201 | // We have to skip the chunk header, it contains free_context_id. |
202 | uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size; |
203 | if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area. |
204 | uptr size_to_fill = m->UsedSize() - kChunkHeader2Size; |
205 | size_to_fill = Min(a: size_to_fill, b: (uptr)fl.max_free_fill_size); |
206 | REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill); |
207 | } |
208 | } |
209 | } |
210 | |
211 | struct QuarantineCallback { |
212 | QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack) |
213 | : cache_(cache), |
214 | stack_(stack) { |
215 | } |
216 | |
217 | void PreQuarantine(AsanChunk *m) const { |
218 | FillChunk(m); |
219 | // Poison the region. |
220 | PoisonShadow(addr: m->Beg(), size: RoundUpTo(size: m->UsedSize(), ASAN_SHADOW_GRANULARITY), |
221 | value: kAsanHeapFreeMagic); |
222 | } |
223 | |
224 | void Recycle(AsanChunk *m) const { |
225 | void *p = get_allocator().GetBlockBegin(p: m); |
226 | |
227 | // The secondary will immediately unpoison and unmap the memory, so this |
228 | // branch is unnecessary. |
229 | if (get_allocator().FromPrimary(p)) { |
230 | if (p != m) { |
231 | // Clear the magic value, as allocator internals may overwrite the |
232 | // contents of deallocated chunk, confusing GetAsanChunk lookup. |
233 | reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr); |
234 | } |
235 | |
236 | u8 old_chunk_state = CHUNK_QUARANTINE; |
237 | if (!atomic_compare_exchange_strong(a: &m->chunk_state, cmp: &old_chunk_state, |
238 | xchg: CHUNK_INVALID, |
239 | mo: memory_order_acquire)) { |
240 | CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE); |
241 | } |
242 | |
243 | PoisonShadow(addr: m->Beg(), size: RoundUpTo(size: m->UsedSize(), ASAN_SHADOW_GRANULARITY), |
244 | value: kAsanHeapLeftRedzoneMagic); |
245 | } |
246 | |
247 | // Statistics. |
248 | AsanStats &thread_stats = GetCurrentThreadStats(); |
249 | thread_stats.real_frees++; |
250 | thread_stats.really_freed += m->UsedSize(); |
251 | |
252 | get_allocator().Deallocate(cache: cache_, p); |
253 | } |
254 | |
255 | void RecyclePassThrough(AsanChunk *m) const { |
256 | // Recycle for the secondary will immediately unpoison and unmap the |
257 | // memory, so quarantine preparation is unnecessary. |
258 | if (get_allocator().FromPrimary(p: m)) { |
259 | // The primary allocation may need pattern fill if enabled. |
260 | FillChunk(m); |
261 | } |
262 | Recycle(m); |
263 | } |
264 | |
265 | void *Allocate(uptr size) const { |
266 | void *res = get_allocator().Allocate(cache: cache_, size, alignment: 1); |
267 | // TODO(alekseys): Consider making quarantine OOM-friendly. |
268 | if (UNLIKELY(!res)) |
269 | ReportOutOfMemory(requested_size: size, stack: stack_); |
270 | return res; |
271 | } |
272 | |
273 | void Deallocate(void *p) const { get_allocator().Deallocate(cache: cache_, p); } |
274 | |
275 | private: |
276 | AllocatorCache* const cache_; |
277 | BufferedStackTrace* const stack_; |
278 | }; |
279 | |
280 | typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine; |
281 | typedef AsanQuarantine::Cache QuarantineCache; |
282 | |
283 | void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const { |
284 | PoisonShadow(addr: p, size, value: kAsanHeapLeftRedzoneMagic); |
285 | // Statistics. |
286 | AsanStats &thread_stats = GetCurrentThreadStats(); |
287 | thread_stats.mmaps++; |
288 | thread_stats.mmaped += size; |
289 | } |
290 | |
291 | void AsanMapUnmapCallback::OnMapSecondary(uptr p, uptr size, uptr user_begin, |
292 | uptr user_size) const { |
293 | uptr user_end = RoundDownTo(x: user_begin + user_size, ASAN_SHADOW_GRANULARITY); |
294 | user_begin = RoundUpTo(size: user_begin, ASAN_SHADOW_GRANULARITY); |
295 | // The secondary mapping will be immediately returned to user, no value |
296 | // poisoning that with non-zero just before unpoisoning by Allocate(). So just |
297 | // poison head/tail invisible to Allocate(). |
298 | PoisonShadow(addr: p, size: user_begin - p, value: kAsanHeapLeftRedzoneMagic); |
299 | PoisonShadow(addr: user_end, size: size - (user_end - p), value: kAsanHeapLeftRedzoneMagic); |
300 | // Statistics. |
301 | AsanStats &thread_stats = GetCurrentThreadStats(); |
302 | thread_stats.mmaps++; |
303 | thread_stats.mmaped += size; |
304 | } |
305 | |
306 | void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const { |
307 | PoisonShadow(addr: p, size, value: 0); |
308 | // We are about to unmap a chunk of user memory. |
309 | // Mark the corresponding shadow memory as not needed. |
310 | FlushUnneededASanShadowMemory(p, size); |
311 | // Statistics. |
312 | AsanStats &thread_stats = GetCurrentThreadStats(); |
313 | thread_stats.munmaps++; |
314 | thread_stats.munmaped += size; |
315 | } |
316 | |
317 | // We can not use THREADLOCAL because it is not supported on some of the |
318 | // platforms we care about (OSX 10.6, Android). |
319 | // static THREADLOCAL AllocatorCache cache; |
320 | AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { |
321 | CHECK(ms); |
322 | return &ms->allocator_cache; |
323 | } |
324 | |
325 | QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { |
326 | CHECK(ms); |
327 | CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); |
328 | return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache); |
329 | } |
330 | |
331 | void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) { |
332 | quarantine_size_mb = f->quarantine_size_mb; |
333 | thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb; |
334 | min_redzone = f->redzone; |
335 | max_redzone = f->max_redzone; |
