| 1 | //===---- lib/fp_mul_impl.inc - floating point multiplication -----*- C -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements soft-float multiplication with the IEEE-754 default |
| 10 | // rounding (to nearest, ties to even). |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "fp_lib.h" |
| 15 | |
| 16 | static __inline fp_t __mulXf3__(fp_t a, fp_t b) { |
| 17 | const unsigned int aExponent = toRep(x: a) >> significandBits & maxExponent; |
| 18 | const unsigned int bExponent = toRep(x: b) >> significandBits & maxExponent; |
| 19 | const rep_t productSign = (toRep(x: a) ^ toRep(x: b)) & signBit; |
| 20 | |
| 21 | rep_t aSignificand = toRep(x: a) & significandMask; |
| 22 | rep_t bSignificand = toRep(x: b) & significandMask; |
| 23 | int scale = 0; |
| 24 | |
| 25 | // Detect if a or b is zero, denormal, infinity, or NaN. |
| 26 | if (aExponent - 1U >= maxExponent - 1U || |
| 27 | bExponent - 1U >= maxExponent - 1U) { |
| 28 | |
| 29 | const rep_t aAbs = toRep(x: a) & absMask; |
| 30 | const rep_t bAbs = toRep(x: b) & absMask; |
| 31 | |
| 32 | // NaN * anything = qNaN |
| 33 | if (aAbs > infRep) |
| 34 | return fromRep(x: toRep(x: a) | quietBit); |
| 35 | // anything * NaN = qNaN |
| 36 | if (bAbs > infRep) |
| 37 | return fromRep(x: toRep(x: b) | quietBit); |
| 38 | |
| 39 | if (aAbs == infRep) { |
| 40 | // infinity * non-zero = +/- infinity |
| 41 | if (bAbs) |
| 42 | return fromRep(x: aAbs | productSign); |
| 43 | // infinity * zero = NaN |
| 44 | else |
| 45 | return fromRep(qnanRep); |
| 46 | } |
| 47 | |
| 48 | if (bAbs == infRep) { |
| 49 | // non-zero * infinity = +/- infinity |
| 50 | if (aAbs) |
| 51 | return fromRep(x: bAbs | productSign); |
| 52 | // zero * infinity = NaN |
| 53 | else |
| 54 | return fromRep(qnanRep); |
| 55 | } |
| 56 | |
| 57 | // zero * anything = +/- zero |
| 58 | if (!aAbs) |
| 59 | return fromRep(x: productSign); |
| 60 | // anything * zero = +/- zero |
| 61 | if (!bAbs) |
| 62 | return fromRep(x: productSign); |
| 63 | |
| 64 | // One or both of a or b is denormal. The other (if applicable) is a |
| 65 | // normal number. Renormalize one or both of a and b, and set scale to |
| 66 | // include the necessary exponent adjustment. |
| 67 | if (aAbs < implicitBit) |
| 68 | scale += normalize(significand: &aSignificand); |
| 69 | if (bAbs < implicitBit) |
| 70 | scale += normalize(significand: &bSignificand); |
| 71 | } |
| 72 | |
| 73 | // Set the implicit significand bit. If we fell through from the |
| 74 | // denormal path it was already set by normalize( ), but setting it twice |
| 75 | // won't hurt anything. |
| 76 | aSignificand |= implicitBit; |
| 77 | bSignificand |= implicitBit; |
| 78 | |
| 79 | // Perform a basic multiplication on the significands. One of them must be |
| 80 | // shifted beforehand to be aligned with the exponent. |
| 81 | rep_t productHi, productLo; |
| 82 | wideMultiply(a: aSignificand, b: bSignificand << exponentBits, hi: &productHi, |
| 83 | lo: &productLo); |
| 84 | |
| 85 | int productExponent = aExponent + bExponent - exponentBias + scale; |
| 86 | |
| 87 | // Normalize the significand and adjust the exponent if needed. |
| 88 | if (productHi & implicitBit) |
| 89 | productExponent++; |
| 90 | else |
| 91 | wideLeftShift(hi: &productHi, lo: &productLo, count: 1); |
| 92 | |
| 93 | // If we have overflowed the type, return +/- infinity. |
| 94 | if (productExponent >= maxExponent) |
| 95 | return fromRep(infRep | productSign); |
| 96 | |
| 97 | if (productExponent <= 0) { |
| 98 | // The result is denormal before rounding. |
| 99 | // |
| 100 | // If the result is so small that it just underflows to zero, return |
| 101 | // zero with the appropriate sign. Mathematically, there is no need to |
| 102 | // handle this case separately, but we make it a special case to |
| 103 | // simplify the shift logic. |
| 104 | const unsigned int shift = REP_C(1) - (unsigned int)productExponent; |
| 105 | if (shift >= typeWidth) |
| 106 | return fromRep(x: productSign); |
| 107 | |
| 108 | // Otherwise, shift the significand of the result so that the round |
| 109 | // bit is the high bit of productLo. |
| 110 | wideRightShiftWithSticky(hi: &productHi, lo: &productLo, count: shift); |
| 111 | } else { |
| 112 | // The result is normal before rounding. Insert the exponent. |
| 113 | productHi &= significandMask; |
| 114 | productHi |= (rep_t)productExponent << significandBits; |
| 115 | } |
| 116 | |
| 117 | // Insert the sign of the result. |
| 118 | productHi |= productSign; |
| 119 | |
| 120 | // Perform the final rounding. The final result may overflow to infinity, |
| 121 | // or underflow to zero, but those are the correct results in those cases. |
| 122 | // We use the default IEEE-754 round-to-nearest, ties-to-even rounding mode. |
| 123 | if (productLo > signBit) |
| 124 | productHi++; |
| 125 | if (productLo == signBit) |
| 126 | productHi += productHi & 1; |
| 127 | return fromRep(x: productHi); |
| 128 | } |
| 129 | |