| 1 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 2 | // See https://llvm.org/LICENSE.txt for license information. |
| 3 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 4 | |
| 5 | #include "../int_math.h" |
| 6 | #include "DD.h" |
| 7 | // Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper |
| 8 | // half of the long doubles), even though this file defines complex division for |
| 9 | // 128-bit floats. |
| 10 | #define DOUBLE_PRECISION |
| 11 | #include "../fp_lib.h" |
| 12 | |
| 13 | #if !defined(CRT_INFINITY) && defined(HUGE_VAL) |
| 14 | #define CRT_INFINITY HUGE_VAL |
| 15 | #endif // CRT_INFINITY |
| 16 | |
| 17 | #define makeFinite(x) \ |
| 18 | { \ |
| 19 | (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \ |
| 20 | (x).s.lo = 0.0; \ |
| 21 | } |
| 22 | |
| 23 | long double _Complex __divtc3(long double a, long double b, long double c, |
| 24 | long double d) { |
| 25 | DD cDD = {.ld = c}; |
| 26 | DD dDD = {.ld = d}; |
| 27 | |
| 28 | int ilogbw = 0; |
| 29 | const double logbw = |
| 30 | __compiler_rt_logb(x: __compiler_rt_fmax(crt_fabs(cDD.s.hi), |
| 31 | crt_fabs(dDD.s.hi))); |
| 32 | |
| 33 | if (crt_isfinite(logbw)) { |
| 34 | ilogbw = (int)logbw; |
| 35 | |
| 36 | cDD.s.hi = __compiler_rt_scalbn(x: cDD.s.hi, y: -ilogbw); |
| 37 | cDD.s.lo = __compiler_rt_scalbn(x: cDD.s.lo, y: -ilogbw); |
| 38 | dDD.s.hi = __compiler_rt_scalbn(x: dDD.s.hi, y: -ilogbw); |
| 39 | dDD.s.lo = __compiler_rt_scalbn(x: dDD.s.lo, y: -ilogbw); |
| 40 | } |
| 41 | |
| 42 | const long double denom = |
| 43 | __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld)); |
| 44 | const long double realNumerator = |
| 45 | __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld)); |
| 46 | const long double imagNumerator = |
| 47 | __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld)); |
| 48 | |
| 49 | DD real = {.ld = __gcc_qdiv(realNumerator, denom)}; |
| 50 | DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)}; |
| 51 | |
| 52 | real.s.hi = __compiler_rt_scalbn(x: real.s.hi, y: -ilogbw); |
| 53 | real.s.lo = __compiler_rt_scalbn(x: real.s.lo, y: -ilogbw); |
| 54 | imag.s.hi = __compiler_rt_scalbn(x: imag.s.hi, y: -ilogbw); |
| 55 | imag.s.lo = __compiler_rt_scalbn(x: imag.s.lo, y: -ilogbw); |
| 56 | |
| 57 | if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) { |
| 58 | DD aDD = {.ld = a}; |
| 59 | DD bDD = {.ld = b}; |
| 60 | DD rDD = {.ld = denom}; |
| 61 | |
| 62 | if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) { |
| 63 | real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi; |
| 64 | real.s.lo = 0.0; |
| 65 | imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi; |
| 66 | imag.s.lo = 0.0; |
| 67 | } |
| 68 | |
| 69 | else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) && |
| 70 | crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) { |
| 71 | makeFinite(aDD); |
| 72 | makeFinite(bDD); |
| 73 | real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi); |
| 74 | real.s.lo = 0.0; |
| 75 | imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi); |
| 76 | imag.s.lo = 0.0; |
| 77 | } |
| 78 | |
| 79 | else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) && |
| 80 | crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) { |
| 81 | makeFinite(cDD); |
| 82 | makeFinite(dDD); |
| 83 | real.s.hi = |
| 84 | crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi)); |
| 85 | real.s.lo = 0.0; |
| 86 | imag.s.hi = |
| 87 | crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi)); |
| 88 | imag.s.lo = 0.0; |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | long double _Complex z; |
| 93 | __real__ z = real.ld; |
| 94 | __imag__ z = imag.ld; |
| 95 | |
| 96 | return z; |
| 97 | } |
| 98 | |