1 | //===-- dfsan_allocator.cpp -------------------------- --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of DataflowSanitizer. |
10 | // |
11 | // DataflowSanitizer allocator. |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "dfsan_allocator.h" |
15 | |
16 | #include "dfsan.h" |
17 | #include "dfsan_flags.h" |
18 | #include "dfsan_thread.h" |
19 | #include "sanitizer_common/sanitizer_allocator.h" |
20 | #include "sanitizer_common/sanitizer_allocator_checks.h" |
21 | #include "sanitizer_common/sanitizer_allocator_interface.h" |
22 | #include "sanitizer_common/sanitizer_allocator_report.h" |
23 | #include "sanitizer_common/sanitizer_errno.h" |
24 | |
25 | namespace __dfsan { |
26 | |
27 | struct Metadata { |
28 | uptr requested_size; |
29 | }; |
30 | |
31 | struct DFsanMapUnmapCallback { |
32 | void OnMap(uptr p, uptr size) const { dfsan_set_label(label: 0, addr: (void *)p, size); } |
33 | void OnMapSecondary(uptr p, uptr size, uptr user_begin, |
34 | uptr user_size) const { |
35 | OnMap(p, size); |
36 | } |
37 | void OnUnmap(uptr p, uptr size) const { dfsan_set_label(label: 0, addr: (void *)p, size); } |
38 | }; |
39 | |
40 | // Note: to ensure that the allocator is compatible with the application memory |
41 | // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be |
42 | // duplicated as MappingDesc::ALLOCATOR in dfsan_platform.h. |
43 | #if defined(__aarch64__) |
44 | const uptr kAllocatorSpace = 0xE00000000000ULL; |
45 | #else |
46 | const uptr kAllocatorSpace = 0x700000000000ULL; |
47 | #endif |
48 | const uptr kMaxAllowedMallocSize = 8UL << 30; |
49 | |
50 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
51 | static const uptr kSpaceBeg = kAllocatorSpace; |
52 | static const uptr kSpaceSize = 0x40000000000; // 4T. |
53 | static const uptr kMetadataSize = sizeof(Metadata); |
54 | typedef DefaultSizeClassMap SizeClassMap; |
55 | typedef DFsanMapUnmapCallback MapUnmapCallback; |
56 | static const uptr kFlags = 0; |
57 | using AddressSpaceView = LocalAddressSpaceView; |
58 | }; |
59 | |
60 | typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
61 | |
62 | typedef CombinedAllocator<PrimaryAllocator> Allocator; |
63 | typedef Allocator::AllocatorCache AllocatorCache; |
64 | |
65 | static Allocator allocator; |
66 | static AllocatorCache fallback_allocator_cache; |
67 | static StaticSpinMutex fallback_mutex; |
68 | |
69 | static uptr max_malloc_size; |
70 | |
71 | void dfsan_allocator_init() { |
72 | SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); |
73 | allocator.Init(release_to_os_interval_ms: common_flags()->allocator_release_to_os_interval_ms); |
74 | if (common_flags()->max_allocation_size_mb) |
75 | max_malloc_size = Min(a: common_flags()->max_allocation_size_mb << 20, |
76 | b: kMaxAllowedMallocSize); |
77 | else |
78 | max_malloc_size = kMaxAllowedMallocSize; |
79 | } |
80 | |
81 | AllocatorCache *GetAllocatorCache(DFsanThreadLocalMallocStorage *ms) { |
82 | CHECK(ms); |
83 | CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); |
84 | return reinterpret_cast<AllocatorCache *>(ms->allocator_cache); |
85 | } |
86 | |
87 | void DFsanThreadLocalMallocStorage::CommitBack() { |
88 | allocator.SwallowCache(cache: GetAllocatorCache(ms: this)); |
89 | } |
90 | |
91 | static void *DFsanAllocate(uptr size, uptr alignment, bool zeroise) { |
92 | if (size > max_malloc_size) { |
93 | if (AllocatorMayReturnNull()) { |
94 | Report(format: "WARNING: DataflowSanitizer failed to allocate 0x%zx bytes\n" , |
95 | size); |
96 | return nullptr; |
97 | } |
98 | BufferedStackTrace stack; |
99 | ReportAllocationSizeTooBig(user_size: size, max_size: max_malloc_size, stack: &stack); |
100 | } |
101 | if (UNLIKELY(IsRssLimitExceeded())) { |
102 | if (AllocatorMayReturnNull()) |
103 | return nullptr; |
104 | BufferedStackTrace stack; |
105 | ReportRssLimitExceeded(stack: &stack); |
106 | } |
107 | DFsanThread *t = GetCurrentThread(); |
108 | void *allocated; |
109 | if (t) { |
110 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
111 | allocated = allocator.Allocate(cache, size, alignment); |
