1 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
2 | // See https://llvm.org/LICENSE.txt for license information. |
3 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
4 | |
5 | #include "../int_math.h" |
6 | #include "DD.h" |
7 | // Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper |
8 | // half of the long doubles), even though this file defines complex division for |
9 | // 128-bit floats. |
10 | #define DOUBLE_PRECISION |
11 | #include "../fp_lib.h" |
12 | |
13 | #if !defined(CRT_INFINITY) && defined(HUGE_VAL) |
14 | #define CRT_INFINITY HUGE_VAL |
15 | #endif // CRT_INFINITY |
16 | |
17 | #define makeFinite(x) \ |
18 | { \ |
19 | (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \ |
20 | (x).s.lo = 0.0; \ |
21 | } |
22 | |
23 | long double _Complex __divtc3(long double a, long double b, long double c, |
24 | long double d) { |
25 | DD cDD = {.ld = c}; |
26 | DD dDD = {.ld = d}; |
27 | |
28 | int ilogbw = 0; |
29 | const double logbw = |
30 | __compiler_rt_logb(x: __compiler_rt_fmax(crt_fabs(cDD.s.hi), |
31 | crt_fabs(dDD.s.hi))); |
32 | |
33 | if (crt_isfinite(logbw)) { |
34 | ilogbw = (int)logbw; |
35 | |
36 | cDD.s.hi = __compiler_rt_scalbn(x: cDD.s.hi, y: -ilogbw); |
37 | cDD.s.lo = __compiler_rt_scalbn(x: cDD.s.lo, y: -ilogbw); |
38 | dDD.s.hi = __compiler_rt_scalbn(x: dDD.s.hi, y: -ilogbw); |
39 | dDD.s.lo = __compiler_rt_scalbn(x: dDD.s.lo, y: -ilogbw); |
40 | } |
41 | |
42 | const long double denom = |
43 | __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld)); |
44 | const long double realNumerator = |
45 | __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld)); |
46 | const long double imagNumerator = |
47 | __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld)); |
48 | |
49 | DD real = {.ld = __gcc_qdiv(realNumerator, denom)}; |
50 | DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)}; |
51 | |
52 | real.s.hi = __compiler_rt_scalbn(x: real.s.hi, y: -ilogbw); |
53 | real.s.lo = __compiler_rt_scalbn(x: real.s.lo, y: -ilogbw); |
54 | imag.s.hi = __compiler_rt_scalbn(x: imag.s.hi, y: -ilogbw); |
55 | imag.s.lo = __compiler_rt_scalbn(x: imag.s.lo, y: -ilogbw); |
56 | |
57 | if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) { |
58 | DD aDD = {.ld = a}; |
59 | DD bDD = {.ld = b}; |
60 | DD rDD = {.ld = denom}; |
61 | |
62 | if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) { |
63 | real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi; |
64 | real.s.lo = 0.0; |
65 | imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi; |
66 | imag.s.lo = 0.0; |
67 | } |
68 | |
69 | else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) && |
70 | crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) { |
71 | makeFinite(aDD); |
72 | makeFinite(bDD); |
73 | real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi); |
74 | real.s.lo = 0.0; |
75 | imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi); |
76 | imag.s.lo = 0.0; |
77 | } |
78 | |
79 | else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) && |
80 | crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) { |
81 | makeFinite(cDD); |
82 | makeFinite(dDD); |
83 | real.s.hi = |
84 | crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi)); |
85 | real.s.lo = 0.0; |
86 | imag.s.hi = |
87 | crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi)); |
88 | imag.s.lo = 0.0; |
89 | } |
90 | } |
91 | |
92 | long double _Complex z; |
93 | __real__ z = real.ld; |
94 | __imag__ z = imag.ld; |
95 | |
96 | return z; |
97 | } |
98 | |