| 1 | //===-- sanitizer_allocator_test.cpp --------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of ThreadSanitizer/AddressSanitizer runtime. |
| 10 | // Tests for sanitizer_allocator.h. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | #include "sanitizer_common/sanitizer_allocator.h" |
| 14 | |
| 15 | #include <stdio.h> |
| 16 | #include <stdlib.h> |
| 17 | |
| 18 | #include <algorithm> |
| 19 | #include <random> |
| 20 | #include <set> |
| 21 | #include <vector> |
| 22 | |
| 23 | #include "gtest/gtest.h" |
| 24 | #include "sanitizer_common/sanitizer_allocator_internal.h" |
| 25 | #include "sanitizer_common/sanitizer_common.h" |
| 26 | #include "sanitizer_pthread_wrappers.h" |
| 27 | #include "sanitizer_test_utils.h" |
| 28 | |
| 29 | using namespace __sanitizer; |
| 30 | |
| 31 | #if defined(__sparcv9) |
| 32 | // FIXME: These tests probably fail because Solaris/sparcv9 uses the full |
| 33 | // 64-bit address space. Same on Linux/sparc64, so probably a general SPARC |
| 34 | // issue. Needs more investigation |
| 35 | # define SKIP_ON_SPARCV9(x) DISABLED_##x |
| 36 | #else |
| 37 | # define SKIP_ON_SPARCV9(x) x |
| 38 | #endif |
| 39 | |
| 40 | // On 64-bit systems with small virtual address spaces (e.g. 39-bit) we can't |
| 41 | // use size class maps with a large number of classes, as that will make the |
| 42 | // SizeClassAllocator64 region size too small (< 2^32). |
| 43 | #if SANITIZER_ANDROID && defined(__aarch64__) |
| 44 | #define ALLOCATOR64_SMALL_SIZE 1 |
| 45 | #elif SANITIZER_RISCV64 |
| 46 | #define ALLOCATOR64_SMALL_SIZE 1 |
| 47 | #else |
| 48 | #define ALLOCATOR64_SMALL_SIZE 0 |
| 49 | #endif |
| 50 | |
| 51 | // Too slow for debug build |
| 52 | #if !SANITIZER_DEBUG |
| 53 | |
| 54 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 55 | #if SANITIZER_WINDOWS |
| 56 | // On Windows 64-bit there is no easy way to find a large enough fixed address |
| 57 | // space that is always available. Thus, a dynamically allocated address space |
| 58 | // is used instead (i.e. ~(uptr)0). |
| 59 | static const uptr kAllocatorSpace = ~(uptr)0; |
| 60 | static const uptr kAllocatorSize = 0x8000000000ULL; // 500G |
| 61 | static const u64 kAddressSpaceSize = 1ULL << 47; |
| 62 | typedef DefaultSizeClassMap SizeClassMap; |
| 63 | #elif SANITIZER_ANDROID && defined(__aarch64__) |
| 64 | static const uptr kAllocatorSpace = 0x3000000000ULL; |
| 65 | static const uptr kAllocatorSize = 0x2000000000ULL; |
| 66 | static const u64 kAddressSpaceSize = 1ULL << 39; |
| 67 | typedef VeryCompactSizeClassMap SizeClassMap; |
| 68 | #elif SANITIZER_RISCV64 |
| 69 | const uptr kAllocatorSpace = ~(uptr)0; |
| 70 | const uptr kAllocatorSize = 0x2000000000ULL; // 128G. |
| 71 | static const u64 kAddressSpaceSize = 1ULL << 38; |
| 72 | typedef VeryDenseSizeClassMap SizeClassMap; |
| 73 | # elif SANITIZER_APPLE |
| 74 | static const uptr kAllocatorSpace = 0x700000000000ULL; |
| 75 | static const uptr kAllocatorSize = 0x010000000000ULL; // 1T. |
| 76 | static const u64 kAddressSpaceSize = 1ULL << 47; |
| 77 | typedef DefaultSizeClassMap SizeClassMap; |
| 78 | # else |
| 79 | static const uptr kAllocatorSpace = 0x500000000000ULL; |
| 80 | static const uptr kAllocatorSize = 0x010000000000ULL; // 1T. |
| 81 | static const u64 kAddressSpaceSize = 1ULL << 47; |
| 82 | typedef DefaultSizeClassMap SizeClassMap; |
| 83 | # endif |
| 84 | |
| 85 | template <typename AddressSpaceViewTy> |
| 86 | struct AP64 { // Allocator Params. Short name for shorter demangled names.. |
| 87 | static const uptr kSpaceBeg = kAllocatorSpace; |
| 88 | static const uptr kSpaceSize = kAllocatorSize; |
| 89 | static const uptr kMetadataSize = 16; |
| 90 | typedef ::SizeClassMap SizeClassMap; |
| 91 | typedef NoOpMapUnmapCallback MapUnmapCallback; |
| 92 | static const uptr kFlags = 0; |
| 93 | using AddressSpaceView = AddressSpaceViewTy; |
| 94 | }; |
| 95 | |
| 96 | template <typename AddressSpaceViewTy> |
| 97 | struct AP64Dyn { |
| 98 | static const uptr kSpaceBeg = ~(uptr)0; |
| 99 | static const uptr kSpaceSize = kAllocatorSize; |
| 100 | static const uptr kMetadataSize = 16; |
| 101 | typedef ::SizeClassMap SizeClassMap; |
| 102 | typedef NoOpMapUnmapCallback MapUnmapCallback; |
| 103 | static const uptr kFlags = 0; |
| 104 | using AddressSpaceView = AddressSpaceViewTy; |
| 105 | }; |
| 106 | |
| 107 | template <typename AddressSpaceViewTy> |
| 108 | struct AP64Compact { |
| 109 | static const uptr kSpaceBeg = ~(uptr)0; |
| 110 | static const uptr kSpaceSize = kAllocatorSize; |
| 111 | static const uptr kMetadataSize = 16; |
| 112 | typedef CompactSizeClassMap SizeClassMap; |
| 113 | typedef NoOpMapUnmapCallback MapUnmapCallback; |
| 114 | static const uptr kFlags = 0; |
| 115 | using AddressSpaceView = AddressSpaceViewTy; |
| 116 | }; |
| 117 | |
| 118 | template <typename AddressSpaceViewTy> |
| 119 | struct AP64VeryCompact { |
| 120 | static const uptr kSpaceBeg = ~(uptr)0; |
| 121 | static const uptr kSpaceSize = 1ULL << 37; |
| 122 | static const uptr kMetadataSize = 16; |
| 123 | typedef VeryCompactSizeClassMap SizeClassMap; |
| 124 | typedef NoOpMapUnmapCallback MapUnmapCallback; |
| 125 | static const uptr kFlags = 0; |
| 126 | using AddressSpaceView = AddressSpaceViewTy; |
| 127 | }; |
| 128 | |
| 129 | template <typename AddressSpaceViewTy> |
| 130 | struct AP64Dense { |
| 131 | static const uptr kSpaceBeg = kAllocatorSpace; |
| 132 | static const uptr kSpaceSize = kAllocatorSize; |
| 133 | static const uptr kMetadataSize = 16; |
| 134 | typedef DenseSizeClassMap SizeClassMap; |
| 135 | typedef NoOpMapUnmapCallback MapUnmapCallback; |
| 136 | static const uptr kFlags = 0; |
| 137 | using AddressSpaceView = AddressSpaceViewTy; |
| 138 | }; |
| 139 | |
| 140 | template <typename AddressSpaceView> |
| 141 | using Allocator64ASVT = SizeClassAllocator64<AP64<AddressSpaceView>>; |
| 142 | using Allocator64 = Allocator64ASVT<LocalAddressSpaceView>; |
| 143 | |
| 144 | template <typename AddressSpaceView> |
| 145 | using Allocator64DynamicASVT = SizeClassAllocator64<AP64Dyn<AddressSpaceView>>; |
| 146 | using Allocator64Dynamic = Allocator64DynamicASVT<LocalAddressSpaceView>; |
| 147 | |
| 148 | template <typename AddressSpaceView> |
| 149 | using Allocator64CompactASVT = |
| 150 | SizeClassAllocator64<AP64Compact<AddressSpaceView>>; |
| 151 | using Allocator64Compact = Allocator64CompactASVT<LocalAddressSpaceView>; |
| 152 | |
| 153 | template <typename AddressSpaceView> |
| 154 | using Allocator64VeryCompactASVT = |
| 155 | SizeClassAllocator64<AP64VeryCompact<AddressSpaceView>>; |
| 156 | using Allocator64VeryCompact = |
| 157 | Allocator64VeryCompactASVT<LocalAddressSpaceView>; |
| 158 | |
| 159 | template <typename AddressSpaceView> |
| 160 | using Allocator64DenseASVT = SizeClassAllocator64<AP64Dense<AddressSpaceView>>; |
| 161 | using Allocator64Dense = Allocator64DenseASVT<LocalAddressSpaceView>; |
| 162 | |
| 163 | #elif defined(__mips64) |
| 164 | static const u64 kAddressSpaceSize = 1ULL << 40; |
| 165 | #elif defined(__aarch64__) |
| 166 | static const u64 kAddressSpaceSize = 1ULL << 39; |
| 167 | #elif defined(__s390x__) |
| 168 | static const u64 kAddressSpaceSize = 1ULL << 53; |
| 169 | #elif defined(__s390__) |
| 170 | static const u64 kAddressSpaceSize = 1ULL << 31; |
| 171 | #else |
| 172 | static const u64 kAddressSpaceSize = 1ULL << 32; |
| 173 | #endif |
| 174 | |
| 175 | static const uptr kRegionSizeLog = FIRST_32_SECOND_64(20, 24); |
| 176 | |