112 | } else { |
113 | SpinMutexLock l(&fallback_mutex); |
114 | AllocatorCache *cache = &fallback_allocator_cache; |
115 | allocated = allocator.Allocate(cache, size, alignment); |
116 | } |
117 | if (UNLIKELY(!allocated)) { |
118 | SetAllocatorOutOfMemory(); |
119 | if (AllocatorMayReturnNull()) |
120 | return nullptr; |
121 | BufferedStackTrace stack; |
122 | ReportOutOfMemory(requested_size: size, stack: &stack); |
123 | } |
124 | Metadata *meta = |
125 | reinterpret_cast<Metadata *>(allocator.GetMetaData(p: allocated)); |
126 | meta->requested_size = size; |
127 | if (zeroise) { |
128 | internal_memset(s: allocated, c: 0, n: size); |
129 | dfsan_set_label(label: 0, addr: allocated, size); |
130 | } else if (flags().zero_in_malloc) { |
131 | dfsan_set_label(label: 0, addr: allocated, size); |
132 | } |
133 | return allocated; |
134 | } |
135 | |
136 | void dfsan_deallocate(void *p) { |
137 | CHECK(p); |
138 | Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p)); |
139 | uptr size = meta->requested_size; |
140 | meta->requested_size = 0; |
141 | if (flags().zero_in_free) |
142 | dfsan_set_label(label: 0, addr: p, size); |
143 | DFsanThread *t = GetCurrentThread(); |
144 | if (t) { |
145 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
146 | allocator.Deallocate(cache, p); |
147 | } else { |
148 | SpinMutexLock l(&fallback_mutex); |
149 | AllocatorCache *cache = &fallback_allocator_cache; |
150 | allocator.Deallocate(cache, p); |
151 | } |
152 | } |
153 | |
154 | void *DFsanReallocate(void *old_p, uptr new_size, uptr alignment) { |
155 | Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p: old_p)); |
156 | uptr old_size = meta->requested_size; |
157 | uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(p: old_p); |
158 | if (new_size <= actually_allocated_size) { |
159 | // We are not reallocating here. |
160 | meta->requested_size = new_size; |
161 | if (new_size > old_size && flags().zero_in_malloc) |
162 | dfsan_set_label(label: 0, addr: (char *)old_p + old_size, size: new_size - old_size); |
163 | return old_p; |
164 | } |
165 | uptr memcpy_size = Min(a: new_size, b: old_size); |
166 | void *new_p = DFsanAllocate(size: new_size, alignment, zeroise: false /*zeroise*/); |
167 | if (new_p) { |
168 | dfsan_copy_memory(dst: new_p, src: old_p, size: memcpy_size); |
169 | dfsan_deallocate(p: old_p); |
170 | } |
171 | return new_p; |
172 | } |
173 | |
174 | void *DFsanCalloc(uptr nmemb, uptr size) { |
175 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
176 | if (AllocatorMayReturnNull()) |
177 | return nullptr; |
178 | BufferedStackTrace stack; |
179 | ReportCallocOverflow(count: nmemb, size, stack: &stack); |
180 | } |
181 | return DFsanAllocate(size: nmemb * size, alignment: sizeof(u64), zeroise: true /*zeroise*/); |
182 | } |
183 | |
184 | static const void *AllocationBegin(const void *p) { |
185 | if (!p) |
186 | return nullptr; |
187 | void *beg = allocator.GetBlockBegin(p); |
188 | if (!beg) |
189 | return nullptr; |
190 | Metadata *b = (Metadata *)allocator.GetMetaData(p: beg); |
191 | if (!b) |
192 | return nullptr; |
193 | if (b->requested_size == 0) |
194 | return nullptr; |
195 | return (const void *)beg; |
196 | } |
197 | |
198 | static uptr AllocationSize(const void *p) { |
199 | if (!p) |
200 | return 0; |
201 | const void *beg = allocator.GetBlockBegin(p); |
202 | if (beg != p) |
203 | return 0; |
204 | Metadata *b = (Metadata *)allocator.GetMetaData(p); |
205 | return b->requested_size; |
206 | } |
207 | |
208 | static uptr AllocationSizeFast(const void *p) { |
209 | return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size; |
210 | } |
211 | |
212 | void *dfsan_malloc(uptr size) { |
213 | return SetErrnoOnNull(DFsanAllocate(size, alignment: sizeof(u64), zeroise: false /*zeroise*/)); |
214 | } |
215 | |
216 | void *dfsan_calloc(uptr nmemb, uptr size) { |
217 | return SetErrnoOnNull(DFsanCalloc(nmemb, size)); |
218 | } |
219 | |
220 | void *dfsan_realloc(void *ptr, uptr size) { |
221 | if (!ptr) |
222 | return SetErrnoOnNull(DFsanAllocate(size, alignment: sizeof(u64), zeroise: false /*zeroise*/)); |
