1//===-- lib/fp_compare_impl.inc - Floating-point comparison -------*- C -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "fp_lib.h"
10
11// GCC uses long (at least for x86_64) as the return type of the comparison
12// functions. We need to ensure that the return value is sign-extended in the
13// same way as GCC expects (since otherwise GCC-generated __builtin_isinf
14// returns true for finite 128-bit floating-point numbers).
15#ifdef __aarch64__
16// AArch64 GCC overrides libgcc_cmp_return to use int instead of long.
17typedef int CMP_RESULT;
18#elif __SIZEOF_POINTER__ == 8 && __SIZEOF_LONG__ == 4
19// LLP64 ABIs use long long instead of long.
20typedef long long CMP_RESULT;
21#elif __AVR__
22// AVR uses a single byte for the return value.
23typedef char CMP_RESULT;
24#else
25// Otherwise the comparison functions return long.
26typedef long CMP_RESULT;
27#endif
28
29#if !defined(__clang__) && defined(__GNUC__)
30// GCC uses a special __libgcc_cmp_return__ mode to define the return type, so
31// check that we are ABI-compatible when compiling the builtins with GCC.
32typedef int GCC_CMP_RESULT __attribute__((__mode__(__libgcc_cmp_return__)));
33_Static_assert(sizeof(GCC_CMP_RESULT) == sizeof(CMP_RESULT),
34 "SOFTFP ABI not compatible with GCC");
35#endif
36
37enum {
38 LE_LESS = -1,
39 LE_EQUAL = 0,
40 LE_GREATER = 1,
41 LE_UNORDERED = 1,
42};
43
44static inline CMP_RESULT __leXf2__(fp_t a, fp_t b) {
45 const srep_t aInt = toRep(x: a);
46 const srep_t bInt = toRep(x: b);
47 const rep_t aAbs = aInt & absMask;
48 const rep_t bAbs = bInt & absMask;
49
50 // If either a or b is NaN, they are unordered.
51 if (aAbs > infRep || bAbs > infRep)
52 return LE_UNORDERED;
53
54 // If a and b are both zeros, they are equal.
55 if ((aAbs | bAbs) == 0)
56 return LE_EQUAL;
57
58 // If at least one of a and b is positive, we get the same result comparing
59 // a and b as signed integers as we would with a floating-point compare.
60 if ((aInt & bInt) >= 0) {
61 if (aInt < bInt)
62 return LE_LESS;
63 else if (aInt == bInt)
64 return LE_EQUAL;
65 else
66 return LE_GREATER;
67 } else {
68 // Otherwise, both are negative, so we need to flip the sense of the
69 // comparison to get the correct result. (This assumes a twos- or ones-
70 // complement integer representation; if integers are represented in a
71 // sign-magnitude representation, then this flip is incorrect).
72 if (aInt > bInt)
73 return LE_LESS;
74 else if (aInt == bInt)
75 return LE_EQUAL;
76 else
77 return LE_GREATER;
78 }
79}
80
81enum {
82 GE_LESS = -1,
83 GE_EQUAL = 0,
84 GE_GREATER = 1,
85 GE_UNORDERED = -1 // Note: different from LE_UNORDERED
86};
87
88static inline CMP_RESULT __geXf2__(fp_t a, fp_t b) {
89 const srep_t aInt = toRep(x: a);
90 const srep_t bInt = toRep(x: b);
91 const rep_t aAbs = aInt & absMask;
92 const rep_t bAbs = bInt & absMask;
93
94 if (aAbs > infRep || bAbs > infRep)
95 return GE_UNORDERED;
96 if ((aAbs | bAbs) == 0)
97 return GE_EQUAL;
98 if ((aInt & bInt) >= 0) {
99 if (aInt < bInt)
100 return GE_LESS;
101 else if (aInt == bInt)
102 return GE_EQUAL;
103 else
104 return GE_GREATER;
105 } else {
106 if (aInt > bInt)
107 return GE_LESS;
108 else if (aInt == bInt)
109 return GE_EQUAL;
110 else
111 return GE_GREATER;
112 }
113}
114
115static inline CMP_RESULT __unordXf2__(fp_t a, fp_t b) {
116 const rep_t aAbs = toRep(x: a) & absMask;
117 const rep_t bAbs = toRep(x: b) & absMask;
118 return aAbs > infRep || bAbs > infRep;
119}
120

source code of compiler-rt/lib/builtins/fp_compare_impl.inc