336 | may_return_null = cf->allocator_may_return_null; |
337 | alloc_dealloc_mismatch = f->alloc_dealloc_mismatch; |
338 | release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms; |
339 | } |
340 | |
341 | void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) { |
342 | f->quarantine_size_mb = quarantine_size_mb; |
343 | f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb; |
344 | f->redzone = min_redzone; |
345 | f->max_redzone = max_redzone; |
346 | cf->allocator_may_return_null = may_return_null; |
347 | f->alloc_dealloc_mismatch = alloc_dealloc_mismatch; |
348 | cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms; |
349 | } |
350 | |
351 | struct Allocator { |
352 | static const uptr kMaxAllowedMallocSize = |
353 | FIRST_32_SECOND_64(3UL << 30, 1ULL << 40); |
354 | |
355 | AsanAllocator allocator; |
356 | AsanQuarantine quarantine; |
357 | StaticSpinMutex fallback_mutex; |
358 | AllocatorCache fallback_allocator_cache; |
359 | QuarantineCache fallback_quarantine_cache; |
360 | |
361 | uptr max_user_defined_malloc_size; |
362 | |
363 | // ------------------- Options -------------------------- |
364 | atomic_uint16_t min_redzone; |
365 | atomic_uint16_t max_redzone; |
366 | atomic_uint8_t alloc_dealloc_mismatch; |
367 | |
368 | // ------------------- Initialization ------------------------ |
369 | explicit Allocator(LinkerInitialized) |
370 | : quarantine(LINKER_INITIALIZED), |
371 | fallback_quarantine_cache(LINKER_INITIALIZED) {} |
372 | |
373 | void CheckOptions(const AllocatorOptions &options) const { |
374 | CHECK_GE(options.min_redzone, 16); |
375 | CHECK_GE(options.max_redzone, options.min_redzone); |
376 | CHECK_LE(options.max_redzone, 2048); |
377 | CHECK(IsPowerOfTwo(options.min_redzone)); |
378 | CHECK(IsPowerOfTwo(options.max_redzone)); |
379 | } |
380 | |
381 | void SharedInitCode(const AllocatorOptions &options) { |
382 | CheckOptions(options); |
383 | quarantine.Init(size: (uptr)options.quarantine_size_mb << 20, |
384 | cache_size: (uptr)options.thread_local_quarantine_size_kb << 10); |
385 | atomic_store(a: &alloc_dealloc_mismatch, v: options.alloc_dealloc_mismatch, |
386 | mo: memory_order_release); |
387 | atomic_store(a: &min_redzone, v: options.min_redzone, mo: memory_order_release); |
388 | atomic_store(a: &max_redzone, v: options.max_redzone, mo: memory_order_release); |
389 | } |
390 | |
391 | void InitLinkerInitialized(const AllocatorOptions &options) { |
392 | SetAllocatorMayReturnNull(options.may_return_null); |
393 | allocator.InitLinkerInitialized(release_to_os_interval_ms: options.release_to_os_interval_ms); |
394 | SharedInitCode(options); |
395 | max_user_defined_malloc_size = common_flags()->max_allocation_size_mb |
396 | ? common_flags()->max_allocation_size_mb |
397 | << 20 |
398 | : kMaxAllowedMallocSize; |
399 | } |
400 | |
401 | void RePoisonChunk(uptr chunk) { |
402 | // This could be a user-facing chunk (with redzones), or some internal |
403 | // housekeeping chunk, like TransferBatch. Start by assuming the former. |
404 | AsanChunk *ac = GetAsanChunk(alloc_beg: (void *)chunk); |
405 | uptr allocated_size = allocator.GetActuallyAllocatedSize(p: (void *)chunk); |
406 | if (ac && atomic_load(a: &ac->chunk_state, mo: memory_order_acquire) == |
407 | CHUNK_ALLOCATED) { |
408 | uptr beg = ac->Beg(); |
409 | uptr end = ac->Beg() + ac->UsedSize(); |
410 | uptr chunk_end = chunk + allocated_size; |
411 | if (chunk < beg && beg < end && end <= chunk_end) { |
412 | // Looks like a valid AsanChunk in use, poison redzones only. |
413 | PoisonShadow(addr: chunk, size: beg - chunk, value: kAsanHeapLeftRedzoneMagic); |
414 | uptr end_aligned_down = RoundDownTo(x: end, ASAN_SHADOW_GRANULARITY); |
415 | FastPoisonShadowPartialRightRedzone( |
416 | aligned_addr: end_aligned_down, size: end - end_aligned_down, |
417 | redzone_size: chunk_end - end_aligned_down, value: kAsanHeapLeftRedzoneMagic); |
418 | return; |
419 | } |
420 | } |
421 | |
422 | // This is either not an AsanChunk or freed or quarantined AsanChunk. |
423 | // In either case, poison everything. |
424 | PoisonShadow(addr: chunk, size: allocated_size, value: kAsanHeapLeftRedzoneMagic); |
425 | } |
426 | |
427 | void ReInitialize(const AllocatorOptions &options) { |
428 | SetAllocatorMayReturnNull(options.may_return_null); |
429 | allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms); |
430 | SharedInitCode(options); |
431 | |
432 | // Poison all existing allocation's redzones. |
433 | if (CanPoisonMemory()) { |
434 | allocator.ForceLock(); |
435 | allocator.ForEachChunk( |
436 | callback: [](uptr chunk, void *alloc) { |
437 | ((Allocator *)alloc)->RePoisonChunk(chunk); |
438 | }, |
439 | arg: this); |
440 | allocator.ForceUnlock(); |
441 | } |
442 | } |
443 | |
444 | void GetOptions(AllocatorOptions *options) const { |
445 | options->quarantine_size_mb = quarantine.GetMaxSize() >> 20; |
446 | options->thread_local_quarantine_size_kb = |
447 | quarantine.GetMaxCacheSize() >> 10; |
448 | options->min_redzone = atomic_load(a: &min_redzone, mo: memory_order_acquire); |
449 | options->max_redzone = atomic_load(a: &max_redzone, mo: memory_order_acquire); |
450 | options->may_return_null = AllocatorMayReturnNull(); |
451 | options->alloc_dealloc_mismatch = |
452 | atomic_load(a: &alloc_dealloc_mismatch, mo: memory_order_acquire); |
453 | options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs(); |
454 | } |
455 | |
456 | // -------------------- Helper methods. ------------------------- |
457 | uptr ComputeRZLog(uptr user_requested_size) { |