| 177 | template <typename AddressSpaceViewTy> |
| 178 | struct AP32Compact { |
| 179 | static const uptr kSpaceBeg = 0; |
| 180 | static const u64 kSpaceSize = kAddressSpaceSize; |
| 181 | static const uptr kMetadataSize = 16; |
| 182 | typedef CompactSizeClassMap SizeClassMap; |
| 183 | static const uptr kRegionSizeLog = ::kRegionSizeLog; |
| 184 | using AddressSpaceView = AddressSpaceViewTy; |
| 185 | typedef NoOpMapUnmapCallback MapUnmapCallback; |
| 186 | static const uptr kFlags = 0; |
| 187 | }; |
| 188 | template <typename AddressSpaceView> |
| 189 | using Allocator32CompactASVT = |
| 190 | SizeClassAllocator32<AP32Compact<AddressSpaceView>>; |
| 191 | using Allocator32Compact = Allocator32CompactASVT<LocalAddressSpaceView>; |
| 192 | |
| 193 | template <class SizeClassMap> |
| 194 | void TestSizeClassMap() { |
| 195 | typedef SizeClassMap SCMap; |
| 196 | SCMap::Print(); |
| 197 | SCMap::Validate(); |
| 198 | } |
| 199 | |
| 200 | TEST(SanitizerCommon, DefaultSizeClassMap) { |
| 201 | TestSizeClassMap<DefaultSizeClassMap>(); |
| 202 | } |
| 203 | |
| 204 | TEST(SanitizerCommon, CompactSizeClassMap) { |
| 205 | TestSizeClassMap<CompactSizeClassMap>(); |
| 206 | } |
| 207 | |
| 208 | TEST(SanitizerCommon, VeryCompactSizeClassMap) { |
| 209 | TestSizeClassMap<VeryCompactSizeClassMap>(); |
| 210 | } |
| 211 | |
| 212 | TEST(SanitizerCommon, InternalSizeClassMap) { |
| 213 | TestSizeClassMap<InternalSizeClassMap>(); |
| 214 | } |
| 215 | |
| 216 | TEST(SanitizerCommon, DenseSizeClassMap) { |
| 217 | TestSizeClassMap<VeryCompactSizeClassMap>(); |
| 218 | } |
| 219 | |
| 220 | template <class Allocator> |
| 221 | void TestSizeClassAllocator(uptr premapped_heap = 0) { |
| 222 | Allocator *a = new Allocator; |
| 223 | a->Init(kReleaseToOSIntervalNever, premapped_heap); |
| 224 | typename Allocator::AllocatorCache cache; |
| 225 | memset(&cache, 0, sizeof(cache)); |
| 226 | cache.Init(0); |
| 227 | |
| 228 | static const uptr sizes[] = { |
| 229 | 1, 16, 30, 40, 100, 1000, 10000, |
| 230 | 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000 |
| 231 | }; |
| 232 | |
| 233 | std::vector<void *> allocated; |
| 234 | |
| 235 | uptr last_total_allocated = 0; |
| 236 | for (int i = 0; i < 3; i++) { |
| 237 | // Allocate a bunch of chunks. |
| 238 | for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { |
| 239 | uptr size = sizes[s]; |
| 240 | if (!a->CanAllocate(size, 1)) continue; |
| 241 | // printf("s = %ld\n", size); |
| 242 | uptr n_iter = std::max((uptr)6, 4000000 / size); |
| 243 | // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); |
| 244 | for (uptr i = 0; i < n_iter; i++) { |
| 245 | uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); |
| 246 | char *x = (char*)cache.Allocate(a, class_id0); |
| 247 | x[0] = 0; |
| 248 | x[size - 1] = 0; |
| 249 | x[size / 2] = 0; |
| 250 | allocated.push_back(x); |
| 251 | CHECK_EQ(x, a->GetBlockBegin(x)); |
| 252 | CHECK_EQ(x, a->GetBlockBegin(x + size - 1)); |
| 253 | CHECK(a->PointerIsMine(x)); |
| 254 | CHECK(a->PointerIsMine(x + size - 1)); |
| 255 | CHECK(a->PointerIsMine(x + size / 2)); |
| 256 | CHECK_GE(a->GetActuallyAllocatedSize(x), size); |
| 257 | uptr class_id = a->GetSizeClass(x); |
| 258 | CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size)); |
| 259 | uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); |
| 260 | metadata[0] = reinterpret_cast<uptr>(x) + 1; |
| 261 | metadata[1] = 0xABCD; |
| 262 | } |
| 263 | } |
| 264 | // Deallocate all. |
| 265 | for (uptr i = 0; i < allocated.size(); i++) { |
| 266 | void *x = allocated[i]; |
| 267 | uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x)); |
| 268 | CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1); |
| 269 | CHECK_EQ(metadata[1], 0xABCD); |
| 270 | cache.Deallocate(a, a->GetSizeClass(x), x); |
| 271 | } |
| 272 | allocated.clear(); |
| 273 | uptr total_allocated = a->TotalMemoryUsed(); |
| 274 | if (last_total_allocated == 0) |
| 275 | last_total_allocated = total_allocated; |
| 276 | CHECK_EQ(last_total_allocated, total_allocated); |
| 277 | } |
| 278 | |
| 279 | // Check that GetBlockBegin never crashes. |
| 280 | for (uptr x = 0, step = kAddressSpaceSize / 100000; |
| 281 | x < kAddressSpaceSize - step; x += step) |
| 282 | if (a->PointerIsMine(reinterpret_cast<void *>(x))) |
| 283 | Ident(a->GetBlockBegin(reinterpret_cast<void *>(x))); |
| 284 | |
| 285 | a->TestOnlyUnmap(); |
| 286 | delete a; |
| 287 | } |
| 288 | |
| 289 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 290 | |
| 291 | // Allocates kAllocatorSize aligned bytes on construction and frees it on |
| 292 | // destruction. |
| 293 | class ScopedPremappedHeap { |
| 294 | public: |
| 295 | ScopedPremappedHeap() { |
| 296 | BasePtr = MmapNoReserveOrDie(size: 2 * kAllocatorSize, mem_type: "preallocated heap" ); |
| 297 | AlignedAddr = RoundUpTo(size: reinterpret_cast<uptr>(BasePtr), boundary: kAllocatorSize); |
| 298 | } |
| 299 | |
| 300 | ~ScopedPremappedHeap() { UnmapOrDie(addr: BasePtr, size: kAllocatorSize); } |
| 301 | |
| 302 | uptr Addr() { return AlignedAddr; } |
| 303 | |
| 304 | private: |
| 305 | void *BasePtr; |
| 306 | uptr AlignedAddr; |
| 307 | }; |
| 308 | |
| 309 | // These tests can fail on Windows if memory is somewhat full and lit happens |
| 310 | // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| 311 | #if !SANITIZER_WINDOWS |
| 312 | TEST(SanitizerCommon, SizeClassAllocator64) { |
| 313 | TestSizeClassAllocator<Allocator64>(); |
| 314 | } |
| 315 | |
| 316 | TEST(SanitizerCommon, SizeClassAllocator64Dynamic) { |
| 317 | TestSizeClassAllocator<Allocator64Dynamic>(); |
| 318 | } |
| 319 | |
| 320 | #if !ALLOCATOR64_SMALL_SIZE |
| 321 | // Android only has 39-bit address space, so mapping 2 * kAllocatorSize |
| 322 | // sometimes fails. |
| 323 | TEST(SanitizerCommon, SizeClassAllocator64DynamicPremapped) { |
| 324 | ScopedPremappedHeap h; |
| 325 | TestSizeClassAllocator<Allocator64Dynamic>(premapped_heap: h.Addr()); |
| 326 | } |
| 327 | |
| 328 | TEST(SanitizerCommon, SizeClassAllocator64Compact) { |
| 329 | TestSizeClassAllocator<Allocator64Compact>(); |
| 330 | } |
| 331 | |
| 332 | TEST(SanitizerCommon, SizeClassAllocator64Dense) { |
| 333 | TestSizeClassAllocator<Allocator64Dense>(); |
| 334 | } |
| 335 | #endif |
| 336 | |
| 337 | TEST(SanitizerCommon, SizeClassAllocator64VeryCompact) { |
| 338 | TestSizeClassAllocator<Allocator64VeryCompact>(); |
| 339 | } |
| 340 | #endif |
| 341 | #endif |
| 342 | |
| 343 | TEST(SanitizerCommon, SizeClassAllocator32Compact) { |
| 344 | TestSizeClassAllocator<Allocator32Compact>(); |
| 345 | } |
| 346 | |
| 347 | template <typename AddressSpaceViewTy> |
| 348 | struct AP32SeparateBatches { |
| 349 | static const uptr kSpaceBeg = 0; |
| 350 | static const u64 kSpaceSize = kAddressSpaceSize; |
| 351 | static const uptr kMetadataSize = 16; |
| 352 | typedef DefaultSizeClassMap SizeClassMap; |
| 353 | static const uptr kRegionSizeLog = ::kRegionSizeLog; |
| 354 | using AddressSpaceView = AddressSpaceViewTy; |
| 355 | typedef NoOpMapUnmapCallback MapUnmapCallback; |
| 356 | static const uptr kFlags = |
| 357 | SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch; |
| 358 | }; |
| 359 | template <typename AddressSpaceView> |
| 360 | using Allocator32SeparateBatchesASVT = |
| 361 | SizeClassAllocator32<AP32SeparateBatches<AddressSpaceView>>; |
| 362 | using Allocator32SeparateBatches = |
| 363 | Allocator32SeparateBatchesASVT<LocalAddressSpaceView>; |
| 364 | |
| 365 | TEST(SanitizerCommon, SizeClassAllocator32SeparateBatches) { |
