1 | //===-- msan_allocator.cpp -------------------------- ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file is a part of MemorySanitizer. |
10 | // |
11 | // MemorySanitizer allocator. |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "msan_allocator.h" |
15 | |
16 | #include "msan.h" |
17 | #include "msan_interface_internal.h" |
18 | #include "msan_origin.h" |
19 | #include "msan_poisoning.h" |
20 | #include "msan_thread.h" |
21 | #include "sanitizer_common/sanitizer_allocator.h" |
22 | #include "sanitizer_common/sanitizer_allocator_checks.h" |
23 | #include "sanitizer_common/sanitizer_allocator_interface.h" |
24 | #include "sanitizer_common/sanitizer_allocator_report.h" |
25 | #include "sanitizer_common/sanitizer_errno.h" |
26 | |
27 | namespace __msan { |
28 | |
29 | struct Metadata { |
30 | uptr requested_size; |
31 | }; |
32 | |
33 | struct MsanMapUnmapCallback { |
34 | void OnMap(uptr p, uptr size) const {} |
35 | void OnMapSecondary(uptr p, uptr size, uptr user_begin, |
36 | uptr user_size) const {} |
37 | void OnUnmap(uptr p, uptr size) const { |
38 | __msan_unpoison(a: (void *)p, size); |
39 | |
40 | // We are about to unmap a chunk of user memory. |
41 | // Mark the corresponding shadow memory as not needed. |
42 | uptr shadow_p = MEM_TO_SHADOW(p); |
43 | ReleaseMemoryPagesToOS(beg: shadow_p, end: shadow_p + size); |
44 | if (__msan_get_track_origins()) { |
45 | uptr origin_p = MEM_TO_ORIGIN(p); |
46 | ReleaseMemoryPagesToOS(beg: origin_p, end: origin_p + size); |
47 | } |
48 | } |
49 | }; |
50 | |
51 | // Note: to ensure that the allocator is compatible with the application memory |
52 | // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be |
53 | // duplicated as MappingDesc::ALLOCATOR in msan.h. |
54 | #if defined(__mips64) |
55 | static const uptr kMaxAllowedMallocSize = 2UL << 30; |
56 | |
57 | struct AP32 { |
58 | static const uptr kSpaceBeg = 0; |
59 | static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; |
60 | static const uptr kMetadataSize = sizeof(Metadata); |
61 | typedef __sanitizer::CompactSizeClassMap SizeClassMap; |
62 | static const uptr kRegionSizeLog = 20; |
63 | using AddressSpaceView = LocalAddressSpaceView; |
64 | typedef MsanMapUnmapCallback MapUnmapCallback; |
65 | static const uptr kFlags = 0; |
66 | }; |
67 | typedef SizeClassAllocator32<AP32> PrimaryAllocator; |
68 | #elif defined(__x86_64__) |
69 | #if SANITIZER_NETBSD || SANITIZER_LINUX |
70 | static const uptr kAllocatorSpace = 0x700000000000ULL; |
71 | #else |
72 | static const uptr kAllocatorSpace = 0x600000000000ULL; |
73 | #endif |
74 | static const uptr kMaxAllowedMallocSize = 8UL << 30; |
75 | |
76 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
77 | static const uptr kSpaceBeg = kAllocatorSpace; |
78 | static const uptr kSpaceSize = 0x40000000000; // 4T. |
79 | static const uptr kMetadataSize = sizeof(Metadata); |
80 | typedef DefaultSizeClassMap SizeClassMap; |
81 | typedef MsanMapUnmapCallback MapUnmapCallback; |
82 | static const uptr kFlags = 0; |
83 | using AddressSpaceView = LocalAddressSpaceView; |
84 | }; |
85 | |
86 | typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
87 | |
88 | #elif defined(__loongarch_lp64) |
89 | const uptr kAllocatorSpace = 0x700000000000ULL; |
90 | const uptr kMaxAllowedMallocSize = 8UL << 30; |
91 | |
92 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
93 | static const uptr kSpaceBeg = kAllocatorSpace; |
94 | static const uptr kSpaceSize = 0x40000000000; // 4T. |
95 | static const uptr kMetadataSize = sizeof(Metadata); |
96 | typedef DefaultSizeClassMap SizeClassMap; |
97 | typedef MsanMapUnmapCallback MapUnmapCallback; |
98 | static const uptr kFlags = 0; |
99 | using AddressSpaceView = LocalAddressSpaceView; |
100 | }; |
101 | |
102 | typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
103 | |
104 | #elif defined(__powerpc64__) |
105 | static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G |
106 | |
107 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
108 | static const uptr kSpaceBeg = 0x300000000000; |
109 | static const uptr kSpaceSize = 0x020000000000; // 2T. |
110 | static const uptr kMetadataSize = sizeof(Metadata); |
111 | typedef DefaultSizeClassMap SizeClassMap; |
112 | typedef MsanMapUnmapCallback MapUnmapCallback; |
113 | static const uptr kFlags = 0; |
114 | using AddressSpaceView = LocalAddressSpaceView; |
115 | }; |
116 | |