458 | u32 rz_log = user_requested_size <= 64 - 16 ? 0 |
459 | : user_requested_size <= 128 - 32 ? 1 |
460 | : user_requested_size <= 512 - 64 ? 2 |
461 | : user_requested_size <= 4096 - 128 ? 3 |
462 | : user_requested_size <= (1 << 14) - 256 ? 4 |
463 | : user_requested_size <= (1 << 15) - 512 ? 5 |
464 | : user_requested_size <= (1 << 16) - 1024 ? 6 |
465 | : 7; |
466 | u32 hdr_log = RZSize2Log(rz_size: RoundUpToPowerOfTwo(size: sizeof(ChunkHeader))); |
467 | u32 min_log = RZSize2Log(rz_size: atomic_load(a: &min_redzone, mo: memory_order_acquire)); |
468 | u32 max_log = RZSize2Log(rz_size: atomic_load(a: &max_redzone, mo: memory_order_acquire)); |
469 | return Min(a: Max(a: rz_log, b: Max(a: min_log, b: hdr_log)), b: Max(a: max_log, b: hdr_log)); |
470 | } |
471 | |
472 | static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) { |
473 | if (user_requested_alignment < 8) |
474 | return 0; |
475 | if (user_requested_alignment > 512) |
476 | user_requested_alignment = 512; |
477 | return Log2(x: user_requested_alignment) - 2; |
478 | } |
479 | |
480 | static uptr ComputeUserAlignment(uptr user_requested_alignment_log) { |
481 | if (user_requested_alignment_log == 0) |
482 | return 0; |
483 | return 1LL << (user_requested_alignment_log + 2); |
484 | } |
485 | |
486 | // We have an address between two chunks, and we want to report just one. |
487 | AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk, |
488 | AsanChunk *right_chunk) { |
489 | if (!left_chunk) |
490 | return right_chunk; |
491 | if (!right_chunk) |
492 | return left_chunk; |
493 | // Prefer an allocated chunk over freed chunk and freed chunk |
494 | // over available chunk. |
495 | u8 left_state = atomic_load(a: &left_chunk->chunk_state, mo: memory_order_relaxed); |
496 | u8 right_state = |
497 | atomic_load(a: &right_chunk->chunk_state, mo: memory_order_relaxed); |
498 | if (left_state != right_state) { |
499 | if (left_state == CHUNK_ALLOCATED) |
500 | return left_chunk; |
501 | if (right_state == CHUNK_ALLOCATED) |
502 | return right_chunk; |
503 | if (left_state == CHUNK_QUARANTINE) |
504 | return left_chunk; |
505 | if (right_state == CHUNK_QUARANTINE) |
506 | return right_chunk; |
507 | } |
508 | // Same chunk_state: choose based on offset. |
509 | sptr l_offset = 0, r_offset = 0; |
510 | CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); |
511 | CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); |
512 | if (l_offset < r_offset) |
513 | return left_chunk; |
514 | return right_chunk; |
515 | } |
516 | |
517 | bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) { |
518 | AsanChunk *m = GetAsanChunkByAddr(p: addr); |
519 | if (!m) return false; |
520 | if (atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != CHUNK_ALLOCATED) |
521 | return false; |
522 | if (m->Beg() != addr) return false; |
523 | AsanThread *t = GetCurrentThread(); |
524 | m->SetAllocContext(tid: t ? t->tid() : kMainTid, stack: StackDepotPut(stack: *stack)); |
525 | return true; |
526 | } |
527 | |
528 | // -------------------- Allocation/Deallocation routines --------------- |
529 | void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, |
530 | AllocType alloc_type, bool can_fill) { |
531 | if (UNLIKELY(!AsanInited())) |
532 | AsanInitFromRtl(); |
533 | if (UNLIKELY(IsRssLimitExceeded())) { |
534 | if (AllocatorMayReturnNull()) |
535 | return nullptr; |
536 | ReportRssLimitExceeded(stack); |
537 | } |
538 | Flags &fl = *flags(); |
539 | CHECK(stack); |
540 | const uptr min_alignment = ASAN_SHADOW_GRANULARITY; |
541 | const uptr user_requested_alignment_log = |
542 | ComputeUserRequestedAlignmentLog(user_requested_alignment: alignment); |
543 | if (alignment < min_alignment) |
544 | alignment = min_alignment; |
545 | if (size == 0) { |
546 | // We'd be happy to avoid allocating memory for zero-size requests, but |
547 | // some programs/tests depend on this behavior and assume that malloc |
548 | // would not return NULL even for zero-size allocations. Moreover, it |
549 | // looks like operator new should never return NULL, and results of |
550 | // consecutive "new" calls must be different even if the allocated size |
551 | // is zero. |
552 | size = 1; |
553 | } |
554 | CHECK(IsPowerOfTwo(alignment)); |
555 | uptr rz_log = ComputeRZLog(user_requested_size: size); |
556 | uptr rz_size = RZLog2Size(rz_log); |
557 | uptr rounded_size = RoundUpTo(size: Max(a: size, b: kChunkHeader2Size), boundary: alignment); |
558 | uptr needed_size = rounded_size + rz_size; |
559 | if (alignment > min_alignment) |
560 | needed_size += alignment; |
561 | bool from_primary = PrimaryAllocator::CanAllocate(size: needed_size, alignment); |
562 | // If we are allocating from the secondary allocator, there will be no |
563 | // automatic right redzone, so add the right redzone manually. |
564 | if (!from_primary) |
565 | needed_size += rz_size; |
566 | CHECK(IsAligned(needed_size, min_alignment)); |
567 | if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || |
568 | size > max_user_defined_malloc_size) { |
569 | if (AllocatorMayReturnNull()) { |
570 | Report(format: "WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n" , |
571 | size); |
572 | return nullptr; |
573 | } |
574 | uptr malloc_limit = |
575 | Min(a: kMaxAllowedMallocSize, b: max_user_defined_malloc_size); |
576 | ReportAllocationSizeTooBig(user_size: size, total_size: needed_size, max_size: malloc_limit, stack); |
577 | } |
578 | |
579 | AsanThread *t = GetCurrentThread(); |
580 | void *allocated; |
581 | if (t) { |
582 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