| 366 | TestSizeClassAllocator<Allocator32SeparateBatches>(); |
| 367 | } |
| 368 | |
| 369 | template <class Allocator> |
| 370 | void SizeClassAllocatorMetadataStress(uptr premapped_heap = 0) { |
| 371 | Allocator *a = new Allocator; |
| 372 | a->Init(kReleaseToOSIntervalNever, premapped_heap); |
| 373 | typename Allocator::AllocatorCache cache; |
| 374 | memset(&cache, 0, sizeof(cache)); |
| 375 | cache.Init(0); |
| 376 | |
| 377 | const uptr kNumAllocs = 1 << 13; |
| 378 | void *allocated[kNumAllocs]; |
| 379 | void *meta[kNumAllocs]; |
| 380 | for (uptr i = 0; i < kNumAllocs; i++) { |
| 381 | void *x = cache.Allocate(a, 1 + i % (Allocator::kNumClasses - 1)); |
| 382 | allocated[i] = x; |
| 383 | meta[i] = a->GetMetaData(x); |
| 384 | } |
| 385 | // Get Metadata kNumAllocs^2 times. |
| 386 | for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { |
| 387 | uptr idx = i % kNumAllocs; |
| 388 | void *m = a->GetMetaData(allocated[idx]); |
| 389 | EXPECT_EQ(m, meta[idx]); |
| 390 | } |
| 391 | for (uptr i = 0; i < kNumAllocs; i++) { |
| 392 | cache.Deallocate(a, 1 + i % (Allocator::kNumClasses - 1), allocated[i]); |
| 393 | } |
| 394 | |
| 395 | a->TestOnlyUnmap(); |
| 396 | delete a; |
| 397 | } |
| 398 | |
| 399 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 400 | // These tests can fail on Windows if memory is somewhat full and lit happens |
| 401 | // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| 402 | #if !SANITIZER_WINDOWS |
| 403 | TEST(SanitizerCommon, SizeClassAllocator64MetadataStress) { |
| 404 | SizeClassAllocatorMetadataStress<Allocator64>(); |
| 405 | } |
| 406 | |
| 407 | TEST(SanitizerCommon, SizeClassAllocator64DynamicMetadataStress) { |
| 408 | SizeClassAllocatorMetadataStress<Allocator64Dynamic>(); |
| 409 | } |
| 410 | |
| 411 | #if !ALLOCATOR64_SMALL_SIZE |
| 412 | TEST(SanitizerCommon, SizeClassAllocator64DynamicPremappedMetadataStress) { |
| 413 | ScopedPremappedHeap h; |
| 414 | SizeClassAllocatorMetadataStress<Allocator64Dynamic>(premapped_heap: h.Addr()); |
| 415 | } |
| 416 | |
| 417 | TEST(SanitizerCommon, SizeClassAllocator64CompactMetadataStress) { |
| 418 | SizeClassAllocatorMetadataStress<Allocator64Compact>(); |
| 419 | } |
| 420 | #endif |
| 421 | |
| 422 | #endif |
| 423 | #endif // SANITIZER_CAN_USE_ALLOCATOR64 |
| 424 | TEST(SanitizerCommon, SizeClassAllocator32CompactMetadataStress) { |
| 425 | SizeClassAllocatorMetadataStress<Allocator32Compact>(); |
| 426 | } |
| 427 | |
| 428 | template <class Allocator> |
| 429 | void SizeClassAllocatorGetBlockBeginStress(u64 TotalSize, |
| 430 | uptr premapped_heap = 0) { |
| 431 | Allocator *a = new Allocator; |
| 432 | a->Init(kReleaseToOSIntervalNever, premapped_heap); |
| 433 | typename Allocator::AllocatorCache cache; |
| 434 | memset(&cache, 0, sizeof(cache)); |
| 435 | cache.Init(0); |
| 436 | |
| 437 | uptr max_size_class = Allocator::SizeClassMapT::kLargestClassID; |
| 438 | uptr size = Allocator::SizeClassMapT::Size(max_size_class); |
| 439 | // Make sure we correctly compute GetBlockBegin() w/o overflow. |
| 440 | for (size_t i = 0; i <= TotalSize / size; i++) { |
| 441 | void *x = cache.Allocate(a, max_size_class); |
| 442 | void *beg = a->GetBlockBegin(x); |
| 443 | // if ((i & (i - 1)) == 0) |
| 444 | // fprintf(stderr, "[%zd] %p %p\n", i, x, beg); |
| 445 | EXPECT_EQ(x, beg); |
| 446 | } |
| 447 | |
| 448 | a->TestOnlyUnmap(); |
| 449 | delete a; |
| 450 | } |
| 451 | |
| 452 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 453 | // These tests can fail on Windows if memory is somewhat full and lit happens |
| 454 | // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| 455 | #if !SANITIZER_WINDOWS |
| 456 | TEST(SanitizerCommon, SizeClassAllocator64GetBlockBegin) { |
| 457 | SizeClassAllocatorGetBlockBeginStress<Allocator64>( |
| 458 | 1ULL << (SANITIZER_ANDROID ? 31 : 33)); |
| 459 | } |
| 460 | TEST(SanitizerCommon, SizeClassAllocator64DynamicGetBlockBegin) { |
| 461 | SizeClassAllocatorGetBlockBeginStress<Allocator64Dynamic>( |
| 462 | TotalSize: 1ULL << (SANITIZER_ANDROID ? 31 : 33)); |
| 463 | } |
| 464 | #if !ALLOCATOR64_SMALL_SIZE |
| 465 | TEST(SanitizerCommon, SizeClassAllocator64DynamicPremappedGetBlockBegin) { |
| 466 | ScopedPremappedHeap h; |
| 467 | SizeClassAllocatorGetBlockBeginStress<Allocator64Dynamic>( |
| 468 | TotalSize: 1ULL << (SANITIZER_ANDROID ? 31 : 33), premapped_heap: h.Addr()); |
| 469 | } |
| 470 | TEST(SanitizerCommon, SizeClassAllocator64CompactGetBlockBegin) { |
| 471 | SizeClassAllocatorGetBlockBeginStress<Allocator64Compact>(TotalSize: 1ULL << 33); |
| 472 | } |
| 473 | #endif |
| 474 | TEST(SanitizerCommon, SizeClassAllocator64VeryCompactGetBlockBegin) { |
| 475 | // Does not have > 4Gb for each class. |
| 476 | SizeClassAllocatorGetBlockBeginStress<Allocator64VeryCompact>(TotalSize: 1ULL << 31); |
| 477 | } |
| 478 | TEST(SanitizerCommon, SizeClassAllocator32CompactGetBlockBegin) { |
| 479 | SizeClassAllocatorGetBlockBeginStress<Allocator32Compact>(TotalSize: 1ULL << 33); |
| 480 | } |
| 481 | #endif |
| 482 | #endif // SANITIZER_CAN_USE_ALLOCATOR64 |
| 483 | |
| 484 | struct TestMapUnmapCallback { |
| 485 | static int map_count, map_secondary_count, unmap_count; |
| 486 | void OnMap(uptr p, uptr size) const { map_count++; } |
| 487 | void OnMapSecondary(uptr p, uptr size, uptr user_begin, |
| 488 | uptr user_size) const { |
| 489 | map_secondary_count++; |
| 490 | } |
| 491 | void OnUnmap(uptr p, uptr size) const { unmap_count++; } |
| 492 | |
| 493 | static void Reset() { map_count = map_secondary_count = unmap_count = 0; } |
| 494 | }; |
| 495 | int TestMapUnmapCallback::map_count; |
| 496 | int TestMapUnmapCallback::map_secondary_count; |
| 497 | int TestMapUnmapCallback::unmap_count; |
| 498 | |
| 499 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 500 | // These tests can fail on Windows if memory is somewhat full and lit happens |
| 501 | // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| 502 | #if !SANITIZER_WINDOWS |
| 503 | |
| 504 | template <typename AddressSpaceViewTy = LocalAddressSpaceView> |
| 505 | struct AP64WithCallback { |
| 506 | static const uptr kSpaceBeg = kAllocatorSpace; |
| 507 | static const uptr kSpaceSize = kAllocatorSize; |
| 508 | static const uptr kMetadataSize = 16; |
| 509 | typedef ::SizeClassMap SizeClassMap; |
| 510 | typedef TestMapUnmapCallback MapUnmapCallback; |
| 511 | static const uptr kFlags = 0; |
| 512 | using AddressSpaceView = AddressSpaceViewTy; |
| 513 | }; |
| 514 | |
| 515 | TEST(SanitizerCommon, SizeClassAllocator64MapUnmapCallback) { |
| 516 | TestMapUnmapCallback::Reset(); |
| 517 | typedef SizeClassAllocator64<AP64WithCallback<>> Allocator64WithCallBack; |
| 518 | Allocator64WithCallBack *a = new Allocator64WithCallBack; |
| 519 | a->Init(release_to_os_interval_ms: kReleaseToOSIntervalNever); |
| 520 | EXPECT_EQ(TestMapUnmapCallback::map_count, 1); // Allocator state. |
| 521 | EXPECT_EQ(TestMapUnmapCallback::map_secondary_count, 0); |
| 522 | typename Allocator64WithCallBack::AllocatorCache cache; |
| 523 | memset(&cache, 0, sizeof(cache)); |
| 524 | cache.Init(s: 0); |
| 525 | AllocatorStats stats; |
| 526 | stats.Init(); |
| 527 | const size_t kNumChunks = 128; |
| 528 | uint32_t chunks[kNumChunks]; |
| 529 | a->GetFromAllocator(stat: &stats, class_id: 30, chunks, n_chunks: kNumChunks); |
| 530 | // State + alloc + metadata + freearray. |
| 531 | EXPECT_EQ(TestMapUnmapCallback::map_count, 4); |
