1 | //===-- divdc3.c - Implement __divdc3 -------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements __divdc3 for the compiler_rt library. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #define DOUBLE_PRECISION |
14 | #include "fp_lib.h" |
15 | #include "int_lib.h" |
16 | #include "int_math.h" |
17 | |
18 | // Returns: the quotient of (a + ib) / (c + id) |
19 | |
20 | COMPILER_RT_ABI Dcomplex __divdc3(double __a, double __b, double __c, |
21 | double __d) { |
22 | int __ilogbw = 0; |
23 | double __logbw = __compiler_rt_logb(x: __compiler_rt_fmax(crt_fabs(__c), |
24 | crt_fabs(__d))); |
25 | if (crt_isfinite(__logbw)) { |
26 | __ilogbw = (int)__logbw; |
27 | __c = __compiler_rt_scalbn(x: __c, y: -__ilogbw); |
28 | __d = __compiler_rt_scalbn(x: __d, y: -__ilogbw); |
29 | } |
30 | double __denom = __c * __c + __d * __d; |
31 | Dcomplex z; |
32 | COMPLEX_REAL(z) = |
33 | __compiler_rt_scalbn(x: (__a * __c + __b * __d) / __denom, y: -__ilogbw); |
34 | COMPLEX_IMAGINARY(z) = |
35 | __compiler_rt_scalbn(x: (__b * __c - __a * __d) / __denom, y: -__ilogbw); |
36 | if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) { |
37 | if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) { |
38 | COMPLEX_REAL(z) = crt_copysign(CRT_INFINITY, __c) * __a; |
39 | COMPLEX_IMAGINARY(z) = crt_copysign(CRT_INFINITY, __c) * __b; |
40 | } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) && |
41 | crt_isfinite(__d)) { |
42 | __a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a); |
43 | __b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b); |
44 | COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); |
45 | COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); |
46 | } else if (crt_isinf(__logbw) && __logbw > 0.0 && crt_isfinite(__a) && |
47 | crt_isfinite(__b)) { |
48 | __c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c); |
49 | __d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d); |
50 | COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d); |
51 | COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d); |
52 | } |
53 | } |
54 | return z; |
55 | } |
56 | |