583 | allocated = allocator.Allocate(cache, size: needed_size, alignment: 8); |
584 | } else { |
585 | SpinMutexLock l(&fallback_mutex); |
586 | AllocatorCache *cache = &fallback_allocator_cache; |
587 | allocated = allocator.Allocate(cache, size: needed_size, alignment: 8); |
588 | } |
589 | if (UNLIKELY(!allocated)) { |
590 | SetAllocatorOutOfMemory(); |
591 | if (AllocatorMayReturnNull()) |
592 | return nullptr; |
593 | ReportOutOfMemory(requested_size: size, stack); |
594 | } |
595 | |
596 | uptr alloc_beg = reinterpret_cast<uptr>(allocated); |
597 | uptr alloc_end = alloc_beg + needed_size; |
598 | uptr user_beg = alloc_beg + rz_size; |
599 | if (!IsAligned(a: user_beg, alignment)) |
600 | user_beg = RoundUpTo(size: user_beg, boundary: alignment); |
601 | uptr user_end = user_beg + size; |
602 | CHECK_LE(user_end, alloc_end); |
603 | uptr chunk_beg = user_beg - kChunkHeaderSize; |
604 | AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
605 | m->alloc_type = alloc_type; |
606 | CHECK(size); |
607 | m->SetUsedSize(size); |
608 | m->user_requested_alignment_log = user_requested_alignment_log; |
609 | |
610 | m->SetAllocContext(tid: t ? t->tid() : kMainTid, stack: StackDepotPut(stack: *stack)); |
611 | |
612 | if (!from_primary || *(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0) { |
613 | // The allocator provides an unpoisoned chunk. This is possible for the |
614 | // secondary allocator, or if CanPoisonMemory() was false for some time, |
615 | // for example, due to flags()->start_disabled. Anyway, poison left and |
616 | // right of the block before using it for anything else. |
617 | uptr tail_beg = RoundUpTo(size: user_end, ASAN_SHADOW_GRANULARITY); |
618 | uptr tail_end = alloc_beg + allocator.GetActuallyAllocatedSize(p: allocated); |
619 | PoisonShadow(addr: alloc_beg, size: user_beg - alloc_beg, value: kAsanHeapLeftRedzoneMagic); |
620 | PoisonShadow(addr: tail_beg, size: tail_end - tail_beg, value: kAsanHeapLeftRedzoneMagic); |
621 | } |
622 | |
623 | uptr size_rounded_down_to_granularity = |
624 | RoundDownTo(x: size, ASAN_SHADOW_GRANULARITY); |
625 | // Unpoison the bulk of the memory region. |
626 | if (size_rounded_down_to_granularity) |
627 | PoisonShadow(addr: user_beg, size: size_rounded_down_to_granularity, value: 0); |
628 | // Deal with the end of the region if size is not aligned to granularity. |
629 | if (size != size_rounded_down_to_granularity && CanPoisonMemory()) { |
630 | u8 *shadow = |
631 | (u8 *)MemToShadow(p: user_beg + size_rounded_down_to_granularity); |
632 | *shadow = fl.poison_partial ? (size & (ASAN_SHADOW_GRANULARITY - 1)) : 0; |
633 | } |
634 | |
635 | AsanStats &thread_stats = GetCurrentThreadStats(); |
636 | thread_stats.mallocs++; |
637 | thread_stats.malloced += size; |
638 | thread_stats.malloced_redzones += needed_size - size; |
639 | if (needed_size > SizeClassMap::kMaxSize) |
640 | thread_stats.malloc_large++; |
641 | else |
642 | thread_stats.malloced_by_size[SizeClassMap::ClassID(size: needed_size)]++; |
643 | |
644 | void *res = reinterpret_cast<void *>(user_beg); |
645 | if (can_fill && fl.max_malloc_fill_size) { |
646 | uptr fill_size = Min(a: size, b: (uptr)fl.max_malloc_fill_size); |
647 | REAL(memset)(res, fl.malloc_fill_byte, fill_size); |
648 | } |
649 | #if CAN_SANITIZE_LEAKS |
650 | m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored |
651 | : __lsan::kDirectlyLeaked; |
652 | #endif |
653 | // Must be the last mutation of metadata in this function. |
654 | atomic_store(a: &m->chunk_state, v: CHUNK_ALLOCATED, mo: memory_order_release); |
655 | if (alloc_beg != chunk_beg) { |
656 | CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); |
657 | reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); |
658 | } |
659 | RunMallocHooks(ptr: res, size); |
660 | return res; |
661 | } |
662 | |
663 | // Set quarantine flag if chunk is allocated, issue ASan error report on |
664 | // available and quarantined chunks. Return true on success, false otherwise. |
665 | bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr, |
666 | BufferedStackTrace *stack) { |
667 | u8 old_chunk_state = CHUNK_ALLOCATED; |
668 | // Flip the chunk_state atomically to avoid race on double-free. |
669 | if (!atomic_compare_exchange_strong(a: &m->chunk_state, cmp: &old_chunk_state, |
670 | xchg: CHUNK_QUARANTINE, |
671 | mo: memory_order_acquire)) { |
672 | ReportInvalidFree(ptr, chunk_state: old_chunk_state, stack); |
673 | // It's not safe to push a chunk in quarantine on invalid free. |
674 | return false; |
675 | } |
676 | CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state); |
677 | // It was a user data. |
678 | m->SetFreeContext(tid: kInvalidTid, stack: 0); |
679 | return true; |
680 | } |
681 | |
682 | // Expects the chunk to already be marked as quarantined by using |
683 | // AtomicallySetQuarantineFlagIfAllocated. |
684 | void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) { |
685 | CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed), |
686 | CHUNK_QUARANTINE); |
687 | AsanThread *t = GetCurrentThread(); |
688 | m->SetFreeContext(tid: t ? t->tid() : 0, stack: StackDepotPut(stack: *stack)); |
689 | |
690 | // Push into quarantine. |
691 | if (t) { |
692 | AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); |
693 | AllocatorCache *ac = GetAllocatorCache(ms); |
694 | quarantine.Put(c: GetQuarantineCache(ms), cb: QuarantineCallback(ac, stack), ptr: m, |
695 | size: m->UsedSize()); |
696 | } else { |
697 | SpinMutexLock l(&fallback_mutex); |
698 | AllocatorCache *ac = &fallback_allocator_cache; |