| 532 | EXPECT_EQ(TestMapUnmapCallback::map_secondary_count, 0); |
| 533 | a->TestOnlyUnmap(); |
| 534 | EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); // The whole thing. |
| 535 | delete a; |
| 536 | } |
| 537 | #endif |
| 538 | #endif |
| 539 | |
| 540 | template <typename AddressSpaceViewTy = LocalAddressSpaceView> |
| 541 | struct AP32WithCallback { |
| 542 | static const uptr kSpaceBeg = 0; |
| 543 | static const u64 kSpaceSize = kAddressSpaceSize; |
| 544 | static const uptr kMetadataSize = 16; |
| 545 | typedef CompactSizeClassMap SizeClassMap; |
| 546 | static const uptr kRegionSizeLog = ::kRegionSizeLog; |
| 547 | using AddressSpaceView = AddressSpaceViewTy; |
| 548 | typedef TestMapUnmapCallback MapUnmapCallback; |
| 549 | static const uptr kFlags = 0; |
| 550 | }; |
| 551 | |
| 552 | TEST(SanitizerCommon, SizeClassAllocator32MapUnmapCallback) { |
| 553 | TestMapUnmapCallback::Reset(); |
| 554 | typedef SizeClassAllocator32<AP32WithCallback<>> Allocator32WithCallBack; |
| 555 | Allocator32WithCallBack *a = new Allocator32WithCallBack; |
| 556 | a->Init(release_to_os_interval_ms: kReleaseToOSIntervalNever); |
| 557 | EXPECT_EQ(TestMapUnmapCallback::map_count, 0); |
| 558 | EXPECT_EQ(TestMapUnmapCallback::map_secondary_count, 0); |
| 559 | Allocator32WithCallBack::AllocatorCache cache; |
| 560 | memset(&cache, 0, sizeof(cache)); |
| 561 | cache.Init(s: 0); |
| 562 | AllocatorStats stats; |
| 563 | stats.Init(); |
| 564 | a->AllocateBatch(stat: &stats, c: &cache, class_id: 32); |
| 565 | EXPECT_EQ(TestMapUnmapCallback::map_count, 1); |
| 566 | EXPECT_EQ(TestMapUnmapCallback::map_secondary_count, 0); |
| 567 | a->TestOnlyUnmap(); |
| 568 | EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); |
| 569 | delete a; |
| 570 | } |
| 571 | |
| 572 | TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) { |
| 573 | TestMapUnmapCallback::Reset(); |
| 574 | LargeMmapAllocator<TestMapUnmapCallback> a; |
| 575 | a.Init(); |
| 576 | AllocatorStats stats; |
| 577 | stats.Init(); |
| 578 | void *x = a.Allocate(stat: &stats, size: 1 << 20, alignment: 1); |
| 579 | EXPECT_EQ(TestMapUnmapCallback::map_count, 0); |
| 580 | EXPECT_EQ(TestMapUnmapCallback::map_secondary_count, 1); |
| 581 | a.Deallocate(stat: &stats, p: x); |
| 582 | EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); |
| 583 | } |
| 584 | |
| 585 | // Don't test OOM conditions on Win64 because it causes other tests on the same |
| 586 | // machine to OOM. |
| 587 | #if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 |
| 588 | TEST(SanitizerCommon, SizeClassAllocator64Overflow) { |
| 589 | Allocator64 a; |
| 590 | a.Init(release_to_os_interval_ms: kReleaseToOSIntervalNever); |
| 591 | Allocator64::AllocatorCache cache; |
| 592 | memset(&cache, 0, sizeof(cache)); |
| 593 | cache.Init(s: 0); |
| 594 | AllocatorStats stats; |
| 595 | stats.Init(); |
| 596 | |
| 597 | const size_t kNumChunks = 128; |
| 598 | uint32_t chunks[kNumChunks]; |
| 599 | bool allocation_failed = false; |
| 600 | for (int i = 0; i < 1000000; i++) { |
| 601 | uptr class_id = a.kNumClasses - 1; |
| 602 | if (!a.GetFromAllocator(stat: &stats, class_id, chunks, n_chunks: kNumChunks)) { |
| 603 | allocation_failed = true; |
| 604 | break; |
| 605 | } |
| 606 | } |
| 607 | EXPECT_EQ(allocation_failed, true); |
| 608 | |
| 609 | a.TestOnlyUnmap(); |
| 610 | } |
| 611 | #endif |
| 612 | |
| 613 | TEST(SanitizerCommon, LargeMmapAllocator) { |
| 614 | LargeMmapAllocator<NoOpMapUnmapCallback> a; |
| 615 | a.Init(); |
| 616 | AllocatorStats stats; |
| 617 | stats.Init(); |
| 618 | |
| 619 | static const int kNumAllocs = 1000; |
| 620 | char *allocated[kNumAllocs]; |
| 621 | static const uptr size = 4000; |
| 622 | // Allocate some. |
| 623 | for (int i = 0; i < kNumAllocs; i++) { |
| 624 | allocated[i] = (char *)a.Allocate(stat: &stats, size, alignment: 1); |
| 625 | CHECK(a.PointerIsMine(allocated[i])); |
| 626 | } |
| 627 | // Deallocate all. |
| 628 | CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); |
| 629 | for (int i = 0; i < kNumAllocs; i++) { |
| 630 | char *p = allocated[i]; |
| 631 | CHECK(a.PointerIsMine(p)); |
| 632 | a.Deallocate(stat: &stats, p); |
| 633 | } |
| 634 | // Check that non left. |
| 635 | CHECK_EQ(a.TotalMemoryUsed(), 0); |
| 636 | |
| 637 | // Allocate some more, also add metadata. |
| 638 | for (int i = 0; i < kNumAllocs; i++) { |
| 639 | char *x = (char *)a.Allocate(stat: &stats, size, alignment: 1); |
| 640 | CHECK_GE(a.GetActuallyAllocatedSize(x), size); |
| 641 | uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(p: x)); |
| 642 | *meta = i; |
| 643 | allocated[i] = x; |
| 644 | } |
| 645 | for (int i = 0; i < kNumAllocs * kNumAllocs; i++) { |
| 646 | char *p = allocated[i % kNumAllocs]; |
| 647 | CHECK(a.PointerIsMine(p)); |
| 648 | CHECK(a.PointerIsMine(p + 2000)); |
| 649 | } |
| 650 | CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs); |
| 651 | // Deallocate all in reverse order. |
| 652 | for (int i = 0; i < kNumAllocs; i++) { |
| 653 | int idx = kNumAllocs - i - 1; |
| 654 | char *p = allocated[idx]; |
| 655 | uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(p)); |
| 656 | CHECK_EQ(*meta, idx); |
| 657 | CHECK(a.PointerIsMine(p)); |
| 658 | a.Deallocate(stat: &stats, p); |
| 659 | } |
| 660 | CHECK_EQ(a.TotalMemoryUsed(), 0); |
| 661 | |
| 662 | // Test alignments. Test with 512MB alignment on x64 non-Windows machines. |
| 663 | // Windows doesn't overcommit, and many machines do not have 51.2GB of swap. |
| 664 | uptr max_alignment = |
| 665 | (SANITIZER_WORDSIZE == 64 && !SANITIZER_WINDOWS) ? (1 << 28) : (1 << 24); |
| 666 | for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) { |
| 667 | const uptr kNumAlignedAllocs = 100; |
| 668 | for (uptr i = 0; i < kNumAlignedAllocs; i++) { |
| 669 | uptr size = ((i % 10) + 1) * 4096; |
| 670 | char *p = allocated[i] = (char *)a.Allocate(stat: &stats, size, alignment); |
| 671 | CHECK_EQ(p, a.GetBlockBegin(p)); |
| 672 | CHECK_EQ(p, a.GetBlockBegin(p + size - 1)); |
| 673 | CHECK_EQ(p, a.GetBlockBegin(p + size / 2)); |
| 674 | CHECK_EQ(0, (uptr)allocated[i] % alignment); |
| 675 | p[0] = p[size - 1] = 0; |
| 676 | } |
| 677 | for (uptr i = 0; i < kNumAlignedAllocs; i++) { |
| 678 | a.Deallocate(stat: &stats, p: allocated[i]); |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | // Regression test for boundary condition in GetBlockBegin(). |
| 683 | uptr page_size = GetPageSizeCached(); |
| 684 | char *p = (char *)a.Allocate(stat: &stats, size: page_size, alignment: 1); |
| 685 | CHECK_EQ(p, a.GetBlockBegin(p)); |
| 686 | CHECK_EQ(p, (char *)a.GetBlockBegin(p + page_size - 1)); |
| 687 | CHECK_NE(p, (char *)a.GetBlockBegin(p + page_size)); |
| 688 | a.Deallocate(stat: &stats, p); |
| 689 | } |
| 690 | |
| 691 | template <class PrimaryAllocator> |
| 692 | void TestCombinedAllocator(uptr premapped_heap = 0) { |
| 693 | typedef CombinedAllocator<PrimaryAllocator> Allocator; |
| 694 | Allocator *a = new Allocator; |
| 695 | a->Init(kReleaseToOSIntervalNever, premapped_heap); |
| 696 | std::mt19937 r; |
| 697 | |
| 698 | typename Allocator::AllocatorCache cache; |
| 699 | memset(&cache, 0, sizeof(cache)); |
| 700 | a->InitCache(&cache); |
| 701 | |
| 702 | EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); |
| 703 | EXPECT_EQ(a->Allocate(&cache, -1, 1024), (void*)0); |
| 704 | EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1), (void*)0); |
| 705 | EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1024), (void*)0); |
