| 1 | //===-- divdc3.c - Implement __divdc3 -------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements __divdc3 for the compiler_rt library. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #define DOUBLE_PRECISION |
| 14 | #include "fp_lib.h" |
| 15 | #include "int_lib.h" |
| 16 | #include "int_math.h" |
| 17 | |
| 18 | // Returns: the quotient of (a + ib) / (c + id) |
| 19 | |
| 20 | COMPILER_RT_ABI Dcomplex __divdc3(double __a, double __b, double __c, |
| 21 | double __d) { |
| 22 | int __ilogbw = 0; |
| 23 | double __logbw = __compiler_rt_logb(x: __compiler_rt_fmax(crt_fabs(__c), |
| 24 | crt_fabs(__d))); |
| 25 | if (crt_isfinite(__logbw)) { |
| 26 | __ilogbw = (int)__logbw; |
| 27 | __c = __compiler_rt_scalbn(x: __c, y: -__ilogbw); |
| 28 | __d = __compiler_rt_scalbn(x: __d, y: -__ilogbw); |
| 29 | } |
| 30 | double __denom = __c * __c + __d * __d; |
| 31 | Dcomplex z; |
| 32 | COMPLEX_REAL(z) = |
| 33 | __compiler_rt_scalbn(x: (__a * __c + __b * __d) / __denom, y: -__ilogbw); |
| 34 | COMPLEX_IMAGINARY(z) = |
| 35 | __compiler_rt_scalbn(x: (__b * __c - __a * __d) / __denom, y: -__ilogbw); |
| 36 | if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) { |
| 37 | if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) { |
| 38 | COMPLEX_REAL(z) = crt_copysign(CRT_INFINITY, __c) * __a; |
| 39 | COMPLEX_IMAGINARY(z) = crt_copysign(CRT_INFINITY, __c) * __b; |
| 40 | } else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) && |
| 41 | crt_isfinite(__d)) { |
| 42 | __a = crt_copysign(crt_isinf(__a) ? 1.0 : 0.0, __a); |
| 43 | __b = crt_copysign(crt_isinf(__b) ? 1.0 : 0.0, __b); |
| 44 | COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); |
| 45 | COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); |
| 46 | } else if (crt_isinf(__logbw) && __logbw > 0.0 && crt_isfinite(__a) && |
| 47 | crt_isfinite(__b)) { |
| 48 | __c = crt_copysign(crt_isinf(__c) ? 1.0 : 0.0, __c); |
| 49 | __d = crt_copysign(crt_isinf(__d) ? 1.0 : 0.0, __d); |
| 50 | COMPLEX_REAL(z) = 0.0 * (__a * __c + __b * __d); |
| 51 | COMPLEX_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d); |
| 52 | } |
| 53 | } |
| 54 | return z; |
| 55 | } |
| 56 | |