699 | quarantine.Put(c: &fallback_quarantine_cache, cb: QuarantineCallback(ac, stack), |
700 | ptr: m, size: m->UsedSize()); |
701 | } |
702 | } |
703 | |
704 | void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, |
705 | BufferedStackTrace *stack, AllocType alloc_type) { |
706 | uptr p = reinterpret_cast<uptr>(ptr); |
707 | if (p == 0) return; |
708 | |
709 | uptr chunk_beg = p - kChunkHeaderSize; |
710 | AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
711 | |
712 | // On Windows, uninstrumented DLLs may allocate memory before ASan hooks |
713 | // malloc. Don't report an invalid free in this case. |
714 | if (SANITIZER_WINDOWS && |
715 | !get_allocator().PointerIsMine(p: ptr)) { |
716 | if (!IsSystemHeapAddress(addr: p)) |
717 | ReportFreeNotMalloced(addr: p, free_stack: stack); |
718 | return; |
719 | } |
720 | |
721 | if (RunFreeHooks(ptr)) { |
722 | // Someone used __sanitizer_ignore_free_hook() and decided that they |
723 | // didn't want the memory to __sanitizer_ignore_free_hook freed right now. |
724 | // When they call free() on this pointer again at a later time, we should |
725 | // ignore the alloc-type mismatch and allow them to deallocate the pointer |
726 | // through free(), rather than the initial alloc type. |
727 | m->alloc_type = FROM_MALLOC; |
728 | return; |
729 | } |
730 | |
731 | // Must mark the chunk as quarantined before any changes to its metadata. |
732 | // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag. |
733 | if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return; |
734 | |
735 | if (m->alloc_type != alloc_type) { |
736 | if (atomic_load(a: &alloc_dealloc_mismatch, mo: memory_order_acquire) && |
737 | !IsAllocDeallocMismatchSuppressed(stack)) { |
738 | ReportAllocTypeMismatch(addr: (uptr)ptr, free_stack: stack, alloc_type: (AllocType)m->alloc_type, |
739 | dealloc_type: (AllocType)alloc_type); |
740 | } |
741 | } else { |
742 | if (flags()->new_delete_type_mismatch && |
743 | (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) && |
744 | ((delete_size && delete_size != m->UsedSize()) || |
745 | ComputeUserRequestedAlignmentLog(user_requested_alignment: delete_alignment) != |
746 | m->user_requested_alignment_log)) { |
747 | ReportNewDeleteTypeMismatch(addr: p, delete_size, delete_alignment, free_stack: stack); |
748 | } |
749 | } |
750 | |
751 | AsanStats &thread_stats = GetCurrentThreadStats(); |
752 | thread_stats.frees++; |
753 | thread_stats.freed += m->UsedSize(); |
754 | |
755 | QuarantineChunk(m, ptr, stack); |
756 | } |
757 | |
758 | void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { |
759 | CHECK(old_ptr && new_size); |
760 | uptr p = reinterpret_cast<uptr>(old_ptr); |
761 | uptr chunk_beg = p - kChunkHeaderSize; |
762 | AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
763 | |
764 | AsanStats &thread_stats = GetCurrentThreadStats(); |
765 | thread_stats.reallocs++; |
766 | thread_stats.realloced += new_size; |
767 | |
768 | void *new_ptr = Allocate(size: new_size, alignment: 8, stack, alloc_type: FROM_MALLOC, can_fill: true); |
769 | if (new_ptr) { |
770 | u8 chunk_state = atomic_load(a: &m->chunk_state, mo: memory_order_acquire); |
771 | if (chunk_state != CHUNK_ALLOCATED) |
772 | ReportInvalidFree(ptr: old_ptr, chunk_state, stack); |
773 | CHECK_NE(REAL(memcpy), nullptr); |
774 | uptr memcpy_size = Min(a: new_size, b: m->UsedSize()); |
775 | // If realloc() races with free(), we may start copying freed memory. |
776 | // However, we will report racy double-free later anyway. |
777 | REAL(memcpy)(new_ptr, old_ptr, memcpy_size); |
778 | Deallocate(ptr: old_ptr, delete_size: 0, delete_alignment: 0, stack, alloc_type: FROM_MALLOC); |
779 | } |
780 | return new_ptr; |
781 | } |
782 | |
783 | void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { |
784 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
785 | if (AllocatorMayReturnNull()) |
786 | return nullptr; |
787 | ReportCallocOverflow(count: nmemb, size, stack); |
788 | } |
789 | void *ptr = Allocate(size: nmemb * size, alignment: 8, stack, alloc_type: FROM_MALLOC, can_fill: false); |
790 | // If the memory comes from the secondary allocator no need to clear it |
791 | // as it comes directly from mmap. |
792 | if (ptr && allocator.FromPrimary(p: ptr)) |
793 | REAL(memset)(ptr, 0, nmemb * size); |
794 | return ptr; |
795 | } |
796 | |
797 | void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) { |
798 | if (chunk_state == CHUNK_QUARANTINE) |
799 | ReportDoubleFree(addr: (uptr)ptr, free_stack: stack); |
800 | else |
801 | ReportFreeNotMalloced(addr: (uptr)ptr, free_stack: stack); |
802 | } |
803 | |
804 | void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) { |
805 | AllocatorCache *ac = GetAllocatorCache(ms); |
806 | quarantine.Drain(c: GetQuarantineCache(ms), cb: QuarantineCallback(ac, stack)); |
807 | allocator.SwallowCache(cache: ac); |
808 | } |
809 | |
810 | // -------------------------- Chunk lookup ---------------------- |
811 | |
812 | // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). |
813 | // Returns nullptr if AsanChunk is not yet initialized just after |
814 | // get_allocator().Allocate(), or is being destroyed just before |
815 | // get_allocator().Deallocate(). |
816 | AsanChunk *GetAsanChunk(void *alloc_beg) { |
817 | if (!alloc_beg) |
818 | return nullptr; |
819 | AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); |
820 | if (!p) { |
821 | if (!allocator.FromPrimary(p: alloc_beg)) |
822 | return nullptr; |
823 | p = reinterpret_cast<AsanChunk *>(alloc_beg); |
824 | } |