| 706 | EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1023, 1024), (void*)0); |
| 707 | EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0); |
| 708 | |
| 709 | const uptr kNumAllocs = 100000; |
| 710 | const uptr kNumIter = 10; |
| 711 | for (uptr iter = 0; iter < kNumIter; iter++) { |
| 712 | std::vector<void*> allocated; |
| 713 | for (uptr i = 0; i < kNumAllocs; i++) { |
| 714 | uptr size = (i % (1 << 14)) + 1; |
| 715 | if ((i % 1024) == 0) |
| 716 | size = 1 << (10 + (i % 14)); |
| 717 | void *x = a->Allocate(&cache, size, 1); |
| 718 | uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); |
| 719 | CHECK_EQ(*meta, 0); |
| 720 | *meta = size; |
| 721 | allocated.push_back(x); |
| 722 | } |
| 723 | |
| 724 | std::shuffle(allocated.begin(), allocated.end(), r); |
| 725 | |
| 726 | // Test ForEachChunk(...) |
| 727 | { |
| 728 | std::set<void *> reported_chunks; |
| 729 | auto cb = [](uptr chunk, void *arg) { |
| 730 | auto reported_chunks_ptr = reinterpret_cast<std::set<void *> *>(arg); |
| 731 | auto pair = |
| 732 | reported_chunks_ptr->insert(reinterpret_cast<void *>(chunk)); |
| 733 | // Check chunk is never reported more than once. |
| 734 | ASSERT_TRUE(pair.second); |
| 735 | }; |
| 736 | a->ForEachChunk(cb, reinterpret_cast<void *>(&reported_chunks)); |
| 737 | for (const auto &allocated_ptr : allocated) { |
| 738 | ASSERT_NE(reported_chunks.find(allocated_ptr), reported_chunks.end()); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | for (uptr i = 0; i < kNumAllocs; i++) { |
| 743 | void *x = allocated[i]; |
| 744 | uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x)); |
| 745 | CHECK_NE(*meta, 0); |
| 746 | CHECK(a->PointerIsMine(x)); |
| 747 | *meta = 0; |
| 748 | a->Deallocate(&cache, x); |
| 749 | } |
| 750 | allocated.clear(); |
| 751 | a->SwallowCache(&cache); |
| 752 | } |
| 753 | a->DestroyCache(&cache); |
| 754 | a->TestOnlyUnmap(); |
| 755 | } |
| 756 | |
| 757 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 758 | TEST(SanitizerCommon, CombinedAllocator64) { |
| 759 | TestCombinedAllocator<Allocator64>(); |
| 760 | } |
| 761 | |
| 762 | TEST(SanitizerCommon, CombinedAllocator64Dynamic) { |
| 763 | TestCombinedAllocator<Allocator64Dynamic>(); |
| 764 | } |
| 765 | |
| 766 | #if !ALLOCATOR64_SMALL_SIZE |
| 767 | #if !SANITIZER_WINDOWS |
| 768 | // Windows fails to map 1TB, so disable this test. |
| 769 | TEST(SanitizerCommon, CombinedAllocator64DynamicPremapped) { |
| 770 | ScopedPremappedHeap h; |
| 771 | TestCombinedAllocator<Allocator64Dynamic>(premapped_heap: h.Addr()); |
| 772 | } |
| 773 | #endif |
| 774 | |
| 775 | TEST(SanitizerCommon, CombinedAllocator64Compact) { |
| 776 | TestCombinedAllocator<Allocator64Compact>(); |
| 777 | } |
| 778 | #endif |
| 779 | |
| 780 | TEST(SanitizerCommon, CombinedAllocator64VeryCompact) { |
| 781 | TestCombinedAllocator<Allocator64VeryCompact>(); |
| 782 | } |
| 783 | #endif |
| 784 | |
| 785 | TEST(SanitizerCommon, SKIP_ON_SPARCV9(CombinedAllocator32Compact)) { |
| 786 | TestCombinedAllocator<Allocator32Compact>(); |
| 787 | } |
| 788 | |
| 789 | template <class Allocator> |
| 790 | void TestSizeClassAllocatorLocalCache(uptr premapped_heap = 0) { |
| 791 | using AllocatorCache = typename Allocator::AllocatorCache; |
| 792 | AllocatorCache cache; |
| 793 | Allocator *a = new Allocator(); |
| 794 | |
| 795 | a->Init(kReleaseToOSIntervalNever, premapped_heap); |
| 796 | memset(&cache, 0, sizeof(cache)); |
| 797 | cache.Init(0); |
| 798 | |
| 799 | const uptr kNumAllocs = 10000; |
| 800 | const int kNumIter = 100; |
| 801 | uptr saved_total = 0; |
| 802 | for (int class_id = 1; class_id <= 5; class_id++) { |
| 803 | for (int it = 0; it < kNumIter; it++) { |
| 804 | void *allocated[kNumAllocs]; |
| 805 | for (uptr i = 0; i < kNumAllocs; i++) { |
| 806 | allocated[i] = cache.Allocate(a, class_id); |
| 807 | } |
| 808 | for (uptr i = 0; i < kNumAllocs; i++) { |
| 809 | cache.Deallocate(a, class_id, allocated[i]); |
| 810 | } |
| 811 | cache.Drain(a); |
| 812 | uptr total_allocated = a->TotalMemoryUsed(); |
| 813 | if (it) |
| 814 | CHECK_EQ(saved_total, total_allocated); |
| 815 | saved_total = total_allocated; |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | a->TestOnlyUnmap(); |
| 820 | delete a; |
| 821 | } |
| 822 | |
| 823 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 824 | // These tests can fail on Windows if memory is somewhat full and lit happens |
| 825 | // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| 826 | #if !SANITIZER_WINDOWS |
| 827 | TEST(SanitizerCommon, SizeClassAllocator64LocalCache) { |
| 828 | TestSizeClassAllocatorLocalCache<Allocator64>(); |
| 829 | } |
| 830 | |
| 831 | TEST(SanitizerCommon, SizeClassAllocator64DynamicLocalCache) { |
| 832 | TestSizeClassAllocatorLocalCache<Allocator64Dynamic>(); |
| 833 | } |
| 834 | |
| 835 | #if !ALLOCATOR64_SMALL_SIZE |
| 836 | TEST(SanitizerCommon, SizeClassAllocator64DynamicPremappedLocalCache) { |
| 837 | ScopedPremappedHeap h; |
| 838 | TestSizeClassAllocatorLocalCache<Allocator64Dynamic>(premapped_heap: h.Addr()); |
| 839 | } |
| 840 | |
| 841 | TEST(SanitizerCommon, SizeClassAllocator64CompactLocalCache) { |
| 842 | TestSizeClassAllocatorLocalCache<Allocator64Compact>(); |
| 843 | } |
| 844 | #endif |
| 845 | TEST(SanitizerCommon, SizeClassAllocator64VeryCompactLocalCache) { |
| 846 | TestSizeClassAllocatorLocalCache<Allocator64VeryCompact>(); |
| 847 | } |
| 848 | #endif |
| 849 | #endif |
| 850 | |
| 851 | TEST(SanitizerCommon, SizeClassAllocator32CompactLocalCache) { |
| 852 | TestSizeClassAllocatorLocalCache<Allocator32Compact>(); |
| 853 | } |
| 854 | |
| 855 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 856 | typedef Allocator64::AllocatorCache AllocatorCache; |
| 857 | static AllocatorCache static_allocator_cache; |
| 858 | |
| 859 | void *AllocatorLeakTestWorker(void *arg) { |
| 860 | typedef AllocatorCache::Allocator Allocator; |
| 861 | Allocator *a = (Allocator*)(arg); |
| 862 | static_allocator_cache.Allocate(allocator: a, class_id: 10); |
| 863 | static_allocator_cache.Drain(allocator: a); |
| 864 | return 0; |
| 865 | } |
| 866 | |
| 867 | TEST(SanitizerCommon, AllocatorLeakTest) { |
| 868 | typedef AllocatorCache::Allocator Allocator; |
| 869 | Allocator a; |
| 870 | a.Init(release_to_os_interval_ms: kReleaseToOSIntervalNever); |
| 871 | uptr total_used_memory = 0; |
| 872 | for (int i = 0; i < 100; i++) { |
| 873 | pthread_t t; |
| 874 | PTHREAD_CREATE(&t, 0, AllocatorLeakTestWorker, &a); |
| 875 | PTHREAD_JOIN(t, 0); |
| 876 | if (i == 0) |
| 877 | total_used_memory = a.TotalMemoryUsed(); |
| 878 | EXPECT_EQ(a.TotalMemoryUsed(), total_used_memory); |
| 879 | } |
| 880 | |
| 881 | a.TestOnlyUnmap(); |
| 882 | } |
| 883 | |
| 884 | // Struct which is allocated to pass info to new threads. The new thread frees |
| 885 | // it. |
| 886 | struct NewThreadParams { |
| 887 | AllocatorCache *thread_cache; |
| 888 | AllocatorCache::Allocator *allocator; |
| 889 | uptr class_id; |
| 890 | }; |
| 891 | |
| 892 | // Called in a new thread. Just frees its argument. |
| 893 | static void *DeallocNewThreadWorker(void *arg) { |
| 894 | NewThreadParams *params = reinterpret_cast<NewThreadParams*>(arg); |
| 895 | params->thread_cache->Deallocate(allocator: params->allocator, class_id: params->class_id, p: params); |
| 896 | return NULL; |
| 897 | } |
| 898 | |
| 899 | // The allocator cache is supposed to be POD and zero initialized. We should be |