223 | if (size == 0) { |
224 | dfsan_deallocate(p: ptr); |
225 | return nullptr; |
226 | } |
227 | return SetErrnoOnNull(DFsanReallocate(old_p: ptr, new_size: size, alignment: sizeof(u64))); |
228 | } |
229 | |
230 | void *dfsan_reallocarray(void *ptr, uptr nmemb, uptr size) { |
231 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
232 | errno = errno_ENOMEM; |
233 | if (AllocatorMayReturnNull()) |
234 | return nullptr; |
235 | BufferedStackTrace stack; |
236 | ReportReallocArrayOverflow(count: nmemb, size, stack: &stack); |
237 | } |
238 | return dfsan_realloc(ptr, size: nmemb * size); |
239 | } |
240 | |
241 | void *dfsan_valloc(uptr size) { |
242 | return SetErrnoOnNull( |
243 | DFsanAllocate(size, alignment: GetPageSizeCached(), zeroise: false /*zeroise*/)); |
244 | } |
245 | |
246 | void *dfsan_pvalloc(uptr size) { |
247 | uptr PageSize = GetPageSizeCached(); |
248 | if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { |
249 | errno = errno_ENOMEM; |
250 | if (AllocatorMayReturnNull()) |
251 | return nullptr; |
252 | BufferedStackTrace stack; |
253 | ReportPvallocOverflow(size, stack: &stack); |
254 | } |
255 | // pvalloc(0) should allocate one page. |
256 | size = size ? RoundUpTo(size, boundary: PageSize) : PageSize; |
257 | return SetErrnoOnNull(DFsanAllocate(size, alignment: PageSize, zeroise: false /*zeroise*/)); |
258 | } |
259 | |
260 | void *dfsan_aligned_alloc(uptr alignment, uptr size) { |
261 | if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { |
262 | errno = errno_EINVAL; |
263 | if (AllocatorMayReturnNull()) |
264 | return nullptr; |
265 | BufferedStackTrace stack; |
266 | ReportInvalidAlignedAllocAlignment(size, alignment, stack: &stack); |
267 | } |
268 | return SetErrnoOnNull(DFsanAllocate(size, alignment, zeroise: false /*zeroise*/)); |
269 | } |
270 | |
271 | void *dfsan_memalign(uptr alignment, uptr size) { |
272 | if (UNLIKELY(!IsPowerOfTwo(alignment))) { |
273 | errno = errno_EINVAL; |
274 | if (AllocatorMayReturnNull()) |
275 | return nullptr; |
276 | BufferedStackTrace stack; |
277 | ReportInvalidAllocationAlignment(alignment, stack: &stack); |
278 | } |
279 | return SetErrnoOnNull(DFsanAllocate(size, alignment, zeroise: false /*zeroise*/)); |
280 | } |
281 | |
282 | int dfsan_posix_memalign(void **memptr, uptr alignment, uptr size) { |
283 | if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { |
284 | if (AllocatorMayReturnNull()) |
285 | return errno_EINVAL; |
286 | BufferedStackTrace stack; |
287 | ReportInvalidPosixMemalignAlignment(alignment, stack: &stack); |
288 | } |
289 | void *ptr = DFsanAllocate(size, alignment, zeroise: false /*zeroise*/); |
290 | if (UNLIKELY(!ptr)) |
291 | // OOM error is already taken care of by DFsanAllocate. |
292 | return errno_ENOMEM; |
293 | CHECK(IsAligned((uptr)ptr, alignment)); |
294 | *memptr = ptr; |
295 | return 0; |
296 | } |
297 | |
298 | } // namespace __dfsan |
299 | |
300 | using namespace __dfsan; |
301 | |
302 | uptr __sanitizer_get_current_allocated_bytes() { |
303 | uptr stats[AllocatorStatCount]; |
304 | allocator.GetStats(s: stats); |
305 | return stats[AllocatorStatAllocated]; |
306 | } |
307 | |
308 | uptr __sanitizer_get_heap_size() { |
309 | uptr stats[AllocatorStatCount]; |
310 | allocator.GetStats(s: stats); |
311 | return stats[AllocatorStatMapped]; |
312 | } |
313 | |
314 | uptr __sanitizer_get_free_bytes() { return 1; } |
315 | |
316 | uptr __sanitizer_get_unmapped_bytes() { return 1; } |
317 | |
318 | uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } |
319 | |
320 | int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } |
321 | |
322 | const void *__sanitizer_get_allocated_begin(const void *p) { |
323 | return AllocationBegin(p); |
324 | } |
325 | |
326 | uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } |
327 | |
328 | uptr __sanitizer_get_allocated_size_fast(const void *p) { |
329 | DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); |
330 | uptr ret = AllocationSizeFast(p); |
331 | DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); |
332 | return ret; |
333 | } |
334 | |