825 | u8 state = atomic_load(a: &p->chunk_state, mo: memory_order_relaxed); |
826 | // It does not guaranty that Chunk is initialized, but it's |
827 | // definitely not for any other value. |
828 | if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE) |
829 | return p; |
830 | return nullptr; |
831 | } |
832 | |
833 | AsanChunk *GetAsanChunkByAddr(uptr p) { |
834 | void *alloc_beg = allocator.GetBlockBegin(p: reinterpret_cast<void *>(p)); |
835 | return GetAsanChunk(alloc_beg); |
836 | } |
837 | |
838 | // Allocator must be locked when this function is called. |
839 | AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) { |
840 | void *alloc_beg = |
841 | allocator.GetBlockBeginFastLocked(p: reinterpret_cast<void *>(p)); |
842 | return GetAsanChunk(alloc_beg); |
843 | } |
844 | |
845 | uptr AllocationSize(uptr p) { |
846 | AsanChunk *m = GetAsanChunkByAddr(p); |
847 | if (!m) return 0; |
848 | if (atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != CHUNK_ALLOCATED) |
849 | return 0; |
850 | if (m->Beg() != p) return 0; |
851 | return m->UsedSize(); |
852 | } |
853 | |
854 | uptr AllocationSizeFast(uptr p) { |
855 | return reinterpret_cast<AsanChunk *>(p - kChunkHeaderSize)->UsedSize(); |
856 | } |
857 | |
858 | AsanChunkView FindHeapChunkByAddress(uptr addr) { |
859 | AsanChunk *m1 = GetAsanChunkByAddr(p: addr); |
860 | sptr offset = 0; |
861 | if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, access_size: 1, offset: &offset)) { |
862 | // The address is in the chunk's left redzone, so maybe it is actually |
863 | // a right buffer overflow from the other chunk before. |
864 | // Search a bit before to see if there is another chunk. |
865 | AsanChunk *m2 = nullptr; |
866 | for (uptr l = 1; l < GetPageSizeCached(); l++) { |
867 | m2 = GetAsanChunkByAddr(p: addr - l); |
868 | if (m2 == m1) continue; // Still the same chunk. |
869 | break; |
870 | } |
871 | if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, access_size: 1, offset: &offset)) |
872 | m1 = ChooseChunk(addr, left_chunk: m2, right_chunk: m1); |
873 | } |
874 | return AsanChunkView(m1); |
875 | } |
876 | |
877 | void Purge(BufferedStackTrace *stack) { |
878 | AsanThread *t = GetCurrentThread(); |
879 | if (t) { |
880 | AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); |
881 | quarantine.DrainAndRecycle(c: GetQuarantineCache(ms), |
882 | cb: QuarantineCallback(GetAllocatorCache(ms), |
883 | stack)); |
884 | } |
885 | { |
886 | SpinMutexLock l(&fallback_mutex); |
887 | quarantine.DrainAndRecycle(c: &fallback_quarantine_cache, |
888 | cb: QuarantineCallback(&fallback_allocator_cache, |
889 | stack)); |
890 | } |
891 | |
892 | allocator.ForceReleaseToOS(); |
893 | } |
894 | |
895 | void PrintStats() { |
896 | allocator.PrintStats(); |
897 | quarantine.PrintStats(); |
898 | } |
899 | |
900 | void ForceLock() SANITIZER_ACQUIRE(fallback_mutex) { |
901 | allocator.ForceLock(); |
902 | fallback_mutex.Lock(); |
903 | } |
904 | |
905 | void ForceUnlock() SANITIZER_RELEASE(fallback_mutex) { |
906 | fallback_mutex.Unlock(); |
907 | allocator.ForceUnlock(); |
908 | } |
909 | }; |
910 | |
911 | static Allocator instance(LINKER_INITIALIZED); |
912 | |
913 | static AsanAllocator &get_allocator() { |
914 | return instance.allocator; |
915 | } |
916 | |
917 | bool AsanChunkView::IsValid() const { |
918 | return chunk_ && atomic_load(a: &chunk_->chunk_state, mo: memory_order_relaxed) != |
919 | CHUNK_INVALID; |
920 | } |
921 | bool AsanChunkView::IsAllocated() const { |
922 | return chunk_ && atomic_load(a: &chunk_->chunk_state, mo: memory_order_relaxed) == |
923 | CHUNK_ALLOCATED; |
924 | } |
925 | bool AsanChunkView::IsQuarantined() const { |
926 | return chunk_ && atomic_load(a: &chunk_->chunk_state, mo: memory_order_relaxed) == |
927 | CHUNK_QUARANTINE; |
928 | } |
929 | uptr AsanChunkView::Beg() const { return chunk_->Beg(); } |
930 | uptr AsanChunkView::End() const { return Beg() + UsedSize(); } |
931 | uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); } |
932 | u32 AsanChunkView::UserRequestedAlignment() const { |
933 | return Allocator::ComputeUserAlignment(user_requested_alignment_log: chunk_->user_requested_alignment_log); |
934 | } |
935 | |
936 | uptr AsanChunkView::AllocTid() const { |
937 | u32 tid = 0; |
938 | u32 stack = 0; |
939 | chunk_->GetAllocContext(tid, stack); |
940 | return tid; |
941 | } |
942 | |
943 | uptr AsanChunkView::FreeTid() const { |
944 | if (!IsQuarantined()) |
945 | return kInvalidTid; |
946 | u32 tid = 0; |
947 | u32 stack = 0; |
948 | chunk_->GetFreeContext(tid, stack); |
949 | return tid; |
950 | } |
951 | |
952 | AllocType AsanChunkView::GetAllocType() const { |
953 | return (AllocType)chunk_->alloc_type; |
954 | } |
955 | |
956 | u32 AsanChunkView::GetAllocStackId() const { |
957 | u32 tid = 0; |
958 | u32 stack = 0; |
959 | chunk_->GetAllocContext(tid, stack); |
960 | return stack; |
961 | } |
962 | |
963 | u32 AsanChunkView::GetFreeStackId() const { |
964 | if (!IsQuarantined()) |
965 | return 0; |
966 | u32 tid = 0; |
967 | u32 stack = 0; |
968 | chunk_->GetFreeContext(tid, stack); |
969 | return stack; |
970 | } |
971 | |
972 | void InitializeAllocator(const AllocatorOptions &options) { |
973 | instance.InitLinkerInitialized(options); |
974 | } |
975 | |
976 | void ReInitializeAllocator(const AllocatorOptions &options) { |
977 | instance.ReInitialize(options); |
978 | } |
979 | |
980 | void GetAllocatorOptions(AllocatorOptions *options) { |
981 | instance.GetOptions(options); |
982 | } |
983 | |
984 | AsanChunkView FindHeapChunkByAddress(uptr addr) { |
985 | return instance.FindHeapChunkByAddress(addr); |