| 900 | // able to call Deallocate on a zeroed cache, and it will self-initialize. |
| 901 | TEST(Allocator, AllocatorCacheDeallocNewThread) { |
| 902 | AllocatorCache::Allocator allocator; |
| 903 | allocator.Init(release_to_os_interval_ms: kReleaseToOSIntervalNever); |
| 904 | AllocatorCache main_cache; |
| 905 | AllocatorCache child_cache; |
| 906 | memset(&main_cache, 0, sizeof(main_cache)); |
| 907 | memset(&child_cache, 0, sizeof(child_cache)); |
| 908 | |
| 909 | uptr class_id = DefaultSizeClassMap::ClassID(size: sizeof(NewThreadParams)); |
| 910 | NewThreadParams *params = reinterpret_cast<NewThreadParams*>( |
| 911 | main_cache.Allocate(allocator: &allocator, class_id)); |
| 912 | params->thread_cache = &child_cache; |
| 913 | params->allocator = &allocator; |
| 914 | params->class_id = class_id; |
| 915 | pthread_t t; |
| 916 | PTHREAD_CREATE(&t, 0, DeallocNewThreadWorker, params); |
| 917 | PTHREAD_JOIN(t, 0); |
| 918 | |
| 919 | allocator.TestOnlyUnmap(); |
| 920 | } |
| 921 | #endif |
| 922 | |
| 923 | TEST(Allocator, Basic) { |
| 924 | char *p = (char*)InternalAlloc(size: 10); |
| 925 | EXPECT_NE(p, (char*)0); |
| 926 | char *p2 = (char*)InternalAlloc(size: 20); |
| 927 | EXPECT_NE(p2, (char*)0); |
| 928 | EXPECT_NE(p2, p); |
| 929 | InternalFree(p); |
| 930 | InternalFree(p: p2); |
| 931 | } |
| 932 | |
| 933 | TEST(Allocator, Stress) { |
| 934 | const int kCount = 1000; |
| 935 | char *ptrs[kCount]; |
| 936 | unsigned rnd = 42; |
| 937 | for (int i = 0; i < kCount; i++) { |
| 938 | uptr sz = my_rand_r(state: &rnd) % 1000; |
| 939 | char *p = (char*)InternalAlloc(size: sz); |
| 940 | EXPECT_NE(p, (char*)0); |
| 941 | ptrs[i] = p; |
| 942 | } |
| 943 | for (int i = 0; i < kCount; i++) { |
| 944 | InternalFree(p: ptrs[i]); |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | TEST(Allocator, LargeAlloc) { |
| 949 | void *p = InternalAlloc(size: 10 << 20); |
| 950 | InternalFree(p); |
| 951 | } |
| 952 | |
| 953 | TEST(Allocator, ScopedBuffer) { |
| 954 | const int kSize = 512; |
| 955 | { |
| 956 | InternalMmapVector<int> int_buf(kSize); |
| 957 | EXPECT_EQ((uptr)kSize, int_buf.size()); |
| 958 | } |
| 959 | InternalMmapVector<char> char_buf(kSize); |
| 960 | EXPECT_EQ((uptr)kSize, char_buf.size()); |
| 961 | internal_memset(s: char_buf.data(), c: 'c', n: kSize); |
| 962 | for (int i = 0; i < kSize; i++) { |
| 963 | EXPECT_EQ('c', char_buf[i]); |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | void IterationTestCallback(uptr chunk, void *arg) { |
| 968 | reinterpret_cast<std::set<uptr> *>(arg)->insert(chunk); |
| 969 | } |
| 970 | |
| 971 | template <class Allocator> |
| 972 | void TestSizeClassAllocatorIteration(uptr premapped_heap = 0) { |
| 973 | Allocator *a = new Allocator; |
| 974 | a->Init(kReleaseToOSIntervalNever, premapped_heap); |
| 975 | typename Allocator::AllocatorCache cache; |
| 976 | memset(&cache, 0, sizeof(cache)); |
| 977 | cache.Init(0); |
| 978 | |
| 979 | static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, |
| 980 | 50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000}; |
| 981 | |
| 982 | std::vector<void *> allocated; |
| 983 | |
| 984 | // Allocate a bunch of chunks. |
| 985 | for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) { |
| 986 | uptr size = sizes[s]; |
| 987 | if (!a->CanAllocate(size, 1)) continue; |
| 988 | // printf("s = %ld\n", size); |
| 989 | uptr n_iter = std::max((uptr)6, 80000 / size); |
| 990 | // fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter); |
| 991 | for (uptr j = 0; j < n_iter; j++) { |
| 992 | uptr class_id0 = Allocator::SizeClassMapT::ClassID(size); |
| 993 | void *x = cache.Allocate(a, class_id0); |
| 994 | allocated.push_back(x); |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | std::set<uptr> reported_chunks; |
| 999 | a->ForceLock(); |
| 1000 | a->ForEachChunk(IterationTestCallback, &reported_chunks); |
| 1001 | a->ForceUnlock(); |
| 1002 | |
| 1003 | for (uptr i = 0; i < allocated.size(); i++) { |
| 1004 | // Don't use EXPECT_NE. Reporting the first mismatch is enough. |
| 1005 | ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), |
| 1006 | reported_chunks.end()); |
| 1007 | } |
| 1008 | |
| 1009 | a->TestOnlyUnmap(); |
| 1010 | delete a; |
| 1011 | } |
| 1012 | |
| 1013 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 1014 | // These tests can fail on Windows if memory is somewhat full and lit happens |
| 1015 | // to run them all at the same time. FIXME: Make them not flaky and reenable. |
| 1016 | #if !SANITIZER_WINDOWS |
| 1017 | TEST(SanitizerCommon, SizeClassAllocator64Iteration) { |
| 1018 | TestSizeClassAllocatorIteration<Allocator64>(); |
| 1019 | } |
| 1020 | TEST(SanitizerCommon, SizeClassAllocator64DynamicIteration) { |
| 1021 | TestSizeClassAllocatorIteration<Allocator64Dynamic>(); |
| 1022 | } |
| 1023 | #if !ALLOCATOR64_SMALL_SIZE |
| 1024 | TEST(SanitizerCommon, SizeClassAllocator64DynamicPremappedIteration) { |
| 1025 | ScopedPremappedHeap h; |
| 1026 | TestSizeClassAllocatorIteration<Allocator64Dynamic>(premapped_heap: h.Addr()); |
| 1027 | } |
| 1028 | #endif |
| 1029 | #endif |
| 1030 | #endif |
| 1031 | |
| 1032 | TEST(SanitizerCommon, SKIP_ON_SPARCV9(SizeClassAllocator32Iteration)) { |
| 1033 | TestSizeClassAllocatorIteration<Allocator32Compact>(); |
| 1034 | } |
| 1035 | |
| 1036 | TEST(SanitizerCommon, LargeMmapAllocatorIteration) { |
| 1037 | LargeMmapAllocator<NoOpMapUnmapCallback> a; |
| 1038 | a.Init(); |
| 1039 | AllocatorStats stats; |
| 1040 | stats.Init(); |
| 1041 | |
| 1042 | static const uptr kNumAllocs = 1000; |
| 1043 | char *allocated[kNumAllocs]; |
| 1044 | static const uptr size = 40; |
| 1045 | // Allocate some. |
| 1046 | for (uptr i = 0; i < kNumAllocs; i++) |
| 1047 | allocated[i] = (char *)a.Allocate(stat: &stats, size, alignment: 1); |
| 1048 | |
| 1049 | std::set<uptr> reported_chunks; |
| 1050 | a.ForceLock(); |
| 1051 | a.ForEachChunk(IterationTestCallback, &reported_chunks); |
| 1052 | a.ForceUnlock(); |
| 1053 | |
| 1054 | for (uptr i = 0; i < kNumAllocs; i++) { |
| 1055 | // Don't use EXPECT_NE. Reporting the first mismatch is enough. |
| 1056 | ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])), |
| 1057 | reported_chunks.end()); |
| 1058 | } |
| 1059 | for (uptr i = 0; i < kNumAllocs; i++) |
| 1060 | a.Deallocate(stat: &stats, p: allocated[i]); |
| 1061 | } |
| 1062 | |
| 1063 | TEST(SanitizerCommon, LargeMmapAllocatorBlockBegin) { |
| 1064 | LargeMmapAllocator<NoOpMapUnmapCallback> a; |
| 1065 | a.Init(); |
| 1066 | AllocatorStats stats; |
| 1067 | stats.Init(); |
| 1068 | |
| 1069 | static const uptr kNumAllocs = 1024; |
| 1070 | static const uptr kNumExpectedFalseLookups = 10000000; |
| 1071 | char *allocated[kNumAllocs]; |
| 1072 | static const uptr size = 4096; |
| 1073 | // Allocate some. |
| 1074 | for (uptr i = 0; i < kNumAllocs; i++) { |
| 1075 | allocated[i] = (char *)a.Allocate(stat: &stats, size, alignment: 1); |
| 1076 | } |
| 1077 | |
| 1078 | a.ForceLock(); |
| 1079 | for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) { |
| 1080 | // if ((i & (i - 1)) == 0) fprintf(stderr, "[%zd]\n", i); |
| 1081 | char *p1 = allocated[i % kNumAllocs]; |
| 1082 | EXPECT_EQ(p1, a.GetBlockBeginFastLocked(ptr: p1)); |
| 1083 | EXPECT_EQ(p1, a.GetBlockBeginFastLocked(ptr: p1 + size / 2)); |
| 1084 | EXPECT_EQ(p1, a.GetBlockBeginFastLocked(ptr: p1 + size - 1)); |
| 1085 | EXPECT_EQ(p1, a.GetBlockBeginFastLocked(ptr: p1 - 100)); |
| 1086 | } |
| 1087 | |
| 1088 | for (uptr i = 0; i < kNumExpectedFalseLookups; i++) { |
