| 1 | // RUN: %clang_builtins %s %librt -o %t && %run %t |
| 2 | |
| 3 | #define DOUBLE_PRECISION |
| 4 | #include <fenv.h> |
| 5 | #include <float.h> |
| 6 | #include <limits.h> |
| 7 | #include <math.h> |
| 8 | #include <stdio.h> |
| 9 | #include "fp_lib.h" |
| 10 | |
| 11 | int test__compiler_rt_scalbn(const char *mode, fp_t x, int y) { |
| 12 | #if defined(__ve__) |
| 13 | if (fpclassify(x) == FP_SUBNORMAL) |
| 14 | return 0; |
| 15 | #endif |
| 16 | fp_t crt_value = __compiler_rt_scalbn(x, y); |
| 17 | fp_t libm_value = scalbn(x: x, n: y); |
| 18 | // Consider +/-0 unequal, but disregard the sign/payload of NaN. |
| 19 | if (toRep(x: crt_value) != toRep(x: libm_value) && |
| 20 | !(crt_isnan(crt_value) && crt_isnan(libm_value))) { |
| 21 | printf(format: "error: [%s] in __compiler_rt_scalbn(%a [%llX], %d) = %a [%llX] " |
| 22 | "!= %a [%llX]\n" , |
| 23 | mode, x, (unsigned long long)toRep(x), y, |
| 24 | crt_value, (unsigned long long)toRep(x: crt_value), |
| 25 | libm_value, (unsigned long long)toRep(x: libm_value)); |
| 26 | return 1; |
| 27 | } |
| 28 | return 0; |
| 29 | } |
| 30 | |
| 31 | fp_t cases[] = { |
| 32 | -NAN, NAN, -INFINITY, INFINITY, -0.0, 0.0, -1, 1, -2, 2, |
| 33 | DBL_TRUE_MIN, DBL_TRUE_MIN*7, DBL_MIN, DBL_MAX, |
| 34 | -1.001, 1.001, -1.002, 1.002, 1.e-6, -1.e-6, |
| 35 | 0x1.0p-1021, |
| 36 | 0x1.0p-1022, |
| 37 | 0x1.0p-1023, // subnormal |
| 38 | 0x1.0p-1024, // subnormal |
| 39 | }; |
| 40 | |
| 41 | int iterate_cases(const char *mode) { |
| 42 | const unsigned N = sizeof(cases) / sizeof(cases[0]); |
| 43 | unsigned i; |
| 44 | for (i = 0; i < N; ++i) { |
| 45 | int j; |
| 46 | for (j = -5; j <= 5; ++j) { |
| 47 | if (test__compiler_rt_scalbn(mode, x: cases[i], y: j)) return 1; |
| 48 | } |
| 49 | if (test__compiler_rt_scalbn(mode, x: cases[i], y: -10000)) return 1; |
| 50 | if (test__compiler_rt_scalbn(mode, x: cases[i], y: 10000)) return 1; |
| 51 | if (test__compiler_rt_scalbn(mode, x: cases[i], INT_MIN)) return 1; |
| 52 | if (test__compiler_rt_scalbn(mode, x: cases[i], INT_MAX)) return 1; |
| 53 | } |
| 54 | return 0; |
| 55 | } |
| 56 | |
| 57 | int main() { |
| 58 | if (iterate_cases(mode: "default" )) return 1; |
| 59 | |
| 60 | // Rounding mode tests on supported architectures. __compiler_rt_scalbn |
| 61 | // should have the same rounding behavior as double-precision multiplication. |
| 62 | #if (defined(__arm__) || defined(__aarch64__)) && defined(__ARM_FP) || \ |
| 63 | defined(__i386__) || defined(__x86_64__) |
| 64 | // Skip these tests on Windows because the UCRT scalbn function always behaves |
| 65 | // as if the default rounding mode is set (FE_TONEAREST). |
| 66 | // Also skip for newlib because although its scalbn function does respect the |
| 67 | // rounding mode, where the tests trigger an underflow or overflow using a |
| 68 | // large exponent the result is rounded in the opposite direction to that which |
| 69 | // would be expected in the (FE_UPWARD) and (FE_DOWNWARD) modes. |
| 70 | # if !defined(_WIN32) && !defined(_NEWLIB_VERSION) |
| 71 | fesetround(FE_UPWARD); |
| 72 | if (iterate_cases(mode: "FE_UPWARD" )) return 1; |
| 73 | |
| 74 | fesetround(FE_DOWNWARD); |
| 75 | if (iterate_cases(mode: "FE_DOWNWARD" )) return 1; |
| 76 | |
| 77 | fesetround(FE_TOWARDZERO); |
| 78 | if (iterate_cases(mode: "FE_TOWARDZERO" )) return 1; |
| 79 | #endif |
| 80 | |
| 81 | fesetround(FE_TONEAREST); |
| 82 | if (iterate_cases(mode: "FE_TONEAREST" )) return 1; |
| 83 | #endif |
| 84 | |
| 85 | return 0; |
| 86 | } |
| 87 | |