986 | } |
987 | AsanChunkView FindHeapChunkByAllocBeg(uptr addr) { |
988 | return AsanChunkView(instance.GetAsanChunk(alloc_beg: reinterpret_cast<void*>(addr))); |
989 | } |
990 | |
991 | void AsanThreadLocalMallocStorage::CommitBack() { |
992 | GET_STACK_TRACE_MALLOC; |
993 | instance.CommitBack(ms: this, stack: &stack); |
994 | } |
995 | |
996 | void PrintInternalAllocatorStats() { |
997 | instance.PrintStats(); |
998 | } |
999 | |
1000 | void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { |
1001 | instance.Deallocate(ptr, delete_size: 0, delete_alignment: 0, stack, alloc_type); |
1002 | } |
1003 | |
1004 | void asan_delete(void *ptr, uptr size, uptr alignment, |
1005 | BufferedStackTrace *stack, AllocType alloc_type) { |
1006 | instance.Deallocate(ptr, delete_size: size, delete_alignment: alignment, stack, alloc_type); |
1007 | } |
1008 | |
1009 | void *asan_malloc(uptr size, BufferedStackTrace *stack) { |
1010 | return SetErrnoOnNull(instance.Allocate(size, alignment: 8, stack, alloc_type: FROM_MALLOC, can_fill: true)); |
1011 | } |
1012 | |
1013 | void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { |
1014 | return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); |
1015 | } |
1016 | |
1017 | void *asan_reallocarray(void *p, uptr nmemb, uptr size, |
1018 | BufferedStackTrace *stack) { |
1019 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
1020 | errno = errno_ENOMEM; |
1021 | if (AllocatorMayReturnNull()) |
1022 | return nullptr; |
1023 | ReportReallocArrayOverflow(count: nmemb, size, stack); |
1024 | } |
1025 | return asan_realloc(p, size: nmemb * size, stack); |
1026 | } |
1027 | |
1028 | void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) { |
1029 | if (!p) |
1030 | return SetErrnoOnNull(instance.Allocate(size, alignment: 8, stack, alloc_type: FROM_MALLOC, can_fill: true)); |
1031 | if (size == 0) { |
1032 | if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { |
1033 | instance.Deallocate(ptr: p, delete_size: 0, delete_alignment: 0, stack, alloc_type: FROM_MALLOC); |
1034 | return nullptr; |
1035 | } |
1036 | // Allocate a size of 1 if we shouldn't free() on Realloc to 0 |
1037 | size = 1; |
1038 | } |
1039 | return SetErrnoOnNull(instance.Reallocate(old_ptr: p, new_size: size, stack)); |
1040 | } |
1041 | |
1042 | void *asan_valloc(uptr size, BufferedStackTrace *stack) { |
1043 | return SetErrnoOnNull( |
1044 | instance.Allocate(size, alignment: GetPageSizeCached(), stack, alloc_type: FROM_MALLOC, can_fill: true)); |
1045 | } |
1046 | |
1047 | void *asan_pvalloc(uptr size, BufferedStackTrace *stack) { |
1048 | uptr PageSize = GetPageSizeCached(); |
1049 | if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { |
1050 | errno = errno_ENOMEM; |
1051 | if (AllocatorMayReturnNull()) |
1052 | return nullptr; |
1053 | ReportPvallocOverflow(size, stack); |
1054 | } |
1055 | // pvalloc(0) should allocate one page. |
1056 | size = size ? RoundUpTo(size, boundary: PageSize) : PageSize; |
1057 | return SetErrnoOnNull( |
1058 | instance.Allocate(size, alignment: PageSize, stack, alloc_type: FROM_MALLOC, can_fill: true)); |
1059 | } |
1060 | |
1061 | void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, |
1062 | AllocType alloc_type) { |
1063 | if (UNLIKELY(!IsPowerOfTwo(alignment))) { |
1064 | errno = errno_EINVAL; |
1065 | if (AllocatorMayReturnNull()) |
1066 | return nullptr; |
1067 | ReportInvalidAllocationAlignment(alignment, stack); |
1068 | } |
1069 | return SetErrnoOnNull( |
1070 | instance.Allocate(size, alignment, stack, alloc_type, can_fill: true)); |
1071 | } |
1072 | |
1073 | void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) { |
1074 | if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { |
1075 | errno = errno_EINVAL; |
1076 | if (AllocatorMayReturnNull()) |
1077 | return nullptr; |
1078 | ReportInvalidAlignedAllocAlignment(size, alignment, stack); |
1079 | } |
1080 | return SetErrnoOnNull( |
1081 | instance.Allocate(size, alignment, stack, alloc_type: FROM_MALLOC, can_fill: true)); |
1082 | } |
1083 | |
1084 | int asan_posix_memalign(void **memptr, uptr alignment, uptr size, |
1085 | BufferedStackTrace *stack) { |
1086 | if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { |
1087 | if (AllocatorMayReturnNull()) |
1088 | return errno_EINVAL; |
1089 | ReportInvalidPosixMemalignAlignment(alignment, stack); |
1090 | } |
1091 | void *ptr = instance.Allocate(size, alignment, stack, alloc_type: FROM_MALLOC, can_fill: true); |
1092 | if (UNLIKELY(!ptr)) |
1093 | // OOM error is already taken care of by Allocate. |
1094 | return errno_ENOMEM; |
1095 | CHECK(IsAligned((uptr)ptr, alignment)); |
1096 | *memptr = ptr; |
1097 | return 0; |
1098 | } |
1099 | |
1100 | uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { |
1101 | if (!ptr) return 0; |
1102 | uptr usable_size = instance.AllocationSize(p: reinterpret_cast<uptr>(ptr)); |
1103 | if (flags()->check_malloc_usable_size && (usable_size == 0)) { |
1104 | GET_STACK_TRACE_FATAL(pc, bp); |
1105 | ReportMallocUsableSizeNotOwned(addr: (uptr)ptr, stack: &stack); |
1106 | } |
1107 | return usable_size; |
1108 | } |
1109 | |
1110 | uptr asan_mz_size(const void *ptr) { |
1111 | return instance.AllocationSize(p: reinterpret_cast<uptr>(ptr)); |
1112 | } |
1113 | |
1114 | void asan_mz_force_lock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
1115 | instance.ForceLock(); |
1116 | } |
1117 | |
1118 | void asan_mz_force_unlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
1119 | instance.ForceUnlock(); |
1120 | } |
1121 | |
1122 | } // namespace __asan |