| 1089 | void *p = reinterpret_cast<void *>(i % 1024); |
| 1090 | EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(ptr: p)); |
| 1091 | p = reinterpret_cast<void *>(~0L - (i % 1024)); |
| 1092 | EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(ptr: p)); |
| 1093 | } |
| 1094 | a.ForceUnlock(); |
| 1095 | |
| 1096 | for (uptr i = 0; i < kNumAllocs; i++) |
| 1097 | a.Deallocate(stat: &stats, p: allocated[i]); |
| 1098 | } |
| 1099 | |
| 1100 | |
| 1101 | // Don't test OOM conditions on Win64 because it causes other tests on the same |
| 1102 | // machine to OOM. |
| 1103 | #if SANITIZER_CAN_USE_ALLOCATOR64 && !SANITIZER_WINDOWS64 && !ALLOCATOR64_SMALL_SIZE |
| 1104 | typedef __sanitizer::SizeClassMap<2, 22, 22, 34, 128, 16> SpecialSizeClassMap; |
| 1105 | template <typename AddressSpaceViewTy = LocalAddressSpaceView> |
| 1106 | struct AP64_SpecialSizeClassMap { |
| 1107 | static const uptr kSpaceBeg = kAllocatorSpace; |
| 1108 | static const uptr kSpaceSize = kAllocatorSize; |
| 1109 | static const uptr kMetadataSize = 0; |
| 1110 | typedef SpecialSizeClassMap SizeClassMap; |
| 1111 | typedef NoOpMapUnmapCallback MapUnmapCallback; |
| 1112 | static const uptr kFlags = 0; |
| 1113 | using AddressSpaceView = AddressSpaceViewTy; |
| 1114 | }; |
| 1115 | |
| 1116 | // Regression test for out-of-memory condition in PopulateFreeList(). |
| 1117 | TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) { |
| 1118 | // In a world where regions are small and chunks are huge... |
| 1119 | typedef SizeClassAllocator64<AP64_SpecialSizeClassMap<>> SpecialAllocator64; |
| 1120 | const uptr kRegionSize = |
| 1121 | kAllocatorSize / SpecialSizeClassMap::kNumClassesRounded; |
| 1122 | SpecialAllocator64 *a = new SpecialAllocator64; |
| 1123 | a->Init(release_to_os_interval_ms: kReleaseToOSIntervalNever); |
| 1124 | SpecialAllocator64::AllocatorCache cache; |
| 1125 | memset(&cache, 0, sizeof(cache)); |
| 1126 | cache.Init(s: 0); |
| 1127 | |
| 1128 | // ...one man is on a mission to overflow a region with a series of |
| 1129 | // successive allocations. |
| 1130 | |
| 1131 | const uptr kClassID = 24; |
| 1132 | const uptr kAllocationSize = SpecialSizeClassMap::Size(class_id: kClassID); |
| 1133 | ASSERT_LT(2 * kAllocationSize, kRegionSize); |
| 1134 | ASSERT_GT(3 * kAllocationSize, kRegionSize); |
| 1135 | EXPECT_NE(cache.Allocate(allocator: a, class_id: kClassID), nullptr); |
| 1136 | EXPECT_NE(cache.Allocate(allocator: a, class_id: kClassID), nullptr); |
| 1137 | EXPECT_EQ(cache.Allocate(allocator: a, class_id: kClassID), nullptr); |
| 1138 | |
| 1139 | const uptr Class2 = 21; |
| 1140 | const uptr Size2 = SpecialSizeClassMap::Size(class_id: Class2); |
| 1141 | ASSERT_EQ(Size2 * 8, kRegionSize); |
| 1142 | char *p[7]; |
| 1143 | for (int i = 0; i < 7; i++) { |
| 1144 | p[i] = (char*)cache.Allocate(allocator: a, class_id: Class2); |
| 1145 | EXPECT_NE(p[i], nullptr); |
| 1146 | fprintf(stderr, format: "p[%d] %p s = %lx\n" , i, (void*)p[i], Size2); |
| 1147 | p[i][Size2 - 1] = 42; |
| 1148 | if (i) ASSERT_LT(p[i - 1], p[i]); |
| 1149 | } |
| 1150 | EXPECT_EQ(cache.Allocate(allocator: a, class_id: Class2), nullptr); |
| 1151 | cache.Deallocate(allocator: a, class_id: Class2, p: p[0]); |
| 1152 | cache.Drain(allocator: a); |
| 1153 | ASSERT_EQ(p[6][Size2 - 1], 42); |
| 1154 | a->TestOnlyUnmap(); |
| 1155 | delete a; |
| 1156 | } |
| 1157 | |
| 1158 | #endif |
| 1159 | |
| 1160 | #if SANITIZER_CAN_USE_ALLOCATOR64 |
| 1161 | |
| 1162 | class NoMemoryMapper { |
| 1163 | public: |
| 1164 | uptr last_request_buffer_size = 0; |
| 1165 | |
| 1166 | u64 *MapPackedCounterArrayBuffer(uptr buffer_size) { |
| 1167 | last_request_buffer_size = buffer_size * sizeof(u64); |
| 1168 | return nullptr; |
| 1169 | } |
| 1170 | }; |
| 1171 | |
| 1172 | class RedZoneMemoryMapper { |
| 1173 | public: |
| 1174 | RedZoneMemoryMapper() { |
| 1175 | const auto page_size = GetPageSize(); |
| 1176 | buffer = MmapOrDie(size: 3ULL * page_size, mem_type: "" ); |
| 1177 | MprotectNoAccess(addr: reinterpret_cast<uptr>(buffer), size: page_size); |
| 1178 | MprotectNoAccess(addr: reinterpret_cast<uptr>(buffer) + page_size * 2, size: page_size); |
| 1179 | } |
| 1180 | ~RedZoneMemoryMapper() { UnmapOrDie(addr: buffer, size: 3 * GetPageSize()); } |
| 1181 | |
| 1182 | u64 *MapPackedCounterArrayBuffer(uptr buffer_size) { |
| 1183 | buffer_size *= sizeof(u64); |
| 1184 | const auto page_size = GetPageSize(); |
| 1185 | CHECK_EQ(buffer_size, page_size); |
| 1186 | u64 *p = |
| 1187 | reinterpret_cast<u64 *>(reinterpret_cast<uptr>(buffer) + page_size); |
| 1188 | memset(p, 0, page_size); |
| 1189 | return p; |
| 1190 | } |
| 1191 | |
| 1192 | private: |
| 1193 | void *buffer; |
| 1194 | }; |
| 1195 | |
| 1196 | TEST(SanitizerCommon, SizeClassAllocator64PackedCounterArray) { |
| 1197 | NoMemoryMapper no_memory_mapper; |
| 1198 | for (int i = 0; i < 64; i++) { |
| 1199 | // Various valid counter's max values packed into one word. |
| 1200 | Allocator64::PackedCounterArray counters_2n(1, 1ULL << i, |
| 1201 | &no_memory_mapper); |
| 1202 | EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size); |
| 1203 | |
| 1204 | // Check the "all bit set" values too. |
| 1205 | Allocator64::PackedCounterArray counters_2n1_1(1, ~0ULL >> i, |
| 1206 | &no_memory_mapper); |
| 1207 | EXPECT_EQ(8ULL, no_memory_mapper.last_request_buffer_size); |
| 1208 | |
| 1209 | // Verify the packing ratio, the counter is expected to be packed into the |
| 1210 | // closest power of 2 bits. |
| 1211 | Allocator64::PackedCounterArray counters(64, 1ULL << i, &no_memory_mapper); |
| 1212 | EXPECT_EQ(8ULL * RoundUpToPowerOfTwo(size: i + 1), |
| 1213 | no_memory_mapper.last_request_buffer_size); |
| 1214 | } |
| 1215 | |
| 1216 | RedZoneMemoryMapper memory_mapper; |
| 1217 | // Go through 1, 2, 4, 8, .. 64 bits per counter. |
| 1218 | for (int i = 0; i < 7; i++) { |
| 1219 | // Make sure counters request one memory page for the buffer. |
| 1220 | const u64 kNumCounters = (GetPageSize() / 8) * (64 >> i); |
| 1221 | Allocator64::PackedCounterArray counters( |
| 1222 | kNumCounters, 1ULL << ((1 << i) - 1), &memory_mapper); |
| 1223 | counters.Inc(i: 0); |
| 1224 | for (u64 c = 1; c < kNumCounters - 1; c++) { |
| 1225 | ASSERT_EQ(0ULL, counters.Get(i: c)); |
| 1226 | counters.Inc(i: c); |
| 1227 | ASSERT_EQ(1ULL, counters.Get(i: c - 1)); |
| 1228 | } |
| 1229 | ASSERT_EQ(0ULL, counters.Get(i: kNumCounters - 1)); |
| 1230 | counters.Inc(i: kNumCounters - 1); |
| 1231 | |
| 1232 | if (i > 0) { |
| 1233 | counters.IncRange(from: 0, to: kNumCounters - 1); |
| 1234 | for (u64 c = 0; c < kNumCounters; c++) |
| 1235 | ASSERT_EQ(2ULL, counters.Get(i: c)); |
| 1236 | } |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | class RangeRecorder { |
| 1241 | public: |
| 1242 | std::string reported_pages; |
| 1243 | |
| 1244 | RangeRecorder() |
| 1245 | : page_size_scaled_log( |
| 1246 | Log2(x: GetPageSizeCached() >> Allocator64::kCompactPtrScale)), |
| 1247 | last_page_reported(0) {} |
| 1248 | |
| 1249 | void (u32 class_id, u32 from, u32 to) { |
| 1250 | from >>= page_size_scaled_log; |
| 1251 | to >>= page_size_scaled_log; |
| 1252 | ASSERT_LT(from, to); |
| 1253 | if (!reported_pages.empty()) |
| 1254 | ASSERT_LT(last_page_reported, from); |
| 1255 | reported_pages.append(from - last_page_reported, '.'); |
| 1256 | reported_pages.append(to - from, 'x'); |
| 1257 | last_page_reported = to; |
| 1258 | } |
| 1259 | |
| 1260 | private: |