117 | typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
118 | #elif defined(__s390x__) |
119 | static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G |
120 | |
121 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
122 | static const uptr kSpaceBeg = 0x440000000000; |
123 | static const uptr kSpaceSize = 0x020000000000; // 2T. |
124 | static const uptr kMetadataSize = sizeof(Metadata); |
125 | typedef DefaultSizeClassMap SizeClassMap; |
126 | typedef MsanMapUnmapCallback MapUnmapCallback; |
127 | static const uptr kFlags = 0; |
128 | using AddressSpaceView = LocalAddressSpaceView; |
129 | }; |
130 | |
131 | typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
132 | #elif defined(__aarch64__) |
133 | static const uptr kMaxAllowedMallocSize = 8UL << 30; |
134 | |
135 | struct AP64 { |
136 | static const uptr kSpaceBeg = 0xE00000000000ULL; |
137 | static const uptr kSpaceSize = 0x40000000000; // 4T. |
138 | static const uptr kMetadataSize = sizeof(Metadata); |
139 | typedef DefaultSizeClassMap SizeClassMap; |
140 | typedef MsanMapUnmapCallback MapUnmapCallback; |
141 | static const uptr kFlags = 0; |
142 | using AddressSpaceView = LocalAddressSpaceView; |
143 | }; |
144 | typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
145 | #endif |
146 | typedef CombinedAllocator<PrimaryAllocator> Allocator; |
147 | typedef Allocator::AllocatorCache AllocatorCache; |
148 | |
149 | static Allocator allocator; |
150 | static AllocatorCache fallback_allocator_cache; |
151 | static StaticSpinMutex fallback_mutex; |
152 | |
153 | static uptr max_malloc_size; |
154 | |
155 | void MsanAllocatorInit() { |
156 | SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); |
157 | allocator.Init(release_to_os_interval_ms: common_flags()->allocator_release_to_os_interval_ms); |
158 | if (common_flags()->max_allocation_size_mb) |
159 | max_malloc_size = Min(a: common_flags()->max_allocation_size_mb << 20, |
160 | b: kMaxAllowedMallocSize); |
161 | else |
162 | max_malloc_size = kMaxAllowedMallocSize; |
163 | } |
164 | |
165 | void LockAllocator() { allocator.ForceLock(); } |
166 | |
167 | void UnlockAllocator() { allocator.ForceUnlock(); } |
168 | |
169 | AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) { |
170 | CHECK(ms); |
171 | CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); |
172 | return reinterpret_cast<AllocatorCache *>(ms->allocator_cache); |
173 | } |
174 | |
175 | void MsanThreadLocalMallocStorage::Init() { |
176 | allocator.InitCache(cache: GetAllocatorCache(ms: this)); |
177 | } |
178 | |
179 | void MsanThreadLocalMallocStorage::CommitBack() { |
180 | allocator.SwallowCache(cache: GetAllocatorCache(ms: this)); |
181 | allocator.DestroyCache(cache: GetAllocatorCache(ms: this)); |
182 | } |
183 | |
184 | static void *MsanAllocate(BufferedStackTrace *stack, uptr size, uptr alignment, |
185 | bool zeroise) { |
186 | if (UNLIKELY(size > max_malloc_size)) { |
187 | if (AllocatorMayReturnNull()) { |
188 | Report(format: "WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n" , size); |
189 | return nullptr; |
190 | } |
191 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
192 | ReportAllocationSizeTooBig(user_size: size, max_size: max_malloc_size, stack); |
193 | } |
194 | if (UNLIKELY(IsRssLimitExceeded())) { |
195 | if (AllocatorMayReturnNull()) |
196 | return nullptr; |
197 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
198 | ReportRssLimitExceeded(stack); |
199 | } |
200 | MsanThread *t = GetCurrentThread(); |
201 | void *allocated; |
202 | if (t) { |
203 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
204 | allocated = allocator.Allocate(cache, size, alignment); |
205 | } else { |
206 | SpinMutexLock l(&fallback_mutex); |
207 | AllocatorCache *cache = &fallback_allocator_cache; |
208 | allocated = allocator.Allocate(cache, size, alignment); |
209 | } |
210 | if (UNLIKELY(!allocated)) { |
211 | SetAllocatorOutOfMemory(); |
212 | if (AllocatorMayReturnNull()) |
213 | return nullptr; |
214 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
215 | ReportOutOfMemory(requested_size: size, stack); |
216 | } |
217 | Metadata *meta = |
218 | reinterpret_cast<Metadata *>(allocator.GetMetaData(p: allocated)); |
219 | meta->requested_size = size; |
220 | if (zeroise) { |
221 | if (allocator.FromPrimary(p: allocated)) |
222 | __msan_clear_and_unpoison(a: allocated, size); |
223 | else |
224 | __msan_unpoison(a: allocated, size); // Mem is already zeroed. |