1123 | |
1124 | // --- Implementation of LSan-specific functions --- {{{1 |
1125 | namespace __lsan { |
1126 | void LockAllocator() { |
1127 | __asan::get_allocator().ForceLock(); |
1128 | } |
1129 | |
1130 | void UnlockAllocator() { |
1131 | __asan::get_allocator().ForceUnlock(); |
1132 | } |
1133 | |
1134 | void GetAllocatorGlobalRange(uptr *begin, uptr *end) { |
1135 | *begin = (uptr)&__asan::get_allocator(); |
1136 | *end = *begin + sizeof(__asan::get_allocator()); |
1137 | } |
1138 | |
1139 | uptr PointsIntoChunk(void *p) { |
1140 | uptr addr = reinterpret_cast<uptr>(p); |
1141 | __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(p: addr); |
1142 | if (!m || atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != |
1143 | __asan::CHUNK_ALLOCATED) |
1144 | return 0; |
1145 | uptr chunk = m->Beg(); |
1146 | if (m->AddrIsInside(addr)) |
1147 | return chunk; |
1148 | if (IsSpecialCaseOfOperatorNew0(chunk_beg: chunk, chunk_size: m->UsedSize(), addr)) |
1149 | return chunk; |
1150 | return 0; |
1151 | } |
1152 | |
1153 | uptr GetUserBegin(uptr chunk) { |
1154 | // FIXME: All usecases provide chunk address, GetAsanChunkByAddrFastLocked is |
1155 | // not needed. |
1156 | __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(p: chunk); |
1157 | return m ? m->Beg() : 0; |
1158 | } |
1159 | |
1160 | uptr GetUserAddr(uptr chunk) { |
1161 | return chunk; |
1162 | } |
1163 | |
1164 | LsanMetadata::LsanMetadata(uptr chunk) { |
1165 | metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize) |
1166 | : nullptr; |
1167 | } |
1168 | |
1169 | bool LsanMetadata::allocated() const { |
1170 | if (!metadata_) |
1171 | return false; |
1172 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
1173 | return atomic_load(a: &m->chunk_state, mo: memory_order_relaxed) == |
1174 | __asan::CHUNK_ALLOCATED; |
1175 | } |
1176 | |
1177 | ChunkTag LsanMetadata::tag() const { |
1178 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
1179 | return static_cast<ChunkTag>(m->lsan_tag); |
1180 | } |
1181 | |
1182 | void LsanMetadata::set_tag(ChunkTag value) { |
1183 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
1184 | m->lsan_tag = value; |
1185 | } |
1186 | |
1187 | uptr LsanMetadata::requested_size() const { |
1188 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
1189 | return m->UsedSize(); |
1190 | } |
1191 | |
1192 | u32 LsanMetadata::stack_trace_id() const { |
1193 | __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); |
1194 | u32 tid = 0; |
1195 | u32 stack = 0; |
1196 | m->GetAllocContext(tid, stack); |
1197 | return stack; |
1198 | } |
1199 | |
1200 | void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
1201 | __asan::get_allocator().ForEachChunk(callback, arg); |
1202 | } |
1203 | |
1204 | IgnoreObjectResult IgnoreObject(const void *p) { |
1205 | uptr addr = reinterpret_cast<uptr>(p); |
1206 | __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(p: addr); |
1207 | if (!m || |
1208 | (atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != |
1209 | __asan::CHUNK_ALLOCATED) || |
1210 | !m->AddrIsInside(addr)) { |
1211 | return kIgnoreObjectInvalid; |
1212 | } |
1213 | if (m->lsan_tag == kIgnored) |
1214 | return kIgnoreObjectAlreadyIgnored; |
1215 | m->lsan_tag = __lsan::kIgnored; |
1216 | return kIgnoreObjectSuccess; |
1217 | } |
1218 | |
1219 | } // namespace __lsan |
1220 | |
1221 | // ---------------------- Interface ---------------- {{{1 |
1222 | using namespace __asan; |
1223 | |
1224 | static const void *AllocationBegin(const void *p) { |
1225 | AsanChunk *m = __asan::instance.GetAsanChunkByAddr(p: (uptr)p); |
1226 | if (!m) |
1227 | return nullptr; |
1228 | if (atomic_load(a: &m->chunk_state, mo: memory_order_acquire) != CHUNK_ALLOCATED) |
1229 | return nullptr; |
1230 | if (m->UsedSize() == 0) |
1231 | return nullptr; |
1232 | return (const void *)(m->Beg()); |
1233 | } |
1234 | |
1235 | // ASan allocator doesn't reserve extra bytes, so normally we would |
1236 | // just return "size". We don't want to expose our redzone sizes, etc here. |
1237 | uptr __sanitizer_get_estimated_allocated_size(uptr size) { |
1238 | return size; |
1239 | } |
1240 | |
1241 | int __sanitizer_get_ownership(const void *p) { |
1242 | uptr ptr = reinterpret_cast<uptr>(p); |
1243 | return instance.AllocationSize(p: ptr) > 0; |
1244 | } |
1245 | |
1246 | uptr __sanitizer_get_allocated_size(const void *p) { |
1247 | if (!p) return 0; |
1248 | uptr ptr = reinterpret_cast<uptr>(p); |
1249 | uptr allocated_size = instance.AllocationSize(p: ptr); |
1250 | // Die if p is not malloced or if it is already freed. |
1251 | if (allocated_size == 0) { |
1252 | GET_STACK_TRACE_FATAL_HERE; |
1253 | ReportSanitizerGetAllocatedSizeNotOwned(addr: ptr, stack: &stack); |
1254 | } |
1255 | return allocated_size; |
1256 | } |
1257 | |
1258 | uptr __sanitizer_get_allocated_size_fast(const void *p) { |
1259 | DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); |
1260 | uptr ret = instance.AllocationSizeFast(p: reinterpret_cast<uptr>(p)); |
1261 | DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); |
1262 | return ret; |
1263 | } |
1264 | |
1265 | const void *__sanitizer_get_allocated_begin(const void *p) { |
1266 | return AllocationBegin(p); |
1267 | } |
1268 | |
1269 | void __sanitizer_purge_allocator() { |
1270 | GET_STACK_TRACE_MALLOC; |
1271 | instance.Purge(stack: &stack); |
1272 | } |
1273 | |
1274 | int __asan_update_allocation_context(void* addr) { |
1275 | GET_STACK_TRACE_MALLOC; |
1276 | return instance.UpdateAllocationStack(addr: (uptr)addr, stack: &stack); |
1277 | } |
1278 | |