| 1261 | const uptr page_size_scaled_log; |
| 1262 | u32 last_page_reported; |
| 1263 | }; |
| 1264 | |
| 1265 | TEST(SanitizerCommon, SizeClassAllocator64FreePagesRangeTracker) { |
| 1266 | typedef Allocator64::FreePagesRangeTracker<RangeRecorder> RangeTracker; |
| 1267 | |
| 1268 | // 'x' denotes a page to be released, '.' denotes a page to be kept around. |
| 1269 | const char* test_cases[] = { |
| 1270 | "" , |
| 1271 | "." , |
| 1272 | "x" , |
| 1273 | "........" , |
| 1274 | "xxxxxxxxxxx" , |
| 1275 | "..............xxxxx" , |
| 1276 | "xxxxxxxxxxxxxxxxxx....." , |
| 1277 | "......xxxxxxxx........" , |
| 1278 | "xxx..........xxxxxxxxxxxxxxx" , |
| 1279 | "......xxxx....xxxx........" , |
| 1280 | "xxx..........xxxxxxxx....xxxxxxx" , |
| 1281 | "x.x.x.x.x.x.x.x.x.x.x.x." , |
| 1282 | ".x.x.x.x.x.x.x.x.x.x.x.x" , |
| 1283 | ".x.x.x.x.x.x.x.x.x.x.x.x." , |
| 1284 | "x.x.x.x.x.x.x.x.x.x.x.x.x" , |
| 1285 | }; |
| 1286 | |
| 1287 | for (auto test_case : test_cases) { |
| 1288 | RangeRecorder range_recorder; |
| 1289 | RangeTracker tracker(&range_recorder, 1); |
| 1290 | for (int i = 0; test_case[i] != 0; i++) |
| 1291 | tracker.NextPage(freed: test_case[i] == 'x'); |
| 1292 | tracker.Done(); |
| 1293 | // Strip trailing '.'-pages before comparing the results as they are not |
| 1294 | // going to be reported to range_recorder anyway. |
| 1295 | const char* last_x = strrchr(test_case, 'x'); |
| 1296 | std::string expected( |
| 1297 | test_case, |
| 1298 | last_x == nullptr ? 0 : (last_x - test_case + 1)); |
| 1299 | EXPECT_STREQ(expected.c_str(), range_recorder.reported_pages.c_str()); |
| 1300 | } |
| 1301 | } |
| 1302 | |
| 1303 | class ReleasedPagesTrackingMemoryMapper { |
| 1304 | public: |
| 1305 | std::set<u32> reported_pages; |
| 1306 | std::vector<u64> buffer; |
| 1307 | |
| 1308 | u64 *MapPackedCounterArrayBuffer(uptr buffer_size) { |
| 1309 | reported_pages.clear(); |
| 1310 | buffer.assign(buffer_size, 0); |
| 1311 | return buffer.data(); |
| 1312 | } |
| 1313 | void (u32 class_id, u32 from, u32 to) { |
| 1314 | uptr page_size_scaled = |
| 1315 | GetPageSizeCached() >> Allocator64::kCompactPtrScale; |
| 1316 | for (u32 i = from; i < to; i += page_size_scaled) |
| 1317 | reported_pages.insert(i); |
| 1318 | } |
| 1319 | }; |
| 1320 | |
| 1321 | template <class Allocator> |
| 1322 | void TestReleaseFreeMemoryToOS() { |
| 1323 | ReleasedPagesTrackingMemoryMapper memory_mapper; |
| 1324 | const uptr kAllocatedPagesCount = 1024; |
| 1325 | const uptr page_size = GetPageSizeCached(); |
| 1326 | const uptr page_size_scaled = page_size >> Allocator::kCompactPtrScale; |
| 1327 | std::mt19937 r; |
| 1328 | uint32_t rnd_state = 42; |
| 1329 | |
| 1330 | for (uptr class_id = 1; class_id <= Allocator::SizeClassMapT::kLargestClassID; |
| 1331 | class_id++) { |
| 1332 | const uptr chunk_size = Allocator::SizeClassMapT::Size(class_id); |
| 1333 | const uptr chunk_size_scaled = chunk_size >> Allocator::kCompactPtrScale; |
| 1334 | const uptr max_chunks = |
| 1335 | kAllocatedPagesCount * GetPageSizeCached() / chunk_size; |
| 1336 | |
| 1337 | // Generate the random free list. |
| 1338 | std::vector<u32> free_array; |
| 1339 | bool in_free_range = false; |
| 1340 | uptr current_range_end = 0; |
| 1341 | for (uptr i = 0; i < max_chunks; i++) { |
| 1342 | if (i == current_range_end) { |
| 1343 | in_free_range = (my_rand_r(state: &rnd_state) & 1U) == 1; |
| 1344 | current_range_end += my_rand_r(state: &rnd_state) % 100 + 1; |
| 1345 | } |
| 1346 | if (in_free_range) |
| 1347 | free_array.push_back(i * chunk_size_scaled); |
| 1348 | } |
| 1349 | if (free_array.empty()) |
| 1350 | continue; |
| 1351 | // Shuffle free_list to verify that ReleaseFreeMemoryToOS does not depend on |
| 1352 | // the list ordering. |
| 1353 | std::shuffle(free_array.begin(), free_array.end(), r); |
| 1354 | |
| 1355 | Allocator::ReleaseFreeMemoryToOS(&free_array[0], free_array.size(), |
| 1356 | chunk_size, kAllocatedPagesCount, |
| 1357 | &memory_mapper, class_id); |
| 1358 | |
| 1359 | // Verify that there are no released pages touched by used chunks and all |
| 1360 | // ranges of free chunks big enough to contain the entire memory pages had |
| 1361 | // these pages released. |
| 1362 | uptr verified_released_pages = 0; |
| 1363 | std::set<u32> free_chunks(free_array.begin(), free_array.end()); |
| 1364 | |
| 1365 | u32 current_chunk = 0; |
| 1366 | in_free_range = false; |
| 1367 | u32 current_free_range_start = 0; |
| 1368 | for (uptr i = 0; i <= max_chunks; i++) { |
| 1369 | bool is_free_chunk = free_chunks.find(current_chunk) != free_chunks.end(); |
| 1370 | |
| 1371 | if (is_free_chunk) { |
| 1372 | if (!in_free_range) { |
| 1373 | in_free_range = true; |
| 1374 | current_free_range_start = current_chunk; |
| 1375 | } |
| 1376 | } else { |
| 1377 | // Verify that this used chunk does not touch any released page. |
| 1378 | for (uptr i_page = current_chunk / page_size_scaled; |
| 1379 | i_page <= (current_chunk + chunk_size_scaled - 1) / |
| 1380 | page_size_scaled; |
| 1381 | i_page++) { |
| 1382 | bool page_released = |
| 1383 | memory_mapper.reported_pages.find(i_page * page_size_scaled) != |
| 1384 | memory_mapper.reported_pages.end(); |
| 1385 | ASSERT_EQ(false, page_released); |
| 1386 | } |
| 1387 | |
| 1388 | if (in_free_range) { |
| 1389 | in_free_range = false; |
| 1390 | // Verify that all entire memory pages covered by this range of free |
| 1391 | // chunks were released. |
| 1392 | u32 page = RoundUpTo(size: current_free_range_start, boundary: page_size_scaled); |
| 1393 | while (page + page_size_scaled <= current_chunk) { |
| 1394 | bool page_released = |
| 1395 | memory_mapper.reported_pages.find(page) != |
| 1396 | memory_mapper.reported_pages.end(); |
| 1397 | ASSERT_EQ(true, page_released); |
| 1398 | verified_released_pages++; |
| 1399 | page += page_size_scaled; |
| 1400 | } |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | current_chunk += chunk_size_scaled; |
| 1405 | } |
| 1406 | |
| 1407 | ASSERT_EQ(memory_mapper.reported_pages.size(), verified_released_pages); |
| 1408 | } |
| 1409 | } |
| 1410 | |
| 1411 | TEST(SanitizerCommon, SizeClassAllocator64ReleaseFreeMemoryToOS) { |
| 1412 | TestReleaseFreeMemoryToOS<Allocator64>(); |
| 1413 | } |
| 1414 | |
| 1415 | #if !ALLOCATOR64_SMALL_SIZE |
| 1416 | TEST(SanitizerCommon, SizeClassAllocator64CompactReleaseFreeMemoryToOS) { |
| 1417 | TestReleaseFreeMemoryToOS<Allocator64Compact>(); |
| 1418 | } |
| 1419 | |
| 1420 | TEST(SanitizerCommon, SizeClassAllocator64VeryCompactReleaseFreeMemoryToOS) { |
| 1421 | TestReleaseFreeMemoryToOS<Allocator64VeryCompact>(); |
| 1422 | } |
| 1423 | #endif // !ALLOCATOR64_SMALL_SIZE |
| 1424 | |
| 1425 | #endif // SANITIZER_CAN_USE_ALLOCATOR64 |
| 1426 | |
| 1427 | TEST(SanitizerCommon, LowLevelAllocatorShouldRoundUpSizeOnAlloc) { |
| 1428 | // When allocating a memory block slightly bigger than a memory page and |
| 1429 | // LowLevelAllocator calls MmapOrDie for the internal buffer, it should round |
| 1430 | // the size up to the page size, so that subsequent calls to the allocator |
| 1431 | // can use the remaining space in the last allocated page. |
| 1432 | static LowLevelAllocator allocator; |
| 1433 | char *ptr1 = (char *)allocator.Allocate(size: GetPageSizeCached() + 16); |
| 1434 | char *ptr2 = (char *)allocator.Allocate(size: 16); |
| 1435 | EXPECT_EQ(ptr2, ptr1 + GetPageSizeCached() + 16); |
| 1436 | } |
| 1437 | |
| 1438 | #endif // #if !SANITIZER_DEBUG |
| 1439 | |