1 | //===---- lib/fp_mul_impl.inc - floating point multiplication -----*- C -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements soft-float multiplication with the IEEE-754 default |
10 | // rounding (to nearest, ties to even). |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "fp_lib.h" |
15 | |
16 | static __inline fp_t __mulXf3__(fp_t a, fp_t b) { |
17 | const unsigned int aExponent = toRep(x: a) >> significandBits & maxExponent; |
18 | const unsigned int bExponent = toRep(x: b) >> significandBits & maxExponent; |
19 | const rep_t productSign = (toRep(x: a) ^ toRep(x: b)) & signBit; |
20 | |
21 | rep_t aSignificand = toRep(x: a) & significandMask; |
22 | rep_t bSignificand = toRep(x: b) & significandMask; |
23 | int scale = 0; |
24 | |
25 | // Detect if a or b is zero, denormal, infinity, or NaN. |
26 | if (aExponent - 1U >= maxExponent - 1U || |
27 | bExponent - 1U >= maxExponent - 1U) { |
28 | |
29 | const rep_t aAbs = toRep(x: a) & absMask; |
30 | const rep_t bAbs = toRep(x: b) & absMask; |
31 | |
32 | // NaN * anything = qNaN |
33 | if (aAbs > infRep) |
34 | return fromRep(x: toRep(x: a) | quietBit); |
35 | // anything * NaN = qNaN |
36 | if (bAbs > infRep) |
37 | return fromRep(x: toRep(x: b) | quietBit); |
38 | |
39 | if (aAbs == infRep) { |
40 | // infinity * non-zero = +/- infinity |
41 | if (bAbs) |
42 | return fromRep(x: aAbs | productSign); |
43 | // infinity * zero = NaN |
44 | else |
45 | return fromRep(qnanRep); |
46 | } |
47 | |
48 | if (bAbs == infRep) { |
49 | // non-zero * infinity = +/- infinity |
50 | if (aAbs) |
51 | return fromRep(x: bAbs | productSign); |
52 | // zero * infinity = NaN |
53 | else |
54 | return fromRep(qnanRep); |
55 | } |
56 | |
57 | // zero * anything = +/- zero |
58 | if (!aAbs) |
59 | return fromRep(x: productSign); |
60 | // anything * zero = +/- zero |
61 | if (!bAbs) |
62 | return fromRep(x: productSign); |
63 | |
64 | // One or both of a or b is denormal. The other (if applicable) is a |
65 | // normal number. Renormalize one or both of a and b, and set scale to |
66 | // include the necessary exponent adjustment. |
67 | if (aAbs < implicitBit) |
68 | scale += normalize(significand: &aSignificand); |
69 | if (bAbs < implicitBit) |
70 | scale += normalize(significand: &bSignificand); |
71 | } |
72 | |
73 | // Set the implicit significand bit. If we fell through from the |
74 | // denormal path it was already set by normalize( ), but setting it twice |
75 | // won't hurt anything. |
76 | aSignificand |= implicitBit; |
77 | bSignificand |= implicitBit; |
78 | |
79 | // Perform a basic multiplication on the significands. One of them must be |
80 | // shifted beforehand to be aligned with the exponent. |
81 | rep_t productHi, productLo; |
82 | wideMultiply(a: aSignificand, b: bSignificand << exponentBits, hi: &productHi, |
83 | lo: &productLo); |
84 | |
85 | int productExponent = aExponent + bExponent - exponentBias + scale; |
86 | |
87 | // Normalize the significand and adjust the exponent if needed. |
88 | if (productHi & implicitBit) |
89 | productExponent++; |
90 | else |
91 | wideLeftShift(hi: &productHi, lo: &productLo, count: 1); |
92 | |
93 | // If we have overflowed the type, return +/- infinity. |
94 | if (productExponent >= maxExponent) |
95 | return fromRep(infRep | productSign); |
96 | |
97 | if (productExponent <= 0) { |
98 | // The result is denormal before rounding. |
99 | // |
100 | // If the result is so small that it just underflows to zero, return |
101 | // zero with the appropriate sign. Mathematically, there is no need to |
102 | // handle this case separately, but we make it a special case to |
103 | // simplify the shift logic. |
104 | const unsigned int shift = REP_C(1) - (unsigned int)productExponent; |
105 | if (shift >= typeWidth) |
106 | return fromRep(x: productSign); |
107 | |
108 | // Otherwise, shift the significand of the result so that the round |
109 | // bit is the high bit of productLo. |
110 | wideRightShiftWithSticky(hi: &productHi, lo: &productLo, count: shift); |
111 | } else { |
112 | // The result is normal before rounding. Insert the exponent. |
113 | productHi &= significandMask; |
114 | productHi |= (rep_t)productExponent << significandBits; |
115 | } |
116 | |
117 | // Insert the sign of the result. |
118 | productHi |= productSign; |
119 | |
120 | // Perform the final rounding. The final result may overflow to infinity, |
121 | // or underflow to zero, but those are the correct results in those cases. |
122 | // We use the default IEEE-754 round-to-nearest, ties-to-even rounding mode. |
123 | if (productLo > signBit) |
124 | productHi++; |
125 | if (productLo == signBit) |
126 | productHi += productHi & 1; |
127 | return fromRep(x: productHi); |
128 | } |
129 | |