225 | } else if (flags()->poison_in_malloc) { |
226 | __msan_poison(a: allocated, size); |
227 | if (__msan_get_track_origins()) { |
228 | stack->tag = StackTrace::TAG_ALLOC; |
229 | Origin o = Origin::CreateHeapOrigin(stack); |
230 | __msan_set_origin(a: allocated, size, origin: o.raw_id()); |
231 | } |
232 | } |
233 | UnpoisonParam(n: 2); |
234 | RunMallocHooks(ptr: allocated, size); |
235 | return allocated; |
236 | } |
237 | |
238 | void MsanDeallocate(BufferedStackTrace *stack, void *p) { |
239 | CHECK(p); |
240 | UnpoisonParam(n: 1); |
241 | RunFreeHooks(ptr: p); |
242 | |
243 | Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p)); |
244 | uptr size = meta->requested_size; |
245 | meta->requested_size = 0; |
246 | // This memory will not be reused by anyone else, so we are free to keep it |
247 | // poisoned. The secondary allocator will unmap and unpoison by |
248 | // MsanMapUnmapCallback, no need to poison it here. |
249 | if (flags()->poison_in_free && allocator.FromPrimary(p)) { |
250 | __msan_poison(a: p, size); |
251 | if (__msan_get_track_origins()) { |
252 | stack->tag = StackTrace::TAG_DEALLOC; |
253 | Origin o = Origin::CreateHeapOrigin(stack); |
254 | __msan_set_origin(a: p, size, origin: o.raw_id()); |
255 | } |
256 | } |
257 | MsanThread *t = GetCurrentThread(); |
258 | if (t) { |
259 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
260 | allocator.Deallocate(cache, p); |
261 | } else { |
262 | SpinMutexLock l(&fallback_mutex); |
263 | AllocatorCache *cache = &fallback_allocator_cache; |
264 | allocator.Deallocate(cache, p); |
265 | } |
266 | } |
267 | |
268 | static void *MsanReallocate(BufferedStackTrace *stack, void *old_p, |
269 | uptr new_size, uptr alignment) { |
270 | Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(p: old_p)); |
271 | uptr old_size = meta->requested_size; |
272 | uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(p: old_p); |
273 | if (new_size <= actually_allocated_size) { |
274 | // We are not reallocating here. |
275 | meta->requested_size = new_size; |
276 | if (new_size > old_size) { |
277 | if (flags()->poison_in_malloc) { |
278 | stack->tag = StackTrace::TAG_ALLOC; |
279 | PoisonMemory(dst: (char *)old_p + old_size, size: new_size - old_size, stack); |
280 | } |
281 | } |
282 | return old_p; |
283 | } |
284 | uptr memcpy_size = Min(a: new_size, b: old_size); |
285 | void *new_p = MsanAllocate(stack, size: new_size, alignment, zeroise: false /*zeroise*/); |
286 | if (new_p) { |
287 | CopyMemory(dst: new_p, src: old_p, size: memcpy_size, stack); |
288 | MsanDeallocate(stack, p: old_p); |
289 | } |
290 | return new_p; |
291 | } |
292 | |
293 | static void *MsanCalloc(BufferedStackTrace *stack, uptr nmemb, uptr size) { |
294 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
295 | if (AllocatorMayReturnNull()) |
296 | return nullptr; |
297 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
298 | ReportCallocOverflow(count: nmemb, size, stack); |
299 | } |
300 | return MsanAllocate(stack, size: nmemb * size, alignment: sizeof(u64), zeroise: true); |
301 | } |
302 | |
303 | static const void *AllocationBegin(const void *p) { |
304 | if (!p) |
305 | return nullptr; |
306 | void *beg = allocator.GetBlockBegin(p); |
307 | if (!beg) |
308 | return nullptr; |
309 | Metadata *b = (Metadata *)allocator.GetMetaData(p: beg); |
310 | if (!b) |
311 | return nullptr; |
312 | if (b->requested_size == 0) |
313 | return nullptr; |
314 | |
315 | return (const void *)beg; |
316 | } |
317 | |
318 | static uptr AllocationSize(const void *p) { |
319 | if (!p) return 0; |
320 | const void *beg = allocator.GetBlockBegin(p); |
321 | if (beg != p) return 0; |
322 | Metadata *b = (Metadata *)allocator.GetMetaData(p); |
323 | return b->requested_size; |
324 | } |
325 | |
326 | static uptr AllocationSizeFast(const void *p) { |
327 | return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size; |
328 | } |
329 | |
330 | void *msan_malloc(uptr size, BufferedStackTrace *stack) { |
331 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment: sizeof(u64), zeroise: false)); |
332 | } |
333 | |
334 | void *msan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { |
335 | return SetErrnoOnNull(MsanCalloc(stack, nmemb, size)); |
336 | } |
337 | |
338 | void *msan_realloc(void *ptr, uptr size, BufferedStackTrace *stack) { |
339 | if (!ptr) |
340 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment: sizeof(u64), zeroise: false)); |
341 | if (size == 0) { |
342 | MsanDeallocate(stack, p: ptr); |
343 | return nullptr; |
344 | } |
345 | return SetErrnoOnNull(MsanReallocate(stack, old_p: ptr, new_size: size, alignment: sizeof(u64))); |
346 | } |
347 | |
348 | void *msan_reallocarray(void *ptr, uptr nmemb, uptr size, |
349 | BufferedStackTrace *stack) { |
350 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
351 | errno = errno_ENOMEM; |
352 | if (AllocatorMayReturnNull()) |
353 | return nullptr; |
354 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
355 | ReportReallocArrayOverflow(count: nmemb, size, stack); |
356 | } |
357 | return msan_realloc(ptr, size: nmemb * size, stack); |
358 | } |
359 | |
360 | void *msan_valloc(uptr size, BufferedStackTrace *stack) { |
361 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment: GetPageSizeCached(), zeroise: false)); |
362 | } |
363 | |
364 | void *msan_pvalloc(uptr size, BufferedStackTrace *stack) { |
365 | uptr PageSize = GetPageSizeCached(); |
366 | if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { |
367 | errno = errno_ENOMEM; |
368 | if (AllocatorMayReturnNull()) |
369 | return nullptr; |
370 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
371 | ReportPvallocOverflow(size, stack); |
372 | } |
373 | // pvalloc(0) should allocate one page. |
374 | size = size ? RoundUpTo(size, boundary: PageSize) : PageSize; |
375 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment: PageSize, zeroise: false)); |
376 | } |
377 | |
378 | void *msan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) { |
379 | if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { |
380 | errno = errno_EINVAL; |
381 | if (AllocatorMayReturnNull()) |
382 | return nullptr; |
383 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
384 | ReportInvalidAlignedAllocAlignment(size, alignment, stack); |
385 | } |
386 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment, zeroise: false)); |
387 | } |
388 | |
389 | void *msan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack) { |
390 | if (UNLIKELY(!IsPowerOfTwo(alignment))) { |
391 | errno = errno_EINVAL; |
392 | if (AllocatorMayReturnNull()) |
393 | return nullptr; |
394 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
395 | ReportInvalidAllocationAlignment(alignment, stack); |
396 | } |
397 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment, zeroise: false)); |
398 | } |
399 | |
400 | int msan_posix_memalign(void **memptr, uptr alignment, uptr size, |
401 | BufferedStackTrace *stack) { |
402 | if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { |
403 | if (AllocatorMayReturnNull()) |
404 | return errno_EINVAL; |
405 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
406 | ReportInvalidPosixMemalignAlignment(alignment, stack); |
407 | } |
408 | void *ptr = MsanAllocate(stack, size, alignment, zeroise: false); |
409 | if (UNLIKELY(!ptr)) |
410 | // OOM error is already taken care of by MsanAllocate. |
411 | return errno_ENOMEM; |
412 | CHECK(IsAligned((uptr)ptr, alignment)); |
413 | *memptr = ptr; |
414 | return 0; |
415 | } |
416 | |
417 | } // namespace __msan |
418 | |
419 | using namespace __msan; |
420 | |
421 | uptr __sanitizer_get_current_allocated_bytes() { |
422 | uptr stats[AllocatorStatCount]; |
423 | allocator.GetStats(s: stats); |
424 | return stats[AllocatorStatAllocated]; |
425 | } |
426 | |
427 | uptr __sanitizer_get_heap_size() { |
428 | uptr stats[AllocatorStatCount]; |
429 | allocator.GetStats(s: stats); |
430 | return stats[AllocatorStatMapped]; |
431 | } |
432 | |
433 | uptr __sanitizer_get_free_bytes() { return 1; } |
434 | |
435 | uptr __sanitizer_get_unmapped_bytes() { return 1; } |
436 | |
437 | uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } |
438 | |
439 | int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } |
440 | |
441 | const void *__sanitizer_get_allocated_begin(const void *p) { |
442 | return AllocationBegin(p); |
443 | } |
444 | |
445 | uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } |
446 | |
447 | uptr __sanitizer_get_allocated_size_fast(const void *p) { |
448 | DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); |
449 | uptr ret = AllocationSizeFast(p); |
450 | DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); |
451 | return ret; |
452 | } |
453 | |
454 | void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); } |
455 | |